Properties

Label 8464.2.a.bn.1.1
Level $8464$
Weight $2$
Character 8464.1
Self dual yes
Analytic conductor $67.585$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [8464,2,Mod(1,8464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(8464, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("8464.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 8464 = 2^{4} \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 8464.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(67.5853802708\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{24})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 4232)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.93185\) of defining polynomial
Character \(\chi\) \(=\) 8464.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.41421 q^{3} +0.0681483 q^{5} -2.73205 q^{7} -1.00000 q^{9} +2.73205 q^{11} +0.0352762 q^{13} -0.0963763 q^{15} -1.55051 q^{17} +2.09638 q^{19} +3.86370 q^{21} -4.99536 q^{25} +5.65685 q^{27} -1.93890 q^{29} +9.32780 q^{31} -3.86370 q^{33} -0.186185 q^{35} -9.08516 q^{37} -0.0498881 q^{39} -4.46410 q^{41} +2.02922 q^{43} -0.0681483 q^{45} +0.944060 q^{47} +0.464102 q^{49} +2.19275 q^{51} +12.4670 q^{53} +0.186185 q^{55} -2.96472 q^{57} +9.47067 q^{59} +6.81017 q^{61} +2.73205 q^{63} +0.00240401 q^{65} -3.19151 q^{67} -10.4130 q^{71} +12.9236 q^{73} +7.06450 q^{75} -7.46410 q^{77} -10.1928 q^{79} -5.00000 q^{81} +7.16228 q^{83} -0.105665 q^{85} +2.74202 q^{87} -12.2037 q^{89} -0.0963763 q^{91} -13.1915 q^{93} +0.142865 q^{95} -11.1732 q^{97} -2.73205 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{5} - 4 q^{7} - 4 q^{9} + 4 q^{11} - 4 q^{13} + 4 q^{15} - 16 q^{17} + 4 q^{19} + 4 q^{25} - 8 q^{29} + 8 q^{31} - 8 q^{35} - 24 q^{37} + 8 q^{39} - 4 q^{41} - 8 q^{45} + 8 q^{47} - 12 q^{49}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.41421 −0.816497 −0.408248 0.912871i \(-0.633860\pi\)
−0.408248 + 0.912871i \(0.633860\pi\)
\(4\) 0 0
\(5\) 0.0681483 0.0304769 0.0152384 0.999884i \(-0.495149\pi\)
0.0152384 + 0.999884i \(0.495149\pi\)
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 2.73205 0.823744 0.411872 0.911242i \(-0.364875\pi\)
0.411872 + 0.911242i \(0.364875\pi\)
\(12\) 0 0
\(13\) 0.0352762 0.00978385 0.00489193 0.999988i \(-0.498443\pi\)
0.00489193 + 0.999988i \(0.498443\pi\)
\(14\) 0 0
\(15\) −0.0963763 −0.0248843
\(16\) 0 0
\(17\) −1.55051 −0.376054 −0.188027 0.982164i \(-0.560209\pi\)
−0.188027 + 0.982164i \(0.560209\pi\)
\(18\) 0 0
\(19\) 2.09638 0.480942 0.240471 0.970656i \(-0.422698\pi\)
0.240471 + 0.970656i \(0.422698\pi\)
\(20\) 0 0
\(21\) 3.86370 0.843129
\(22\) 0 0
\(23\) 0 0
\(24\) 0 0
\(25\) −4.99536 −0.999071
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) −1.93890 −0.360045 −0.180022 0.983663i \(-0.557617\pi\)
−0.180022 + 0.983663i \(0.557617\pi\)
\(30\) 0 0
\(31\) 9.32780 1.67532 0.837662 0.546190i \(-0.183922\pi\)
0.837662 + 0.546190i \(0.183922\pi\)
\(32\) 0 0
\(33\) −3.86370 −0.672584
\(34\) 0 0
\(35\) −0.186185 −0.0314710
\(36\) 0 0
\(37\) −9.08516 −1.49359 −0.746796 0.665053i \(-0.768409\pi\)
−0.746796 + 0.665053i \(0.768409\pi\)
\(38\) 0 0
\(39\) −0.0498881 −0.00798848
\(40\) 0 0
\(41\) −4.46410 −0.697176 −0.348588 0.937276i \(-0.613339\pi\)
−0.348588 + 0.937276i \(0.613339\pi\)
\(42\) 0 0
\(43\) 2.02922 0.309454 0.154727 0.987957i \(-0.450550\pi\)
0.154727 + 0.987957i \(0.450550\pi\)
\(44\) 0 0
\(45\) −0.0681483 −0.0101590
\(46\) 0 0
\(47\) 0.944060 0.137705 0.0688526 0.997627i \(-0.478066\pi\)
0.0688526 + 0.997627i \(0.478066\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 2.19275 0.307047
\(52\) 0 0
\(53\) 12.4670 1.71248 0.856239 0.516581i \(-0.172795\pi\)
0.856239 + 0.516581i \(0.172795\pi\)
\(54\) 0 0
\(55\) 0.186185 0.0251051
\(56\) 0 0
\(57\) −2.96472 −0.392687
\(58\) 0 0
\(59\) 9.47067 1.23298 0.616488 0.787364i \(-0.288555\pi\)
0.616488 + 0.787364i \(0.288555\pi\)
\(60\) 0 0
\(61\) 6.81017 0.871953 0.435976 0.899958i \(-0.356403\pi\)
0.435976 + 0.899958i \(0.356403\pi\)
\(62\) 0 0
\(63\) 2.73205 0.344206
\(64\) 0 0
\(65\) 0.00240401 0.000298181 0
\(66\) 0 0
\(67\) −3.19151 −0.389905 −0.194952 0.980813i \(-0.562455\pi\)
