Properties

Label 425.2.m.e.151.3
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.3
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.e.76.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.176012 - 0.176012i) q^{2} +(-0.629010 - 1.51856i) q^{3} -1.93804i q^{4} +(-0.156572 + 0.377999i) q^{6} +(-1.32215 - 0.547653i) q^{7} +(-0.693142 + 0.693142i) q^{8} +(0.210935 - 0.210935i) q^{9} +(1.03080 - 2.48857i) q^{11} +(-2.94304 + 1.21905i) q^{12} +0.174664i q^{13} +(0.136321 + 0.329108i) q^{14} -3.63208 q^{16} +(-3.44088 - 2.27165i) q^{17} -0.0742541 q^{18} +(2.69404 + 2.69404i) q^{19} +2.35225i q^{21} +(-0.619452 + 0.256585i) q^{22} +(-1.05544 + 2.54807i) q^{23} +(1.48857 + 0.616588i) q^{24} +(0.0307430 - 0.0307430i) q^{26} +(-5.00869 - 2.07467i) q^{27} +(-1.06137 + 2.56238i) q^{28} +(-5.94408 + 2.46212i) q^{29} +(-0.188417 - 0.454879i) q^{31} +(2.02557 + 2.02557i) q^{32} -4.42745 q^{33} +(0.205798 + 1.00547i) q^{34} +(-0.408800 - 0.408800i) q^{36} +(2.19772 + 5.30576i) q^{37} -0.948365i q^{38} +(0.265239 - 0.109866i) q^{39} +(5.54000 + 2.29474i) q^{41} +(0.414025 - 0.414025i) q^{42} +(8.00004 - 8.00004i) q^{43} +(-4.82296 - 1.99773i) q^{44} +(0.634261 - 0.262720i) q^{46} -2.65291i q^{47} +(2.28461 + 5.51554i) q^{48} +(-3.50159 - 3.50159i) q^{49} +(-1.28530 + 6.65408i) q^{51} +0.338506 q^{52} +(-8.73501 - 8.73501i) q^{53} +(0.516423 + 1.24676i) q^{54} +(1.29604 - 0.536837i) q^{56} +(2.39649 - 5.78565i) q^{57} +(1.47959 + 0.612867i) q^{58} +(5.72232 - 5.72232i) q^{59} +(-6.41902 - 2.65884i) q^{61} +(-0.0469005 + 0.113228i) q^{62} +(-0.394407 + 0.163369i) q^{63} +6.55110i q^{64} +(0.779283 + 0.779283i) q^{66} +12.3901 q^{67} +(-4.40254 + 6.66855i) q^{68} +4.53329 q^{69} +(-4.67878 - 11.2956i) q^{71} +0.292415i q^{72} +(14.4714 - 5.99425i) q^{73} +(0.547052 - 1.32070i) q^{74} +(5.22115 - 5.22115i) q^{76} +(-2.72575 + 2.72575i) q^{77} +(-0.0660229 - 0.0273476i) q^{78} +(4.94031 - 11.9270i) q^{79} +8.01609i q^{81} +(-0.571204 - 1.37901i) q^{82} +(6.06390 + 6.06390i) q^{83} +4.55876 q^{84} -2.81621 q^{86} +(7.47777 + 7.47777i) q^{87} +(1.01044 + 2.43943i) q^{88} +11.4907i q^{89} +(0.0956555 - 0.230933i) q^{91} +(4.93826 + 2.04549i) q^{92} +(-0.572247 + 0.572247i) q^{93} +(-0.466944 + 0.466944i) q^{94} +(1.80186 - 4.35007i) q^{96} +(-2.12392 + 0.879757i) q^{97} +1.23264i q^{98} +(-0.307495 - 0.742359i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 24 q^{14} + 8 q^{16} + 24 q^{19} - 32 q^{24} - 16 q^{26} - 24 q^{29} - 24 q^{31} - 8 q^{34} + 8 q^{36} + 24 q^{39} - 48 q^{41} - 72 q^{44} - 16 q^{46} - 48 q^{49} - 32 q^{54} + 24 q^{56}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.176012 0.176012i −0.124459 0.124459i 0.642134 0.766593i \(-0.278049\pi\)
−0.766593 + 0.642134i \(0.778049\pi\)
\(3\) −0.629010 1.51856i −0.363159 0.876744i −0.994834 0.101511i \(-0.967632\pi\)
0.631675 0.775233i \(-0.282368\pi\)
