Properties

Label 4232.2.a.s.1.4
Level $4232$
Weight $2$
Character 4232.1
Self dual yes
Analytic conductor $33.793$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4232,2,Mod(1,4232)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4232, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4232.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4232 = 2^{3} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4232.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7926901354\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.93185\) of defining polynomial
Character \(\chi\) \(=\) 4232.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.41421 q^{3} -0.0681483 q^{5} -2.73205 q^{7} -1.00000 q^{9} +2.73205 q^{11} +0.0352762 q^{13} -0.0963763 q^{15} +1.55051 q^{17} +2.09638 q^{19} -3.86370 q^{21} -4.99536 q^{25} -5.65685 q^{27} -1.93890 q^{29} -9.32780 q^{31} +3.86370 q^{33} +0.186185 q^{35} +9.08516 q^{37} +0.0498881 q^{39} -4.46410 q^{41} +2.02922 q^{43} +0.0681483 q^{45} -0.944060 q^{47} +0.464102 q^{49} +2.19275 q^{51} -12.4670 q^{53} -0.186185 q^{55} +2.96472 q^{57} -9.47067 q^{59} -6.81017 q^{61} +2.73205 q^{63} -0.00240401 q^{65} -3.19151 q^{67} +10.4130 q^{71} +12.9236 q^{73} -7.06450 q^{75} -7.46410 q^{77} -10.1928 q^{79} -5.00000 q^{81} +7.16228 q^{83} -0.105665 q^{85} -2.74202 q^{87} +12.2037 q^{89} -0.0963763 q^{91} -13.1915 q^{93} -0.142865 q^{95} +11.1732 q^{97} -2.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 4 q^{7} - 4 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{15} + 16 q^{17} + 4 q^{19} + 4 q^{25} - 8 q^{29} - 8 q^{31} + 8 q^{35} + 24 q^{37} - 8 q^{39} - 4 q^{41} + 8 q^{45} - 8 q^{47} - 12 q^{49}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.41421 0.816497 0.408248 0.912871i \(-0.366140\pi\)
0.408248 + 0.912871i \(0.366140\pi\)
\(4\) 0 0
\(5\) −0.0681483 −0.0304769 −0.0152384 0.999884i \(-0.504851\pi\)
−0.0152384 + 0.999884i \(0.504851\pi\)
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.73205 0.823744 0.411872 0.911242i \(-0.364875\pi\)
0.411872 + 0.911242i \(0.364875\pi\)
\(12\) 0 0
\(13\) 0.0352762 0.00978385 0.00489193 0.999988i \(-0.498443\pi\)
0.00489193 + 0.999988i \(0.498443\pi\)
\(14\) 0 0
\(15\) −0.0963763 −0.0248843
\(16\) 0 0
\(17\) 1.55051 0.376054 0.188027 0.982164i \(-0.439791\pi\)
0.188027 + 0.982164i \(0.439791\pi\)
\(18\) 0 0
\(19\) 2.09638 0.480942 0.240471 0.970656i \(-0.422698\pi\)
0.240471 + 0.970656i \(0.422698\pi\)
\(20\) 0 0
\(21\) −3.86370 −0.843129
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −4.99536 −0.999071
\(26\) 0 0
\(27\) −5.65685 −1.08866
\(28\) 0 0
\(29\) −1.93890 −0.360045 −0.180022 0.983663i \(-0.557617\pi\)
−0.180022 + 0.983663i \(0.557617\pi\)
\(30\) 0 0
\(31\) −9.32780 −1.67532 −0.837662 0.546190i \(-0.816078\pi\)
−0.837662 + 0.546190i \(0.816078\pi\)
\(32\) 0 0
\(33\) 3.86370 0.672584
\(34\) 0 0
\(35\) 0.186185 0.0314710
\(36\) 0 0
\(37\) 9.08516 1.49359 0.746796 0.665053i \(-0.231591\pi\)
0.746796 + 0.665053i \(0.231591\pi\)
\(38\) 0 0
\(39\) 0.0498881 0.00798848
\(40\) 0 0
\(41\) −4.46410 −0.697176 −0.348588 0.937276i \(-0.613339\pi\)
−0.348588 + 0.937276i \(0.613339\pi\)
\(42\) 0 0
\(43\) 2.02922 0.309454 0.154727 0.987957i \(-0.450550\pi\)
0.154727 + 0.987957i \(0.450550\pi\)
\(44\) 0 0
\(45\) 0.0681483 0.0101590
\(46\) 0 0
\(47\) −0.944060 −0.137705 −0.0688526 0.997627i \(-0.521934\pi\)
−0.0688526 + 0.997627i \(0.521934\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 2.19275 0.307047
\(52\) 0 0
\(53\) −12.4670 −1.71248 −0.856239 0.516581i \(-0.827205\pi\)
−0.856239 + 0.516581i \(0.827205\pi\)
\(54\) 0 0
\(55\) −0.186185 −0.0251051
\(56\) 0 0
\(57\) 2.96472 0.392687
\(58\) 0 0
\(59\) −9.47067 −1.23298 −0.616488 0.787364i \(-0.711445\pi\)
−0.616488 + 0.787364i \(0.711445\pi\)
\(60\) 0 0
\(61\) −6.81017 −0.871953 −0.435976 0.899958i \(-0.643597\pi\)
−0.435976 + 0.899958i \(0.643597\pi\)
\(62\) 0 0
\(63\) 2.73205 0.344206
\(64\) 0 0
\(65\) −0.00240401 −0.000298181 0
\(66\) 0 0
\(67\) −3.19151 −0.389905 −0.194952 0.980813i \(-0.562455\pi\)
−0.194952 + 0.980813i \(0.562455\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.4130 1.23579 0.617896 0.786260i \(-0.287985\pi\)