−0.194952 + 0.980813i \(0.562455\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.4130 −1.23579 −0.617896 0.786260i \(-0.712015\pi\)
−0.617896 + 0.786260i \(0.712015\pi\)
\(72\) 0 0
\(73\) 12.9236 1.51259 0.756294 0.654232i \(-0.227008\pi\)
0.756294 + 0.654232i \(0.227008\pi\)
\(74\) 0 0
\(75\) 7.06450 0.815738
\(76\) 0 0
\(77\) −7.46410 −0.850613
\(78\) 0 0
\(79\) −10.1928 −1.14677 −0.573387 0.819285i \(-0.694371\pi\)
−0.573387 + 0.819285i \(0.694371\pi\)
\(80\) 0 0
\(81\) −5.00000 −0.555556
\(82\) 0 0
\(83\) 7.16228 0.786163 0.393081 0.919504i \(-0.371409\pi\)
0.393081 + 0.919504i \(0.371409\pi\)
\(84\) 0 0
\(85\) −0.105665 −0.0114609
\(86\) 0 0
\(87\) 2.74202 0.293975
\(88\) 0 0
\(89\) −12.2037 −1.29359 −0.646796 0.762663i \(-0.723891\pi\)
−0.646796 + 0.762663i \(0.723891\pi\)
\(90\) 0 0
\(91\) −0.0963763 −0.0101030
\(92\) 0 0
\(93\) −13.1915 −1.36790
\(94\) 0 0
\(95\) 0.142865 0.0146576
\(96\) 0 0
\(97\) −11.1732 −1.13447 −0.567236 0.823555i \(-0.691987\pi\)
−0.567236 + 0.823555i \(0.691987\pi\)
\(98\) 0 0
\(99\) −2.73205 −0.274581
\(100\) 0 0
\(101\) −12.2280 −1.21673 −0.608367 0.793656i \(-0.708175\pi\)
−0.608367 + 0.793656i \(0.708175\pi\)
\(102\) 0 0
\(103\) 12.0905 1.19131 0.595656 0.803240i \(-0.296892\pi\)
0.595656 + 0.803240i \(0.296892\pi\)
\(104\) 0 0
\(105\) 0.263305 0.0256959
\(106\) 0 0
\(107\) −5.68268 −0.549365 −0.274683 0.961535i \(-0.588573\pi\)
−0.274683 + 0.961535i \(0.588573\pi\)
\(108\) 0 0
\(109\) 8.83083 0.845840 0.422920 0.906167i \(-0.361005\pi\)
0.422920 + 0.906167i \(0.361005\pi\)
\(110\) 0 0
\(111\) 12.8484 1.21951
\(112\) 0 0
\(113\) 17.6593 1.66124 0.830622 0.556837i \(-0.187985\pi\)
0.830622 + 0.556837i \(0.187985\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −0.0352762 −0.00326128
\(118\) 0 0
\(119\) 4.23607 0.388320
\(120\) 0 0
\(121\) −3.53590 −0.321445
\(122\) 0 0
\(123\) 6.31319 0.569241
\(124\) 0 0
\(125\) −0.681167 −0.0609254
\(126\) 0 0
\(127\) −0.292529 −0.0259577 −0.0129789 0.999916i \(-0.504131\pi\)
−0.0129789 + 0.999916i \(0.504131\pi\)
\(128\) 0 0
\(129\) −2.86976 −0.252668
\(130\) 0 0
\(131\) 6.91964 0.604572 0.302286 0.953217i \(-0.402250\pi\)
0.302286 + 0.953217i \(0.402250\pi\)
\(132\) 0 0
\(133\) −5.72741 −0.496629
\(134\) 0 0
\(135\) 0.385505 0.0331790
\(136\) 0 0
\(137\) 10.5103 0.897959 0.448980 0.893542i \(-0.351788\pi\)
0.448980 + 0.893542i \(0.351788\pi\)
\(138\) 0 0
\(139\) 16.3558 1.38728 0.693640 0.720322i \(-0.256006\pi\)
0.693640 + 0.720322i \(0.256006\pi\)
\(140\) 0 0
\(141\) −1.33510 −0.112436
\(142\) 0 0
\(143\) 0.0963763 0.00805939
\(144\) 0 0
\(145\) −0.132133 −0.0109730
\(146\) 0 0
\(147\) −0.656339 −0.0541339
\(148\) 0 0
\(149\) 15.9817 1.30928 0.654638 0.755943i \(-0.272821\pi\)
0.654638 + 0.755943i \(0.272821\pi\)
\(150\) 0 0
\(151\) 11.0559 0.899720 0.449860 0.893099i \(-0.351474\pi\)
0.449860 + 0.893099i \(0.351474\pi\)
\(152\) 0 0
\(153\) 1.55051 0.125351
\(154\) 0 0
\(155\) 0.635674 0.0510586
\(156\) 0 0
\(157\) 12.0730 0.963527 0.481763 0.876301i \(-0.339996\pi\)
0.481763 + 0.876301i \(0.339996\pi\)
\(158\) 0 0
\(159\) −17.6310 −1.39823
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −23.3271 −1.82712 −0.913559 0.406707i \(-0.866677\pi\)
−0.913559 + 0.406707i \(0.866677\pi\)
\(164\) 0 0
\(165\) −0.263305 −0.0204983
\(166\) 0 0
\(167\) 17.5405 1.35732 0.678662 0.734451i \(-0.262560\pi\)
0.678662 + 0.734451i \(0.262560\pi\)
\(168\) 0 0
\(169\) −12.9988 −0.999904
\(170\) 0 0
\(171\) −2.09638 −0.160314
\(172\) 0 0
\(173\) −13.4546 −1.02294 −0.511469 0.859302i \(-0.670899\pi\)
−0.511469 + 0.859302i \(0.670899\pi\)
\(174\) 0 0
\(175\) 13.6476 1.03166
\(176\) 0 0
\(177\) −13.3935 −1.00672
\(178\) 0 0
\(179\) −24.1562 −1.80552 −0.902761 0.430143i \(-0.858463\pi\)
−0.902761 + 0.430143i \(0.858463\pi\)
\(180\) 0 0
\(181\) 0.285961 0.0212553 0.0106277 0.999944i \(-0.496617\pi\)
0.0106277 + 0.999944i \(0.496617\pi\)
\(182\) 0 0
\(183\) −9.63103 −0.711946
\(184\) 0 0
\(185\) −0.619139 −0.0455200
\(186\) 0 0
\(187\) −4.23607 −0.309772
\(188\) 0 0
\(189\) −15.4548 −1.12417
\(190\) 0 0
\(191\) −14.5558 −1.05322 −0.526612 0.850106i \(-0.676538\pi\)
−0.526612 + 0.850106i \(0.676538\pi\)
\(192\) 0 0
\(193\) −23.3373 −1.67985 −0.839926 0.542701i \(-0.817402\pi\)
