Properties

Label 4140.2.f.d.829.16
Level $4140$
Weight $2$
Character 4140.829
Analytic conductor $33.058$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(829,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 829.16
Character \(\chi\) \(=\) 4140.829
Dual form 4140.2.f.d.829.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.405664 + 2.19896i) q^{5} -3.23277i q^{7} -1.54118 q^{11} -6.47137i q^{13} +7.55463i q^{17} +1.20957 q^{19} +1.00000i q^{23} +(-4.67087 + 1.78408i) q^{25} -1.14088 q^{29} -6.97027 q^{31} +(7.10874 - 1.31142i) q^{35} -5.33750i q^{37} -7.35747 q^{41} -3.63307i q^{43} -10.3307i q^{47} -3.45079 q^{49} +3.16191i q^{53} +(-0.625203 - 3.38901i) q^{55} -8.15340 q^{59} +0.160021 q^{61} +(14.2303 - 2.62520i) q^{65} +15.1069i q^{67} -3.24232 q^{71} +9.51829i q^{73} +4.98229i q^{77} +10.9150 q^{79} +3.26243i q^{83} +(-16.6124 + 3.06464i) q^{85} -15.5146 q^{89} -20.9205 q^{91} +(0.490678 + 2.65979i) q^{95} +9.21865i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{19} - 8 q^{25} - 12 q^{31} - 28 q^{49} - 16 q^{55} - 16 q^{61} + 8 q^{79} + 12 q^{85} - 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4140\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(1657\) \(2071\) \(3961\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.405664 + 2.19896i 0.181418 + 0.983406i
\(6\) 0 0
\(7\) 3.23277i 1.22187i −0.791680 0.610936i \(-0.790793\pi\)
0.791680 0.610936i \(-0.209207\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.54118 −0.464685 −0.232342 0.972634i \(-0.574639\pi\)
−0.232342 + 0.972634i \(0.574639\pi\)
\(12\) 0 0
\(13\) 6.47137i 1.79484i −0.441181 0.897418i \(-0.645440\pi\)
0.441181 0.897418i \(-0.354560\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.55463i 1.83227i 0.400873 + 0.916134i \(0.368707\pi\)
−0.400873 + 0.916134i \(0.631293\pi\)
\(18\) 0 0
\(19\) 1.20957 0.277494 0.138747 0.990328i \(-0.455693\pi\)
0.138747 + 0.990328i \(0.455693\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) −4.67087 + 1.78408i −0.934175 + 0.356816i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.14088 −0.211856 −0.105928 0.994374i \(-0.533781\pi\)
−0.105928 + 0.994374i \(0.533781\pi\)
\(30\) 0 0
\(31\) −6.97027 −1.25190 −0.625948 0.779865i \(-0.715288\pi\)
−0.625948 + 0.779865i \(0.715288\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.10874 1.31142i 1.20160 0.221670i
\(36\) 0 0
\(37\) 5.33750i 0.877479i −0.898614 0.438740i \(-0.855425\pi\)
0.898614 0.438740i \(-0.144575\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −7.35747 −1.14904 −0.574522 0.818489i \(-0.694812\pi\)
−0.574522 + 0.818489i \(0.694812\pi\)
\(42\) 0 0
\(43\) 3.63307i 0.554038i −0.960864 0.277019i \(-0.910653\pi\)
0.960864 0.277019i \(-0.0893466\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 10.3307i 1.50688i −0.657515 0.753441i \(-0.728392\pi\)
0.657515 0.753441i \(-0.271608\pi\)
\(48\) 0 0
\(49\) −3.45079 −0.492970
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 3.16191i 0.434322i 0.976136 + 0.217161i \(0.0696797\pi\)
−0.976136 + 0.217161i \(0.930320\pi\)
\(54\) 0 0
\(55\) −0.625203 3.38901i −0.0843023 0.456974i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −8.15340 −1.06148 −0.530741 0.847534i \(-0.678086\pi\)
−0.530741 + 0.847534i \(0.678086\pi\)
\(60\) 0 0
\(61\) 0.160021 0.0204885 0.0102443 0.999948i \(-0.496739\pi\)
0.0102443 + 0.999948i \(0.496739\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14.2303 2.62520i 1.76505 0.325616i
\(66\) 0 0
\(67\) 15.1069i 1.84560i 0.385285 + 0.922798i \(0.374103\pi\)
−0.385285 + 0.922798i \(0.625897\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −3.24232 −0.384793 −0.192397 0.981317i \(-0.561626\pi\)
−0.192397 + 0.981317i \(0.561626\pi\)
\(72\) 0 0
\(73\) 9.51829i 1.11403i 0.830502 + 0.557016i \(0.188054\pi\)
−0.830502 + 0.557016i \(0.811946\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.98229i 0.567785i
\(78\) 0 0
\(79\) 10.9150 1.22804 0.614019 0.789292i \(-0.289552\pi\)
0.614019 + 0.789292i \(0.289552\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.26243i 0.358098i 0.983840 + 0.179049i \(0.0573021\pi\)
−0.983840 + 0.179049i \(0.942698\pi\)
