Properties

Label 416.4.a.g.1.3
Level $416$
Weight $4$
Character 416.1
Self dual yes
Analytic conductor $24.545$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [416,4,Mod(1,416)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(416, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("416.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 416 = 2^{5} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 416.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.5447945624\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.1847677.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 18x^{2} + 19x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-3.91115\) of defining polynomial
Character \(\chi\) \(=\) 416.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83719 q^{3} +6.20824 q^{5} -19.4818 q^{7} -23.6247 q^{9} +45.5850 q^{11} -13.0000 q^{13} +11.4057 q^{15} -47.0412 q^{17} +10.2958 q^{19} -35.7918 q^{21} -155.854 q^{23} -86.4577 q^{25} -93.0073 q^{27} -69.1670 q^{29} +5.16685 q^{31} +83.7484 q^{33} -120.948 q^{35} -71.2928 q^{37} -23.8835 q^{39} -77.5835 q^{41} +296.629 q^{43} -146.668 q^{45} +296.666 q^{47} +36.5401 q^{49} -86.4237 q^{51} -601.913 q^{53} +283.003 q^{55} +18.9154 q^{57} -272.093 q^{59} -641.080 q^{61} +460.252 q^{63} -80.7072 q^{65} +1021.97 q^{67} -286.334 q^{69} -981.934 q^{71} -875.657 q^{73} -158.839 q^{75} -888.078 q^{77} -649.979 q^{79} +466.996 q^{81} -812.303 q^{83} -292.043 q^{85} -127.073 q^{87} +97.1670 q^{89} +253.263 q^{91} +9.49249 q^{93} +63.9191 q^{95} +1193.65 q^{97} -1076.93 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 14 q^{5} + 22 q^{9} - 52 q^{13} + 6 q^{17} - 182 q^{21} - 74 q^{25} - 432 q^{29} - 364 q^{33} - 790 q^{37} - 388 q^{41} - 1208 q^{45} - 514 q^{49} - 932 q^{53} - 468 q^{57} - 1244 q^{61} + 182 q^{65}+ \cdots - 1128 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.83719 0.353567 0.176784 0.984250i \(-0.443431\pi\)
0.176784 + 0.984250i \(0.443431\pi\)
\(4\) 0 0
\(5\) 6.20824 0.555282 0.277641 0.960685i \(-0.410447\pi\)
0.277641 + 0.960685i \(0.410447\pi\)
\(6\) 0 0
\(7\) −19.4818 −1.05192 −0.525959 0.850510i \(-0.676293\pi\)
−0.525959 + 0.850510i \(0.676293\pi\)
\(8\) 0 0
\(9\) −23.6247 −0.874990
\(10\) 0 0
\(11\) 45.5850 1.24949 0.624746 0.780828i \(-0.285203\pi\)
0.624746 + 0.780828i \(0.285203\pi\)
\(12\) 0 0
\(13\) −13.0000 −0.277350
\(14\) 0 0
\(15\) 11.4057 0.196330
\(16\) 0 0
\(17\) −47.0412 −0.671128 −0.335564 0.942017i \(-0.608927\pi\)
−0.335564 + 0.942017i \(0.608927\pi\)
\(18\) 0 0
\(19\) 10.2958 0.124317 0.0621586 0.998066i \(-0.480202\pi\)
0.0621586 + 0.998066i \(0.480202\pi\)
\(20\) 0 0
\(21\) −35.7918 −0.371924
\(22\) 0 0
\(23\) −155.854 −1.41295 −0.706475 0.707738i \(-0.749716\pi\)
−0.706475 + 0.707738i \(0.749716\pi\)
\(24\) 0 0
\(25\) −86.4577 −0.691662
\(26\) 0 0
\(27\) −93.0073 −0.662935
\(28\) 0 0
\(29\) −69.1670 −0.442896 −0.221448 0.975172i \(-0.571078\pi\)
−0.221448 + 0.975172i \(0.571078\pi\)
\(30\) 0 0
\(31\) 5.16685 0.0299353 0.0149676 0.999888i \(-0.495235\pi\)
0.0149676 + 0.999888i \(0.495235\pi\)
\(32\) 0 0
\(33\) 83.7484 0.441780
\(34\) 0 0
\(35\) −120.948 −0.584111
\(36\) 0 0
\(37\) −71.2928 −0.316769 −0.158385 0.987377i \(-0.550629\pi\)
−0.158385 + 0.987377i \(0.550629\pi\)
\(38\) 0 0
\(39\) −23.8835 −0.0980620
\(40\) 0 0
\(41\) −77.5835 −0.295525 −0.147762 0.989023i \(-0.547207\pi\)
−0.147762 + 0.989023i \(0.547207\pi\)
\(42\) 0 0
\(43\) 296.629 1.05199 0.525993 0.850489i \(-0.323694\pi\)
0.525993 + 0.850489i \(0.323694\pi\)
\(44\) 0 0
\(45\) −146.668 −0.485866
\(46\) 0 0
\(47\) 296.666 0.920707 0.460354 0.887736i \(-0.347723\pi\)
0.460354 + 0.887736i \(0.347723\pi\)
\(48\) 0 0
\(49\) 36.5401 0.106531
\(50\) 0 0
\(51\) −86.4237 −0.237289
\(52\) 0 0
\(53\) −601.913 −1.55998 −0.779992 0.625790i \(-0.784777\pi\)
−0.779992 + 0.625790i \(0.784777\pi\)
\(54\) 0 0
\(55\) 283.003 0.693820
\(56\) 0 0
\(57\) 18.9154 0.0439545
\(58\) 0 0
\(59\) −272.093 −0.600399 −0.300200 0.953876i \(-0.597053\pi\)
−0.300200 + 0.953876i \(0.597053\pi\)
\(60\) 0 0
\(61\) −641.080 −1.34561 −0.672803 0.739822i \(-0.734910\pi\)
−0.672803 + 0.739822i \(0.734910\pi\)
\(62\) 0 0
\(63\) 460.252 0.920418
\(64\) 0 0