−0.839926 + 0.542701i \(0.817402\pi\)
\(194\) 0 0
\(195\) −0.00339979 −0.000243464 0
\(196\) 0 0
\(197\) 7.78851 0.554908 0.277454 0.960739i \(-0.410509\pi\)
0.277454 + 0.960739i \(0.410509\pi\)
\(198\) 0 0
\(199\) −14.6109 −1.03574 −0.517869 0.855460i \(-0.673275\pi\)
−0.517869 + 0.855460i \(0.673275\pi\)
\(200\) 0 0
\(201\) 4.51347 0.318356
\(202\) 0 0
\(203\) 5.29717 0.371789
\(204\) 0 0
\(205\) −0.304221 −0.0212477
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 5.72741 0.396173
\(210\) 0 0
\(211\) −1.27311 −0.0876444 −0.0438222 0.999039i \(-0.513954\pi\)
−0.0438222 + 0.999039i \(0.513954\pi\)
\(212\) 0 0
\(213\) 14.7262 1.00902
\(214\) 0 0
\(215\) 0.138288 0.00943118
\(216\) 0 0
\(217\) −25.4840 −1.72997
\(218\) 0 0
\(219\) −18.2767 −1.23502
\(220\) 0 0
\(221\) −0.0546961 −0.00367926
\(222\) 0 0
\(223\) −3.87707 −0.259628 −0.129814 0.991538i \(-0.541438\pi\)
−0.129814 + 0.991538i \(0.541438\pi\)
\(224\) 0 0
\(225\) 4.99536 0.333024
\(226\) 0 0
\(227\) −22.7967 −1.51307 −0.756536 0.653953i \(-0.773110\pi\)
−0.756536 + 0.653953i \(0.773110\pi\)
\(228\) 0 0
\(229\) −20.8710 −1.37920 −0.689598 0.724193i \(-0.742213\pi\)
−0.689598 + 0.724193i \(0.742213\pi\)
\(230\) 0 0
\(231\) 10.5558 0.694523
\(232\) 0 0
\(233\) 24.5040 1.60531 0.802654 0.596445i \(-0.203420\pi\)
0.802654 + 0.596445i \(0.203420\pi\)
\(234\) 0 0
\(235\) 0.0643361 0.00419682
\(236\) 0 0
\(237\) 14.4147 0.936337
\(238\) 0 0
\(239\) −6.06574 −0.392360 −0.196180 0.980568i \(-0.562854\pi\)
−0.196180 + 0.980568i \(0.562854\pi\)
\(240\) 0 0
\(241\) −20.3514 −1.31095 −0.655474 0.755218i \(-0.727531\pi\)
−0.655474 + 0.755218i \(0.727531\pi\)
\(242\) 0 0
\(243\) −9.89949 −0.635053
\(244\) 0 0
\(245\) 0.0316278 0.00202062
\(246\) 0 0
\(247\) 0.0739521 0.00470546
\(248\) 0 0
\(249\) −10.1290 −0.641899
\(250\) 0 0
\(251\) −5.28788 −0.333768 −0.166884 0.985977i \(-0.553371\pi\)
−0.166884 + 0.985977i \(0.553371\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0.149432 0.00935782
\(256\) 0 0
\(257\) 6.05040 0.377414 0.188707 0.982033i \(-0.439570\pi\)
0.188707 + 0.982033i \(0.439570\pi\)
\(258\) 0 0
\(259\) 24.8211 1.54231
\(260\) 0 0
\(261\) 1.93890 0.120015
\(262\) 0 0
\(263\) 5.68165 0.350345 0.175173 0.984538i \(-0.443952\pi\)
0.175173 + 0.984538i \(0.443952\pi\)
\(264\) 0 0
\(265\) 0.849607 0.0521909
\(266\) 0 0
\(267\) 17.2587 1.05621
\(268\) 0 0
\(269\) −21.5959 −1.31673 −0.658363 0.752700i \(-0.728751\pi\)
−0.658363 + 0.752700i \(0.728751\pi\)
\(270\) 0 0
\(271\) −3.95011 −0.239952 −0.119976 0.992777i \(-0.538282\pi\)
−0.119976 + 0.992777i \(0.538282\pi\)
\(272\) 0 0
\(273\) 0.136297 0.00824905
\(274\) 0 0
\(275\) −13.6476 −0.822979
\(276\) 0 0
\(277\) −13.1210 −0.788362 −0.394181 0.919033i \(-0.628972\pi\)
−0.394181 + 0.919033i \(0.628972\pi\)
\(278\) 0 0
\(279\) −9.32780 −0.558441
\(280\) 0 0
\(281\) −30.7035 −1.83162 −0.915809 0.401615i \(-0.868449\pi\)
−0.915809 + 0.401615i \(0.868449\pi\)
\(282\) 0 0
\(283\) 23.4840 1.39598 0.697991 0.716107i \(-0.254078\pi\)
0.697991 + 0.716107i \(0.254078\pi\)
\(284\) 0 0
\(285\) −0.202041 −0.0119679
\(286\) 0 0
\(287\) 12.1962 0.719916
\(288\) 0 0
\(289\) −14.5959 −0.858583
\(290\) 0 0
\(291\) 15.8014 0.926292
\(292\) 0 0
\(293\) 16.4952 0.963661 0.481830 0.876265i \(-0.339972\pi\)
0.481830 + 0.876265i \(0.339972\pi\)
\(294\) 0 0
\(295\) 0.645410 0.0375773
\(296\) 0 0
\(297\) 15.4548 0.896779
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −5.54394 −0.319548
\(302\) 0 0
\(303\) 17.2930 0.993459
\(304\) 0 0
\(305\) 0.464102 0.0265744
\(306\) 0 0
\(307\) −2.96296 −0.169105 −0.0845526 0.996419i \(-0.526946\pi\)
−0.0845526 + 0.996419i \(0.526946\pi\)
\(308\) 0 0
\(309\) −17.0985 −0.972701
\(310\) 0 0
\(311\) −10.7937 −0.612053 −0.306026 0.952023i \(-0.599000\pi\)
−0.306026 + 0.952023i \(0.599000\pi\)
\(312\) 0 0
\(313\) 3.76809 0.212985 0.106493 0.994314i \(-0.466038\pi\)
0.106493 + 0.994314i \(0.466038\pi\)
\(314\) 0 0
\(315\) 0.186185 0.0104903
\(316\) 0 0
\(317\) −10.8671 −0.610357 −0.305179 0.952295i \(-0.598716\pi\)
−0.305179 + 0.952295i \(0.598716\pi\)
\(318\) 0 0
\(319\) −5.29717 −0.296585
\(320\) 0 0
\(321\) 8.03652 0.448555
\(322\) 0 0
\(323\) −3.25045 −0.180860
