Properties

Label 4140.2.f.d.829.8
Level $4140$
Weight $2$
Character 4140.829
Analytic conductor $33.058$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4140,2,Mod(829,4140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4140.829");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4140 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4140.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.0580664368\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 829.8
Character \(\chi\) \(=\) 4140.829
Dual form 4140.2.f.d.829.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06710 + 1.96502i) q^{5} -3.96013i q^{7} +0.632117 q^{11} +2.50635i q^{13} -5.58129i q^{17} -5.75876 q^{19} +1.00000i q^{23} +(-2.72259 - 4.19374i) q^{25} +4.05521 q^{29} -0.852012 q^{31} +(7.78172 + 4.22585i) q^{35} +8.51300i q^{37} +6.20651 q^{41} -7.38322i q^{43} +5.59349i q^{47} -8.68259 q^{49} +12.3519i q^{53} +(-0.674532 + 1.24212i) q^{55} -11.4310 q^{59} -14.7790 q^{61} +(-4.92503 - 2.67453i) q^{65} +0.719943i q^{67} +5.38501 q^{71} +10.6695i q^{73} -2.50326i q^{77} -12.0268 q^{79} +1.99379i q^{83} +(10.9673 + 5.95579i) q^{85} -6.30598 q^{89} +9.92548 q^{91} +(6.14518 - 11.3161i) q^{95} +0.585493i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{19} - 8 q^{25} - 12 q^{31} - 28 q^{49} - 16 q^{55} - 16 q^{61} + 8 q^{79} + 12 q^{85} - 16 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4140\mathbb{Z}\right)^\times\).

\(n\) \(461\) \(1657\) \(2071\) \(3961\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.06710 + 1.96502i −0.477222 + 0.878783i
\(6\) 0 0
\(7\) 3.96013i 1.49679i −0.663255 0.748393i \(-0.730826\pi\)
0.663255 0.748393i \(-0.269174\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0.632117 0.190590 0.0952952 0.995449i \(-0.469621\pi\)
0.0952952 + 0.995449i \(0.469621\pi\)
\(12\) 0 0
\(13\) 2.50635i 0.695137i 0.937655 + 0.347569i \(0.112993\pi\)
−0.937655 + 0.347569i \(0.887007\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.58129i 1.35366i −0.736139 0.676830i \(-0.763353\pi\)
0.736139 0.676830i \(-0.236647\pi\)
\(18\) 0 0
\(19\) −5.75876 −1.32115 −0.660576 0.750759i \(-0.729688\pi\)
−0.660576 + 0.750759i \(0.729688\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1.00000i 0.208514i
\(24\) 0 0
\(25\) −2.72259 4.19374i −0.544518 0.838749i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.05521 0.753034 0.376517 0.926410i \(-0.377122\pi\)
0.376517 + 0.926410i \(0.377122\pi\)
\(30\) 0 0
\(31\) −0.852012 −0.153026 −0.0765129 0.997069i \(-0.524379\pi\)
−0.0765129 + 0.997069i \(0.524379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7.78172 + 4.22585i 1.31535 + 0.714300i
\(36\) 0 0
\(37\) 8.51300i 1.39953i 0.714374 + 0.699765i \(0.246712\pi\)
−0.714374 + 0.699765i \(0.753288\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 6.20651 0.969295 0.484647 0.874710i \(-0.338948\pi\)
0.484647 + 0.874710i \(0.338948\pi\)
\(42\) 0 0
\(43\) 7.38322i 1.12593i −0.826481 0.562965i \(-0.809660\pi\)
0.826481 0.562965i \(-0.190340\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.59349i 0.815894i 0.913006 + 0.407947i \(0.133755\pi\)
−0.913006 + 0.407947i \(0.866245\pi\)
\(48\) 0 0
\(49\) −8.68259 −1.24037
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.3519i 1.69667i 0.529461 + 0.848334i \(0.322394\pi\)
−0.529461 + 0.848334i \(0.677606\pi\)
\(54\) 0 0
\(55\) −0.674532 + 1.24212i −0.0909539 + 0.167488i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −11.4310 −1.48819 −0.744096 0.668072i \(-0.767120\pi\)
−0.744096 + 0.668072i \(0.767120\pi\)
\(60\) 0 0
\(61\) −14.7790 −1.89226 −0.946130 0.323787i \(-0.895044\pi\)
−0.946130 + 0.323787i \(0.895044\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.92503 2.67453i −0.610875 0.331735i
\(66\) 0 0
\(67\) 0.719943i 0.0879551i 0.999033 + 0.0439775i \(0.0140030\pi\)
−0.999033 + 0.0439775i \(0.985997\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5.38501 0.639083 0.319542 0.947572i \(-0.396471\pi\)
0.319542 + 0.947572i \(0.396471\pi\)
\(72\) 0 0
\(73\) 10.6695i 1.24877i 0.781118 + 0.624383i \(0.214650\pi\)
−0.781118 + 0.624383i \(0.785350\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 2.50326i 0.285273i