\(4\) 1.93804i 0.969020i
\(5\) 0 0
\(6\) −0.156572 + 0.377999i −0.0639203 + 0.154317i
\(7\) −1.32215 0.547653i −0.499726 0.206993i 0.118559 0.992947i \(-0.462172\pi\)
−0.618286 + 0.785954i \(0.712172\pi\)
\(8\) −0.693142 + 0.693142i −0.245063 + 0.245063i
\(9\) 0.210935 0.210935i 0.0703116 0.0703116i
\(10\) 0 0
\(11\) 1.03080 2.48857i 0.310798 0.750333i −0.688878 0.724878i \(-0.741896\pi\)
0.999676 0.0254558i \(-0.00810370\pi\)
\(12\) −2.94304 + 1.21905i −0.849582 + 0.351908i
\(13\) 0.174664i 0.0484432i 0.999707 + 0.0242216i \(0.00771073\pi\)
−0.999707 + 0.0242216i \(0.992289\pi\)
\(14\) 0.136321 + 0.329108i 0.0364333 + 0.0879578i
\(15\) 0 0
\(16\) −3.63208 −0.908019
\(17\) −3.44088 2.27165i −0.834535 0.550955i
\(18\) −0.0742541 −0.0175019
\(19\) 2.69404 + 2.69404i 0.618055 + 0.618055i 0.945032 0.326978i \(-0.106030\pi\)
−0.326978 + 0.945032i \(0.606030\pi\)
\(20\) 0 0
\(21\) 2.35225i 0.513304i
\(22\) −0.619452 + 0.256585i −0.132068 + 0.0547042i
\(23\) −1.05544 + 2.54807i −0.220075 + 0.531309i −0.994900 0.100867i \(-0.967838\pi\)
0.774825 + 0.632176i \(0.217838\pi\)
\(24\) 1.48857 + 0.616588i 0.303854 + 0.125860i
\(25\) 0 0
\(26\) 0.0307430 0.0307430i 0.00602920 0.00602920i
\(27\) −5.00869 2.07467i −0.963923 0.399270i
\(28\) −1.06137 + 2.56238i −0.200581 + 0.484245i
\(29\) −5.94408 + 2.46212i −1.10379 + 0.457204i −0.858794 0.512321i \(-0.828786\pi\)
−0.244994 + 0.969525i \(0.578786\pi\)
\(30\) 0 0
\(31\) −0.188417 0.454879i −0.0338407 0.0816987i 0.906056 0.423159i \(-0.139079\pi\)
−0.939896 + 0.341460i \(0.889079\pi\)
\(32\) 2.02557 + 2.02557i 0.358074 + 0.358074i
\(33\) −4.42745 −0.770719
\(34\) 0.205798 + 1.00547i 0.0352941 + 0.172437i
\(35\) 0 0
\(36\) −0.408800 0.408800i −0.0681333 0.0681333i
\(37\) 2.19772 + 5.30576i 0.361302 + 0.872261i 0.995110 + 0.0987704i \(0.0314910\pi\)
−0.633808 + 0.773490i \(0.718509\pi\)
\(38\) 0.948365i 0.153845i
\(39\) 0.265239 0.109866i 0.0424723 0.0175926i
\(40\) 0 0
\(41\) 5.54000 + 2.29474i 0.865203 + 0.358379i 0.770740 0.637150i \(-0.219887\pi\)
0.0944627 + 0.995528i \(0.469887\pi\)
\(42\) 0.414025 0.414025i 0.0638854 0.0638854i
\(43\) 8.00004 8.00004i 1.22000 1.22000i 0.252363 0.967633i \(-0.418792\pi\)
0.967633 0.252363i \(-0.0812076\pi\)
\(44\) −4.82296 1.99773i −0.727088 0.301170i
\(45\) 0 0
\(46\) 0.634261 0.262720i 0.0935167 0.0387359i
\(47\) 2.65291i 0.386967i −0.981104 0.193483i \(-0.938021\pi\)
0.981104 0.193483i \(-0.0619786\pi\)
\(48\) 2.28461 + 5.51554i 0.329756 + 0.796100i
\(49\) −3.50159 3.50159i −0.500227 0.500227i
\(50\) 0 0
\(51\) −1.28530 + 6.65408i −0.179977 + 0.931758i
\(52\) 0.338506 0.0469424
\(53\) −8.73501 8.73501i −1.19985 1.19985i −0.974212 0.225633i \(-0.927555\pi\)
−0.225633 0.974212i \(-0.572445\pi\)
\(54\) 0.516423 + 1.24676i 0.0702763 + 0.169662i
\(55\) 0 0
\(56\) 1.29604 0.536837i 0.173191 0.0717379i
\(57\) 2.39649 5.78565i 0.317423 0.766328i