0.617896 + 0.786260i \(0.287985\pi\)
\(72\) 0 0
\(73\) 12.9236 1.51259 0.756294 0.654232i \(-0.227008\pi\)
0.756294 + 0.654232i \(0.227008\pi\)
\(74\) 0 0
\(75\) −7.06450 −0.815738
\(76\) 0 0
\(77\) −7.46410 −0.850613
\(78\) 0 0
\(79\) −10.1928 −1.14677 −0.573387 0.819285i \(-0.694371\pi\)
−0.573387 + 0.819285i \(0.694371\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 7.16228 0.786163 0.393081 0.919504i \(-0.371409\pi\)
0.393081 + 0.919504i \(0.371409\pi\)
\(84\) 0 0
\(85\) −0.105665 −0.0114609
\(86\) 0 0
\(87\) −2.74202 −0.293975
\(88\) 0 0
\(89\) 12.2037 1.29359 0.646796 0.762663i \(-0.276109\pi\)
0.646796 + 0.762663i \(0.276109\pi\)
\(90\) 0 0
\(91\) −0.0963763 −0.0101030
\(92\) 0 0
\(93\) −13.1915 −1.36790
\(94\) 0 0
\(95\) −0.142865 −0.0146576
\(96\) 0 0
\(97\) 11.1732 1.13447 0.567236 0.823555i \(-0.308013\pi\)
0.567236 + 0.823555i \(0.308013\pi\)
\(98\) 0 0
\(99\) −2.73205 −0.274581
\(100\) 0 0
\(101\) −12.2280 −1.21673 −0.608367 0.793656i \(-0.708175\pi\)
−0.608367 + 0.793656i \(0.708175\pi\)
\(102\) 0 0
\(103\) 12.0905 1.19131 0.595656 0.803240i \(-0.296892\pi\)
0.595656 + 0.803240i \(0.296892\pi\)
\(104\) 0 0
\(105\) 0.263305 0.0256959
\(106\) 0 0
\(107\) −5.68268 −0.549365 −0.274683 0.961535i \(-0.588573\pi\)
−0.274683 + 0.961535i \(0.588573\pi\)
\(108\) 0 0
\(109\) −8.83083 −0.845840 −0.422920 0.906167i \(-0.638995\pi\)
−0.422920 + 0.906167i \(0.638995\pi\)
\(110\) 0 0
\(111\) 12.8484 1.21951
\(112\) 0 0
\(113\) −17.6593 −1.66124 −0.830622 0.556837i \(-0.812015\pi\)
−0.830622 + 0.556837i \(0.812015\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.0352762 −0.00326128
\(118\) 0 0
\(119\) −4.23607 −0.388320
\(120\) 0 0
\(121\) −3.53590 −0.321445
\(122\) 0 0
\(123\) −6.31319 −0.569241
\(124\) 0 0
\(125\) 0.681167 0.0609254
\(126\) 0 0
\(127\) 0.292529 0.0259577 0.0129789 0.999916i \(-0.495869\pi\)
0.0129789 + 0.999916i \(0.495869\pi\)
\(128\) 0 0
\(129\) 2.86976 0.252668
\(130\) 0 0
\(131\) −6.91964 −0.604572 −0.302286 0.953217i \(-0.597750\pi\)
−0.302286 + 0.953217i \(0.597750\pi\)
\(132\) 0 0
\(133\) −5.72741 −0.496629
\(134\) 0 0
\(135\) 0.385505 0.0331790
\(136\) 0 0
\(137\) −10.5103 −0.897959 −0.448980 0.893542i \(-0.648212\pi\)
−0.448980 + 0.893542i \(0.648212\pi\)
\(138\) 0 0
\(139\) −16.3558 −1.38728 −0.693640 0.720322i \(-0.743994\pi\)
−0.693640 + 0.720322i \(0.743994\pi\)
\(140\) 0 0
\(141\) −1.33510 −0.112436
\(142\) 0 0
\(143\) 0.0963763 0.00805939
\(144\) 0 0
\(145\) 0.132133 0.0109730
\(146\) 0 0
\(147\) 0.656339 0.0541339
\(148\) 0 0
\(149\) −15.9817 −1.30928 −0.654638 0.755943i \(-0.727179\pi\)
−0.654638 + 0.755943i \(0.727179\pi\)
\(150\) 0 0
\(151\) −11.0559 −0.899720 −0.449860 0.893099i \(-0.648526\pi\)
−0.449860 + 0.893099i \(0.648526\pi\)
\(152\) 0 0
\(153\) −1.55051 −0.125351
\(154\) 0 0
\(155\) 0.635674 0.0510586
\(156\) 0 0
\(157\) −12.0730 −0.963527 −0.481763 0.876301i \(-0.660004\pi\)
−0.481763 + 0.876301i \(0.660004\pi\)
\(158\) 0 0
\(159\) −17.6310 −1.39823
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 23.3271 1.82712 0.913559 0.406707i \(-0.133323\pi\)
0.913559 + 0.406707i \(0.133323\pi\)
\(164\) 0 0
\(165\) −0.263305 −0.0204983
\(166\) 0 0
\(167\) −17.5405 −1.35732 −0.678662 0.734451i \(-0.737440\pi\)
−0.678662 + 0.734451i \(0.737440\pi\)
\(168\) 0 0
\(169\) −12.9988 −0.999904
\(170\) 0 0
\(171\) −2.09638 −0.160314
\(172\) 0 0
\(173\) −13.4546 −1.02294 −0.511469 0.859302i \(-0.670899\pi\)
−0.511469 + 0.859302i \(0.670899\pi\)
\(174\) 0 0
\(175\) 13.6476 1.03166
\(176\) 0 0
\(177\) −13.3935 −1.00672
\(178\) 0 0
\(179\) 24.1562 1.80552 0.902761 0.430143i \(-0.141537\pi\)
0.902761 + 0.430143i \(0.141537\pi\)
\(180\) 0 0
\(181\) −0.285961 −0.0212553 −0.0106277 0.999944i \(-0.503383\pi\)
−0.0106277 + 0.999944i \(0.503383\pi\)
\(182\) 0 0
\(183\) −9.63103 −0.711946
\(184\) 0 0
\(185\) −0.619139 −0.0455200
\(186\) 0 0
\(187\) 4.23607 0.309772
\(188\) 0 0
\(189\) 15.4548 1.12417
\(190\) 0 0
\(191\) −14.5558 −1.05322 −0.526612 0.850106i \(-0.676538\pi\)
−0.526612 + 0.850106i \(0.676538\pi\)
\(192\) 0 0
\(193\) −23.3373 −1.67985 −0.839926 0.542701i \(-0.817402\pi\)
−0.839926 + 0.542701i \(0.817402\pi\)