\(84\) 0 0
\(85\) −16.6124 + 3.06464i −1.80186 + 0.332407i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −15.5146 −1.64454 −0.822272 0.569095i \(-0.807294\pi\)
−0.822272 + 0.569095i \(0.807294\pi\)
\(90\) 0 0
\(91\) −20.9205 −2.19306
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.490678 + 2.65979i 0.0503425 + 0.272889i
\(96\) 0 0
\(97\) 9.21865i 0.936012i 0.883725 + 0.468006i \(0.155027\pi\)
−0.883725 + 0.468006i \(0.844973\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −8.17208 −0.813153 −0.406576 0.913617i \(-0.633277\pi\)
−0.406576 + 0.913617i \(0.633277\pi\)
\(102\) 0 0
\(103\) 4.60465i 0.453710i 0.973929 + 0.226855i \(0.0728443\pi\)
−0.973929 + 0.226855i \(0.927156\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.0143941i 0.00139153i −1.00000 0.000695764i \(-0.999779\pi\)
1.00000 0.000695764i \(-0.000221468\pi\)
\(108\) 0 0
\(109\) −3.81119 −0.365046 −0.182523 0.983202i \(-0.558426\pi\)
−0.182523 + 0.983202i \(0.558426\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 2.31322i 0.217610i 0.994063 + 0.108805i \(0.0347024\pi\)
−0.994063 + 0.108805i \(0.965298\pi\)
\(114\) 0 0
\(115\) −2.19896 + 0.405664i −0.205054 + 0.0378283i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 24.4224 2.23879
\(120\) 0 0
\(121\) −8.62475 −0.784068
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.81793 9.54734i −0.520371 0.853940i
\(126\) 0 0
\(127\) 15.0379i 1.33440i −0.744879 0.667200i \(-0.767493\pi\)
0.744879 0.667200i \(-0.232507\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 16.2573 1.42041 0.710203 0.703997i \(-0.248603\pi\)
0.710203 + 0.703997i \(0.248603\pi\)
\(132\) 0 0
\(133\) 3.91025i 0.339062i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.3715i 0.886098i 0.896498 + 0.443049i \(0.146103\pi\)
−0.896498 + 0.443049i \(0.853897\pi\)
\(138\) 0 0
\(139\) −17.7637 −1.50670 −0.753351 0.657619i \(-0.771564\pi\)
−0.753351 + 0.657619i \(0.771564\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 9.97358i 0.834033i
\(144\) 0 0
\(145\) −0.462813 2.50875i −0.0384346 0.208340i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −8.00344 −0.655667 −0.327833 0.944736i \(-0.606318\pi\)
−0.327833 + 0.944736i \(0.606318\pi\)
\(150\) 0 0
\(151\) 3.24804 0.264321 0.132161 0.991228i \(-0.457808\pi\)
0.132161 + 0.991228i \(0.457808\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.82758 15.3274i −0.227117 1.23112i
\(156\) 0 0
\(157\) 10.0944i 0.805619i −0.915284 0.402809i \(-0.868034\pi\)
0.915284 0.402809i \(-0.131966\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.23277 0.254778
\(162\) 0 0
\(163\) 15.5370i 1.21695i −0.793573 0.608475i \(-0.791781\pi\)
0.793573 0.608475i \(-0.208219\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.9516i 1.46652i −0.679949 0.733260i \(-0.737998\pi\)
0.679949 0.733260i \(-0.262002\pi\)
\(168\) 0 0
\(169\) −28.8787 −2.22144
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3.90203i 0.296666i 0.988937 + 0.148333i \(0.0473907\pi\)
−0.988937 + 0.148333i \(0.952609\pi\)
\(174\) 0 0
\(175\) 5.76751 + 15.0999i 0.435983 + 1.14144i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.65049 −0.422338 −0.211169 0.977450i \(-0.567727\pi\)
−0.211169 + 0.977450i \(0.567727\pi\)
\(180\) 0 0
\(181\) −14.7671 −1.09763 −0.548814 0.835945i \(-0.684920\pi\)
−0.548814 + 0.835945i \(0.684920\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.7370 2.16523i 0.862918 0.159191i
\(186\) 0 0
\(187\) 11.6431i 0.851426i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −21.2428 −1.53708 −0.768539 0.639803i \(-0.779016\pi\)
−0.768539 + 0.639803i \(0.779016\pi\)
\(192\) 0 0
\(193\) 10.1832i 0.733005i 0.930417 + 0.366502i \(0.119445\pi\)
−0.930417 + 0.366502i \(0.880555\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.5346i 1.74802i −0.485911 0.874008i \(-0.661512\pi\)
0.485911 0.874008i \(-0.338488\pi\)
\(198\) 0 0
\(199\) 6.17207 0.437526 0.218763 0.975778i \(-0.429798\pi\)
0.218763 + 0.975778i \(0.429798\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 3.68820i 0.258861i
\(204\) 0 0
\(205\) −2.98466 16.1788i −0.208458 1.12998i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.86417 −0.128947
