Properties

Label 832.4.a.k
Level 832832
Weight 44
Character orbit 832.a
Self dual yes
Analytic conductor 49.09049.090
Analytic rank 11
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [832,4,Mod(1,832)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(832, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("832.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 832=2613 832 = 2^{6} \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 832.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 49.089589124849.0895891248
Analytic rank: 11
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 416)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+q3+q55q726q9+10q11+13q13+q15+93q1782q195q21+192q23124q2553q27+106q29172q31+10q335q35379q37+260q99+O(q100) q + q^{3} + q^{5} - 5 q^{7} - 26 q^{9} + 10 q^{11} + 13 q^{13} + q^{15} + 93 q^{17} - 82 q^{19} - 5 q^{21} + 192 q^{23} - 124 q^{25} - 53 q^{27} + 106 q^{29} - 172 q^{31} + 10 q^{33} - 5 q^{35} - 379 q^{37}+ \cdots - 260 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 1.00000 0 1.00000 0 −5.00000 0 −26.0000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 1 -1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 832.4.a.k 1
4.b odd 2 1 832.4.a.h 1
8.b even 2 1 416.4.a.b 1
8.d odd 2 1 416.4.a.c yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.4.a.b 1 8.b even 2 1
416.4.a.c yes 1 8.d odd 2 1
832.4.a.h 1 4.b odd 2 1
832.4.a.k 1 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(832))S_{4}^{\mathrm{new}}(\Gamma_0(832)):

T31 T_{3} - 1 Copy content Toggle raw display
T51 T_{5} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T1 T - 1 Copy content Toggle raw display
55 T1 T - 1 Copy content Toggle raw display
77 T+5 T + 5 Copy content Toggle raw display
1111 T10 T - 10 Copy content Toggle raw display
1313 T13 T - 13 Copy content Toggle raw display
1717 T93 T - 93 Copy content Toggle raw display
1919 T+82 T + 82 Copy content Toggle raw display
2323 T192 T - 192 Copy content Toggle raw display
2929 T106 T - 106 Copy content Toggle raw display
3131 T+172 T + 172 Copy content Toggle raw display
3737 T+379 T + 379 Copy content Toggle raw display
4141 T+148 T + 148 Copy content Toggle raw display
4343 T+329 T + 329 Copy content Toggle raw display
4747 T631 T - 631 Copy content Toggle raw display
5353 T+160 T + 160 Copy content Toggle raw display
5959 T+478 T + 478 Copy content Toggle raw display
6161 T+300 T + 300 Copy content Toggle raw display
6767 T+722 T + 722 Copy content Toggle raw display
7171 T+335 T + 335 Copy content Toggle raw display
7373 T90 T - 90 Copy content Toggle raw display
7979 T788 T - 788 Copy content Toggle raw display
8383 T96 T - 96 Copy content Toggle raw display
8989 T+866 T + 866 Copy content Toggle raw display
9797 T+998 T + 998 Copy content Toggle raw display
show more
show less