\(78\) 0 0
\(79\) −12.0268 −1.35312 −0.676559 0.736388i \(-0.736530\pi\)
−0.676559 + 0.736388i \(0.736530\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 1.99379i 0.218847i 0.993995 + 0.109424i \(0.0349005\pi\)
−0.993995 + 0.109424i \(0.965100\pi\)
\(84\) 0 0
\(85\) 10.9673 + 5.95579i 1.18957 + 0.645997i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.30598 −0.668432 −0.334216 0.942496i \(-0.608472\pi\)
−0.334216 + 0.942496i \(0.608472\pi\)
\(90\) 0 0
\(91\) 9.92548 1.04047
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 6.14518 11.3161i 0.630482 1.16101i
\(96\) 0 0
\(97\) 0.585493i 0.0594478i 0.999558 + 0.0297239i \(0.00946281\pi\)
−0.999558 + 0.0297239i \(0.990537\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 19.4840 1.93874 0.969368 0.245614i \(-0.0789897\pi\)
0.969368 + 0.245614i \(0.0789897\pi\)
\(102\) 0 0
\(103\) 6.86329i 0.676260i −0.941099 0.338130i \(-0.890206\pi\)
0.941099 0.338130i \(-0.109794\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.77096i 0.944595i −0.881439 0.472297i \(-0.843425\pi\)
0.881439 0.472297i \(-0.156575\pi\)
\(108\) 0 0
\(109\) 0.762905 0.0730730 0.0365365 0.999332i \(-0.488367\pi\)
0.0365365 + 0.999332i \(0.488367\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4.33952i 0.408228i −0.978947 0.204114i \(-0.934569\pi\)
0.978947 0.204114i \(-0.0654313\pi\)
\(114\) 0 0
\(115\) −1.96502 1.06710i −0.183239 0.0995077i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −22.1026 −2.02614
\(120\) 0 0
\(121\) −10.6004 −0.963675
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 11.1461 0.874794i 0.996934 0.0782439i
\(126\) 0 0
\(127\) 8.14070i 0.722370i 0.932494 + 0.361185i \(0.117628\pi\)
−0.932494 + 0.361185i \(0.882372\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −12.6804 −1.10789 −0.553946 0.832553i \(-0.686879\pi\)
−0.553946 + 0.832553i \(0.686879\pi\)
\(132\) 0 0
\(133\) 22.8054i 1.97748i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.51434i 0.129379i 0.997905 + 0.0646896i \(0.0206057\pi\)
−0.997905 + 0.0646896i \(0.979394\pi\)
\(138\) 0 0
\(139\) 0.414154 0.0351281 0.0175640 0.999846i \(-0.494409\pi\)
0.0175640 + 0.999846i \(0.494409\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.58431i 0.132486i
\(144\) 0 0
\(145\) −4.32732 + 7.96856i −0.359364 + 0.661753i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −18.4315 −1.50996 −0.754982 0.655745i \(-0.772355\pi\)
−0.754982 + 0.655745i \(0.772355\pi\)
\(150\) 0 0
\(151\) −7.77717 −0.632897 −0.316449 0.948610i \(-0.602491\pi\)
−0.316449 + 0.948610i \(0.602491\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0.909183 1.67422i 0.0730273 0.134476i
\(156\) 0 0
\(157\) 13.6685i 1.09086i 0.838155 + 0.545432i \(0.183634\pi\)
−0.838155 + 0.545432i \(0.816366\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.96013 0.312102
\(162\) 0 0
\(163\) 23.5276i 1.84283i 0.388585 + 0.921413i \(0.372964\pi\)
−0.388585 + 0.921413i \(0.627036\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 18.7427i 1.45035i −0.688563 0.725177i \(-0.741758\pi\)
0.688563 0.725177i \(-0.258242\pi\)
\(168\) 0 0
\(169\) 6.71819 0.516784
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 12.4393i 0.945742i 0.881132 + 0.472871i \(0.156782\pi\)
−0.881132 + 0.472871i \(0.843218\pi\)
\(174\) 0 0
\(175\) −16.6078 + 10.7818i −1.25543 + 0.815028i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −8.97298 −0.670672 −0.335336 0.942099i \(-0.608850\pi\)
−0.335336 + 0.942099i \(0.608850\pi\)
\(180\) 0 0
\(181\) 5.68186 0.422329 0.211165 0.977451i \(-0.432274\pi\)
0.211165 + 0.977451i \(0.432274\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −16.7282 9.08423i −1.22988 0.667886i
\(186\) 0 0
\(187\) 3.52802i 0.257995i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −10.5612 −0.764182 −0.382091 0.924125i \(-0.624796\pi\)
−0.382091 + 0.924125i \(0.624796\pi\)
\(192\) 0 0
\(193\) 3.59916i 0.259073i −0.991575 0.129537i \(-0.958651\pi\)
0.991575 0.129537i \(-0.0413489\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.2896i 1.30308i 0.758614 + 0.651540i \(0.225877\pi\)
−0.758614 + 0.651540i \(0.774123\pi\)
\(198\) 0 0
\(199\) −21.2131 −1.50376 −0.751879 0.659301i \(-0.770852\pi\)