\(194\) 0 0
\(195\) −0.00339979 −0.000243464 0
\(196\) 0 0
\(197\) 7.78851 0.554908 0.277454 0.960739i \(-0.410509\pi\)
0.277454 + 0.960739i \(0.410509\pi\)
\(198\) 0 0
\(199\) −14.6109 −1.03574 −0.517869 0.855460i \(-0.673275\pi\)
−0.517869 + 0.855460i \(0.673275\pi\)
\(200\) 0 0
\(201\) −4.51347 −0.318356
\(202\) 0 0
\(203\) 5.29717 0.371789
\(204\) 0 0
\(205\) 0.304221 0.0212477
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.72741 0.396173
\(210\) 0 0
\(211\) 1.27311 0.0876444 0.0438222 0.999039i \(-0.486046\pi\)
0.0438222 + 0.999039i \(0.486046\pi\)
\(212\) 0 0
\(213\) 14.7262 1.00902
\(214\) 0 0
\(215\) −0.138288 −0.00943118
\(216\) 0 0
\(217\) 25.4840 1.72997
\(218\) 0 0
\(219\) 18.2767 1.23502
\(220\) 0 0
\(221\) 0.0546961 0.00367926
\(222\) 0 0
\(223\) 3.87707 0.259628 0.129814 0.991538i \(-0.458562\pi\)
0.129814 + 0.991538i \(0.458562\pi\)
\(224\) 0 0
\(225\) 4.99536 0.333024
\(226\) 0 0
\(227\) −22.7967 −1.51307 −0.756536 0.653953i \(-0.773110\pi\)
−0.756536 + 0.653953i \(0.773110\pi\)
\(228\) 0 0
\(229\) 20.8710 1.37920 0.689598 0.724193i \(-0.257787\pi\)
0.689598 + 0.724193i \(0.257787\pi\)
\(230\) 0 0
\(231\) −10.5558 −0.694523
\(232\) 0 0
\(233\) 24.5040 1.60531 0.802654 0.596445i \(-0.203420\pi\)
0.802654 + 0.596445i \(0.203420\pi\)
\(234\) 0 0
\(235\) 0.0643361 0.00419682
\(236\) 0 0
\(237\) −14.4147 −0.936337
\(238\) 0 0
\(239\) 6.06574 0.392360 0.196180 0.980568i \(-0.437146\pi\)
0.196180 + 0.980568i \(0.437146\pi\)
\(240\) 0 0
\(241\) 20.3514 1.31095 0.655474 0.755218i \(-0.272469\pi\)
0.655474 + 0.755218i \(0.272469\pi\)
\(242\) 0 0
\(243\) 9.89949 0.635053
\(244\) 0 0
\(245\) −0.0316278 −0.00202062
\(246\) 0 0
\(247\) 0.0739521 0.00470546
\(248\) 0 0
\(249\) 10.1290 0.641899
\(250\) 0 0
\(251\) −5.28788 −0.333768 −0.166884 0.985977i \(-0.553371\pi\)
−0.166884 + 0.985977i \(0.553371\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) −0.149432 −0.00935782
\(256\) 0 0
\(257\) 6.05040 0.377414 0.188707 0.982033i \(-0.439570\pi\)
0.188707 + 0.982033i \(0.439570\pi\)
\(258\) 0 0
\(259\) −24.8211 −1.54231
\(260\) 0 0
\(261\) 1.93890 0.120015
\(262\) 0 0
\(263\) 5.68165 0.350345 0.175173 0.984538i \(-0.443952\pi\)
0.175173 + 0.984538i \(0.443952\pi\)
\(264\) 0 0
\(265\) 0.849607 0.0521909
\(266\) 0 0
\(267\) 17.2587 1.05621
\(268\) 0 0
\(269\) −21.5959 −1.31673 −0.658363 0.752700i \(-0.728751\pi\)
−0.658363 + 0.752700i \(0.728751\pi\)
\(270\) 0 0
\(271\) 3.95011 0.239952 0.119976 0.992777i \(-0.461718\pi\)
0.119976 + 0.992777i \(0.461718\pi\)
\(272\) 0 0
\(273\) −0.136297 −0.00824905
\(274\) 0 0
\(275\) −13.6476 −0.822979
\(276\) 0 0
\(277\) −13.1210 −0.788362 −0.394181 0.919033i \(-0.628972\pi\)
−0.394181 + 0.919033i \(0.628972\pi\)
\(278\) 0 0
\(279\) 9.32780 0.558441
\(280\) 0 0
\(281\) 30.7035 1.83162 0.915809 0.401615i \(-0.131551\pi\)
0.915809 + 0.401615i \(0.131551\pi\)
\(282\) 0 0
\(283\) 23.4840 1.39598 0.697991 0.716107i \(-0.254078\pi\)
0.697991 + 0.716107i \(0.254078\pi\)
\(284\) 0 0
\(285\) −0.202041 −0.0119679
\(286\) 0 0
\(287\) 12.1962 0.719916
\(288\) 0 0
\(289\) −14.5959 −0.858583
\(290\) 0 0
\(291\) 15.8014 0.926292
\(292\) 0 0
\(293\) −16.4952 −0.963661 −0.481830 0.876265i \(-0.660028\pi\)
−0.481830 + 0.876265i \(0.660028\pi\)
\(294\) 0 0
\(295\) 0.645410 0.0375773
\(296\) 0 0
\(297\) −15.4548 −0.896779
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −5.54394 −0.319548
\(302\) 0 0
\(303\) −17.2930 −0.993459
\(304\) 0 0
\(305\) 0.464102 0.0265744
\(306\) 0 0
\(307\) 2.96296 0.169105 0.0845526 0.996419i \(-0.473054\pi\)
0.0845526 + 0.996419i \(0.473054\pi\)
\(308\) 0 0
\(309\) 17.0985 0.972701
\(310\) 0 0
\(311\) 10.7937 0.612053 0.306026 0.952023i \(-0.401000\pi\)
0.306026 + 0.952023i \(0.401000\pi\)
\(312\) 0 0
\(313\) −3.76809 −0.212985 −0.106493 0.994314i \(-0.533962\pi\)
−0.106493 + 0.994314i \(0.533962\pi\)
\(314\) 0 0
\(315\) −0.186185 −0.0104903
\(316\) 0 0
\(317\) −10.8671 −0.610357 −0.305179 0.952295i \(-0.598716\pi\)
−0.305179 + 0.952295i \(0.598716\pi\)
\(318\) 0 0
\(319\) −5.29717 −0.296585
\(320\) 0 0
\(321\) −8.03652 −0.448555
\(322\) 0 0
\(323\) 3.25045 0.180860
\(324\) 0 0
\(325\) −0.176217 −0.00977476