\(324\) 0 0
\(325\) −0.176217 −0.00977476
\(326\) 0 0
\(327\) −12.4887 −0.690626
\(328\) 0 0
\(329\) −2.57922 −0.142197
\(330\) 0 0
\(331\) 2.59435 0.142598 0.0712991 0.997455i \(-0.477286\pi\)
0.0712991 + 0.997455i \(0.477286\pi\)
\(332\) 0 0
\(333\) 9.08516 0.497864
\(334\) 0 0
\(335\) −0.217496 −0.0118831
\(336\) 0 0
\(337\) 0.738352 0.0402206 0.0201103 0.999798i \(-0.493598\pi\)
0.0201103 + 0.999798i \(0.493598\pi\)
\(338\) 0 0
\(339\) −24.9740 −1.35640
\(340\) 0 0
\(341\) 25.4840 1.38004
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −16.5785 −0.889980 −0.444990 0.895536i \(-0.646793\pi\)
−0.444990 + 0.895536i \(0.646793\pi\)
\(348\) 0 0
\(349\) 4.27010 0.228573 0.114287 0.993448i \(-0.463542\pi\)
0.114287 + 0.993448i \(0.463542\pi\)
\(350\) 0 0
\(351\) 0.199552 0.0106513
\(352\) 0 0
\(353\) −2.33850 −0.124466 −0.0622329 0.998062i \(-0.519822\pi\)
−0.0622329 + 0.998062i \(0.519822\pi\)
\(354\) 0 0
\(355\) −0.709627 −0.0376631
\(356\) 0 0
\(357\) −5.99071 −0.317062
\(358\) 0 0
\(359\) 25.1030 1.32488 0.662442 0.749113i \(-0.269520\pi\)
0.662442 + 0.749113i \(0.269520\pi\)
\(360\) 0 0
\(361\) −14.6052 −0.768695
\(362\) 0 0
\(363\) 5.00052 0.262459
\(364\) 0 0
\(365\) 0.880719 0.0460989
\(366\) 0 0
\(367\) 0.0165356 0.000863149 0 0.000431575 1.00000i \(-0.499863\pi\)
0.000431575 1.00000i \(0.499863\pi\)
\(368\) 0 0
\(369\) 4.46410 0.232392
\(370\) 0 0
\(371\) −34.0605 −1.76833
\(372\) 0 0
\(373\) −17.3392 −0.897789 −0.448894 0.893585i \(-0.648182\pi\)
−0.448894 + 0.893585i \(0.648182\pi\)
\(374\) 0 0
\(375\) 0.963316 0.0497454
\(376\) 0 0
\(377\) −0.0683970 −0.00352262
\(378\) 0 0
\(379\) 17.1657 0.881742 0.440871 0.897570i \(-0.354670\pi\)
0.440871 + 0.897570i \(0.354670\pi\)
\(380\) 0 0
\(381\) 0.413698 0.0211944
\(382\) 0 0
\(383\) −9.14089 −0.467078 −0.233539 0.972347i \(-0.575031\pi\)
−0.233539 + 0.972347i \(0.575031\pi\)
\(384\) 0 0
\(385\) −0.508666 −0.0259240
\(386\) 0 0
\(387\) −2.02922 −0.103151
\(388\) 0 0
\(389\) −16.9441 −0.859098 −0.429549 0.903044i \(-0.641327\pi\)
−0.429549 + 0.903044i \(0.641327\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) −9.78585 −0.493631
\(394\) 0 0
\(395\) −0.694619 −0.0349501
\(396\) 0 0
\(397\) −24.7546 −1.24240 −0.621200 0.783652i \(-0.713354\pi\)
−0.621200 + 0.783652i \(0.713354\pi\)
\(398\) 0 0
\(399\) 8.09978 0.405496
\(400\) 0 0
\(401\) −6.27427 −0.313322 −0.156661 0.987652i \(-0.550073\pi\)
−0.156661 + 0.987652i \(0.550073\pi\)
\(402\) 0 0
\(403\) 0.329049 0.0163911
\(404\) 0 0
\(405\) −0.340742 −0.0169316
\(406\) 0 0
\(407\) −24.8211 −1.23034
\(408\) 0 0
\(409\) 16.7967 0.830544 0.415272 0.909697i \(-0.363686\pi\)
0.415272 + 0.909697i \(0.363686\pi\)
\(410\) 0 0
\(411\) −14.8639 −0.733180
\(412\) 0 0
\(413\) −25.8744 −1.27319
\(414\) 0 0
\(415\) 0.488098 0.0239598
\(416\) 0 0
\(417\) −23.1306 −1.13271
\(418\) 0 0
\(419\) 0.716546 0.0350056 0.0175028 0.999847i \(-0.494428\pi\)
0.0175028 + 0.999847i \(0.494428\pi\)
\(420\) 0 0
\(421\) 2.07911 0.101330 0.0506649 0.998716i \(-0.483866\pi\)
0.0506649 + 0.998716i \(0.483866\pi\)
\(422\) 0 0
\(423\) −0.944060 −0.0459017
\(424\) 0 0
\(425\) 7.74535 0.375705
\(426\) 0 0
\(427\) −18.6057 −0.900394
\(428\) 0 0
\(429\) −0.136297 −0.00658047
\(430\) 0 0
\(431\) 21.4899 1.03513 0.517567 0.855643i \(-0.326838\pi\)
0.517567 + 0.855643i \(0.326838\pi\)
\(432\) 0 0
\(433\) 24.1654 1.16132 0.580658 0.814147i \(-0.302795\pi\)
0.580658 + 0.814147i \(0.302795\pi\)
\(434\) 0 0
\(435\) 0.186864 0.00895944
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −13.9081 −0.663795 −0.331898 0.943315i \(-0.607689\pi\)
−0.331898 + 0.943315i \(0.607689\pi\)
\(440\) 0 0
\(441\) −0.464102 −0.0221001
\(442\) 0 0
\(443\) −15.6476 −0.743438 −0.371719 0.928345i \(-0.621232\pi\)
−0.371719 + 0.928345i \(0.621232\pi\)
\(444\) 0 0
\(445\) −0.831663 −0.0394246
\(446\) 0 0
\(447\) −22.6016 −1.06902
\(448\) 0 0
\(449\) 3.78710 0.178724 0.0893621 0.995999i \(-0.471517\pi\)
0.0893621 + 0.995999i \(0.471517\pi\)
\(450\) 0 0
\(451\) −12.1962 −0.574294
\(452\) 0 0
\(453\) −15.6355 −0.734618
\(454\) 0 0
\(455\) −0.00656789 −0.000307907 0
\(456\) 0 0
\(457\) 8.61917 0.403188 0.201594 0.979469i \(-0.435388\pi\)