−0.751879 + 0.659301i \(0.770852\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 16.0591i 1.12713i
\(204\) 0 0
\(205\) −6.62298 + 12.1959i −0.462569 + 0.851800i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.64021 −0.251799
\(210\) 0 0
\(211\) −4.26181 −0.293395 −0.146698 0.989181i \(-0.546864\pi\)
−0.146698 + 0.989181i \(0.546864\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 14.5082 + 7.87864i 0.989448 + 0.537319i
\(216\) 0 0
\(217\) 3.37407i 0.229047i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 13.9887 0.940980
\(222\) 0 0
\(223\) 16.5506i 1.10831i −0.832413 0.554155i \(-0.813041\pi\)
0.832413 0.554155i \(-0.186959\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 12.5241i 0.831251i 0.909536 + 0.415625i \(0.136437\pi\)
−0.909536 + 0.415625i \(0.863563\pi\)
\(228\) 0 0
\(229\) −6.21503 −0.410701 −0.205350 0.978689i \(-0.565833\pi\)
−0.205350 + 0.978689i \(0.565833\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.05930i 0.396958i 0.980105 + 0.198479i \(0.0636002\pi\)
−0.980105 + 0.198479i \(0.936400\pi\)
\(234\) 0 0
\(235\) −10.9913 5.96881i −0.716993 0.389362i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 21.1468 1.36787 0.683936 0.729542i \(-0.260267\pi\)
0.683936 + 0.729542i \(0.260267\pi\)
\(240\) 0 0
\(241\) −28.6397 −1.84485 −0.922423 0.386180i \(-0.873794\pi\)
−0.922423 + 0.386180i \(0.873794\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 9.26520 17.0615i 0.591932 1.09002i
\(246\) 0 0
\(247\) 14.4335i 0.918382i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −20.1089 −1.26926 −0.634631 0.772815i \(-0.718848\pi\)
−0.634631 + 0.772815i \(0.718848\pi\)
\(252\) 0 0
\(253\) 0.632117i 0.0397408i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 18.1051i 1.12937i 0.825308 + 0.564683i \(0.191002\pi\)
−0.825308 + 0.564683i \(0.808998\pi\)
\(258\) 0 0
\(259\) 33.7126 2.09480
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 5.91089i 0.364481i 0.983254 + 0.182241i \(0.0583350\pi\)
−0.983254 + 0.182241i \(0.941665\pi\)
\(264\) 0 0
\(265\) −24.2718 13.1808i −1.49100 0.809688i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 9.06792 0.552881 0.276440 0.961031i \(-0.410845\pi\)
0.276440 + 0.961031i \(0.410845\pi\)
\(270\) 0 0
\(271\) −7.62266 −0.463044 −0.231522 0.972830i \(-0.574370\pi\)
−0.231522 + 0.972830i \(0.574370\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.72100 2.65094i −0.103780 0.159857i
\(276\) 0 0
\(277\) 21.9421i 1.31837i −0.751980 0.659186i \(-0.770901\pi\)
0.751980 0.659186i \(-0.229099\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −15.7141 −0.937424 −0.468712 0.883351i \(-0.655282\pi\)
−0.468712 + 0.883351i \(0.655282\pi\)
\(282\) 0 0
\(283\) 1.95159i 0.116010i 0.998316 + 0.0580049i \(0.0184739\pi\)
−0.998316 + 0.0580049i \(0.981526\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 24.5786i 1.45083i
\(288\) 0 0
\(289\) −14.1507 −0.832397
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 27.7742i 1.62258i 0.584642 + 0.811292i \(0.301235\pi\)
−0.584642 + 0.811292i \(0.698765\pi\)
\(294\) 0 0
\(295\) 12.1981 22.4622i 0.710198 1.30780i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −2.50635 −0.144946
\(300\) 0 0
\(301\) −29.2385 −1.68528
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 15.7707 29.0411i 0.903028 1.66289i
\(306\) 0 0
\(307\) 11.4925i 0.655912i 0.944693 + 0.327956i \(0.106360\pi\)
−0.944693 + 0.327956i \(0.893640\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −32.7811 −1.85885 −0.929424 0.369014i \(-0.879696\pi\)
−0.929424 + 0.369014i \(0.879696\pi\)
\(312\) 0 0
\(313\) 15.7825i 0.892079i −0.895013 0.446040i \(-0.852834\pi\)
0.895013 0.446040i \(-0.147166\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 24.2612i 1.36264i −0.731984 0.681321i \(-0.761406\pi\)
0.731984 0.681321i \(-0.238594\pi\)
\(318\) 0 0
\(319\) 2.56337 0.143521
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 32.1413i 1.78839i
\(324\) 0 0
\(325\) 10.5110 6.82378i 0.583046 0.378515i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 22.1509 1.22122
\(330\) 0 0
\(331\) 7.37500 0.405367 0.202683 0.979244i \(-0.435034\pi\)