\(65\) −80.7072 −0.154008
\(66\) 0 0
\(67\) 1021.97 1.86349 0.931743 0.363119i \(-0.118288\pi\)
0.931743 + 0.363119i \(0.118288\pi\)
\(68\) 0 0
\(69\) −286.334 −0.499573
\(70\) 0 0
\(71\) −981.934 −1.64133 −0.820663 0.571412i \(-0.806396\pi\)
−0.820663 + 0.571412i \(0.806396\pi\)
\(72\) 0 0
\(73\) −875.657 −1.40394 −0.701972 0.712204i \(-0.747697\pi\)
−0.701972 + 0.712204i \(0.747697\pi\)
\(74\) 0 0
\(75\) −158.839 −0.244549
\(76\) 0 0
\(77\) −888.078 −1.31436
\(78\) 0 0
\(79\) −649.979 −0.925675 −0.462838 0.886443i \(-0.653169\pi\)
−0.462838 + 0.886443i \(0.653169\pi\)
\(80\) 0 0
\(81\) 466.996 0.640598
\(82\) 0 0
\(83\) −812.303 −1.07424 −0.537120 0.843506i \(-0.680488\pi\)
−0.537120 + 0.843506i \(0.680488\pi\)
\(84\) 0 0
\(85\) −292.043 −0.372665
\(86\) 0 0
\(87\) −127.073 −0.156594
\(88\) 0 0
\(89\) 97.1670 0.115727 0.0578634 0.998325i \(-0.481571\pi\)
0.0578634 + 0.998325i \(0.481571\pi\)
\(90\) 0 0
\(91\) 253.263 0.291750
\(92\) 0 0
\(93\) 9.49249 0.0105841
\(94\) 0 0
\(95\) 63.9191 0.0690311
\(96\) 0 0
\(97\) 1193.65 1.24945 0.624727 0.780843i \(-0.285210\pi\)
0.624727 + 0.780843i \(0.285210\pi\)
\(98\) 0 0
\(99\) −1076.93 −1.09329
\(100\) 0 0
\(101\) −596.412 −0.587577 −0.293788 0.955871i \(-0.594916\pi\)
−0.293788 + 0.955871i \(0.594916\pi\)
\(102\) 0 0
\(103\) 1193.86 1.14209 0.571043 0.820920i \(-0.306539\pi\)
0.571043 + 0.820920i \(0.306539\pi\)
\(104\) 0 0
\(105\) −222.204 −0.206523
\(106\) 0 0
\(107\) 1787.96 1.61541 0.807704 0.589588i \(-0.200710\pi\)
0.807704 + 0.589588i \(0.200710\pi\)
\(108\) 0 0
\(109\) 3.03264 0.00266490 0.00133245 0.999999i \(-0.499576\pi\)
0.00133245 + 0.999999i \(0.499576\pi\)
\(110\) 0 0
\(111\) −130.978 −0.111999
\(112\) 0 0
\(113\) 513.505 0.427491 0.213746 0.976889i \(-0.431434\pi\)
0.213746 + 0.976889i \(0.431434\pi\)
\(114\) 0 0
\(115\) −967.582 −0.784587
\(116\) 0 0
\(117\) 307.122 0.242679
\(118\) 0 0
\(119\) 916.447 0.705971
\(120\) 0 0
\(121\) 746.996 0.561229
\(122\) 0 0
\(123\) −142.536 −0.104488
\(124\) 0 0
\(125\) −1312.78 −0.939350
\(126\) 0 0
\(127\) −207.447 −0.144945 −0.0724723 0.997370i \(-0.523089\pi\)
−0.0724723 + 0.997370i \(0.523089\pi\)
\(128\) 0 0
\(129\) 544.963 0.371948
\(130\) 0 0
\(131\) 82.2113 0.0548308 0.0274154 0.999624i \(-0.491272\pi\)
0.0274154 + 0.999624i \(0.491272\pi\)
\(132\) 0 0
\(133\) −200.581 −0.130772
\(134\) 0 0
\(135\) −577.412 −0.368116
\(136\) 0 0
\(137\) 2096.91 1.30767 0.653835 0.756637i \(-0.273159\pi\)
0.653835 + 0.756637i \(0.273159\pi\)
\(138\) 0 0
\(139\) 67.3623 0.0411050 0.0205525 0.999789i \(-0.493457\pi\)
0.0205525 + 0.999789i \(0.493457\pi\)
\(140\) 0 0
\(141\) 545.033 0.325532
\(142\) 0 0
\(143\) −592.605 −0.346547
\(144\) 0 0
\(145\) −429.406 −0.245932
\(146\) 0 0
\(147\) 67.1312 0.0376659
\(148\) 0 0
\(149\) −1041.49 −0.572631 −0.286316 0.958135i \(-0.592431\pi\)
−0.286316 + 0.958135i \(0.592431\pi\)
\(150\) 0 0
\(151\) −696.787 −0.375522 −0.187761 0.982215i \(-0.560123\pi\)
−0.187761 + 0.982215i \(0.560123\pi\)
\(152\) 0 0
\(153\) 1111.34 0.587230
\(154\) 0 0
\(155\) 32.0771 0.0166225
\(156\) 0 0
\(157\) −269.011 −0.136748 −0.0683739 0.997660i \(-0.521781\pi\)
−0.0683739 + 0.997660i \(0.521781\pi\)
\(158\) 0 0
\(159\) −1105.83 −0.551560
\(160\) 0 0
\(161\) 3036.32 1.48631
\(162\) 0 0
\(163\) −2031.20 −0.976047 −0.488023 0.872831i \(-0.662282\pi\)
−0.488023 + 0.872831i \(0.662282\pi\)
\(164\) 0 0
\(165\) 519.930 0.245312
\(166\) 0 0
\(167\) 2210.33 1.02419 0.512096 0.858928i \(-0.328869\pi\)
0.512096 + 0.858928i \(0.328869\pi\)
\(168\) 0 0
\(169\) 169.000 0.0769231
\(170\) 0 0
\(171\) −243.236 −0.108776
\(172\) 0 0
\(173\) 1677.24 0.737098 0.368549 0.929608i \(-0.379855\pi\)
0.368549 + 0.929608i \(0.379855\pi\)
\(174\) 0 0
\(175\) 1684.35 0.727571
\(176\) 0 0
\(177\) −499.888 −0.212282
\(178\) 0 0
\(179\) 2444.60 1.02077 0.510386 0.859945i \(-0.329503\pi\)
0.510386 + 0.859945i \(0.329503\pi\)
\(180\) 0 0
\(181\) 843.249 0.346289 0.173144 0.984896i \(-0.444607\pi\)
0.173144 + 0.984896i \(0.444607\pi\)
\(182\) 0 0
\(183\) −1177.79 −0.475762
\(184\) 0 0
\(185\) −442.603 −0.175896
\(186\) 0 0
\(187\) −2144.38 −0.838568
\(188\) 0 0
\(189\) 1811.95 0.697354
\(190\) 0 0