0.201594 + 0.979469i \(0.435388\pi\)
\(458\) 0 0
\(459\) −8.77101 −0.409396
\(460\) 0 0
\(461\) −19.6474 −0.915071 −0.457535 0.889191i \(-0.651268\pi\)
−0.457535 + 0.889191i \(0.651268\pi\)
\(462\) 0 0
\(463\) 10.8201 0.502853 0.251426 0.967876i \(-0.419100\pi\)
0.251426 + 0.967876i \(0.419100\pi\)
\(464\) 0 0
\(465\) −0.898979 −0.0416892
\(466\) 0 0
\(467\) 8.92140 0.412833 0.206417 0.978464i \(-0.433820\pi\)
0.206417 + 0.978464i \(0.433820\pi\)
\(468\) 0 0
\(469\) 8.71936 0.402623
\(470\) 0 0
\(471\) −17.0737 −0.786716
\(472\) 0 0
\(473\) 5.54394 0.254911
\(474\) 0 0
\(475\) −10.4721 −0.480495
\(476\) 0 0
\(477\) −12.4670 −0.570826
\(478\) 0 0
\(479\) 40.8166 1.86496 0.932480 0.361221i \(-0.117640\pi\)
0.932480 + 0.361221i \(0.117640\pi\)
\(480\) 0 0
\(481\) −0.320490 −0.0146131
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.761438 −0.0345751
\(486\) 0 0
\(487\) −23.2520 −1.05365 −0.526825 0.849974i \(-0.676618\pi\)
−0.526825 + 0.849974i \(0.676618\pi\)
\(488\) 0 0
\(489\) 32.9895 1.49184
\(490\) 0 0
\(491\) −17.1502 −0.773977 −0.386988 0.922085i \(-0.626485\pi\)
−0.386988 + 0.922085i \(0.626485\pi\)
\(492\) 0 0
\(493\) 3.00628 0.135396
\(494\) 0 0
\(495\) −0.186185 −0.00836838
\(496\) 0 0
\(497\) 28.4488 1.27610
\(498\) 0 0
\(499\) −8.37718 −0.375014 −0.187507 0.982263i \(-0.560041\pi\)
−0.187507 + 0.982263i \(0.560041\pi\)
\(500\) 0 0
\(501\) −24.8060 −1.10825
\(502\) 0 0
\(503\) 38.8931 1.73416 0.867079 0.498171i \(-0.165995\pi\)
0.867079 + 0.498171i \(0.165995\pi\)
\(504\) 0 0
\(505\) −0.833320 −0.0370823
\(506\) 0 0
\(507\) 18.3830 0.816418
\(508\) 0 0
\(509\) −8.98930 −0.398444 −0.199222 0.979954i \(-0.563841\pi\)
−0.199222 + 0.979954i \(0.563841\pi\)
\(510\) 0 0
\(511\) −35.3078 −1.56193
\(512\) 0 0
\(513\) 11.8589 0.523583
\(514\) 0 0
\(515\) 0.823947 0.0363074
\(516\) 0 0
\(517\) 2.57922 0.113434
\(518\) 0 0
\(519\) 19.0277 0.835225
\(520\) 0 0
\(521\) −16.8229 −0.737024 −0.368512 0.929623i \(-0.620133\pi\)
−0.368512 + 0.929623i \(0.620133\pi\)
\(522\) 0 0
\(523\) −35.7552 −1.56346 −0.781732 0.623614i \(-0.785664\pi\)
−0.781732 + 0.623614i \(0.785664\pi\)
\(524\) 0 0
\(525\) −19.3006 −0.842346
\(526\) 0 0
\(527\) −14.4629 −0.630012
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) −9.47067 −0.410992
\(532\) 0 0
\(533\) −0.157476 −0.00682106
\(534\) 0 0
\(535\) −0.387265 −0.0167429
\(536\) 0 0
\(537\) 34.1621 1.47420
\(538\) 0 0
\(539\) 1.26795 0.0546144
\(540\) 0 0
\(541\) −28.5663 −1.22816 −0.614081 0.789243i \(-0.710473\pi\)
−0.614081 + 0.789243i \(0.710473\pi\)
\(542\) 0 0
\(543\) −0.404410 −0.0173549
\(544\) 0 0
\(545\) 0.601807 0.0257786
\(546\) 0 0
\(547\) −32.6050 −1.39409 −0.697044 0.717028i \(-0.745502\pi\)
−0.697044 + 0.717028i \(0.745502\pi\)
\(548\) 0 0
\(549\) −6.81017 −0.290651
\(550\) 0 0
\(551\) −4.06466 −0.173160
\(552\) 0 0
\(553\) 27.8471 1.18418
\(554\) 0 0
\(555\) 0.875595 0.0371669
\(556\) 0 0
\(557\) 15.4950 0.656544 0.328272 0.944583i \(-0.393534\pi\)
0.328272 + 0.944583i \(0.393534\pi\)
\(558\) 0 0
\(559\) 0.0715833 0.00302765
\(560\) 0 0
\(561\) 5.99071 0.252928
\(562\) 0 0
\(563\) −35.2328 −1.48489 −0.742444 0.669909i \(-0.766333\pi\)
−0.742444 + 0.669909i \(0.766333\pi\)
\(564\) 0 0
\(565\) 1.20345 0.0506295
\(566\) 0 0
\(567\) 13.6603 0.573677
\(568\) 0 0
\(569\) −40.4512 −1.69580 −0.847901 0.530155i \(-0.822134\pi\)
−0.847901 + 0.530155i \(0.822134\pi\)
\(570\) 0 0
\(571\) 10.9316 0.457473 0.228737 0.973488i \(-0.426541\pi\)
0.228737 + 0.973488i \(0.426541\pi\)
\(572\) 0 0
\(573\) 20.5851 0.859953
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −24.0584 −1.00157 −0.500783 0.865573i \(-0.666955\pi\)
−0.500783 + 0.865573i \(0.666955\pi\)
\(578\) 0 0
\(579\) 33.0039 1.37159
\(580\) 0 0
\(581\) −19.5677 −0.811806
\(582\) 0 0
\(583\) 34.0605 1.41064
\(584\) 0 0
\(585\) −0.00240401 −9.93937e−5 0
\(586\) 0 0
\(587\) −15.2786 −0.630617 −0.315309 0.948989i \(-0.602108\pi\)
−0.315309 + 0.948989i \(0.602108\pi\)
\(588\) 0 0
\(589\) 19.5546 0.805733
\(590\) 0 0
\(591\) −11.0146 −0.453081
\(592\) 0 0
\(593\) −7.20080 −0.295701 −0.147851 0.989010i \(-0.547235\pi\)
−0.147851 + 0.989010i \(0.547235\pi\)
\(594\) 0 0
\(595\) 0.288681 0.0118348
\(596\) 0 0