\(210\) 0 0
\(211\) 10.4430 0.718928 0.359464 0.933159i \(-0.382960\pi\)
0.359464 + 0.933159i \(0.382960\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.98899 1.47381i 0.544845 0.100513i
\(216\) 0 0
\(217\) 22.5332i 1.52966i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 48.8888 3.28862
\(222\) 0 0
\(223\) 12.4215i 0.831805i −0.909409 0.415903i \(-0.863466\pi\)
0.909409 0.415903i \(-0.136534\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 16.3837i 1.08743i −0.839271 0.543713i \(-0.817018\pi\)
0.839271 0.543713i \(-0.182982\pi\)
\(228\) 0 0
\(229\) −19.4860 −1.28767 −0.643835 0.765165i \(-0.722658\pi\)
−0.643835 + 0.765165i \(0.722658\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.1683i 1.19024i 0.803636 + 0.595122i \(0.202896\pi\)
−0.803636 + 0.595122i \(0.797104\pi\)
\(234\) 0 0
\(235\) 22.7168 4.19078i 1.48188 0.273376i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −10.8349 −0.700855 −0.350427 0.936590i \(-0.613964\pi\)
−0.350427 + 0.936590i \(0.613964\pi\)
\(240\) 0 0
\(241\) 12.7685 0.822490 0.411245 0.911525i \(-0.365094\pi\)
0.411245 + 0.911525i \(0.365094\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.39986 7.58815i −0.0894338 0.484789i
\(246\) 0 0
\(247\) 7.82757i 0.498056i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.3084 −0.713781 −0.356890 0.934146i \(-0.616163\pi\)
−0.356890 + 0.934146i \(0.616163\pi\)
\(252\) 0 0
\(253\) 1.54118i 0.0968934i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 24.1895i 1.50890i −0.656357 0.754451i \(-0.727903\pi\)
0.656357 0.754451i \(-0.272097\pi\)
\(258\) 0 0
\(259\) −17.2549 −1.07217
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.78146i 0.294837i −0.989074 0.147419i \(-0.952904\pi\)
0.989074 0.147419i \(-0.0470965\pi\)
\(264\) 0 0
\(265\) −6.95293 + 1.28267i −0.427115 + 0.0787940i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −14.0836 −0.858694 −0.429347 0.903140i \(-0.641256\pi\)
−0.429347 + 0.903140i \(0.641256\pi\)
\(270\) 0 0
\(271\) −17.6868 −1.07440 −0.537199 0.843456i \(-0.680517\pi\)
−0.537199 + 0.843456i \(0.680517\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 7.19868 2.74959i 0.434097 0.165807i
\(276\) 0 0
\(277\) 5.66917i 0.340627i 0.985390 + 0.170314i \(0.0544781\pi\)
−0.985390 + 0.170314i \(0.945522\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 20.1521 1.20218 0.601088 0.799183i \(-0.294734\pi\)
0.601088 + 0.799183i \(0.294734\pi\)
\(282\) 0 0
\(283\) 17.6352i 1.04831i 0.851624 + 0.524153i \(0.175618\pi\)
−0.851624 + 0.524153i \(0.824382\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 23.7850i 1.40398i
\(288\) 0 0
\(289\) −40.0724 −2.35720
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.77625i 0.279031i −0.990220 0.139516i \(-0.955445\pi\)
0.990220 0.139516i \(-0.0445546\pi\)
\(294\) 0 0
\(295\) −3.30754 17.9290i −0.192572 1.04387i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.47137 0.374249
\(300\) 0 0
\(301\) −11.7449 −0.676964
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0.0649146 + 0.351879i 0.00371700 + 0.0201485i
\(306\) 0 0
\(307\) 18.7219i 1.06851i 0.845322 + 0.534257i \(0.179409\pi\)
−0.845322 + 0.534257i \(0.820591\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.11393 −0.460099 −0.230049 0.973179i \(-0.573889\pi\)
−0.230049 + 0.973179i \(0.573889\pi\)
\(312\) 0 0
\(313\) 21.6494i 1.22370i −0.790975 0.611849i \(-0.790426\pi\)
0.790975 0.611849i \(-0.209574\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 29.3342i 1.64757i 0.566900 + 0.823787i \(0.308143\pi\)
−0.566900 + 0.823787i \(0.691857\pi\)
\(318\) 0 0
\(319\) 1.75830 0.0984462
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.13784i 0.508443i
\(324\) 0 0
\(325\) 11.5454 + 30.2270i 0.640426 + 1.67669i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −33.3967 −1.84122
\(330\) 0 0
\(331\) 11.4885 0.631465 0.315732 0.948848i \(-0.397750\pi\)
0.315732 + 0.948848i \(0.397750\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −33.2194 + 6.12830i −1.81497 + 0.334825i
\(336\) 0 0
\(337\) 21.7844i 1.18667i −0.804956 0.593335i \(-0.797811\pi\)