\(191\) −2742.53 −1.03897 −0.519484 0.854480i \(-0.673876\pi\)
−0.519484 + 0.854480i \(0.673876\pi\)
\(192\) 0 0
\(193\) 801.584 0.298960 0.149480 0.988765i \(-0.452240\pi\)
0.149480 + 0.988765i \(0.452240\pi\)
\(194\) 0 0
\(195\) −148.274 −0.0544521
\(196\) 0 0
\(197\) 2867.94 1.03722 0.518609 0.855012i \(-0.326450\pi\)
0.518609 + 0.855012i \(0.326450\pi\)
\(198\) 0 0
\(199\) 4101.21 1.46094 0.730469 0.682945i \(-0.239301\pi\)
0.730469 + 0.682945i \(0.239301\pi\)
\(200\) 0 0
\(201\) 1877.55 0.658868
\(202\) 0 0
\(203\) 1347.50 0.465891
\(204\) 0 0
\(205\) −481.657 −0.164100
\(206\) 0 0
\(207\) 3682.02 1.23632
\(208\) 0 0
\(209\) 469.336 0.155333
\(210\) 0 0
\(211\) −186.162 −0.0607390 −0.0303695 0.999539i \(-0.509668\pi\)
−0.0303695 + 0.999539i \(0.509668\pi\)
\(212\) 0 0
\(213\) −1804.00 −0.580320
\(214\) 0 0
\(215\) 1841.54 0.584150
\(216\) 0 0
\(217\) −100.660 −0.0314895
\(218\) 0 0
\(219\) −1608.75 −0.496389
\(220\) 0 0
\(221\) 611.536 0.186137
\(222\) 0 0
\(223\) −6463.02 −1.94079 −0.970394 0.241527i \(-0.922352\pi\)
−0.970394 + 0.241527i \(0.922352\pi\)
\(224\) 0 0
\(225\) 2042.54 0.605197
\(226\) 0 0
\(227\) 4199.99 1.22803 0.614016 0.789294i \(-0.289553\pi\)
0.614016 + 0.789294i \(0.289553\pi\)
\(228\) 0 0
\(229\) 2068.59 0.596928 0.298464 0.954421i \(-0.403526\pi\)
0.298464 + 0.954421i \(0.403526\pi\)
\(230\) 0 0
\(231\) −1631.57 −0.464716
\(232\) 0 0
\(233\) 1584.10 0.445398 0.222699 0.974887i \(-0.428513\pi\)
0.222699 + 0.974887i \(0.428513\pi\)
\(234\) 0 0
\(235\) 1841.78 0.511252
\(236\) 0 0
\(237\) −1194.13 −0.327289
\(238\) 0 0
\(239\) 305.470 0.0826745 0.0413372 0.999145i \(-0.486838\pi\)
0.0413372 + 0.999145i \(0.486838\pi\)
\(240\) 0 0
\(241\) 1503.33 0.401817 0.200908 0.979610i \(-0.435611\pi\)
0.200908 + 0.979610i \(0.435611\pi\)
\(242\) 0 0
\(243\) 3369.16 0.889430
\(244\) 0 0
\(245\) 226.850 0.0591548
\(246\) 0 0
\(247\) −133.846 −0.0344794
\(248\) 0 0
\(249\) −1492.36 −0.379816
\(250\) 0 0
\(251\) −5154.98 −1.29633 −0.648166 0.761499i \(-0.724464\pi\)
−0.648166 + 0.761499i \(0.724464\pi\)
\(252\) 0 0
\(253\) −7104.63 −1.76547
\(254\) 0 0
\(255\) −536.539 −0.131762
\(256\) 0 0
\(257\) 6005.25 1.45758 0.728789 0.684739i \(-0.240084\pi\)
0.728789 + 0.684739i \(0.240084\pi\)
\(258\) 0 0
\(259\) 1388.91 0.333215
\(260\) 0 0
\(261\) 1634.05 0.387530
\(262\) 0 0
\(263\) −3760.32 −0.881640 −0.440820 0.897595i \(-0.645312\pi\)
−0.440820 + 0.897595i \(0.645312\pi\)
\(264\) 0 0
\(265\) −3736.82 −0.866231
\(266\) 0 0
\(267\) 178.514 0.0409172
\(268\) 0 0
\(269\) 1359.08 0.308048 0.154024 0.988067i \(-0.450777\pi\)
0.154024 + 0.988067i \(0.450777\pi\)
\(270\) 0 0
\(271\) 1790.90 0.401438 0.200719 0.979649i \(-0.435672\pi\)
0.200719 + 0.979649i \(0.435672\pi\)
\(272\) 0 0
\(273\) 465.293 0.103153
\(274\) 0 0
\(275\) −3941.18 −0.864225
\(276\) 0 0
\(277\) 6981.03 1.51426 0.757129 0.653266i \(-0.226601\pi\)
0.757129 + 0.653266i \(0.226601\pi\)
\(278\) 0 0
\(279\) −122.065 −0.0261931
\(280\) 0 0
\(281\) −1082.51 −0.229812 −0.114906 0.993376i \(-0.536657\pi\)
−0.114906 + 0.993376i \(0.536657\pi\)
\(282\) 0 0
\(283\) 4439.85 0.932585 0.466292 0.884631i \(-0.345589\pi\)
0.466292 + 0.884631i \(0.345589\pi\)
\(284\) 0 0
\(285\) 117.432 0.0244072
\(286\) 0 0
\(287\) 1511.47 0.310868
\(288\) 0 0
\(289\) −2700.12 −0.549588
\(290\) 0 0
\(291\) 2192.97 0.441767
\(292\) 0 0
\(293\) 3570.20 0.711854 0.355927 0.934514i \(-0.384165\pi\)
0.355927 + 0.934514i \(0.384165\pi\)
\(294\) 0 0
\(295\) −1689.22 −0.333391
\(296\) 0 0
\(297\) −4239.74 −0.828332
\(298\) 0 0
\(299\) 2026.11 0.391882
\(300\) 0 0
\(301\) −5778.85 −1.10660
\(302\) 0 0
\(303\) −1095.72 −0.207748
\(304\) 0 0
\(305\) −3979.98 −0.747191
\(306\) 0 0
\(307\) −5636.05 −1.04777 −0.523887 0.851788i \(-0.675519\pi\)
−0.523887 + 0.851788i \(0.675519\pi\)
\(308\) 0 0
\(309\) 2193.35 0.403804
\(310\) 0 0
\(311\) −9042.60 −1.64874 −0.824371 0.566049i \(-0.808471\pi\)
−0.824371 + 0.566049i \(0.808471\pi\)
\(312\) 0 0
\(313\) −10852.3 −1.95976 −0.979882 0.199577i \(-0.936043\pi\)
−0.979882 + 0.199577i \(0.936043\pi\)
\(314\) 0 0
\(315\) 2857.36 0.511092
\(316\) 0 0
\(317\) −3736.13 −0.661963 −0.330981 0.943637i \(-0.607380\pi\)
−0.330981 + 0.943637i \(0.607380\pi\)