\(326\) 0 0
\(327\) −12.4887 −0.690626
\(328\) 0 0
\(329\) 2.57922 0.142197
\(330\) 0 0
\(331\) −2.59435 −0.142598 −0.0712991 0.997455i \(-0.522714\pi\)
−0.0712991 + 0.997455i \(0.522714\pi\)
\(332\) 0 0
\(333\) −9.08516 −0.497864
\(334\) 0 0
\(335\) 0.217496 0.0118831
\(336\) 0 0
\(337\) −0.738352 −0.0402206 −0.0201103 0.999798i \(-0.506402\pi\)
−0.0201103 + 0.999798i \(0.506402\pi\)
\(338\) 0 0
\(339\) −24.9740 −1.35640
\(340\) 0 0
\(341\) −25.4840 −1.38004
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.5785 0.889980 0.444990 0.895536i \(-0.353207\pi\)
0.444990 + 0.895536i \(0.353207\pi\)
\(348\) 0 0
\(349\) 4.27010 0.228573 0.114287 0.993448i \(-0.463542\pi\)
0.114287 + 0.993448i \(0.463542\pi\)
\(350\) 0 0
\(351\) −0.199552 −0.0106513
\(352\) 0 0
\(353\) −2.33850 −0.124466 −0.0622329 0.998062i \(-0.519822\pi\)
−0.0622329 + 0.998062i \(0.519822\pi\)
\(354\) 0 0
\(355\) −0.709627 −0.0376631
\(356\) 0 0
\(357\) −5.99071 −0.317062
\(358\) 0 0
\(359\) 25.1030 1.32488 0.662442 0.749113i \(-0.269520\pi\)
0.662442 + 0.749113i \(0.269520\pi\)
\(360\) 0 0
\(361\) −14.6052 −0.768695
\(362\) 0 0
\(363\) −5.00052 −0.262459
\(364\) 0 0
\(365\) −0.880719 −0.0460989
\(366\) 0 0
\(367\) 0.0165356 0.000863149 0 0.000431575 1.00000i \(-0.499863\pi\)
0.000431575 1.00000i \(0.499863\pi\)
\(368\) 0 0
\(369\) 4.46410 0.232392
\(370\) 0 0
\(371\) 34.0605 1.76833
\(372\) 0 0
\(373\) 17.3392 0.897789 0.448894 0.893585i \(-0.351818\pi\)
0.448894 + 0.893585i \(0.351818\pi\)
\(374\) 0 0
\(375\) 0.963316 0.0497454
\(376\) 0 0
\(377\) −0.0683970 −0.00352262
\(378\) 0 0
\(379\) 17.1657 0.881742 0.440871 0.897570i \(-0.354670\pi\)
0.440871 + 0.897570i \(0.354670\pi\)
\(380\) 0 0
\(381\) 0.413698 0.0211944
\(382\) 0 0
\(383\) −9.14089 −0.467078 −0.233539 0.972347i \(-0.575031\pi\)
−0.233539 + 0.972347i \(0.575031\pi\)
\(384\) 0 0
\(385\) 0.508666 0.0259240
\(386\) 0 0
\(387\) −2.02922 −0.103151
\(388\) 0 0
\(389\) 16.9441 0.859098 0.429549 0.903044i \(-0.358673\pi\)
0.429549 + 0.903044i \(0.358673\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −9.78585 −0.493631
\(394\) 0 0
\(395\) 0.694619 0.0349501
\(396\) 0 0
\(397\) −24.7546 −1.24240 −0.621200 0.783652i \(-0.713354\pi\)
−0.621200 + 0.783652i \(0.713354\pi\)
\(398\) 0 0
\(399\) −8.09978 −0.405496
\(400\) 0 0
\(401\) 6.27427 0.313322 0.156661 0.987652i \(-0.449927\pi\)
0.156661 + 0.987652i \(0.449927\pi\)
\(402\) 0 0
\(403\) −0.329049 −0.0163911
\(404\) 0 0
\(405\) 0.340742 0.0169316
\(406\) 0 0
\(407\) 24.8211 1.23034
\(408\) 0 0
\(409\) 16.7967 0.830544 0.415272 0.909697i \(-0.363686\pi\)
0.415272 + 0.909697i \(0.363686\pi\)
\(410\) 0 0
\(411\) −14.8639 −0.733180
\(412\) 0 0
\(413\) 25.8744 1.27319
\(414\) 0 0
\(415\) −0.488098 −0.0239598
\(416\) 0 0
\(417\) −23.1306 −1.13271
\(418\) 0 0
\(419\) 0.716546 0.0350056 0.0175028 0.999847i \(-0.494428\pi\)
0.0175028 + 0.999847i \(0.494428\pi\)
\(420\) 0 0
\(421\) −2.07911 −0.101330 −0.0506649 0.998716i \(-0.516134\pi\)
−0.0506649 + 0.998716i \(0.516134\pi\)
\(422\) 0 0
\(423\) 0.944060 0.0459017
\(424\) 0 0
\(425\) −7.74535 −0.375705
\(426\) 0 0
\(427\) 18.6057 0.900394
\(428\) 0 0
\(429\) 0.136297 0.00658047
\(430\) 0 0
\(431\) 21.4899 1.03513 0.517567 0.855643i \(-0.326838\pi\)
0.517567 + 0.855643i \(0.326838\pi\)
\(432\) 0 0
\(433\) −24.1654 −1.16132 −0.580658 0.814147i \(-0.697205\pi\)
−0.580658 + 0.814147i \(0.697205\pi\)
\(434\) 0 0
\(435\) 0.186864 0.00895944
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 13.9081 0.663795 0.331898 0.943315i \(-0.392311\pi\)
0.331898 + 0.943315i \(0.392311\pi\)
\(440\) 0 0
\(441\) −0.464102 −0.0221001
\(442\) 0 0
\(443\) 15.6476 0.743438 0.371719 0.928345i \(-0.378768\pi\)
0.371719 + 0.928345i \(0.378768\pi\)
\(444\) 0 0
\(445\) −0.831663 −0.0394246
\(446\) 0 0
\(447\) −22.6016 −1.06902
\(448\) 0 0
\(449\) 3.78710 0.178724 0.0893621 0.995999i \(-0.471517\pi\)
0.0893621 + 0.995999i \(0.471517\pi\)
\(450\) 0 0
\(451\) −12.1962 −0.574294
\(452\) 0 0
\(453\) −15.6355 −0.734618
\(454\) 0 0
\(455\) 0.00656789 0.000307907 0
\(456\) 0 0
\(457\) −8.61917 −0.403188 −0.201594 0.979469i \(-0.564612\pi\)
−0.201594 + 0.979469i \(0.564612\pi\)