0.202683 + 0.979244i \(0.435034\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.41470 0.768252i −0.0772934 0.0419741i
\(336\) 0 0
\(337\) 29.3276i 1.59758i 0.601611 + 0.798789i \(0.294526\pi\)
−0.601611 + 0.798789i \(0.705474\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −0.538571 −0.0291652
\(342\) 0 0
\(343\) 6.66328i 0.359783i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.92590i 0.157070i 0.996911 + 0.0785352i \(0.0250243\pi\)
−0.996911 + 0.0785352i \(0.974976\pi\)
\(348\) 0 0
\(349\) −30.2310 −1.61823 −0.809115 0.587650i \(-0.800053\pi\)
−0.809115 + 0.587650i \(0.800053\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 16.1413i 0.859115i −0.903039 0.429558i \(-0.858670\pi\)
0.903039 0.429558i \(-0.141330\pi\)
\(354\) 0 0
\(355\) −5.74635 + 10.5816i −0.304984 + 0.561615i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 21.8644 1.15396 0.576980 0.816759i \(-0.304231\pi\)
0.576980 + 0.816759i \(0.304231\pi\)
\(360\) 0 0
\(361\) 14.1634 0.745441
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −20.9657 11.3854i −1.09739 0.595939i
\(366\) 0 0
\(367\) 5.14275i 0.268449i −0.990951 0.134225i \(-0.957146\pi\)
0.990951 0.134225i \(-0.0428544\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 48.9152 2.53955
\(372\) 0 0
\(373\) 6.85935i 0.355164i −0.984106 0.177582i \(-0.943173\pi\)
0.984106 0.177582i \(-0.0568275\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 10.1638i 0.523462i
\(378\) 0 0
\(379\) 33.4282 1.71709 0.858545 0.512739i \(-0.171369\pi\)
0.858545 + 0.512739i \(0.171369\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.1557i 0.978812i 0.872056 + 0.489406i \(0.162786\pi\)
−0.872056 + 0.489406i \(0.837214\pi\)
\(384\) 0 0
\(385\) 4.91895 + 2.67123i 0.250693 + 0.136139i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.1962 −0.871882 −0.435941 0.899975i \(-0.643584\pi\)
−0.435941 + 0.899975i \(0.643584\pi\)
\(390\) 0 0
\(391\) 5.58129 0.282258
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 12.8338 23.6328i 0.645738 1.18910i
\(396\) 0 0
\(397\) 23.9509i 1.20206i −0.799226 0.601031i \(-0.794757\pi\)
0.799226 0.601031i \(-0.205243\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 5.61069 0.280185 0.140092 0.990138i \(-0.455260\pi\)
0.140092 + 0.990138i \(0.455260\pi\)
\(402\) 0 0
\(403\) 2.13544i 0.106374i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.38121i 0.266737i
\(408\) 0 0
\(409\) −28.1149 −1.39019 −0.695096 0.718917i \(-0.744638\pi\)
−0.695096 + 0.718917i \(0.744638\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 45.2683i 2.22751i
\(414\) 0 0
\(415\) −3.91784 2.12758i −0.192319 0.104439i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.75937 −0.232510 −0.116255 0.993219i \(-0.537089\pi\)
−0.116255 + 0.993219i \(0.537089\pi\)
\(420\) 0 0
\(421\) −16.7449 −0.816095 −0.408048 0.912961i \(-0.633790\pi\)
−0.408048 + 0.912961i \(0.633790\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −23.4065 + 15.1956i −1.13538 + 0.737093i
\(426\) 0 0
\(427\) 58.5268i 2.83231i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11.2542 −0.542095 −0.271047 0.962566i \(-0.587370\pi\)
−0.271047 + 0.962566i \(0.587370\pi\)
\(432\) 0 0
\(433\) 9.66867i 0.464647i −0.972639 0.232323i \(-0.925367\pi\)
0.972639 0.232323i \(-0.0746328\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 5.75876i 0.275479i
\(438\) 0 0
\(439\) 14.2986 0.682433 0.341216 0.939985i \(-0.389161\pi\)
0.341216 + 0.939985i \(0.389161\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 28.1209i 1.33607i −0.744132 0.668033i \(-0.767137\pi\)
0.744132 0.668033i \(-0.232863\pi\)
\(444\) 0 0
\(445\) 6.72911 12.3914i 0.318991 0.587407i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 8.40234 0.396531 0.198266 0.980148i \(-0.436469\pi\)
0.198266 + 0.980148i \(0.436469\pi\)
\(450\) 0 0
\(451\) 3.92324 0.184738
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −10.5915 + 19.5037i −0.496536 + 0.914349i
\(456\) 0 0
\(457\) 0.747155i 0.0349504i 0.999847 + 0.0174752i \(0.00556282\pi\)
−0.999847 + 0.0174752i \(0.994437\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.92909 0.462444 0.231222 0.972901i \(-0.425728\pi\)
0.231222 + 0.972901i \(0.425728\pi\)