\(318\) 0 0
\(319\) −3152.98 −0.553395
\(320\) 0 0
\(321\) 3284.82 0.571156
\(322\) 0 0
\(323\) −484.329 −0.0834327
\(324\) 0 0
\(325\) 1123.95 0.191832
\(326\) 0 0
\(327\) 5.57153 0.000942221 0
\(328\) 0 0
\(329\) −5779.59 −0.968508
\(330\) 0 0
\(331\) −6755.12 −1.12174 −0.560868 0.827905i \(-0.689533\pi\)
−0.560868 + 0.827905i \(0.689533\pi\)
\(332\) 0 0
\(333\) 1684.27 0.277170
\(334\) 0 0
\(335\) 6344.64 1.03476
\(336\) 0 0
\(337\) −10073.2 −1.62826 −0.814130 0.580682i \(-0.802786\pi\)
−0.814130 + 0.580682i \(0.802786\pi\)
\(338\) 0 0
\(339\) 943.407 0.151147
\(340\) 0 0
\(341\) 235.531 0.0374039
\(342\) 0 0
\(343\) 5970.39 0.939856
\(344\) 0 0
\(345\) −1777.63 −0.277404
\(346\) 0 0
\(347\) −7102.09 −1.09873 −0.549366 0.835582i \(-0.685131\pi\)
−0.549366 + 0.835582i \(0.685131\pi\)
\(348\) 0 0
\(349\) −5599.78 −0.858880 −0.429440 0.903095i \(-0.641289\pi\)
−0.429440 + 0.903095i \(0.641289\pi\)
\(350\) 0 0
\(351\) 1209.09 0.183865
\(352\) 0 0
\(353\) −7062.56 −1.06488 −0.532439 0.846468i \(-0.678724\pi\)
−0.532439 + 0.846468i \(0.678724\pi\)
\(354\) 0 0
\(355\) −6096.09 −0.911399
\(356\) 0 0
\(357\) 1683.69 0.249608
\(358\) 0 0
\(359\) 10391.4 1.52769 0.763844 0.645401i \(-0.223310\pi\)
0.763844 + 0.645401i \(0.223310\pi\)
\(360\) 0 0
\(361\) −6753.00 −0.984545
\(362\) 0 0
\(363\) 1372.37 0.198432
\(364\) 0 0
\(365\) −5436.29 −0.779585
\(366\) 0 0
\(367\) 9368.95 1.33258 0.666288 0.745695i \(-0.267882\pi\)
0.666288 + 0.745695i \(0.267882\pi\)
\(368\) 0 0
\(369\) 1832.89 0.258581
\(370\) 0 0
\(371\) 11726.3 1.64097
\(372\) 0 0
\(373\) 6303.38 0.875004 0.437502 0.899217i \(-0.355863\pi\)
0.437502 + 0.899217i \(0.355863\pi\)
\(374\) 0 0
\(375\) −2411.83 −0.332123
\(376\) 0 0
\(377\) 899.171 0.122837
\(378\) 0 0
\(379\) 3980.44 0.539476 0.269738 0.962934i \(-0.413063\pi\)
0.269738 + 0.962934i \(0.413063\pi\)
\(380\) 0 0
\(381\) −381.120 −0.0512477
\(382\) 0 0
\(383\) 2315.19 0.308879 0.154439 0.988002i \(-0.450643\pi\)
0.154439 + 0.988002i \(0.450643\pi\)
\(384\) 0 0
\(385\) −5513.41 −0.729842
\(386\) 0 0
\(387\) −7007.77 −0.920478
\(388\) 0 0
\(389\) 10739.7 1.39981 0.699905 0.714236i \(-0.253226\pi\)
0.699905 + 0.714236i \(0.253226\pi\)
\(390\) 0 0
\(391\) 7331.58 0.948271
\(392\) 0 0
\(393\) 151.038 0.0193864
\(394\) 0 0
\(395\) −4035.23 −0.514011
\(396\) 0 0
\(397\) −610.651 −0.0771982 −0.0385991 0.999255i \(-0.512290\pi\)
−0.0385991 + 0.999255i \(0.512290\pi\)
\(398\) 0 0
\(399\) −368.506 −0.0462365
\(400\) 0 0
\(401\) 5952.35 0.741263 0.370631 0.928780i \(-0.379141\pi\)
0.370631 + 0.928780i \(0.379141\pi\)
\(402\) 0 0
\(403\) −67.1691 −0.00830255
\(404\) 0 0
\(405\) 2899.22 0.355712
\(406\) 0 0
\(407\) −3249.89 −0.395801
\(408\) 0 0
\(409\) −15612.1 −1.88745 −0.943725 0.330730i \(-0.892705\pi\)
−0.943725 + 0.330730i \(0.892705\pi\)
\(410\) 0 0
\(411\) 3852.42 0.462350
\(412\) 0 0
\(413\) 5300.87 0.631571
\(414\) 0 0
\(415\) −5042.98 −0.596506
\(416\) 0 0
\(417\) 123.757 0.0145334
\(418\) 0 0
\(419\) −4971.26 −0.579623 −0.289811 0.957084i \(-0.593593\pi\)
−0.289811 + 0.957084i \(0.593593\pi\)
\(420\) 0 0
\(421\) −1307.30 −0.151340 −0.0756698 0.997133i \(-0.524109\pi\)
−0.0756698 + 0.997133i \(0.524109\pi\)
\(422\) 0 0
\(423\) −7008.66 −0.805610
\(424\) 0 0
\(425\) 4067.08 0.464193
\(426\) 0 0
\(427\) 12489.4 1.41547
\(428\) 0 0
\(429\) −1088.73 −0.122528
\(430\) 0 0
\(431\) −9146.52 −1.02221 −0.511105 0.859518i \(-0.670764\pi\)
−0.511105 + 0.859518i \(0.670764\pi\)
\(432\) 0 0
\(433\) −3246.44 −0.360310 −0.180155 0.983638i \(-0.557660\pi\)
−0.180155 + 0.983638i \(0.557660\pi\)
\(434\) 0 0
\(435\) −788.900 −0.0869537
\(436\) 0 0
\(437\) −1604.65 −0.175654
\(438\) 0 0
\(439\) −7918.55 −0.860892 −0.430446 0.902616i \(-0.641644\pi\)
−0.430446 + 0.902616i \(0.641644\pi\)
\(440\) 0 0
\(441\) −863.251 −0.0932136
\(442\) 0 0
\(443\) 5069.07 0.543654 0.271827 0.962346i \(-0.412372\pi\)
0.271827 + 0.962346i \(0.412372\pi\)
\(444\) 0 0
\(445\) 603.237 0.0642610
\(446\) 0 0
\(447\) −1913.41 −0.202464
\(448\) 0 0
\(449\) 8055.03 0.846638 0.423319 0.905981i \(-0.360865\pi\)
0.423319 + 0.905981i \(0.360865\pi\)
\(450\) 0 0
\(451\) −3536.65 −0.369255
\(452\) 0 0
\(453\) −1280.13 −0.132772
\(454\) 0 0
