Properties

Label 416.4.a.c
Level 416416
Weight 44
Character orbit 416.a
Self dual yes
Analytic conductor 24.54524.545
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(1,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 416=2513 416 = 2^{5} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.544794562424.5447945624
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q3q5+5q726q9+10q1113q13q15+93q1782q19+5q21192q23124q2553q27106q29+172q31+10q335q35+379q37+260q99+O(q100) q + q^{3} - q^{5} + 5 q^{7} - 26 q^{9} + 10 q^{11} - 13 q^{13} - q^{15} + 93 q^{17} - 82 q^{19} + 5 q^{21} - 192 q^{23} - 124 q^{25} - 53 q^{27} - 106 q^{29} + 172 q^{31} + 10 q^{33} - 5 q^{35} + 379 q^{37}+ \cdots - 260 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 1.00000 0 −1.00000 0 5.00000 0 −26.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1313 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 416.4.a.c yes 1
4.b odd 2 1 416.4.a.b 1
8.b even 2 1 832.4.a.h 1
8.d odd 2 1 832.4.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.b 1 4.b odd 2 1
416.4.a.c yes 1 1.a even 1 1 trivial
832.4.a.h 1 8.b even 2 1
832.4.a.k 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T31 T_{3} - 1 acting on S4new(Γ0(416))S_{4}^{\mathrm{new}}(\Gamma_0(416)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T1 T - 1 Copy content Toggle raw display
55 T+1 T + 1 Copy content Toggle raw display
77 T5 T - 5 Copy content Toggle raw display
1111 T10 T - 10 Copy content Toggle raw display
1313 T+13 T + 13 Copy content Toggle raw display
1717 T93 T - 93 Copy content Toggle raw display
1919 T+82 T + 82 Copy content Toggle raw display
2323 T+192 T + 192 Copy content Toggle raw display
2929 T+106 T + 106 Copy content Toggle raw display
3131 T172 T - 172 Copy content Toggle raw display
3737 T379 T - 379 Copy content Toggle raw display
4141 T+148 T + 148 Copy content Toggle raw display
4343 T+329 T + 329 Copy content Toggle raw display
4747 T+631 T + 631 Copy content Toggle raw display
5353 T160 T - 160 Copy content Toggle raw display
5959 T+478 T + 478 Copy content Toggle raw display
6161 T300 T - 300 Copy content Toggle raw display
6767 T+722 T + 722 Copy content Toggle raw display
7171 T335 T - 335 Copy content Toggle raw display
7373 T90 T - 90 Copy content Toggle raw display
7979 T+788 T + 788 Copy content Toggle raw display
8383 T96 T - 96 Copy content Toggle raw display
8989 T+866 T + 866 Copy content Toggle raw display
9797 T+998 T + 998 Copy content Toggle raw display
show more
show less