\(597\) 20.6629 0.845676
\(598\) 0 0
\(599\) −48.1145 −1.96591 −0.982953 0.183859i \(-0.941141\pi\)
−0.982953 + 0.183859i \(0.941141\pi\)
\(600\) 0 0
\(601\) −40.0748 −1.63468 −0.817342 0.576153i \(-0.804553\pi\)
−0.817342 + 0.576153i \(0.804553\pi\)
\(602\) 0 0
\(603\) 3.19151 0.129968
\(604\) 0 0
\(605\) −0.240966 −0.00979665
\(606\) 0 0
\(607\) 14.0990 0.572263 0.286131 0.958190i \(-0.407631\pi\)
0.286131 + 0.958190i \(0.407631\pi\)
\(608\) 0 0
\(609\) −7.49133 −0.303564
\(610\) 0 0
\(611\) 0.0333028 0.00134729
\(612\) 0 0
\(613\) −7.95355 −0.321241 −0.160620 0.987016i \(-0.551349\pi\)
−0.160620 + 0.987016i \(0.551349\pi\)
\(614\) 0 0
\(615\) 0.430234 0.0173487
\(616\) 0 0
\(617\) 40.9991 1.65056 0.825280 0.564724i \(-0.191017\pi\)
0.825280 + 0.564724i \(0.191017\pi\)
\(618\) 0 0
\(619\) 31.9882 1.28572 0.642858 0.765986i \(-0.277749\pi\)
0.642858 + 0.765986i \(0.277749\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 33.3412 1.33579
\(624\) 0 0
\(625\) 24.9304 0.997214
\(626\) 0 0
\(627\) −8.09978 −0.323474
\(628\) 0 0
\(629\) 14.0866 0.561671
\(630\) 0 0
\(631\) −37.6183 −1.49756 −0.748781 0.662817i \(-0.769361\pi\)
−0.748781 + 0.662817i \(0.769361\pi\)
\(632\) 0 0
\(633\) 1.80045 0.0715614
\(634\) 0 0
\(635\) −0.0199354 −0.000791110 0
\(636\) 0 0
\(637\) 0.0163717 0.000648672 0
\(638\) 0 0
\(639\) 10.4130 0.411931
\(640\) 0 0
\(641\) 2.27749 0.0899553 0.0449776 0.998988i \(-0.485678\pi\)
0.0449776 + 0.998988i \(0.485678\pi\)
\(642\) 0 0
\(643\) 12.3718 0.487896 0.243948 0.969788i \(-0.421557\pi\)
0.243948 + 0.969788i \(0.421557\pi\)
\(644\) 0 0
\(645\) −0.195569 −0.00770053
\(646\) 0 0
\(647\) 20.4986 0.805885 0.402943 0.915225i \(-0.367987\pi\)
0.402943 + 0.915225i \(0.367987\pi\)
\(648\) 0 0
\(649\) 25.8744 1.01566
\(650\) 0 0
\(651\) 36.0399 1.41251
\(652\) 0 0
\(653\) −12.1482 −0.475395 −0.237698 0.971339i \(-0.576393\pi\)
−0.237698 + 0.971339i \(0.576393\pi\)
\(654\) 0 0
\(655\) 0.471562 0.0184255
\(656\) 0 0
\(657\) −12.9236 −0.504196
\(658\) 0 0
\(659\) −28.5145 −1.11077 −0.555384 0.831594i \(-0.687429\pi\)
−0.555384 + 0.831594i \(0.687429\pi\)
\(660\) 0 0
\(661\) −23.6946 −0.921611 −0.460806 0.887501i \(-0.652439\pi\)
−0.460806 + 0.887501i \(0.652439\pi\)
\(662\) 0 0
\(663\) 0.0773519 0.00300410
\(664\) 0 0
\(665\) −0.390313 −0.0151357
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 5.48301 0.211985
\(670\) 0 0
\(671\) 18.6057 0.718266
\(672\) 0 0
\(673\) 18.9681 0.731166 0.365583 0.930779i \(-0.380870\pi\)
0.365583 + 0.930779i \(0.380870\pi\)
\(674\) 0 0
\(675\) −28.2580 −1.08765
\(676\) 0 0
\(677\) 51.3952 1.97528 0.987639 0.156743i \(-0.0500994\pi\)
0.987639 + 0.156743i \(0.0500994\pi\)
\(678\) 0 0
\(679\) 30.5259 1.17148
\(680\) 0 0
\(681\) 32.2394 1.23542
\(682\) 0 0
\(683\) −23.5327 −0.900452 −0.450226 0.892915i \(-0.648657\pi\)
−0.450226 + 0.892915i \(0.648657\pi\)
\(684\) 0 0
\(685\) 0.716262 0.0273670
\(686\) 0 0
\(687\) 29.5161 1.12611
\(688\) 0 0
\(689\) 0.439789 0.0167546
\(690\) 0 0
\(691\) −32.5927 −1.23988 −0.619942 0.784648i \(-0.712844\pi\)
−0.619942 + 0.784648i \(0.712844\pi\)
\(692\) 0 0
\(693\) 7.46410 0.283538
\(694\) 0 0
\(695\) 1.11462 0.0422799
\(696\) 0 0
\(697\) 6.92164 0.262176
\(698\) 0 0
\(699\) −34.6538 −1.31073
\(700\) 0 0
\(701\) −4.75811 −0.179711 −0.0898556 0.995955i \(-0.528641\pi\)
−0.0898556 + 0.995955i \(0.528641\pi\)
\(702\) 0 0
\(703\) −19.0459 −0.718331
\(704\) 0 0
\(705\) −0.0909850 −0.00342669
\(706\) 0 0
\(707\) 33.4076 1.25642
\(708\) 0 0
\(709\) −9.01702 −0.338641 −0.169321 0.985561i \(-0.554157\pi\)
−0.169321 + 0.985561i \(0.554157\pi\)
\(710\) 0 0
\(711\) 10.1928 0.382258
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0.00656789 0.000245625 0
\(716\) 0 0
\(717\) 8.57826 0.320361
\(718\) 0 0
\(719\) −42.5042 −1.58514 −0.792569 0.609782i \(-0.791257\pi\)
−0.792569 + 0.609782i \(0.791257\pi\)
\(720\) 0 0
\(721\) −33.0318 −1.23017
\(722\) 0 0
\(723\) 28.7812 1.07038
\(724\) 0 0
\(725\) 9.68549 0.359710
\(726\) 0 0
\(727\) −3.63000 −0.134629 −0.0673146 0.997732i \(-0.521443\pi\)
−0.0673146 + 0.997732i \(0.521443\pi\)
\(728\) 0 0
\(729\) 29.0000 1.07407
\(730\) 0 0
\(731\) −3.14633 −0.116371
\(732\) 0 0