0.804956 0.593335i \(-0.202189\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 10.7425 0.581737
\(342\) 0 0
\(343\) 11.4738i 0.619526i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0.999549i 0.0536586i 0.999640 + 0.0268293i \(0.00854105\pi\)
−0.999640 + 0.0268293i \(0.991459\pi\)
\(348\) 0 0
\(349\) 9.48501 0.507721 0.253860 0.967241i \(-0.418300\pi\)
0.253860 + 0.967241i \(0.418300\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.86216i 0.365236i 0.983184 + 0.182618i \(0.0584571\pi\)
−0.983184 + 0.182618i \(0.941543\pi\)
\(354\) 0 0
\(355\) −1.31529 7.12975i −0.0698085 0.378408i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0202 1.26774 0.633868 0.773441i \(-0.281466\pi\)
0.633868 + 0.773441i \(0.281466\pi\)
\(360\) 0 0
\(361\) −17.5369 −0.922997
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.9304 + 3.86122i −1.09555 + 0.202106i
\(366\) 0 0
\(367\) 27.8941i 1.45606i −0.685545 0.728030i \(-0.740436\pi\)
0.685545 0.728030i \(-0.259564\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 10.2217 0.530686
\(372\) 0 0
\(373\) 20.3434i 1.05334i −0.850070 0.526670i \(-0.823440\pi\)
0.850070 0.526670i \(-0.176560\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 7.38306i 0.380247i
\(378\) 0 0
\(379\) 19.3139 0.992089 0.496044 0.868297i \(-0.334785\pi\)
0.496044 + 0.868297i \(0.334785\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 21.5575i 1.10154i 0.834659 + 0.550768i \(0.185665\pi\)
−0.834659 + 0.550768i \(0.814335\pi\)
\(384\) 0 0
\(385\) −10.9559 + 2.02114i −0.558363 + 0.103007i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −34.2504 −1.73656 −0.868281 0.496072i \(-0.834775\pi\)
−0.868281 + 0.496072i \(0.834775\pi\)
\(390\) 0 0
\(391\) −7.55463 −0.382054
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 4.42783 + 24.0018i 0.222789 + 1.20766i
\(396\) 0 0
\(397\) 10.6493i 0.534474i −0.963631 0.267237i \(-0.913889\pi\)
0.963631 0.267237i \(-0.0861106\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 4.70174 0.234794 0.117397 0.993085i \(-0.462545\pi\)
0.117397 + 0.993085i \(0.462545\pi\)
\(402\) 0 0
\(403\) 45.1072i 2.24695i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.22607i 0.407751i
\(408\) 0 0
\(409\) −11.1631 −0.551978 −0.275989 0.961161i \(-0.589005\pi\)
−0.275989 + 0.961161i \(0.589005\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 26.3581i 1.29700i
\(414\) 0 0
\(415\) −7.17396 + 1.32345i −0.352156 + 0.0649656i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 16.5495 0.808496 0.404248 0.914650i \(-0.367533\pi\)
0.404248 + 0.914650i \(0.367533\pi\)
\(420\) 0 0
\(421\) 27.8404 1.35686 0.678429 0.734666i \(-0.262661\pi\)
0.678429 + 0.734666i \(0.262661\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −13.4781 35.2867i −0.653782 1.71166i
\(426\) 0 0
\(427\) 0.517309i 0.0250344i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −24.9103 −1.19989 −0.599943 0.800043i \(-0.704810\pi\)
−0.599943 + 0.800043i \(0.704810\pi\)
\(432\) 0 0
\(433\) 27.4163i 1.31754i 0.752344 + 0.658771i \(0.228923\pi\)
−0.752344 + 0.658771i \(0.771077\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.20957i 0.0578615i
\(438\) 0 0
\(439\) 12.1256 0.578721 0.289361 0.957220i \(-0.406557\pi\)
0.289361 + 0.957220i \(0.406557\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0760i 0.573747i 0.957968 + 0.286873i \(0.0926159\pi\)
−0.957968 + 0.286873i \(0.907384\pi\)
\(444\) 0 0
\(445\) −6.29371 34.1160i −0.298350 1.61725i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 17.7602 0.838154 0.419077 0.907951i \(-0.362354\pi\)
0.419077 + 0.907951i \(0.362354\pi\)
\(450\) 0 0
\(451\) 11.3392 0.533943
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −8.48667 46.0033i −0.397861 2.15667i
\(456\) 0 0
\(457\) 2.60686i 0.121944i 0.998139 + 0.0609720i \(0.0194200\pi\)
−0.998139 + 0.0609720i \(0.980580\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 22.7840 1.06116 0.530579 0.847636i \(-0.321975\pi\)
0.530579 + 0.847636i \(0.321975\pi\)
\(462\) 0 0
\(463\) 5.47834i 0.254600i 0.991864 + 0.127300i \(0.0406311\pi\)
−0.991864 + 0.127300i \(0.959369\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 16.3930i 0.758578i −0.925278 0.379289i \(-0.876169\pi\)