\(455\) 1572.32 0.162003
\(456\) 0 0
\(457\) −16991.3 −1.73921 −0.869607 0.493745i \(-0.835627\pi\)
−0.869607 + 0.493745i \(0.835627\pi\)
\(458\) 0 0
\(459\) 4375.18 0.444914
\(460\) 0 0
\(461\) −12875.9 −1.30085 −0.650424 0.759571i \(-0.725409\pi\)
−0.650424 + 0.759571i \(0.725409\pi\)
\(462\) 0 0
\(463\) −135.611 −0.0136121 −0.00680604 0.999977i \(-0.502166\pi\)
−0.00680604 + 0.999977i \(0.502166\pi\)
\(464\) 0 0
\(465\) 58.9317 0.00587719
\(466\) 0 0
\(467\) −9132.78 −0.904957 −0.452478 0.891775i \(-0.649460\pi\)
−0.452478 + 0.891775i \(0.649460\pi\)
\(468\) 0 0
\(469\) −19909.8 −1.96023
\(470\) 0 0
\(471\) −494.224 −0.0483495
\(472\) 0 0
\(473\) 13521.8 1.31445
\(474\) 0 0
\(475\) −890.155 −0.0859855
\(476\) 0 0
\(477\) 14220.0 1.36497
\(478\) 0 0
\(479\) 2785.43 0.265698 0.132849 0.991136i \(-0.457587\pi\)
0.132849 + 0.991136i \(0.457587\pi\)
\(480\) 0 0
\(481\) 926.807 0.0878560
\(482\) 0 0
\(483\) 5578.30 0.525510
\(484\) 0 0
\(485\) 7410.49 0.693800
\(486\) 0 0
\(487\) −10570.6 −0.983570 −0.491785 0.870717i \(-0.663655\pi\)
−0.491785 + 0.870717i \(0.663655\pi\)
\(488\) 0 0
\(489\) −3731.70 −0.345098
\(490\) 0 0
\(491\) −10962.1 −1.00756 −0.503781 0.863832i \(-0.668058\pi\)
−0.503781 + 0.863832i \(0.668058\pi\)
\(492\) 0 0
\(493\) 3253.70 0.297240
\(494\) 0 0
\(495\) −6685.87 −0.607086
\(496\) 0 0
\(497\) 19129.8 1.72654
\(498\) 0 0
\(499\) 10631.0 0.953730 0.476865 0.878977i \(-0.341773\pi\)
0.476865 + 0.878977i \(0.341773\pi\)
\(500\) 0 0
\(501\) 4060.79 0.362121
\(502\) 0 0
\(503\) 8406.08 0.745146 0.372573 0.928003i \(-0.378476\pi\)
0.372573 + 0.928003i \(0.378476\pi\)
\(504\) 0 0
\(505\) −3702.67 −0.326271
\(506\) 0 0
\(507\) 310.485 0.0271975
\(508\) 0 0
\(509\) −7896.27 −0.687615 −0.343808 0.939040i \(-0.611717\pi\)
−0.343808 + 0.939040i \(0.611717\pi\)
\(510\) 0 0
\(511\) 17059.4 1.47683
\(512\) 0 0
\(513\) −957.588 −0.0824143
\(514\) 0 0
\(515\) 7411.79 0.634180
\(516\) 0 0
\(517\) 13523.5 1.15042
\(518\) 0 0
\(519\) 3081.40 0.260614
\(520\) 0 0
\(521\) −18913.1 −1.59040 −0.795200 0.606347i \(-0.792634\pi\)
−0.795200 + 0.606347i \(0.792634\pi\)
\(522\) 0 0
\(523\) −2606.45 −0.217920 −0.108960 0.994046i \(-0.534752\pi\)
−0.108960 + 0.994046i \(0.534752\pi\)
\(524\) 0 0
\(525\) 3094.47 0.257245
\(526\) 0 0
\(527\) −243.055 −0.0200904
\(528\) 0 0
\(529\) 12123.6 0.996430
\(530\) 0 0
\(531\) 6428.14 0.525343
\(532\) 0 0
\(533\) 1008.59 0.0819638
\(534\) 0 0
\(535\) 11100.1 0.897008
\(536\) 0 0
\(537\) 4491.20 0.360912
\(538\) 0 0
\(539\) 1665.68 0.133110
\(540\) 0 0
\(541\) −15288.3 −1.21497 −0.607483 0.794333i \(-0.707821\pi\)
−0.607483 + 0.794333i \(0.707821\pi\)
\(542\) 0 0
\(543\) 1549.21 0.122436
\(544\) 0 0
\(545\) 18.8273 0.00147977
\(546\) 0 0
\(547\) −18025.8 −1.40901 −0.704506 0.709698i \(-0.748831\pi\)
−0.704506 + 0.709698i \(0.748831\pi\)
\(548\) 0 0
\(549\) 15145.3 1.17739
\(550\) 0 0
\(551\) −712.133 −0.0550596
\(552\) 0 0
\(553\) 12662.8 0.973734
\(554\) 0 0
\(555\) −813.146 −0.0621913
\(556\) 0 0
\(557\) 11863.5 0.902463 0.451231 0.892407i \(-0.350985\pi\)
0.451231 + 0.892407i \(0.350985\pi\)
\(558\) 0 0
\(559\) −3856.17 −0.291769
\(560\) 0 0
\(561\) −3939.63 −0.296490
\(562\) 0 0
\(563\) −5548.38 −0.415340 −0.207670 0.978199i \(-0.566588\pi\)
−0.207670 + 0.978199i \(0.566588\pi\)
\(564\) 0 0
\(565\) 3187.97 0.237378
\(566\) 0 0
\(567\) −9097.91 −0.673856
\(568\) 0 0
\(569\) 10337.3 0.761618 0.380809 0.924654i \(-0.375646\pi\)
0.380809 + 0.924654i \(0.375646\pi\)
\(570\) 0 0
\(571\) 17630.0 1.29210 0.646052 0.763294i \(-0.276419\pi\)
0.646052 + 0.763294i \(0.276419\pi\)
\(572\) 0 0
\(573\) −5038.56 −0.367345
\(574\) 0 0
\(575\) 13474.8 0.977284
\(576\) 0 0
\(577\) 7765.21 0.560260 0.280130 0.959962i \(-0.409622\pi\)
0.280130 + 0.959962i \(0.409622\pi\)
\(578\) 0 0
\(579\) 1472.66 0.105702
\(580\) 0 0
\(581\) 15825.1 1.13001
\(582\) 0 0
\(583\) −27438.2 −1.94919
\(584\) 0 0
\(585\) 1906.69 0.134755
\(586\) 0 0
\(587\) −20090.6 −1.41265 −0.706327 0.707886i \(-0.749649\pi\)
−0.706327 + 0.707886i \(0.749649\pi\)
\(588\) 0 0
\(589\) 53.1971 0.00372147
\(590\) 0 0
\(591\) 5268.94 0.366726
\(592\) 0 0
\(593\) 18437.8 1.27681 0.638405 0.769701i \(-0.279595\pi\)