\(458\) 0 0
\(459\) −8.77101 −0.409396
\(460\) 0 0
\(461\) −19.6474 −0.915071 −0.457535 0.889191i \(-0.651268\pi\)
−0.457535 + 0.889191i \(0.651268\pi\)
\(462\) 0 0
\(463\) −10.8201 −0.502853 −0.251426 0.967876i \(-0.580900\pi\)
−0.251426 + 0.967876i \(0.580900\pi\)
\(464\) 0 0
\(465\) 0.898979 0.0416892
\(466\) 0 0
\(467\) 8.92140 0.412833 0.206417 0.978464i \(-0.433820\pi\)
0.206417 + 0.978464i \(0.433820\pi\)
\(468\) 0 0
\(469\) 8.71936 0.402623
\(470\) 0 0
\(471\) −17.0737 −0.786716
\(472\) 0 0
\(473\) 5.54394 0.254911
\(474\) 0 0
\(475\) −10.4721 −0.480495
\(476\) 0 0
\(477\) 12.4670 0.570826
\(478\) 0 0
\(479\) 40.8166 1.86496 0.932480 0.361221i \(-0.117640\pi\)
0.932480 + 0.361221i \(0.117640\pi\)
\(480\) 0 0
\(481\) 0.320490 0.0146131
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.761438 −0.0345751
\(486\) 0 0
\(487\) 23.2520 1.05365 0.526825 0.849974i \(-0.323382\pi\)
0.526825 + 0.849974i \(0.323382\pi\)
\(488\) 0 0
\(489\) 32.9895 1.49184
\(490\) 0 0
\(491\) 17.1502 0.773977 0.386988 0.922085i \(-0.373515\pi\)
0.386988 + 0.922085i \(0.373515\pi\)
\(492\) 0 0
\(493\) −3.00628 −0.135396
\(494\) 0 0
\(495\) 0.186185 0.00836838
\(496\) 0 0
\(497\) −28.4488 −1.27610
\(498\) 0 0
\(499\) 8.37718 0.375014 0.187507 0.982263i \(-0.439959\pi\)
0.187507 + 0.982263i \(0.439959\pi\)
\(500\) 0 0
\(501\) −24.8060 −1.10825
\(502\) 0 0
\(503\) 38.8931 1.73416 0.867079 0.498171i \(-0.165995\pi\)
0.867079 + 0.498171i \(0.165995\pi\)
\(504\) 0 0
\(505\) 0.833320 0.0370823
\(506\) 0 0
\(507\) −18.3830 −0.816418
\(508\) 0 0
\(509\) −8.98930 −0.398444 −0.199222 0.979954i \(-0.563841\pi\)
−0.199222 + 0.979954i \(0.563841\pi\)
\(510\) 0 0
\(511\) −35.3078 −1.56193
\(512\) 0 0
\(513\) −11.8589 −0.523583
\(514\) 0 0
\(515\) −0.823947 −0.0363074
\(516\) 0 0
\(517\) −2.57922 −0.113434
\(518\) 0 0
\(519\) −19.0277 −0.835225
\(520\) 0 0
\(521\) 16.8229 0.737024 0.368512 0.929623i \(-0.379867\pi\)
0.368512 + 0.929623i \(0.379867\pi\)
\(522\) 0 0
\(523\) −35.7552 −1.56346 −0.781732 0.623614i \(-0.785664\pi\)
−0.781732 + 0.623614i \(0.785664\pi\)
\(524\) 0 0
\(525\) 19.3006 0.842346
\(526\) 0 0
\(527\) −14.4629 −0.630012
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 9.47067 0.410992
\(532\) 0 0
\(533\) −0.157476 −0.00682106
\(534\) 0 0
\(535\) 0.387265 0.0167429
\(536\) 0 0
\(537\) 34.1621 1.47420
\(538\) 0 0
\(539\) 1.26795 0.0546144
\(540\) 0 0
\(541\) −28.5663 −1.22816 −0.614081 0.789243i \(-0.710473\pi\)
−0.614081 + 0.789243i \(0.710473\pi\)
\(542\) 0 0
\(543\) −0.404410 −0.0173549
\(544\) 0 0
\(545\) 0.601807 0.0257786
\(546\) 0 0
\(547\) 32.6050 1.39409 0.697044 0.717028i \(-0.254498\pi\)
0.697044 + 0.717028i \(0.254498\pi\)
\(548\) 0 0
\(549\) 6.81017 0.290651
\(550\) 0 0
\(551\) −4.06466 −0.173160
\(552\) 0 0
\(553\) 27.8471 1.18418
\(554\) 0 0
\(555\) −0.875595 −0.0371669
\(556\) 0 0
\(557\) −15.4950 −0.656544 −0.328272 0.944583i \(-0.606466\pi\)
−0.328272 + 0.944583i \(0.606466\pi\)
\(558\) 0 0
\(559\) 0.0715833 0.00302765
\(560\) 0 0
\(561\) 5.99071 0.252928
\(562\) 0 0
\(563\) −35.2328 −1.48489 −0.742444 0.669909i \(-0.766333\pi\)
−0.742444 + 0.669909i \(0.766333\pi\)
\(564\) 0 0
\(565\) 1.20345 0.0506295
\(566\) 0 0
\(567\) 13.6603 0.573677
\(568\) 0 0
\(569\) 40.4512 1.69580 0.847901 0.530155i \(-0.177866\pi\)
0.847901 + 0.530155i \(0.177866\pi\)
\(570\) 0 0
\(571\) 10.9316 0.457473 0.228737 0.973488i \(-0.426541\pi\)
0.228737 + 0.973488i \(0.426541\pi\)
\(572\) 0 0
\(573\) −20.5851 −0.859953
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.0584 −1.00157 −0.500783 0.865573i \(-0.666955\pi\)
−0.500783 + 0.865573i \(0.666955\pi\)
\(578\) 0 0
\(579\) −33.0039 −1.37159
\(580\) 0 0
\(581\) −19.5677 −0.811806
\(582\) 0 0
\(583\) −34.0605 −1.41064
\(584\) 0 0
\(585\) 0.00240401 9.93937e−5 0
\(586\) 0 0
\(587\) 15.2786 0.630617 0.315309 0.948989i \(-0.397892\pi\)
0.315309 + 0.948989i \(0.397892\pi\)
\(588\) 0 0
\(589\) −19.5546 −0.805733
\(590\) 0 0
\(591\) 11.0146 0.453081
\(592\) 0 0
\(593\) −7.20080 −0.295701 −0.147851 0.989010i \(-0.547235\pi\)
−0.147851 + 0.989010i \(0.547235\pi\)
\(594\) 0 0
\(595\) 0.288681 0.0118348
\(596\) 0 0
\(597\) −20.6629 −0.845676