\(462\) 0 0
\(463\) 6.05649i 0.281469i 0.990047 + 0.140734i \(0.0449464\pi\)
−0.990047 + 0.140734i \(0.955054\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 12.3607i 0.571984i −0.958232 0.285992i \(-0.907677\pi\)
0.958232 0.285992i \(-0.0923231\pi\)
\(468\) 0 0
\(469\) 2.85107 0.131650
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 4.66706i 0.214591i
\(474\) 0 0
\(475\) 15.6788 + 24.1508i 0.719391 + 1.10811i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 30.0536 1.37318 0.686591 0.727044i \(-0.259106\pi\)
0.686591 + 0.727044i \(0.259106\pi\)
\(480\) 0 0
\(481\) −21.3366 −0.972865
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1.15050 0.624780i −0.0522417 0.0283698i
\(486\) 0 0
\(487\) 36.3158i 1.64563i −0.568312 0.822813i \(-0.692403\pi\)
0.568312 0.822813i \(-0.307597\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 30.5741 1.37979 0.689896 0.723909i \(-0.257656\pi\)
0.689896 + 0.723909i \(0.257656\pi\)
\(492\) 0 0
\(493\) 22.6333i 1.01935i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.3253i 0.956571i
\(498\) 0 0
\(499\) −19.1175 −0.855819 −0.427909 0.903822i \(-0.640750\pi\)
−0.427909 + 0.903822i \(0.640750\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.7346i 0.879924i 0.898016 + 0.439962i \(0.145008\pi\)
−0.898016 + 0.439962i \(0.854992\pi\)
\(504\) 0 0
\(505\) −20.7914 + 38.2865i −0.925207 + 1.70373i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 33.4190 1.48127 0.740636 0.671906i \(-0.234524\pi\)
0.740636 + 0.671906i \(0.234524\pi\)
\(510\) 0 0
\(511\) 42.2524 1.86914
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 13.4865 + 7.32382i 0.594286 + 0.322726i
\(516\) 0 0
\(517\) 3.53574i 0.155501i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −12.7444 −0.558343 −0.279172 0.960241i \(-0.590060\pi\)
−0.279172 + 0.960241i \(0.590060\pi\)
\(522\) 0 0
\(523\) 1.99335i 0.0871631i 0.999050 + 0.0435815i \(0.0138768\pi\)
−0.999050 + 0.0435815i \(0.986123\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.75532i 0.207145i
\(528\) 0 0
\(529\) −1.00000 −0.0434783
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 15.5557i 0.673793i
\(534\) 0 0
\(535\) 19.2001 + 10.4266i 0.830094 + 0.450781i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −5.48841 −0.236403
\(540\) 0 0
\(541\) 38.0217 1.63468 0.817340 0.576156i \(-0.195448\pi\)
0.817340 + 0.576156i \(0.195448\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −0.814096 + 1.49912i −0.0348720 + 0.0642153i
\(546\) 0 0
\(547\) 4.14065i 0.177042i −0.996074 0.0885208i \(-0.971786\pi\)
0.996074 0.0885208i \(-0.0282140\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −23.3530 −0.994872
\(552\) 0 0
\(553\) 47.6276i 2.02533i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 6.26855i 0.265607i −0.991142 0.132804i \(-0.957602\pi\)
0.991142 0.132804i \(-0.0423979\pi\)
\(558\) 0 0
\(559\) 18.5050 0.782677
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 45.8001i 1.93025i 0.261798 + 0.965123i \(0.415685\pi\)
−0.261798 + 0.965123i \(0.584315\pi\)
\(564\) 0 0
\(565\) 8.52723 + 4.63070i 0.358743 + 0.194815i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −39.3833 −1.65103 −0.825517 0.564377i \(-0.809116\pi\)
−0.825517 + 0.564377i \(0.809116\pi\)
\(570\) 0 0
\(571\) 26.6622 1.11578 0.557889 0.829916i \(-0.311612\pi\)
0.557889 + 0.829916i \(0.311612\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 4.19374 2.72259i 0.174891 0.113540i
\(576\) 0 0
\(577\) 34.8227i 1.44969i 0.688914 + 0.724843i \(0.258088\pi\)
−0.688914 + 0.724843i \(0.741912\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 7.89566 0.327567
\(582\) 0 0
\(583\) 7.80786i 0.323369i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 30.9195i 1.27619i 0.769959 + 0.638093i \(0.220276\pi\)
−0.769959 + 0.638093i \(0.779724\pi\)
\(588\) 0 0
\(589\) 4.90654 0.202170
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.0424i 0.576654i 0.957532 + 0.288327i \(0.0930990\pi\)
−0.957532 + 0.288327i \(0.906901\pi\)
\(594\) 0 0
\(595\) 23.5857 43.4320i 0.966919 1.78054i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −0.787601 −0.0321805 −0.0160903 0.999871i \(-0.505122\pi\)
−0.0160903 + 0.999871i \(0.505122\pi\)
