Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [4140,2,Mod(829,4140)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("4140.829");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 4140.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(33.0580664368\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
829.1 | 0 | 0 | 0 | −2.23083 | − | 0.152950i | 0 | − | 4.09652i | 0 | 0 | 0 | |||||||||||||||
829.2 | 0 | 0 | 0 | −2.23083 | + | 0.152950i | 0 | 4.09652i | 0 | 0 | 0 | ||||||||||||||||
829.3 | 0 | 0 | 0 | −2.09906 | − | 0.770673i | 0 | − | 2.34084i | 0 | 0 | 0 | |||||||||||||||
829.4 | 0 | 0 | 0 | −2.09906 | + | 0.770673i | 0 | 2.34084i | 0 | 0 | 0 | ||||||||||||||||
829.5 | 0 | 0 | 0 | −1.79970 | − | 1.32706i | 0 | 0.476731i | 0 | 0 | 0 | ||||||||||||||||
829.6 | 0 | 0 | 0 | −1.79970 | + | 1.32706i | 0 | − | 0.476731i | 0 | 0 | 0 | |||||||||||||||
829.7 | 0 | 0 | 0 | −1.06710 | − | 1.96502i | 0 | 3.96013i | 0 | 0 | 0 | ||||||||||||||||
829.8 | 0 | 0 | 0 | −1.06710 | + | 1.96502i | 0 | − | 3.96013i | 0 | 0 | 0 | |||||||||||||||
829.9 | 0 | 0 | 0 | −0.405664 | − | 2.19896i | 0 | − | 3.23277i | 0 | 0 | 0 | |||||||||||||||
829.10 | 0 | 0 | 0 | −0.405664 | + | 2.19896i | 0 | 3.23277i | 0 | 0 | 0 | ||||||||||||||||
829.11 | 0 | 0 | 0 | −0.274117 | − | 2.21920i | 0 | − | 0.615120i | 0 | 0 | 0 | |||||||||||||||
829.12 | 0 | 0 | 0 | −0.274117 | + | 2.21920i | 0 | 0.615120i | 0 | 0 | 0 | ||||||||||||||||
829.13 | 0 | 0 | 0 | 0.274117 | − | 2.21920i | 0 | 0.615120i | 0 | 0 | 0 | ||||||||||||||||
829.14 | 0 | 0 | 0 | 0.274117 | + | 2.21920i | 0 | − | 0.615120i | 0 | 0 | 0 | |||||||||||||||
829.15 | 0 | 0 | 0 | 0.405664 | − | 2.19896i | 0 | 3.23277i | 0 | 0 | 0 | ||||||||||||||||
829.16 | 0 | 0 | 0 | 0.405664 | + | 2.19896i | 0 | − | 3.23277i | 0 | 0 | 0 | |||||||||||||||
829.17 | 0 | 0 | 0 | 1.06710 | − | 1.96502i | 0 | − | 3.96013i | 0 | 0 | 0 | |||||||||||||||
829.18 | 0 | 0 | 0 | 1.06710 | + | 1.96502i | 0 | 3.96013i | 0 | 0 | 0 | ||||||||||||||||
829.19 | 0 | 0 | 0 | 1.79970 | − | 1.32706i | 0 | − | 0.476731i | 0 | 0 | 0 | |||||||||||||||
829.20 | 0 | 0 | 0 | 1.79970 | + | 1.32706i | 0 | 0.476731i | 0 | 0 | 0 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 4140.2.f.d | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 4140.2.f.d | ✓ | 24 |
5.b | even | 2 | 1 | inner | 4140.2.f.d | ✓ | 24 |
15.d | odd | 2 | 1 | inner | 4140.2.f.d | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
4140.2.f.d | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
4140.2.f.d | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
4140.2.f.d | ✓ | 24 | 5.b | even | 2 | 1 | inner |
4140.2.f.d | ✓ | 24 | 15.d | odd | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{7}^{12} + 49T_{7}^{10} + 867T_{7}^{8} + 6563T_{7}^{6} + 18808T_{7}^{4} + 9648T_{7}^{2} + 1296 \)
acting on \(S_{2}^{\mathrm{new}}(4140, [\chi])\).