0.638405 + 0.769701i \(0.279595\pi\)
\(594\) 0 0
\(595\) 5689.53 0.392013
\(596\) 0 0
\(597\) 7534.70 0.516540
\(598\) 0 0
\(599\) 1743.10 0.118900 0.0594501 0.998231i \(-0.481065\pi\)
0.0594501 + 0.998231i \(0.481065\pi\)
\(600\) 0 0
\(601\) 10234.2 0.694609 0.347304 0.937752i \(-0.387097\pi\)
0.347304 + 0.937752i \(0.387097\pi\)
\(602\) 0 0
\(603\) −24143.8 −1.63053
\(604\) 0 0
\(605\) 4637.53 0.311640
\(606\) 0 0
\(607\) −15838.6 −1.05909 −0.529546 0.848281i \(-0.677638\pi\)
−0.529546 + 0.848281i \(0.677638\pi\)
\(608\) 0 0
\(609\) 2475.61 0.164724
\(610\) 0 0
\(611\) −3856.66 −0.255358
\(612\) 0 0
\(613\) −10048.6 −0.662087 −0.331043 0.943616i \(-0.607401\pi\)
−0.331043 + 0.943616i \(0.607401\pi\)
\(614\) 0 0
\(615\) −884.896 −0.0580203
\(616\) 0 0
\(617\) −8515.00 −0.555593 −0.277797 0.960640i \(-0.589604\pi\)
−0.277797 + 0.960640i \(0.589604\pi\)
\(618\) 0 0
\(619\) −4715.30 −0.306177 −0.153089 0.988212i \(-0.548922\pi\)
−0.153089 + 0.988212i \(0.548922\pi\)
\(620\) 0 0
\(621\) 14495.6 0.936695
\(622\) 0 0
\(623\) −1892.99 −0.121735
\(624\) 0 0
\(625\) 2657.15 0.170058
\(626\) 0 0
\(627\) 862.260 0.0549208
\(628\) 0 0
\(629\) 3353.70 0.212593
\(630\) 0 0
\(631\) 1150.78 0.0726020 0.0363010 0.999341i \(-0.488442\pi\)
0.0363010 + 0.999341i \(0.488442\pi\)
\(632\) 0 0
\(633\) −342.015 −0.0214753
\(634\) 0 0
\(635\) −1287.88 −0.0804851
\(636\) 0 0
\(637\) −475.022 −0.0295464
\(638\) 0 0
\(639\) 23197.9 1.43614
\(640\) 0 0
\(641\) 14095.0 0.868518 0.434259 0.900788i \(-0.357010\pi\)
0.434259 + 0.900788i \(0.357010\pi\)
\(642\) 0 0
\(643\) 8245.60 0.505715 0.252858 0.967504i \(-0.418630\pi\)
0.252858 + 0.967504i \(0.418630\pi\)
\(644\) 0 0
\(645\) 3383.26 0.206536
\(646\) 0 0
\(647\) 25082.1 1.52408 0.762040 0.647530i \(-0.224198\pi\)
0.762040 + 0.647530i \(0.224198\pi\)
\(648\) 0 0
\(649\) −12403.4 −0.750194
\(650\) 0 0
\(651\) −184.931 −0.0111336
\(652\) 0 0
\(653\) −14425.3 −0.864479 −0.432240 0.901759i \(-0.642277\pi\)
−0.432240 + 0.901759i \(0.642277\pi\)
\(654\) 0 0
\(655\) 510.388 0.0304466
\(656\) 0 0
\(657\) 20687.2 1.22844
\(658\) 0 0
\(659\) 32874.8 1.94328 0.971639 0.236469i \(-0.0759903\pi\)
0.971639 + 0.236469i \(0.0759903\pi\)
\(660\) 0 0
\(661\) −16168.3 −0.951400 −0.475700 0.879607i \(-0.657805\pi\)
−0.475700 + 0.879607i \(0.657805\pi\)
\(662\) 0 0
\(663\) 1123.51 0.0658121
\(664\) 0 0
\(665\) −1245.26 −0.0726151
\(666\) 0 0
\(667\) 10780.0 0.625791
\(668\) 0 0
\(669\) −11873.8 −0.686199
\(670\) 0 0
\(671\) −29223.7 −1.68132
\(672\) 0 0
\(673\) 16782.5 0.961247 0.480623 0.876927i \(-0.340410\pi\)
0.480623 + 0.876927i \(0.340410\pi\)
\(674\) 0 0
\(675\) 8041.20 0.458527
\(676\) 0 0
\(677\) −34811.9 −1.97626 −0.988131 0.153612i \(-0.950909\pi\)
−0.988131 + 0.153612i \(0.950909\pi\)
\(678\) 0 0
\(679\) −23254.5 −1.31432
\(680\) 0 0
\(681\) 7716.18 0.434192
\(682\) 0 0
\(683\) −5547.22 −0.310774 −0.155387 0.987854i \(-0.549662\pi\)
−0.155387 + 0.987854i \(0.549662\pi\)
\(684\) 0 0
\(685\) 13018.1 0.726126
\(686\) 0 0
\(687\) 3800.40 0.211054
\(688\) 0 0
\(689\) 7824.87 0.432662
\(690\) 0 0
\(691\) 20003.7 1.10127 0.550636 0.834746i \(-0.314385\pi\)
0.550636 + 0.834746i \(0.314385\pi\)
\(692\) 0 0
\(693\) 20980.6 1.15005
\(694\) 0 0
\(695\) 418.202 0.0228249
\(696\) 0 0
\(697\) 3649.62 0.198335
\(698\) 0 0
\(699\) 2910.29 0.157478
\(700\) 0 0
\(701\) −3289.73 −0.177249 −0.0886244 0.996065i \(-0.528247\pi\)
−0.0886244 + 0.996065i \(0.528247\pi\)
\(702\) 0 0
\(703\) −734.019 −0.0393799
\(704\) 0 0
\(705\) 3383.70 0.180762
\(706\) 0 0
\(707\) 11619.2 0.618082
\(708\) 0 0
\(709\) 5892.45 0.312123 0.156062 0.987747i \(-0.450120\pi\)
0.156062 + 0.987747i \(0.450120\pi\)
\(710\) 0 0
\(711\) 15355.6 0.809957
\(712\) 0 0
\(713\) −805.276 −0.0422971
\(714\) 0 0
\(715\) −3679.04 −0.192431
\(716\) 0 0
\(717\) 561.206 0.0292310
\(718\) 0 0
\(719\) −28981.2 −1.50322 −0.751612 0.659606i \(-0.770723\pi\)
−0.751612 + 0.659606i \(0.770723\pi\)
\(720\) 0 0
\(721\) −23258.6 −1.20138
\(722\) 0 0
\(723\) 2761.90 0.142069
\(724\) 0 0
\(725\) 5980.02 0.306334
\(726\) 0 0
\(727\) 26044.2 1.32865 0.664323 0.747446i \(-0.268720\pi\)
0.664323 + 0.747446i \(0.268720\pi\)
\(728\) 0 0
\(729\) −6419.10 −0.326124
\(730\) 0 0