\(600\) 0 0
\(601\) 7.26851 0.296489 0.148244 0.988951i \(-0.452638\pi\)
0.148244 + 0.988951i \(0.452638\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 11.3117 20.8300i 0.459887 0.846861i
\(606\) 0 0
\(607\) 17.7055i 0.718645i −0.933213 0.359323i \(-0.883008\pi\)
0.933213 0.359323i \(-0.116992\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −14.0193 −0.567158
\(612\) 0 0
\(613\) 22.5129i 0.909286i 0.890674 + 0.454643i \(0.150233\pi\)
−0.890674 + 0.454643i \(0.849767\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 27.3604i 1.10149i −0.834674 0.550744i \(-0.814344\pi\)
0.834674 0.550744i \(-0.185656\pi\)
\(618\) 0 0
\(619\) 3.75297 0.150845 0.0754223 0.997152i \(-0.475970\pi\)
0.0754223 + 0.997152i \(0.475970\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 24.9725i 1.00050i
\(624\) 0 0
\(625\) −10.1750 + 22.8357i −0.407000 + 0.913428i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 47.5135 1.89449
\(630\) 0 0
\(631\) 12.8149 0.510154 0.255077 0.966921i \(-0.417899\pi\)
0.255077 + 0.966921i \(0.417899\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −15.9966 8.68695i −0.634807 0.344731i
\(636\) 0 0
\(637\) 21.7616i 0.862228i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −27.4409 −1.08385 −0.541925 0.840427i \(-0.682304\pi\)
−0.541925 + 0.840427i \(0.682304\pi\)
\(642\) 0 0
\(643\) 11.4109i 0.450003i −0.974358 0.225002i \(-0.927761\pi\)
0.974358 0.225002i \(-0.0722388\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 31.3223i 1.23141i −0.787977 0.615704i \(-0.788872\pi\)
0.787977 0.615704i \(-0.211128\pi\)
\(648\) 0 0
\(649\) −7.22574 −0.283635
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.28776i 0.206926i −0.994633 0.103463i \(-0.967008\pi\)
0.994633 0.103463i \(-0.0329923\pi\)
\(654\) 0 0
\(655\) 13.5313 24.9172i 0.528710 0.973596i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 45.2167 1.76139 0.880696 0.473682i \(-0.157076\pi\)
0.880696 + 0.473682i \(0.157076\pi\)
\(660\) 0 0
\(661\) 14.6915 0.571431 0.285716 0.958314i \(-0.407769\pi\)
0.285716 + 0.958314i \(0.407769\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −44.8131 24.3357i −1.73778 0.943698i
\(666\) 0 0
\(667\) 4.05521i 0.157018i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −9.34207 −0.360647
\(672\) 0 0
\(673\) 15.6295i 0.602472i −0.953550 0.301236i \(-0.902601\pi\)
0.953550 0.301236i \(-0.0973993\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 30.7946i 1.18353i −0.806109 0.591766i \(-0.798431\pi\)
0.806109 0.591766i \(-0.201569\pi\)
\(678\) 0 0
\(679\) 2.31863 0.0889807
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 27.6880i 1.05945i 0.848169 + 0.529726i \(0.177705\pi\)
−0.848169 + 0.529726i \(0.822295\pi\)
\(684\) 0 0
\(685\) −2.97571 1.61596i −0.113696 0.0617426i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −30.9583 −1.17942
\(690\) 0 0
\(691\) 49.0186 1.86475 0.932377 0.361488i \(-0.117731\pi\)
0.932377 + 0.361488i \(0.117731\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.441944 + 0.813820i −0.0167639 + 0.0308699i
\(696\) 0 0
\(697\) 34.6403i 1.31210i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −23.5229 −0.888448 −0.444224 0.895916i \(-0.646521\pi\)
−0.444224 + 0.895916i \(0.646521\pi\)
\(702\) 0 0
\(703\) 49.0244i 1.84899i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 77.1593i 2.90187i
\(708\) 0 0
\(709\) 12.4830 0.468811 0.234405 0.972139i \(-0.424686\pi\)
0.234405 + 0.972139i \(0.424686\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0.852012i 0.0319081i
\(714\) 0 0
\(715\) −3.11319 1.69062i −0.116427 0.0632255i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 32.6257 1.21673 0.608367 0.793656i \(-0.291825\pi\)
0.608367 + 0.793656i \(0.291825\pi\)
\(720\) 0 0
\(721\) −27.1795 −1.01222
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −11.0407 17.0065i −0.410041 0.631606i
\(726\) 0 0
\(727\) 11.8490i 0.439453i −0.975561 0.219727i \(-0.929483\pi\)
0.975561 0.219727i \(-0.0705166\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −41.2079 −1.52413
\(732\) 0 0
\(733\) 12.2824i 0.453662i 0.973934 + 0.226831i \(0.0728365\pi\)