0.925278 0.379289i \(-0.123831\pi\)
\(468\) 0 0
\(469\) 48.8369 2.25508
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 5.59923i 0.257453i
\(474\) 0 0
\(475\) −5.64974 + 2.15797i −0.259228 + 0.0990142i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 42.2621 1.93100 0.965502 0.260395i \(-0.0838527\pi\)
0.965502 + 0.260395i \(0.0838527\pi\)
\(480\) 0 0
\(481\) −34.5409 −1.57493
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.2715 + 3.73967i −0.920480 + 0.169810i
\(486\) 0 0
\(487\) 6.62454i 0.300187i 0.988672 + 0.150093i \(0.0479574\pi\)
−0.988672 + 0.150093i \(0.952043\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.07235 0.0935236 0.0467618 0.998906i \(-0.485110\pi\)
0.0467618 + 0.998906i \(0.485110\pi\)
\(492\) 0 0
\(493\) 8.61892i 0.388177i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 10.4817i 0.470168i
\(498\) 0 0
\(499\) 24.4746 1.09563 0.547817 0.836598i \(-0.315459\pi\)
0.547817 + 0.836598i \(0.315459\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 25.1260i 1.12031i 0.828386 + 0.560157i \(0.189259\pi\)
−0.828386 + 0.560157i \(0.810741\pi\)
\(504\) 0 0
\(505\) −3.31512 17.9701i −0.147521 0.799659i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.88306 0.216438 0.108219 0.994127i \(-0.465485\pi\)
0.108219 + 0.994127i \(0.465485\pi\)
\(510\) 0 0
\(511\) 30.7704 1.36120
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −10.1255 + 1.86794i −0.446181 + 0.0823113i
\(516\) 0 0
\(517\) 15.9215i 0.700225i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.70144 0.0745413 0.0372706 0.999305i \(-0.488134\pi\)
0.0372706 + 0.999305i \(0.488134\pi\)
\(522\) 0 0
\(523\) 16.5240i 0.722543i 0.932461 + 0.361271i \(0.117657\pi\)
−0.932461 + 0.361271i \(0.882343\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 52.6578i 2.29381i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 47.6129i 2.06235i
\(534\) 0 0
\(535\) 0.0316520 0.00583915i 0.00136844 0.000252449i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.31830 0.229075
\(540\) 0 0
\(541\) −12.5024 −0.537521 −0.268761 0.963207i \(-0.586614\pi\)
−0.268761 + 0.963207i \(0.586614\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −1.54606 8.38067i −0.0662260 0.358988i
\(546\) 0 0
\(547\) 0.0134071i 0.000573248i 1.00000 0.000286624i \(9.12352e-5\pi\)
−1.00000 0.000286624i \(0.999909\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.37997 −0.0587887
\(552\) 0 0
\(553\) 35.2858i 1.50050i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 21.9167i 0.928639i 0.885668 + 0.464319i \(0.153701\pi\)
−0.885668 + 0.464319i \(0.846299\pi\)
\(558\) 0 0
\(559\) −23.5110 −0.994408
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 4.26360i 0.179689i −0.995956 0.0898446i \(-0.971363\pi\)
0.995956 0.0898446i \(-0.0286370\pi\)
\(564\) 0 0
\(565\) −5.08669 + 0.938392i −0.213999 + 0.0394784i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 33.5323 1.40575 0.702875 0.711314i \(-0.251900\pi\)
0.702875 + 0.711314i \(0.251900\pi\)
\(570\) 0 0
\(571\) −2.45524 −0.102748 −0.0513742 0.998679i \(-0.516360\pi\)
−0.0513742 + 0.998679i \(0.516360\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.78408 4.67087i −0.0744012 0.194789i
\(576\) 0 0
\(577\) 0.303142i 0.0126200i 0.999980 + 0.00630998i \(0.00200854\pi\)
−0.999980 + 0.00630998i \(0.997991\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 10.5467 0.437550
\(582\) 0 0
\(583\) 4.87309i 0.201823i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.59450i 0.0658119i −0.999458 0.0329060i \(-0.989524\pi\)
0.999458 0.0329060i \(-0.0104762\pi\)
\(588\) 0 0
\(589\) −8.43101 −0.347394
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 44.9962i 1.84777i −0.382667 0.923886i \(-0.624994\pi\)
0.382667 0.923886i \(-0.375006\pi\)
\(594\) 0 0
\(595\) 9.90727 + 53.7039i 0.406159 + 2.20164i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −37.4163 −1.52879 −0.764395 0.644748i \(-0.776962\pi\)
−0.764395 + 0.644748i \(0.776962\pi\)
\(600\) 0 0
\(601\) −0.430999 −0.0175808 −0.00879041 0.999961i \(-0.502798\pi\)