\(731\) −13953.8 −0.706017
\(732\) 0 0
\(733\) −34919.4 −1.75959 −0.879793 0.475357i \(-0.842319\pi\)
−0.879793 + 0.475357i \(0.842319\pi\)
\(734\) 0 0
\(735\) 416.767 0.0209152
\(736\) 0 0
\(737\) 46586.5 2.32841
\(738\) 0 0
\(739\) −18907.6 −0.941171 −0.470586 0.882354i \(-0.655957\pi\)
−0.470586 + 0.882354i \(0.655957\pi\)
\(740\) 0 0
\(741\) −245.900 −0.0121908
\(742\) 0 0
\(743\) 13621.5 0.672579 0.336289 0.941759i \(-0.390828\pi\)
0.336289 + 0.941759i \(0.390828\pi\)
\(744\) 0 0
\(745\) −6465.81 −0.317972
\(746\) 0 0
\(747\) 19190.4 0.939949
\(748\) 0 0
\(749\) −34832.7 −1.69928
\(750\) 0 0
\(751\) 7690.73 0.373687 0.186843 0.982390i \(-0.440174\pi\)
0.186843 + 0.982390i \(0.440174\pi\)
\(752\) 0 0
\(753\) −9470.68 −0.458341
\(754\) 0 0
\(755\) −4325.83 −0.208520
\(756\) 0 0
\(757\) 11273.7 0.541279 0.270640 0.962681i \(-0.412765\pi\)
0.270640 + 0.962681i \(0.412765\pi\)
\(758\) 0 0
\(759\) −13052.5 −0.624213
\(760\) 0 0
\(761\) 39972.3 1.90406 0.952032 0.305998i \(-0.0989899\pi\)
0.952032 + 0.305998i \(0.0989899\pi\)
\(762\) 0 0
\(763\) −59.0812 −0.00280325
\(764\) 0 0
\(765\) 6899.45 0.326078
\(766\) 0 0
\(767\) 3537.22 0.166521
\(768\) 0 0
\(769\) −33967.8 −1.59286 −0.796429 0.604731i \(-0.793280\pi\)
−0.796429 + 0.604731i \(0.793280\pi\)
\(770\) 0 0
\(771\) 11032.8 0.515352
\(772\) 0 0
\(773\) −29974.6 −1.39471 −0.697356 0.716725i \(-0.745640\pi\)
−0.697356 + 0.716725i \(0.745640\pi\)
\(774\) 0 0
\(775\) −446.714 −0.0207051
\(776\) 0 0
\(777\) 2551.70 0.117814
\(778\) 0 0
\(779\) −798.787 −0.0367388
\(780\) 0 0
\(781\) −44761.5 −2.05082
\(782\) 0 0
\(783\) 6433.04 0.293612
\(784\) 0 0
\(785\) −1670.08 −0.0759336
\(786\) 0 0
\(787\) −36015.1 −1.63126 −0.815628 0.578577i \(-0.803608\pi\)
−0.815628 + 0.578577i \(0.803608\pi\)
\(788\) 0 0
\(789\) −6908.43 −0.311719
\(790\) 0 0
\(791\) −10004.0 −0.449686
\(792\) 0 0
\(793\) 8334.04 0.373204
\(794\) 0 0
\(795\) −6865.26 −0.306271
\(796\) 0 0
\(797\) 13889.5 0.617302 0.308651 0.951175i \(-0.400122\pi\)
0.308651 + 0.951175i \(0.400122\pi\)
\(798\) 0 0
\(799\) −13955.5 −0.617912
\(800\) 0 0
\(801\) −2295.54 −0.101260
\(802\) 0 0
\(803\) −39916.9 −1.75422
\(804\) 0 0
\(805\) 18850.2 0.825321
\(806\) 0 0
\(807\) 2496.90 0.108916
\(808\) 0 0
\(809\) −45197.9 −1.96424 −0.982122 0.188247i \(-0.939719\pi\)
−0.982122 + 0.188247i \(0.939719\pi\)
\(810\) 0 0
\(811\) −15933.4 −0.689884 −0.344942 0.938624i \(-0.612101\pi\)
−0.344942 + 0.938624i \(0.612101\pi\)
\(812\) 0 0
\(813\) 3290.23 0.141935
\(814\) 0 0
\(815\) −12610.2 −0.541982
\(816\) 0 0
\(817\) 3054.04 0.130780
\(818\) 0 0
\(819\) −5983.28 −0.255278
\(820\) 0 0
\(821\) 1301.72 0.0553355 0.0276678 0.999617i \(-0.491192\pi\)
0.0276678 + 0.999617i \(0.491192\pi\)
\(822\) 0 0
\(823\) 21002.5 0.889553 0.444776 0.895642i \(-0.353283\pi\)
0.444776 + 0.895642i \(0.353283\pi\)
\(824\) 0 0
\(825\) −7240.69 −0.305562
\(826\) 0 0
\(827\) 4721.35 0.198522 0.0992608 0.995061i \(-0.468352\pi\)
0.0992608 + 0.995061i \(0.468352\pi\)
\(828\) 0 0
\(829\) −19341.0 −0.810300 −0.405150 0.914250i \(-0.632781\pi\)
−0.405150 + 0.914250i \(0.632781\pi\)
\(830\) 0 0
\(831\) 12825.5 0.535392
\(832\) 0 0
\(833\) −1718.89 −0.0714959
\(834\) 0 0
\(835\) 13722.2 0.568716
\(836\) 0 0
\(837\) −480.555 −0.0198452
\(838\) 0 0
\(839\) 13489.1 0.555059 0.277530 0.960717i \(-0.410484\pi\)
0.277530 + 0.960717i \(0.410484\pi\)
\(840\) 0 0
\(841\) −19604.9 −0.803843
\(842\) 0 0
\(843\) −1988.78 −0.0812541
\(844\) 0 0
\(845\) 1049.19 0.0427140
\(846\) 0 0
\(847\) −14552.8 −0.590367
\(848\) 0 0
\(849\) 8156.85 0.329732
\(850\) 0 0
\(851\) 11111.3 0.447580
\(852\) 0 0
\(853\) −25868.7 −1.03837 −0.519184 0.854663i \(-0.673764\pi\)
−0.519184 + 0.854663i \(0.673764\pi\)
\(854\) 0 0
\(855\) −1510.07 −0.0604016
\(856\) 0 0
\(857\) 18974.3 0.756301 0.378150 0.925744i \(-0.376560\pi\)
0.378150 + 0.925744i \(0.376560\pi\)
\(858\) 0 0
\(859\) −1053.08 −0.0418286 −0.0209143 0.999781i \(-0.506658\pi\)
−0.0209143 + 0.999781i \(0.506658\pi\)
\(860\) 0 0
\(861\) 2776.85 0.109913
\(862\) 0 0
\(863\) 35966.7 1.41868 0.709340 0.704867i \(-0.248993\pi\)
0.709340 + 0.704867i \(0.248993\pi\)
\(864\) 0 0
\(865\) 10412.7 0.409297
\(866\) 0 0
\(867\) −4960.64 −0.194316