−0.973934 + 0.226831i \(0.927164\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0.455088i 0.0167634i
\(738\) 0 0
\(739\) −2.16279 −0.0795595 −0.0397798 0.999208i \(-0.512666\pi\)
−0.0397798 + 0.999208i \(0.512666\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 43.0351i 1.57880i 0.613877 + 0.789402i \(0.289609\pi\)
−0.613877 + 0.789402i \(0.710391\pi\)
\(744\) 0 0
\(745\) 19.6682 36.2182i 0.720588 1.32693i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −38.6942 −1.41386
\(750\) 0 0
\(751\) −14.8480 −0.541813 −0.270906 0.962606i \(-0.587323\pi\)
−0.270906 + 0.962606i \(0.587323\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 8.29903 15.2823i 0.302033 0.556179i
\(756\) 0 0
\(757\) 15.3742i 0.558785i −0.960177 0.279393i \(-0.909867\pi\)
0.960177 0.279393i \(-0.0901331\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 49.2070 1.78375 0.891876 0.452280i \(-0.149389\pi\)
0.891876 + 0.452280i \(0.149389\pi\)
\(762\) 0 0
\(763\) 3.02120i 0.109375i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 28.6502i 1.03450i
\(768\) 0 0
\(769\) 32.7693 1.18169 0.590845 0.806785i \(-0.298794\pi\)
0.590845 + 0.806785i \(0.298794\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 15.0139i 0.540012i −0.962859 0.270006i \(-0.912974\pi\)
0.962859 0.270006i \(-0.0870257\pi\)
\(774\) 0 0
\(775\) 2.31968 + 3.57312i 0.0833254 + 0.128350i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −35.7419 −1.28059
\(780\) 0 0
\(781\) 3.40395 0.121803
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −26.8588 14.5856i −0.958632 0.520584i
\(786\) 0 0
\(787\) 32.3577i 1.15343i −0.816946 0.576714i \(-0.804335\pi\)
0.816946 0.576714i \(-0.195665\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −17.1850 −0.611030
\(792\) 0 0
\(793\) 37.0415i 1.31538i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.01914i 0.0715217i 0.999360 + 0.0357609i \(0.0113855\pi\)
−0.999360 + 0.0357609i \(0.988615\pi\)
\(798\) 0 0
\(799\) 31.2188 1.10444
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.74435i 0.238003i
\(804\) 0 0
\(805\) −4.22585 + 7.78172i −0.148942 + 0.274270i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 40.6376 1.42874 0.714371 0.699767i \(-0.246713\pi\)
0.714371 + 0.699767i \(0.246713\pi\)
\(810\) 0 0
\(811\) −54.1537 −1.90159 −0.950797 0.309814i \(-0.899733\pi\)
−0.950797 + 0.309814i \(0.899733\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −46.2322 25.1063i −1.61944 0.879437i
\(816\) 0 0
\(817\) 42.5182i 1.48752i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 31.3214 1.09313 0.546563 0.837418i \(-0.315936\pi\)
0.546563 + 0.837418i \(0.315936\pi\)
\(822\) 0 0
\(823\) 16.6203i 0.579346i 0.957126 + 0.289673i \(0.0935466\pi\)
−0.957126 + 0.289673i \(0.906453\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 27.1647i 0.944609i 0.881436 + 0.472304i \(0.156578\pi\)
−0.881436 + 0.472304i \(0.843422\pi\)
\(828\) 0 0
\(829\) −21.9455 −0.762200 −0.381100 0.924534i \(-0.624455\pi\)
−0.381100 + 0.924534i \(0.624455\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 48.4600i 1.67904i
\(834\) 0 0
\(835\) 36.8297 + 20.0003i 1.27455 + 0.692140i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 40.7077 1.40539 0.702694 0.711493i \(-0.251981\pi\)
0.702694 + 0.711493i \(0.251981\pi\)
\(840\) 0 0
\(841\) −12.5553 −0.432940
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −7.16899 + 13.2014i −0.246621 + 0.454141i
\(846\) 0 0
\(847\) 41.9790i 1.44242i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −8.51300 −0.291822
\(852\) 0 0
\(853\) 3.15887i 0.108158i −0.998537 0.0540788i \(-0.982778\pi\)
0.998537 0.0540788i \(-0.0172222\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 36.8578i 1.25904i 0.776985 + 0.629519i \(0.216748\pi\)
−0.776985 + 0.629519i \(0.783252\pi\)
\(858\) 0 0
\(859\) −24.5381 −0.837228 −0.418614 0.908164i \(-0.637484\pi\)
−0.418614 + 0.908164i \(0.637484\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0.915713i 0.0311712i −0.999879 0.0155856i \(-0.995039\pi\)
0.999879 0.0155856i \(-0.00496126\pi\)
\(864\) 0 0
\(865\) −24.4434 13.2740i −0.831101 0.451329i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.60233 −0.257891
\(870\) 0 0
\(871\) −1.80443 −0.0611409