−0.00879041 + 0.999961i \(0.502798\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −3.49875 18.9655i −0.142244 0.771057i
\(606\) 0 0
\(607\) 29.1493i 1.18314i 0.806255 + 0.591568i \(0.201491\pi\)
−0.806255 + 0.591568i \(0.798509\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −66.8536 −2.70461
\(612\) 0 0
\(613\) 24.4753i 0.988548i 0.869306 + 0.494274i \(0.164566\pi\)
−0.869306 + 0.494274i \(0.835434\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 40.6677i 1.63722i −0.574349 0.818611i \(-0.694745\pi\)
0.574349 0.818611i \(-0.305255\pi\)
\(618\) 0 0
\(619\) 25.7331 1.03430 0.517150 0.855895i \(-0.326993\pi\)
0.517150 + 0.855895i \(0.326993\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 50.1551i 2.00942i
\(624\) 0 0
\(625\) 18.6341 16.6664i 0.745365 0.666657i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 40.3228 1.60778
\(630\) 0 0
\(631\) 37.5617 1.49531 0.747654 0.664089i \(-0.231180\pi\)
0.747654 + 0.664089i \(0.231180\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 33.0678 6.10034i 1.31226 0.242085i
\(636\) 0 0
\(637\) 22.3313i 0.884800i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −39.5324 −1.56144 −0.780718 0.624883i \(-0.785147\pi\)
−0.780718 + 0.624883i \(0.785147\pi\)
\(642\) 0 0
\(643\) 42.6224i 1.68086i 0.541916 + 0.840432i \(0.317699\pi\)
−0.541916 + 0.840432i \(0.682301\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 22.5601i 0.886931i −0.896292 0.443465i \(-0.853749\pi\)
0.896292 0.443465i \(-0.146251\pi\)
\(648\) 0 0
\(649\) 12.5659 0.493255
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 33.6226i 1.31575i 0.753126 + 0.657877i \(0.228545\pi\)
−0.753126 + 0.657877i \(0.771455\pi\)
\(654\) 0 0
\(655\) 6.59499 + 35.7492i 0.257688 + 1.39684i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 5.90805 0.230145 0.115072 0.993357i \(-0.463290\pi\)
0.115072 + 0.993357i \(0.463290\pi\)
\(660\) 0 0
\(661\) −1.15131 −0.0447808 −0.0223904 0.999749i \(-0.507128\pi\)
−0.0223904 + 0.999749i \(0.507128\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.59850 1.58625i 0.333436 0.0615121i
\(666\) 0 0
\(667\) 1.14088i 0.0441750i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −0.246621 −0.00952070
\(672\) 0 0
\(673\) 21.6959i 0.836315i 0.908375 + 0.418157i \(0.137324\pi\)
−0.908375 + 0.418157i \(0.862676\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.7024i 0.680357i −0.940361 0.340178i \(-0.889513\pi\)
0.940361 0.340178i \(-0.110487\pi\)
\(678\) 0 0
\(679\) 29.8018 1.14369
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 26.6160i 1.01843i 0.860638 + 0.509217i \(0.170065\pi\)
−0.860638 + 0.509217i \(0.829935\pi\)
\(684\) 0 0
\(685\) −22.8066 + 4.20734i −0.871394 + 0.160754i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 20.4619 0.779538
\(690\) 0 0
\(691\) 18.1006 0.688578 0.344289 0.938864i \(-0.388120\pi\)
0.344289 + 0.938864i \(0.388120\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.20611 39.0618i −0.273343 1.48170i
\(696\) 0 0
\(697\) 55.5830i 2.10536i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −15.5844 −0.588614 −0.294307 0.955711i \(-0.595089\pi\)
−0.294307 + 0.955711i \(0.595089\pi\)
\(702\) 0 0
\(703\) 6.45607i 0.243495i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 26.4184i 0.993568i
\(708\) 0 0
\(709\) 9.78051 0.367315 0.183657 0.982990i \(-0.441206\pi\)
0.183657 + 0.982990i \(0.441206\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.97027i 0.261038i
\(714\) 0 0
\(715\) −21.9315 + 4.04592i −0.820193 + 0.151309i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 40.9542 1.52733 0.763667 0.645611i \(-0.223397\pi\)
0.763667 + 0.645611i \(0.223397\pi\)
\(720\) 0 0
\(721\) 14.8858 0.554375
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.32890 2.03542i 0.197910 0.0755935i
\(726\) 0 0
\(727\) 37.3620i 1.38568i 0.721092 + 0.692839i \(0.243640\pi\)
−0.721092 + 0.692839i \(0.756360\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 27.4465 1.01515
\(732\) 0 0
\(733\) 27.0326i 0.998474i −0.866466 0.499237i \(-0.833614\pi\)
0.866466 0.499237i \(-0.166386\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 23.2824i 0.857620i
\(738\) 0 0