\(868\) 0 0
\(869\) −29629.3 −1.15662
\(870\) 0 0
\(871\) −13285.6 −0.516838
\(872\) 0 0
\(873\) −28199.7 −1.09326
\(874\) 0 0
\(875\) 25575.3 0.988119
\(876\) 0 0
\(877\) −42712.4 −1.64458 −0.822289 0.569070i \(-0.807303\pi\)
−0.822289 + 0.569070i \(0.807303\pi\)
\(878\) 0 0
\(879\) 6559.14 0.251688
\(880\) 0 0
\(881\) 29849.6 1.14150 0.570748 0.821125i \(-0.306653\pi\)
0.570748 + 0.821125i \(0.306653\pi\)
\(882\) 0 0
\(883\) −51744.8 −1.97208 −0.986042 0.166495i \(-0.946755\pi\)
−0.986042 + 0.166495i \(0.946755\pi\)
\(884\) 0 0
\(885\) −3103.42 −0.117876
\(886\) 0 0
\(887\) −30718.2 −1.16282 −0.581408 0.813612i \(-0.697498\pi\)
−0.581408 + 0.813612i \(0.697498\pi\)
\(888\) 0 0
\(889\) 4041.44 0.152470
\(890\) 0 0
\(891\) 21288.0 0.800421
\(892\) 0 0
\(893\) 3054.43 0.114460
\(894\) 0 0
\(895\) 15176.7 0.566817
\(896\) 0 0
\(897\) 3722.34 0.138557
\(898\) 0 0
\(899\) −357.376 −0.0132582
\(900\) 0 0
\(901\) 28314.7 1.04695
\(902\) 0 0
\(903\) −10616.9 −0.391259
\(904\) 0 0
\(905\) 5235.10 0.192288
\(906\) 0 0
\(907\) 34123.7 1.24924 0.624620 0.780929i \(-0.285254\pi\)
0.624620 + 0.780929i \(0.285254\pi\)
\(908\) 0 0
\(909\) 14090.1 0.514124
\(910\) 0 0
\(911\) 4694.50 0.170731 0.0853654 0.996350i \(-0.472794\pi\)
0.0853654 + 0.996350i \(0.472794\pi\)
\(912\) 0 0
\(913\) −37028.9 −1.34225
\(914\) 0 0
\(915\) −7311.99 −0.264182
\(916\) 0 0
\(917\) −1601.62 −0.0576775
\(918\) 0 0
\(919\) 12086.3 0.433831 0.216915 0.976190i \(-0.430400\pi\)
0.216915 + 0.976190i \(0.430400\pi\)
\(920\) 0 0
\(921\) −10354.5 −0.370459
\(922\) 0 0
\(923\) 12765.1 0.455222
\(924\) 0 0
\(925\) 6163.81 0.219097
\(926\) 0 0
\(927\) −28204.7 −0.999313
\(928\) 0 0
\(929\) −16524.3 −0.583579 −0.291790 0.956483i \(-0.594251\pi\)
−0.291790 + 0.956483i \(0.594251\pi\)
\(930\) 0 0
\(931\) 376.211 0.0132436
\(932\) 0 0
\(933\) −16613.0 −0.582942
\(934\) 0 0
\(935\) −13312.8 −0.465642
\(936\) 0 0
\(937\) 8736.94 0.304614 0.152307 0.988333i \(-0.451330\pi\)
0.152307 + 0.988333i \(0.451330\pi\)
\(938\) 0 0
\(939\) −19937.7 −0.692909
\(940\) 0 0
\(941\) −8823.88 −0.305686 −0.152843 0.988251i \(-0.548843\pi\)
−0.152843 + 0.988251i \(0.548843\pi\)
\(942\) 0 0
\(943\) 12091.7 0.417562
\(944\) 0 0
\(945\) 11249.0 0.387228
\(946\) 0 0
\(947\) 46241.6 1.58675 0.793373 0.608736i \(-0.208323\pi\)
0.793373 + 0.608736i \(0.208323\pi\)
\(948\) 0 0
\(949\) 11383.5 0.389384
\(950\) 0 0
\(951\) −6863.99 −0.234049
\(952\) 0 0
\(953\) 14160.2 0.481314 0.240657 0.970610i \(-0.422637\pi\)
0.240657 + 0.970610i \(0.422637\pi\)
\(954\) 0 0
\(955\) −17026.3 −0.576920
\(956\) 0 0
\(957\) −5792.63 −0.195663
\(958\) 0 0
\(959\) −40851.5 −1.37556
\(960\) 0 0
\(961\) −29764.3 −0.999104
\(962\) 0 0
\(963\) −42240.1 −1.41347
\(964\) 0 0
\(965\) 4976.43 0.166007
\(966\) 0 0
\(967\) 20496.1 0.681604 0.340802 0.940135i \(-0.389301\pi\)
0.340802 + 0.940135i \(0.389301\pi\)
\(968\) 0 0
\(969\) −889.804 −0.0294991
\(970\) 0 0
\(971\) 16603.1 0.548732 0.274366 0.961625i \(-0.411532\pi\)
0.274366 + 0.961625i \(0.411532\pi\)
\(972\) 0 0
\(973\) −1312.34 −0.0432391
\(974\) 0 0
\(975\) 2064.91 0.0678257
\(976\) 0 0
\(977\) −41331.9 −1.35345 −0.676727 0.736234i \(-0.736602\pi\)
−0.676727 + 0.736234i \(0.736602\pi\)
\(978\) 0 0
\(979\) 4429.36 0.144600
\(980\) 0 0
\(981\) −71.6452 −0.00233176
\(982\) 0 0
\(983\) 39233.1 1.27298 0.636492 0.771283i \(-0.280385\pi\)
0.636492 + 0.771283i \(0.280385\pi\)
\(984\) 0 0
\(985\) 17804.8 0.575949
\(986\) 0 0
\(987\) −10618.2 −0.342433
\(988\) 0 0
\(989\) −46230.8 −1.48641
\(990\) 0 0
\(991\) 45762.9 1.46691 0.733454 0.679739i \(-0.237907\pi\)
0.733454 + 0.679739i \(0.237907\pi\)
\(992\) 0 0
\(993\) −12410.4 −0.396609
\(994\) 0 0
\(995\) 25461.3 0.811233
\(996\) 0 0
\(997\) 20826.9 0.661579 0.330790 0.943705i \(-0.392685\pi\)
0.330790 + 0.943705i \(0.392685\pi\)
\(998\) 0 0
\(999\) 6630.75 0.209998
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 416.4.a.g.1.3 yes 4
4.3 odd 2 inner 416.4.a.g.1.2 4
8.3 odd 2 832.4.a.be.1.3 4
8.5 even 2 832.4.a.be.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.4.a.g.1.2 4 4.3 odd 2 inner
416.4.a.g.1.3 yes 4 1.1 even 1 trivial
832.4.a.be.1.2 4 8.5 even 2
832.4.a.be.1.3 4 8.3 odd 2