\(598\) 0 0
\(599\) 48.1145 1.96591 0.982953 0.183859i \(-0.0588590\pi\)
0.982953 + 0.183859i \(0.0588590\pi\)
\(600\) 0 0
\(601\) −40.0748 −1.63468 −0.817342 0.576153i \(-0.804553\pi\)
−0.817342 + 0.576153i \(0.804553\pi\)
\(602\) 0 0
\(603\) 3.19151 0.129968
\(604\) 0 0
\(605\) 0.240966 0.00979665
\(606\) 0 0
\(607\) −14.0990 −0.572263 −0.286131 0.958190i \(-0.592369\pi\)
−0.286131 + 0.958190i \(0.592369\pi\)
\(608\) 0 0
\(609\) 7.49133 0.303564
\(610\) 0 0
\(611\) −0.0333028 −0.00134729
\(612\) 0 0
\(613\) 7.95355 0.321241 0.160620 0.987016i \(-0.448651\pi\)
0.160620 + 0.987016i \(0.448651\pi\)
\(614\) 0 0
\(615\) 0.430234 0.0173487
\(616\) 0 0
\(617\) −40.9991 −1.65056 −0.825280 0.564724i \(-0.808983\pi\)
−0.825280 + 0.564724i \(0.808983\pi\)
\(618\) 0 0
\(619\) 31.9882 1.28572 0.642858 0.765986i \(-0.277749\pi\)
0.642858 + 0.765986i \(0.277749\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −33.3412 −1.33579
\(624\) 0 0
\(625\) 24.9304 0.997214
\(626\) 0 0
\(627\) 8.09978 0.323474
\(628\) 0 0
\(629\) 14.0866 0.561671
\(630\) 0 0
\(631\) −37.6183 −1.49756 −0.748781 0.662817i \(-0.769361\pi\)
−0.748781 + 0.662817i \(0.769361\pi\)
\(632\) 0 0
\(633\) 1.80045 0.0715614
\(634\) 0 0
\(635\) −0.0199354 −0.000791110 0
\(636\) 0 0
\(637\) 0.0163717 0.000648672 0
\(638\) 0 0
\(639\) −10.4130 −0.411931
\(640\) 0 0
\(641\) −2.27749 −0.0899553 −0.0449776 0.998988i \(-0.514322\pi\)
−0.0449776 + 0.998988i \(0.514322\pi\)
\(642\) 0 0
\(643\) 12.3718 0.487896 0.243948 0.969788i \(-0.421557\pi\)
0.243948 + 0.969788i \(0.421557\pi\)
\(644\) 0 0
\(645\) −0.195569 −0.00770053
\(646\) 0 0
\(647\) −20.4986 −0.805885 −0.402943 0.915225i \(-0.632013\pi\)
−0.402943 + 0.915225i \(0.632013\pi\)
\(648\) 0 0
\(649\) −25.8744 −1.01566
\(650\) 0 0
\(651\) 36.0399 1.41251
\(652\) 0 0
\(653\) −12.1482 −0.475395 −0.237698 0.971339i \(-0.576393\pi\)
−0.237698 + 0.971339i \(0.576393\pi\)
\(654\) 0 0
\(655\) 0.471562 0.0184255
\(656\) 0 0
\(657\) −12.9236 −0.504196
\(658\) 0 0
\(659\) −28.5145 −1.11077 −0.555384 0.831594i \(-0.687429\pi\)
−0.555384 + 0.831594i \(0.687429\pi\)
\(660\) 0 0
\(661\) 23.6946 0.921611 0.460806 0.887501i \(-0.347561\pi\)
0.460806 + 0.887501i \(0.347561\pi\)
\(662\) 0 0
\(663\) 0.0773519 0.00300410
\(664\) 0 0
\(665\) 0.390313 0.0151357
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 5.48301 0.211985
\(670\) 0 0
\(671\) −18.6057 −0.718266
\(672\) 0 0
\(673\) 18.9681 0.731166 0.365583 0.930779i \(-0.380870\pi\)
0.365583 + 0.930779i \(0.380870\pi\)
\(674\) 0 0
\(675\) 28.2580 1.08765
\(676\) 0 0
\(677\) −51.3952 −1.97528 −0.987639 0.156743i \(-0.949901\pi\)
−0.987639 + 0.156743i \(0.949901\pi\)
\(678\) 0 0
\(679\) −30.5259 −1.17148
\(680\) 0 0
\(681\) −32.2394 −1.23542
\(682\) 0 0
\(683\) 23.5327 0.900452 0.450226 0.892915i \(-0.351343\pi\)
0.450226 + 0.892915i \(0.351343\pi\)
\(684\) 0 0
\(685\) 0.716262 0.0273670
\(686\) 0 0
\(687\) 29.5161 1.12611
\(688\) 0 0
\(689\) −0.439789 −0.0167546
\(690\) 0 0
\(691\) 32.5927 1.23988 0.619942 0.784648i \(-0.287156\pi\)
0.619942 + 0.784648i \(0.287156\pi\)
\(692\) 0 0
\(693\) 7.46410 0.283538
\(694\) 0 0
\(695\) 1.11462 0.0422799
\(696\) 0 0
\(697\) −6.92164 −0.262176
\(698\) 0 0
\(699\) 34.6538 1.31073
\(700\) 0 0
\(701\) 4.75811 0.179711 0.0898556 0.995955i \(-0.471359\pi\)
0.0898556 + 0.995955i \(0.471359\pi\)
\(702\) 0 0
\(703\) 19.0459 0.718331
\(704\) 0 0
\(705\) 0.0909850 0.00342669
\(706\) 0 0
\(707\) 33.4076 1.25642
\(708\) 0 0
\(709\) 9.01702 0.338641 0.169321 0.985561i \(-0.445843\pi\)
0.169321 + 0.985561i \(0.445843\pi\)
\(710\) 0 0
\(711\) 10.1928 0.382258
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −0.00656789 −0.000245625 0
\(716\) 0 0
\(717\) 8.57826 0.320361
\(718\) 0 0
\(719\) 42.5042 1.58514 0.792569 0.609782i \(-0.208743\pi\)
0.792569 + 0.609782i \(0.208743\pi\)
\(720\) 0 0
\(721\) −33.0318 −1.23017
\(722\) 0 0
\(723\) 28.7812 1.07038
\(724\) 0 0
\(725\) 9.68549 0.359710
\(726\) 0 0
\(727\) −3.63000 −0.134629 −0.0673146 0.997732i \(-0.521443\pi\)
−0.0673146 + 0.997732i \(0.521443\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) 3.14633 0.116371
\(732\) 0 0