\(739\) 14.1381 0.520078 0.260039 0.965598i \(-0.416265\pi\)
0.260039 + 0.965598i \(0.416265\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 15.1617i 0.556230i 0.960548 + 0.278115i \(0.0897096\pi\)
−0.960548 + 0.278115i \(0.910290\pi\)
\(744\) 0 0
\(745\) −3.24670 17.5993i −0.118950 0.644787i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −0.0465327 −0.00170027
\(750\) 0 0
\(751\) −39.3087 −1.43440 −0.717198 0.696869i \(-0.754576\pi\)
−0.717198 + 0.696869i \(0.754576\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 1.31761 + 7.14231i 0.0479528 + 0.259935i
\(756\) 0 0
\(757\) 5.25823i 0.191114i −0.995424 0.0955569i \(-0.969537\pi\)
0.995424 0.0955569i \(-0.0304632\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.9905 −0.434655 −0.217328 0.976099i \(-0.569734\pi\)
−0.217328 + 0.976099i \(0.569734\pi\)
\(762\) 0 0
\(763\) 12.3207i 0.446039i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 52.7637i 1.90519i
\(768\) 0 0
\(769\) −17.3925 −0.627189 −0.313594 0.949557i \(-0.601533\pi\)
−0.313594 + 0.949557i \(0.601533\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 23.5445i 0.846837i 0.905934 + 0.423418i \(0.139170\pi\)
−0.905934 + 0.423418i \(0.860830\pi\)
\(774\) 0 0
\(775\) 32.5572 12.4355i 1.16949 0.446697i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.89936 −0.318853
\(780\) 0 0
\(781\) 4.99702 0.178807
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 22.1972 4.09492i 0.792250 0.146154i
\(786\) 0 0
\(787\) 33.4328i 1.19175i 0.803076 + 0.595876i \(0.203195\pi\)
−0.803076 + 0.595876i \(0.796805\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 7.47812 0.265891
\(792\) 0 0
\(793\) 1.03555i 0.0367736i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.1794i 0.466838i 0.972376 + 0.233419i \(0.0749913\pi\)
−0.972376 + 0.233419i \(0.925009\pi\)
\(798\) 0 0
\(799\) 78.0444 2.76101
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 14.6694i 0.517673i
\(804\) 0 0
\(805\) 1.31142 + 7.10874i 0.0462214 + 0.250550i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3.13443 −0.110201 −0.0551004 0.998481i \(-0.517548\pi\)
−0.0551004 + 0.998481i \(0.517548\pi\)
\(810\) 0 0
\(811\) 37.6825 1.32321 0.661606 0.749852i \(-0.269875\pi\)
0.661606 + 0.749852i \(0.269875\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 34.1653 6.30279i 1.19676 0.220777i
\(816\) 0 0
\(817\) 4.39445i 0.153742i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −43.3829 −1.51407 −0.757037 0.653372i \(-0.773354\pi\)
−0.757037 + 0.653372i \(0.773354\pi\)
\(822\) 0 0
\(823\) 52.2672i 1.82192i −0.412496 0.910959i \(-0.635343\pi\)
0.412496 0.910959i \(-0.364657\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 5.95772i 0.207170i −0.994621 0.103585i \(-0.966969\pi\)
0.994621 0.103585i \(-0.0330314\pi\)
\(828\) 0 0
\(829\) 45.5397 1.58166 0.790830 0.612036i \(-0.209649\pi\)
0.790830 + 0.612036i \(0.209649\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.0694i 0.903252i
\(834\) 0 0
\(835\) 41.6739 7.68798i 1.44218 0.266054i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −42.5230 −1.46806 −0.734029 0.679118i \(-0.762362\pi\)
−0.734029 + 0.679118i \(0.762362\pi\)
\(840\) 0 0
\(841\) −27.6984 −0.955117
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −11.7150 63.5032i −0.403010 2.18458i
\(846\) 0 0
\(847\) 27.8818i 0.958031i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 5.33750 0.182967
\(852\) 0 0
\(853\) 46.5906i 1.59523i −0.603167 0.797615i \(-0.706095\pi\)
0.603167 0.797615i \(-0.293905\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 52.2679i 1.78544i −0.450616 0.892718i \(-0.648795\pi\)
0.450616 0.892718i \(-0.351205\pi\)
\(858\) 0 0
\(859\) −9.41393 −0.321199 −0.160600 0.987020i \(-0.551343\pi\)
−0.160600 + 0.987020i \(0.551343\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 36.7353i 1.25048i 0.780431 + 0.625241i \(0.214999\pi\)
−0.780431 + 0.625241i \(0.785001\pi\)
\(864\) 0 0
\(865\) −8.58041 + 1.58291i −0.291743 + 0.0538206i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −16.8221 −0.570650
\(870\) 0 0
\(871\) 97.7621 3.31254
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −30.8643 + 18.8080i −1.04340 + 0.635827i