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.46429 44.1398i −0.117114 1.49220i
\(876\) 0 0
\(877\) 45.3238i 1.53047i −0.643748 0.765237i \(-0.722622\pi\)
0.643748 0.765237i \(-0.277378\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.9074 −0.502242 −0.251121 0.967956i \(-0.580799\pi\)
−0.251121 + 0.967956i \(0.580799\pi\)
\(882\) 0 0
\(883\) 47.5043i 1.59865i −0.600900 0.799324i \(-0.705191\pi\)
0.600900 0.799324i \(-0.294809\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 9.07718i 0.304782i −0.988320 0.152391i \(-0.951303\pi\)
0.988320 0.152391i \(-0.0486973\pi\)
\(888\) 0 0
\(889\) 32.2382 1.08123
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 32.2116i 1.07792i
\(894\) 0 0
\(895\) 9.57508 17.6321i 0.320060 0.589375i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.45509 −0.115234
\(900\) 0 0
\(901\) 68.9397 2.29671
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −6.06311 + 11.1650i −0.201545 + 0.371136i
\(906\) 0 0
\(907\) 9.03237i 0.299915i −0.988692 0.149958i \(-0.952086\pi\)
0.988692 0.149958i \(-0.0479137\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 51.9368 1.72074 0.860372 0.509667i \(-0.170231\pi\)
0.860372 + 0.509667i \(0.170231\pi\)
\(912\) 0 0
\(913\) 1.26031i 0.0417101i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 50.2160i 1.65828i
\(918\) 0 0
\(919\) 8.30811 0.274059 0.137030 0.990567i \(-0.456244\pi\)
0.137030 + 0.990567i \(0.456244\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 13.4967i 0.444251i
\(924\) 0 0
\(925\) 35.7014 23.1774i 1.17385 0.762069i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 14.0455 0.460816 0.230408 0.973094i \(-0.425994\pi\)
0.230408 + 0.973094i \(0.425994\pi\)
\(930\) 0 0
\(931\) 50.0010 1.63872
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.93263 + 3.76476i 0.226721 + 0.123121i
\(936\) 0 0
\(937\) 42.7645i 1.39706i −0.715583 0.698528i \(-0.753839\pi\)
0.715583 0.698528i \(-0.246161\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −28.8836 −0.941577 −0.470789 0.882246i \(-0.656031\pi\)
−0.470789 + 0.882246i \(0.656031\pi\)
\(942\) 0 0
\(943\) 6.20651i 0.202112i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 35.4439i 1.15177i 0.817530 + 0.575886i \(0.195343\pi\)
−0.817530 + 0.575886i \(0.804657\pi\)
\(948\) 0 0
\(949\) −26.7415 −0.868065
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 33.5601i 1.08712i −0.839371 0.543559i \(-0.817076\pi\)
0.839371 0.543559i \(-0.182924\pi\)
\(954\) 0 0
\(955\) 11.2699 20.7530i 0.364684 0.671550i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 5.99699 0.193653
\(960\) 0 0
\(961\) −30.2741 −0.976583
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.07241 + 3.84066i 0.227669 + 0.123635i
\(966\) 0 0
\(967\) 57.9430i 1.86332i −0.363329 0.931661i \(-0.618360\pi\)
0.363329 0.931661i \(-0.381640\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.73497 0.0877694 0.0438847 0.999037i \(-0.486027\pi\)
0.0438847 + 0.999037i \(0.486027\pi\)
\(972\) 0 0
\(973\) 1.64010i 0.0525792i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.7481i 0.695782i 0.937535 + 0.347891i \(0.113102\pi\)
−0.937535 + 0.347891i \(0.886898\pi\)
\(978\) 0 0
\(979\) −3.98611 −0.127397
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 14.1002i 0.449726i 0.974390 + 0.224863i \(0.0721935\pi\)
−0.974390 + 0.224863i \(0.927806\pi\)
\(984\) 0 0
\(985\) −35.9394 19.5169i −1.14513 0.621859i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7.38322 0.234773
\(990\) 0 0
\(991\) 6.03850 0.191819 0.0959096 0.995390i \(-0.469424\pi\)
0.0959096 + 0.995390i \(0.469424\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 22.6365 41.6842i 0.717627 1.32148i
\(996\) 0 0
\(997\) 39.9276i 1.26452i 0.774756 + 0.632261i \(0.217873\pi\)
−0.774756 + 0.632261i \(0.782127\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4140.2.f.d.829.8 yes 24
3.2 odd 2 inner 4140.2.f.d.829.17 yes 24
5.4 even 2 inner 4140.2.f.d.829.7 24
15.14 odd 2 inner 4140.2.f.d.829.18 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4140.2.f.d.829.7 24 5.4 even 2 inner
4140.2.f.d.829.8 yes 24 1.1 even 1 trivial
4140.2.f.d.829.17 yes 24 3.2 odd 2 inner
4140.2.f.d.829.18 yes 24 15.14 odd 2 inner