\(733\) 5.13643 0.189718 0.0948591 0.995491i \(-0.469760\pi\)
0.0948591 + 0.995491i \(0.469760\pi\)
\(734\) 0 0
\(735\) −0.0447284 −0.00164983
\(736\) 0 0
\(737\) −8.71936 −0.321182
\(738\) 0 0
\(739\) −4.97079 −0.182854 −0.0914268 0.995812i \(-0.529143\pi\)
−0.0914268 + 0.995812i \(0.529143\pi\)
\(740\) 0 0
\(741\) 0.104584 0.00384199
\(742\) 0 0
\(743\) −15.0951 −0.553787 −0.276893 0.960901i \(-0.589305\pi\)
−0.276893 + 0.960901i \(0.589305\pi\)
\(744\) 0 0
\(745\) 1.08913 0.0399026
\(746\) 0 0
\(747\) −7.16228 −0.262054
\(748\) 0 0
\(749\) 15.5254 0.567285
\(750\) 0 0
\(751\) −1.38912 −0.0506897 −0.0253448 0.999679i \(-0.508068\pi\)
−0.0253448 + 0.999679i \(0.508068\pi\)
\(752\) 0 0
\(753\) −7.47820 −0.272521
\(754\) 0 0
\(755\) 0.753444 0.0274206
\(756\) 0 0
\(757\) 13.3076 0.483671 0.241836 0.970317i \(-0.422251\pi\)
0.241836 + 0.970317i \(0.422251\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.0244 −0.689633 −0.344816 0.938670i \(-0.612059\pi\)
−0.344816 + 0.938670i \(0.612059\pi\)
\(762\) 0 0
\(763\) 24.1263 0.873430
\(764\) 0 0
\(765\) 0.105665 0.00382032
\(766\) 0 0
\(767\) −0.334089 −0.0120633
\(768\) 0 0
\(769\) 8.92267 0.321760 0.160880 0.986974i \(-0.448567\pi\)
0.160880 + 0.986974i \(0.448567\pi\)
\(770\) 0 0
\(771\) 8.55656 0.308157
\(772\) 0 0
\(773\) −13.9476 −0.501661 −0.250831 0.968031i \(-0.580704\pi\)
−0.250831 + 0.968031i \(0.580704\pi\)
\(774\) 0 0
\(775\) 46.5957 1.67377
\(776\) 0 0
\(777\) −35.1024 −1.25929
\(778\) 0 0
\(779\) −9.35844 −0.335301
\(780\) 0 0
\(781\) 28.4488 1.01798
\(782\) 0 0
\(783\) 10.9681 0.391967
\(784\) 0 0
\(785\) 0.822752 0.0293653
\(786\) 0 0
\(787\) −46.5275 −1.65853 −0.829264 0.558858i \(-0.811240\pi\)
−0.829264 + 0.558858i \(0.811240\pi\)
\(788\) 0 0
\(789\) 8.03506 0.286056
\(790\) 0 0
\(791\) 48.2460 1.71543
\(792\) 0 0
\(793\) −0.240237 −0.00853105
\(794\) 0 0
\(795\) 1.20153 0.0426137
\(796\) 0 0
\(797\) 26.8136 0.949787 0.474893 0.880043i \(-0.342487\pi\)
0.474893 + 0.880043i \(0.342487\pi\)
\(798\) 0 0
\(799\) −1.46377 −0.0517846
\(800\) 0 0
\(801\) −12.2037 −0.431197
\(802\) 0 0
\(803\) 35.3078 1.24599
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −30.5412 −1.07510
\(808\) 0 0
\(809\) −30.1971 −1.06167 −0.530836 0.847475i \(-0.678122\pi\)
−0.530836 + 0.847475i \(0.678122\pi\)
\(810\) 0 0
\(811\) 13.0141 0.456987 0.228494 0.973545i \(-0.426620\pi\)
0.228494 + 0.973545i \(0.426620\pi\)
\(812\) 0 0
\(813\) 5.58630 0.195920
\(814\) 0 0
\(815\) −1.58970 −0.0556848
\(816\) 0 0
\(817\) 4.25402 0.148829
\(818\) 0 0
\(819\) 0.0963763 0.00336766
\(820\) 0 0
\(821\) −9.40743 −0.328322 −0.164161 0.986434i \(-0.552492\pi\)
−0.164161 + 0.986434i \(0.552492\pi\)
\(822\) 0 0
\(823\) −36.4402 −1.27023 −0.635113 0.772419i \(-0.719046\pi\)
−0.635113 + 0.772419i \(0.719046\pi\)
\(824\) 0 0
\(825\) −19.3006 −0.671960
\(826\) 0 0
\(827\) 3.73081 0.129733 0.0648664 0.997894i \(-0.479338\pi\)
0.0648664 + 0.997894i \(0.479338\pi\)
\(828\) 0 0
\(829\) 44.1131 1.53211 0.766055 0.642775i \(-0.222217\pi\)
0.766055 + 0.642775i \(0.222217\pi\)
\(830\) 0 0
\(831\) −18.5558 −0.643695
\(832\) 0 0
\(833\) 0.719594 0.0249325
\(834\) 0 0
\(835\) 1.19536 0.0413670
\(836\) 0 0
\(837\) 52.7660 1.82386
\(838\) 0 0
\(839\) 24.8304 0.857240 0.428620 0.903485i \(-0.359000\pi\)
0.428620 + 0.903485i \(0.359000\pi\)
\(840\) 0 0
\(841\) −25.2407 −0.870368
\(842\) 0 0
\(843\) 43.4213 1.49551
\(844\) 0 0
\(845\) 0.885844 0.0304740
\(846\) 0 0
\(847\) 9.66025 0.331930
\(848\) 0 0
\(849\) 33.2114 1.13981
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −50.5309 −1.73015 −0.865073 0.501646i \(-0.832728\pi\)
−0.865073 + 0.501646i \(0.832728\pi\)
\(854\) 0 0
\(855\) 0.142865 0.00488587
\(856\) 0 0
\(857\) 12.5956 0.430257 0.215129 0.976586i \(-0.430983\pi\)
0.215129 + 0.976586i \(0.430983\pi\)
\(858\) 0 0
\(859\) 33.2765 1.13538 0.567689 0.823243i \(-0.307838\pi\)
0.567689 + 0.823243i \(0.307838\pi\)
\(860\) 0 0
\(861\) 17.2480 0.587809
\(862\) 0 0
\(863\) 18.5024 0.629830 0.314915 0.949120i \(-0.398024\pi\)
0.314915 + 0.949120i \(0.398024\pi\)
\(864\) 0 0
\(865\) 0.916912 0.0311759
\(866\) 0 0
\(867\) −20.6417 −0.701030
\(868\) 0 0
\(869\) −27.8471 −0.944649