\(876\) 0 0
\(877\) 11.8456i 0.399997i 0.979796 + 0.199999i \(0.0640937\pi\)
−0.979796 + 0.199999i \(0.935906\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.69400 0.0570724 0.0285362 0.999593i \(-0.490915\pi\)
0.0285362 + 0.999593i \(0.490915\pi\)
\(882\) 0 0
\(883\) 35.8233i 1.20555i −0.797911 0.602776i \(-0.794061\pi\)
0.797911 0.602776i \(-0.205939\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 30.5808i 1.02680i −0.858149 0.513401i \(-0.828385\pi\)
0.858149 0.513401i \(-0.171615\pi\)
\(888\) 0 0
\(889\) −48.6141 −1.63047
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 12.4956i 0.418151i
\(894\) 0 0
\(895\) −2.29220 12.4252i −0.0766198 0.415329i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.95223 0.265222
\(900\) 0 0
\(901\) −23.8871 −0.795794
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.99046 32.4722i −0.199130 1.07941i
\(906\) 0 0
\(907\) 31.4194i 1.04326i −0.853171 0.521631i \(-0.825324\pi\)
0.853171 0.521631i \(-0.174676\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −45.9786 −1.52334 −0.761669 0.647966i \(-0.775620\pi\)
−0.761669 + 0.647966i \(0.775620\pi\)
\(912\) 0 0
\(913\) 5.02801i 0.166403i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 52.5560i 1.73555i
\(918\) 0 0
\(919\) 13.9290 0.459474 0.229737 0.973253i \(-0.426213\pi\)
0.229737 + 0.973253i \(0.426213\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 20.9823i 0.690641i
\(924\) 0 0
\(925\) 9.52252 + 24.9308i 0.313098 + 0.819719i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 57.5727 1.88890 0.944450 0.328656i \(-0.106596\pi\)
0.944450 + 0.328656i \(0.106596\pi\)
\(930\) 0 0
\(931\) −4.17396 −0.136796
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 25.6027 4.72318i 0.837298 0.154464i
\(936\) 0 0
\(937\) 43.9696i 1.43642i −0.695824 0.718212i \(-0.744961\pi\)
0.695824 0.718212i \(-0.255039\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −11.8753 −0.387125 −0.193562 0.981088i \(-0.562004\pi\)
−0.193562 + 0.981088i \(0.562004\pi\)
\(942\) 0 0
\(943\) 7.35747i 0.239592i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.4406i 1.24915i −0.780964 0.624576i \(-0.785272\pi\)
0.780964 0.624576i \(-0.214728\pi\)
\(948\) 0 0
\(949\) 61.5964 1.99950
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 1.22062i 0.0395398i 0.999805 + 0.0197699i \(0.00629337\pi\)
−0.999805 + 0.0197699i \(0.993707\pi\)
\(954\) 0 0
\(955\) −8.61745 46.7122i −0.278854 1.51157i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 33.5287 1.08270
\(960\) 0 0
\(961\) 17.5846 0.567245
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.3925 + 4.13097i −0.720841 + 0.132981i
\(966\) 0 0
\(967\) 24.7003i 0.794309i −0.917752 0.397154i \(-0.869998\pi\)
0.917752 0.397154i \(-0.130002\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41.0376 −1.31696 −0.658480 0.752598i \(-0.728800\pi\)
−0.658480 + 0.752598i \(0.728800\pi\)
\(972\) 0 0
\(973\) 57.4261i 1.84100i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 46.6025i 1.49095i 0.666535 + 0.745474i \(0.267777\pi\)
−0.666535 + 0.745474i \(0.732223\pi\)
\(978\) 0 0
\(979\) 23.9108 0.764194
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 42.6181i 1.35931i −0.733534 0.679653i \(-0.762130\pi\)
0.733534 0.679653i \(-0.237870\pi\)
\(984\) 0 0
\(985\) 53.9506 9.95279i 1.71901 0.317122i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.63307 0.115525
\(990\) 0 0
\(991\) −26.7258 −0.848972 −0.424486 0.905435i \(-0.639545\pi\)
−0.424486 + 0.905435i \(0.639545\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.50379 + 13.5722i 0.0793753 + 0.430266i
\(996\) 0 0
\(997\) 39.6293i 1.25507i 0.778588 + 0.627536i \(0.215936\pi\)
−0.778588 + 0.627536i \(0.784064\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.f.d.829.16 yes 24
3.2 odd 2 inner 4140.2.f.d.829.9 24
5.4 even 2 inner 4140.2.f.d.829.15 yes 24
15.14 odd 2 inner 4140.2.f.d.829.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.f.d.829.9 24 3.2 odd 2 inner
4140.2.f.d.829.10 yes 24 15.14 odd 2 inner
4140.2.f.d.829.15 yes 24 5.4 even 2 inner
4140.2.f.d.829.16 yes 24 1.1 even 1 trivial