\(733\) −5.13643 −0.189718 −0.0948591 0.995491i \(-0.530240\pi\)
−0.0948591 + 0.995491i \(0.530240\pi\)
\(734\) 0 0
\(735\) −0.0447284 −0.00164983
\(736\) 0 0
\(737\) −8.71936 −0.321182
\(738\) 0 0
\(739\) 4.97079 0.182854 0.0914268 0.995812i \(-0.470857\pi\)
0.0914268 + 0.995812i \(0.470857\pi\)
\(740\) 0 0
\(741\) −0.104584 −0.00384199
\(742\) 0 0
\(743\) −15.0951 −0.553787 −0.276893 0.960901i \(-0.589305\pi\)
−0.276893 + 0.960901i \(0.589305\pi\)
\(744\) 0 0
\(745\) 1.08913 0.0399026
\(746\) 0 0
\(747\) −7.16228 −0.262054
\(748\) 0 0
\(749\) 15.5254 0.567285
\(750\) 0 0
\(751\) −1.38912 −0.0506897 −0.0253448 0.999679i \(-0.508068\pi\)
−0.0253448 + 0.999679i \(0.508068\pi\)
\(752\) 0 0
\(753\) 7.47820 0.272521
\(754\) 0 0
\(755\) 0.753444 0.0274206
\(756\) 0 0
\(757\) −13.3076 −0.483671 −0.241836 0.970317i \(-0.577749\pi\)
−0.241836 + 0.970317i \(0.577749\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −19.0244 −0.689633 −0.344816 0.938670i \(-0.612059\pi\)
−0.344816 + 0.938670i \(0.612059\pi\)
\(762\) 0 0
\(763\) −24.1263 −0.873430
\(764\) 0 0
\(765\) 0.105665 0.00382032
\(766\) 0 0
\(767\) 0.334089 0.0120633
\(768\) 0 0
\(769\) −8.92267 −0.321760 −0.160880 0.986974i \(-0.551433\pi\)
−0.160880 + 0.986974i \(0.551433\pi\)
\(770\) 0 0
\(771\) −8.55656 −0.308157
\(772\) 0 0
\(773\) 13.9476 0.501661 0.250831 0.968031i \(-0.419296\pi\)
0.250831 + 0.968031i \(0.419296\pi\)
\(774\) 0 0
\(775\) −46.5957 −1.67377
\(776\) 0 0
\(777\) −35.1024 −1.25929
\(778\) 0 0
\(779\) −9.35844 −0.335301
\(780\) 0 0
\(781\) −28.4488 −1.01798
\(782\) 0 0
\(783\) −10.9681 −0.391967
\(784\) 0 0
\(785\) 0.822752 0.0293653
\(786\) 0 0
\(787\) −46.5275 −1.65853 −0.829264 0.558858i \(-0.811240\pi\)
−0.829264 + 0.558858i \(0.811240\pi\)
\(788\) 0 0
\(789\) −8.03506 −0.286056
\(790\) 0 0
\(791\) −48.2460 −1.71543
\(792\) 0 0
\(793\) 0.240237 0.00853105
\(794\) 0 0
\(795\) −1.20153 −0.0426137
\(796\) 0 0
\(797\) −26.8136 −0.949787 −0.474893 0.880043i \(-0.657513\pi\)
−0.474893 + 0.880043i \(0.657513\pi\)
\(798\) 0 0
\(799\) −1.46377 −0.0517846
\(800\) 0 0
\(801\) 12.2037 0.431197
\(802\) 0 0
\(803\) 35.3078 1.24599
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 30.5412 1.07510
\(808\) 0 0
\(809\) −30.1971 −1.06167 −0.530836 0.847475i \(-0.678122\pi\)
−0.530836 + 0.847475i \(0.678122\pi\)
\(810\) 0 0
\(811\) −13.0141 −0.456987 −0.228494 0.973545i \(-0.573380\pi\)
−0.228494 + 0.973545i \(0.573380\pi\)
\(812\) 0 0
\(813\) 5.58630 0.195920
\(814\) 0 0
\(815\) −1.58970 −0.0556848
\(816\) 0 0
\(817\) 4.25402 0.148829
\(818\) 0 0
\(819\) 0.0963763 0.00336766
\(820\) 0 0
\(821\) −9.40743 −0.328322 −0.164161 0.986434i \(-0.552492\pi\)
−0.164161 + 0.986434i \(0.552492\pi\)
\(822\) 0 0
\(823\) 36.4402 1.27023 0.635113 0.772419i \(-0.280954\pi\)
0.635113 + 0.772419i \(0.280954\pi\)
\(824\) 0 0
\(825\) 19.3006 0.671960
\(826\) 0 0
\(827\) 3.73081 0.129733 0.0648664 0.997894i \(-0.479338\pi\)
0.0648664 + 0.997894i \(0.479338\pi\)
\(828\) 0 0
\(829\) 44.1131 1.53211 0.766055 0.642775i \(-0.222217\pi\)
0.766055 + 0.642775i \(0.222217\pi\)
\(830\) 0 0
\(831\) 18.5558 0.643695
\(832\) 0 0
\(833\) −0.719594 −0.0249325
\(834\) 0 0
\(835\) 1.19536 0.0413670
\(836\) 0 0
\(837\) 52.7660 1.82386
\(838\) 0 0
\(839\) 24.8304 0.857240 0.428620 0.903485i \(-0.359000\pi\)
0.428620 + 0.903485i \(0.359000\pi\)
\(840\) 0 0
\(841\) −25.2407 −0.870368
\(842\) 0 0
\(843\) 43.4213 1.49551
\(844\) 0 0
\(845\) −0.885844 −0.0304740
\(846\) 0 0
\(847\) 9.66025 0.331930
\(848\) 0 0
\(849\) −33.2114 −1.13981
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −50.5309 −1.73015 −0.865073 0.501646i \(-0.832728\pi\)
−0.865073 + 0.501646i \(0.832728\pi\)
\(854\) 0 0
\(855\) −0.142865 −0.00488587
\(856\) 0 0
\(857\) 12.5956 0.430257 0.215129 0.976586i \(-0.430983\pi\)
0.215129 + 0.976586i \(0.430983\pi\)
\(858\) 0 0
\(859\) −33.2765 −1.13538 −0.567689 0.823243i \(-0.692162\pi\)
−0.567689 + 0.823243i \(0.692162\pi\)
\(860\) 0 0
\(861\) −17.2480 −0.587809
\(862\) 0 0
\(863\) −18.5024 −0.629830 −0.314915 0.949120i \(-0.601976\pi\)
−0.314915 + 0.949120i \(0.601976\pi\)
\(864\) 0 0
\(865\) −0.916912 −0.0311759
\(866\) 0 0
\(867\) 20.6417 0.701030
\(868\) 0 0