\(870\) 0 0
\(871\) −0.112584 −0.00381477
\(872\) 0 0
\(873\) −11.1732 −0.378157
\(874\) 0 0
\(875\) −1.86098 −0.0629127
\(876\) 0 0
\(877\) −10.9677 −0.370354 −0.185177 0.982705i \(-0.559286\pi\)
−0.185177 + 0.982705i \(0.559286\pi\)
\(878\) 0 0
\(879\) −23.3278 −0.786826
\(880\) 0 0
\(881\) 0.688997 0.0232129 0.0116065 0.999933i \(-0.496305\pi\)
0.0116065 + 0.999933i \(0.496305\pi\)
\(882\) 0 0
\(883\) −41.2530 −1.38827 −0.694137 0.719843i \(-0.744214\pi\)
−0.694137 + 0.719843i \(0.744214\pi\)
\(884\) 0 0
\(885\) 0.912748 0.0306817
\(886\) 0 0
\(887\) −21.1578 −0.710410 −0.355205 0.934789i \(-0.615589\pi\)
−0.355205 + 0.934789i \(0.615589\pi\)
\(888\) 0 0
\(889\) −0.799203 −0.0268044
\(890\) 0 0
\(891\) −13.6603 −0.457636
\(892\) 0 0
\(893\) −1.97910 −0.0662282
\(894\) 0 0
\(895\) −1.64621 −0.0550266
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 18.0857 0.603191
\(900\) 0 0
\(901\) −19.3302 −0.643984
\(902\) 0 0
\(903\) −7.84032 −0.260909
\(904\) 0 0
\(905\) 0.0194878 0.000647795 0
\(906\) 0 0
\(907\) 17.2277 0.572035 0.286017 0.958224i \(-0.407668\pi\)
0.286017 + 0.958224i \(0.407668\pi\)
\(908\) 0 0
\(909\) 12.2280 0.405578
\(910\) 0 0
\(911\) −17.5735 −0.582236 −0.291118 0.956687i \(-0.594027\pi\)
−0.291118 + 0.956687i \(0.594027\pi\)
\(912\) 0 0
\(913\) 19.5677 0.647597
\(914\) 0 0
\(915\) 0.656339 0.0216979
\(916\) 0 0
\(917\) 18.9048 0.624292
\(918\) 0 0
\(919\) 39.8155 1.31339 0.656696 0.754155i \(-0.271953\pi\)
0.656696 + 0.754155i \(0.271953\pi\)
\(920\) 0 0
\(921\) 4.19026 0.138074
\(922\) 0 0
\(923\) 0.367330 0.0120908
\(924\) 0 0
\(925\) −45.3836 −1.49220
\(926\) 0 0
\(927\) −12.0905 −0.397104
\(928\) 0 0
\(929\) 24.3057 0.797443 0.398721 0.917072i \(-0.369454\pi\)
0.398721 + 0.917072i \(0.369454\pi\)
\(930\) 0 0
\(931\) 0.972932 0.0318865
\(932\) 0 0
\(933\) 15.2645 0.499739
\(934\) 0 0
\(935\) −0.288681 −0.00944089
\(936\) 0 0
\(937\) 1.23805 0.0404452 0.0202226 0.999796i \(-0.493563\pi\)
0.0202226 + 0.999796i \(0.493563\pi\)
\(938\) 0 0
\(939\) −5.32889 −0.173902
\(940\) 0 0
\(941\) 59.6443 1.94435 0.972175 0.234255i \(-0.0752652\pi\)
0.972175 + 0.234255i \(0.0752652\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −1.05322 −0.0342612
\(946\) 0 0
\(947\) 27.6324 0.897934 0.448967 0.893548i \(-0.351792\pi\)
0.448967 + 0.893548i \(0.351792\pi\)
\(948\) 0 0
\(949\) 0.455894 0.0147989
\(950\) 0 0
\(951\) −15.3684 −0.498355
\(952\) 0 0
\(953\) −20.8999 −0.677015 −0.338507 0.940964i \(-0.609922\pi\)
−0.338507 + 0.940964i \(0.609922\pi\)
\(954\) 0 0
\(955\) 0.991956 0.0320989
\(956\) 0 0
\(957\) −7.49133 −0.242160
\(958\) 0 0
\(959\) 28.7148 0.927249
\(960\) 0 0
\(961\) 56.0079 1.80671
\(962\) 0 0
\(963\) 5.68268 0.183122
\(964\) 0 0
\(965\) 1.59040 0.0511966
\(966\) 0 0
\(967\) 44.0684 1.41714 0.708572 0.705639i \(-0.249340\pi\)
0.708572 + 0.705639i \(0.249340\pi\)
\(968\) 0 0
\(969\) 4.59683 0.147672
\(970\) 0 0
\(971\) 46.0272 1.47708 0.738541 0.674208i \(-0.235515\pi\)
0.738541 + 0.674208i \(0.235515\pi\)
\(972\) 0 0
\(973\) 44.6848 1.43253
\(974\) 0 0
\(975\) −0.249209 −0.00798106
\(976\) 0 0
\(977\) −22.9525 −0.734317 −0.367158 0.930158i \(-0.619669\pi\)
−0.367158 + 0.930158i \(0.619669\pi\)
\(978\) 0 0
\(979\) 33.3412 1.06559
\(980\) 0 0
\(981\) 8.83083 0.281947
\(982\) 0 0
\(983\) 33.9119 1.08162 0.540811 0.841144i \(-0.318117\pi\)
0.540811 + 0.841144i \(0.318117\pi\)
\(984\) 0 0
\(985\) −0.530774 −0.0169119
\(986\) 0 0
\(987\) 3.64757 0.116103
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) −51.2991 −1.62957 −0.814785 0.579763i \(-0.803145\pi\)
−0.814785 + 0.579763i \(0.803145\pi\)
\(992\) 0 0
\(993\) −3.66896 −0.116431
\(994\) 0 0
\(995\) 0.995707 0.0315660
\(996\) 0 0
\(997\) 38.2421 1.21114 0.605569 0.795793i \(-0.292945\pi\)
0.605569 + 0.795793i \(0.292945\pi\)
\(998\) 0 0
\(999\) −51.3934 −1.62602
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4232.2.a.s.1.4 4
4.3 odd 2 8464.2.a.bl.1.2 4
23.22 odd 2 4232.2.a.u.1.3 yes 4
92.91 even 2 8464.2.a.bn.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.s.1.4 4 1.1 even 1 trivial
4232.2.a.u.1.3 yes 4 23.22 odd 2
8464.2.a.bl.1.2 4 4.3 odd 2
8464.2.a.bn.1.1 4 92.91 even 2