\(869\) −27.8471 −0.944649
\(870\) 0 0
\(871\) −0.112584 −0.00381477
\(872\) 0 0
\(873\) 11.1732 0.378157
\(874\) 0 0
\(875\) 1.86098 0.0629127
\(876\) 0 0
\(877\) −10.9677 −0.370354 −0.185177 0.982705i \(-0.559286\pi\)
−0.185177 + 0.982705i \(0.559286\pi\)
\(878\) 0 0
\(879\) −23.3278 −0.786826
\(880\) 0 0
\(881\) −0.688997 −0.0232129 −0.0116065 0.999933i \(-0.503695\pi\)
−0.0116065 + 0.999933i \(0.503695\pi\)
\(882\) 0 0
\(883\) 41.2530 1.38827 0.694137 0.719843i \(-0.255786\pi\)
0.694137 + 0.719843i \(0.255786\pi\)
\(884\) 0 0
\(885\) −0.912748 −0.0306817
\(886\) 0 0
\(887\) 21.1578 0.710410 0.355205 0.934789i \(-0.384411\pi\)
0.355205 + 0.934789i \(0.384411\pi\)
\(888\) 0 0
\(889\) 0.799203 0.0268044
\(890\) 0 0
\(891\) −13.6603 −0.457636
\(892\) 0 0
\(893\) 1.97910 0.0662282
\(894\) 0 0
\(895\) −1.64621 −0.0550266
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −18.0857 −0.603191
\(900\) 0 0
\(901\) −19.3302 −0.643984
\(902\) 0 0
\(903\) 7.84032 0.260909
\(904\) 0 0
\(905\) 0.0194878 0.000647795 0
\(906\) 0 0
\(907\) 17.2277 0.572035 0.286017 0.958224i \(-0.407668\pi\)
0.286017 + 0.958224i \(0.407668\pi\)
\(908\) 0 0
\(909\) 12.2280 0.405578
\(910\) 0 0
\(911\) −17.5735 −0.582236 −0.291118 0.956687i \(-0.594027\pi\)
−0.291118 + 0.956687i \(0.594027\pi\)
\(912\) 0 0
\(913\) 19.5677 0.647597
\(914\) 0 0
\(915\) −0.656339 −0.0216979
\(916\) 0 0
\(917\) −18.9048 −0.624292
\(918\) 0 0
\(919\) 39.8155 1.31339 0.656696 0.754155i \(-0.271953\pi\)
0.656696 + 0.754155i \(0.271953\pi\)
\(920\) 0 0
\(921\) 4.19026 0.138074
\(922\) 0 0
\(923\) −0.367330 −0.0120908
\(924\) 0 0
\(925\) 45.3836 1.49220
\(926\) 0 0
\(927\) −12.0905 −0.397104
\(928\) 0 0
\(929\) 24.3057 0.797443 0.398721 0.917072i \(-0.369454\pi\)
0.398721 + 0.917072i \(0.369454\pi\)
\(930\) 0 0
\(931\) 0.972932 0.0318865
\(932\) 0 0
\(933\) 15.2645 0.499739
\(934\) 0 0
\(935\) −0.288681 −0.00944089
\(936\) 0 0
\(937\) −1.23805 −0.0404452 −0.0202226 0.999796i \(-0.506437\pi\)
−0.0202226 + 0.999796i \(0.506437\pi\)
\(938\) 0 0
\(939\) −5.32889 −0.173902
\(940\) 0 0
\(941\) −59.6443 −1.94435 −0.972175 0.234255i \(-0.924735\pi\)
−0.972175 + 0.234255i \(0.924735\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) −1.05322 −0.0342612
\(946\) 0 0
\(947\) −27.6324 −0.897934 −0.448967 0.893548i \(-0.648208\pi\)
−0.448967 + 0.893548i \(0.648208\pi\)
\(948\) 0 0
\(949\) 0.455894 0.0147989
\(950\) 0 0
\(951\) 15.3684 0.498355
\(952\) 0 0
\(953\) 20.8999 0.677015 0.338507 0.940964i \(-0.390078\pi\)
0.338507 + 0.940964i \(0.390078\pi\)
\(954\) 0 0
\(955\) −0.991956 −0.0320989
\(956\) 0 0
\(957\) 7.49133 0.242160
\(958\) 0 0
\(959\) −28.7148 −0.927249
\(960\) 0 0
\(961\) 56.0079 1.80671
\(962\) 0 0
\(963\) 5.68268 0.183122
\(964\) 0 0
\(965\) −1.59040 −0.0511966
\(966\) 0 0
\(967\) −44.0684 −1.41714 −0.708572 0.705639i \(-0.750660\pi\)
−0.708572 + 0.705639i \(0.750660\pi\)
\(968\) 0 0
\(969\) 4.59683 0.147672
\(970\) 0 0
\(971\) 46.0272 1.47708 0.738541 0.674208i \(-0.235515\pi\)
0.738541 + 0.674208i \(0.235515\pi\)
\(972\) 0 0
\(973\) −44.6848 −1.43253
\(974\) 0 0
\(975\) 0.249209 0.00798106
\(976\) 0 0
\(977\) 22.9525 0.734317 0.367158 0.930158i \(-0.380331\pi\)
0.367158 + 0.930158i \(0.380331\pi\)
\(978\) 0 0
\(979\) −33.3412 −1.06559
\(980\) 0 0
\(981\) −8.83083 −0.281947
\(982\) 0 0
\(983\) 33.9119 1.08162 0.540811 0.841144i \(-0.318117\pi\)
0.540811 + 0.841144i \(0.318117\pi\)
\(984\) 0 0
\(985\) 0.530774 0.0169119
\(986\) 0 0
\(987\) 3.64757 0.116103
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 51.2991 1.62957 0.814785 0.579763i \(-0.196855\pi\)
0.814785 + 0.579763i \(0.196855\pi\)
\(992\) 0 0
\(993\) −3.66896 −0.116431
\(994\) 0 0
\(995\) −0.995707 −0.0315660
\(996\) 0 0
\(997\) 38.2421 1.21114 0.605569 0.795793i \(-0.292945\pi\)
0.605569 + 0.795793i \(0.292945\pi\)
\(998\) 0 0
\(999\) −51.3934 −1.62602
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 8464.2.a.bn.1.1 4
4.3 odd 2 4232.2.a.u.1.3 yes 4
23.22 odd 2 8464.2.a.bl.1.2 4
92.91 even 2 4232.2.a.s.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4232.2.a.s.1.4 4 92.91 even 2
4232.2.a.u.1.3 yes 4 4.3 odd 2
8464.2.a.bl.1.2 4 23.22 odd 2
8464.2.a.bn.1.1 4 1.1 even 1 trivial