\(58\) 1.47959 + 0.612867i 0.194280 + 0.0804733i
\(59\) 5.72232 5.72232i 0.744982 0.744982i −0.228550 0.973532i \(-0.573398\pi\)
0.973532 + 0.228550i \(0.0733984\pi\)
\(60\) 0 0
\(61\) −6.41902 2.65884i −0.821871 0.340430i −0.0681914 0.997672i \(-0.521723\pi\)
−0.753679 + 0.657242i \(0.771723\pi\)
\(62\) −0.0469005 + 0.113228i −0.00595637 + 0.0143799i
\(63\) −0.394407 + 0.163369i −0.0496906 + 0.0205825i
\(64\) 6.55110i 0.818888i
\(65\) 0 0
\(66\) 0.779283 + 0.779283i 0.0959231 + 0.0959231i
\(67\) 12.3901 1.51369 0.756845 0.653594i \(-0.226740\pi\)
0.756845 + 0.653594i \(0.226740\pi\)
\(68\) −4.40254 + 6.66855i −0.533886 + 0.808681i
\(69\) 4.53329 0.545744
\(70\) 0 0
\(71\) −4.67878 11.2956i −0.555269 1.34054i −0.913474 0.406896i \(-0.866611\pi\)
0.358205 0.933643i \(-0.383389\pi\)
\(72\) 0.292415i 0.0344615i
\(73\) 14.4714 5.99425i 1.69375 0.701574i 0.693920 0.720052i \(-0.255882\pi\)
0.999829 + 0.0184781i \(0.00588211\pi\)
\(74\) 0.547052 1.32070i 0.0635935 0.153528i
\(75\) 0 0
\(76\) 5.22115 5.22115i 0.598907 0.598907i
\(77\) −2.72575 + 2.72575i −0.310628 + 0.310628i
\(78\) −0.0660229 0.0273476i −0.00747562 0.00309650i
\(79\) 4.94031 11.9270i 0.555828 1.34189i −0.357214 0.934022i \(-0.616273\pi\)
0.913042 0.407865i \(-0.133727\pi\)
\(80\) 0 0
\(81\) 8.01609i 0.890677i
\(82\) −0.571204 1.37901i −0.0630789 0.152286i
\(83\) 6.06390 + 6.06390i 0.665600 + 0.665600i 0.956694 0.291094i \(-0.0940194\pi\)
−0.291094 + 0.956694i \(0.594019\pi\)
\(84\) 4.55876 0.497401
\(85\) 0 0
\(86\) −2.81621 −0.303679
\(87\) 7.47777 + 7.47777i 0.801702 + 0.801702i
\(88\) 1.01044 + 2.43943i 0.107714 + 0.260044i
\(89\) 11.4907i 1.21801i 0.793165 + 0.609006i \(0.208432\pi\)
−0.793165 + 0.609006i \(0.791568\pi\)
\(90\) 0 0
\(91\) 0.0956555 0.230933i 0.0100274 0.0242083i
\(92\) 4.93826 + 2.04549i 0.514849 + 0.213257i
\(93\) −0.572247 + 0.572247i −0.0593393 + 0.0593393i
\(94\) −0.466944 + 0.466944i −0.0481616 + 0.0481616i
\(95\) 0 0
\(96\) 1.80186 4.35007i 0.183901 0.443977i
\(97\) −2.12392 + 0.879757i −0.215651 + 0.0893258i −0.487894 0.872903i \(-0.662235\pi\)
0.272242 + 0.962229i \(0.412235\pi\)
\(98\) 1.23264i 0.124516i
\(99\) −0.307495 0.742359i −0.0309044 0.0746099i
\(100\) 0 0
\(101\) −0.890917 −0.0886495 −0.0443248 0.999017i \(-0.514114\pi\)
−0.0443248 + 0.999017i \(0.514114\pi\)
\(102\) 1.39742 0.944970i 0.138366 0.0935660i
\(103\) 0.367137 0.0361751 0.0180875 0.999836i \(-0.494242\pi\)
0.0180875 + 0.999836i \(0.494242\pi\)
\(104\) −0.121067 0.121067i −0.0118716 0.0118716i
\(105\) 0 0
\(106\) 3.07493i 0.298664i
\(107\) 6.14149 2.54389i 0.593720 0.245927i −0.0655301 0.997851i \(-0.520874\pi\)
0.659250 + 0.751924i \(0.270874\pi\)
\(108\) −4.02079 + 9.70705i −0.386901 + 0.934061i
\(109\) −8.16665 3.38274i −0.782223 0.324007i −0.0444107 0.999013i \(-0.514141\pi\)
−0.737812 + 0.675006i \(0.764141\pi\)
\(110\) 0 0
\(111\) 6.67475 6.67475i 0.633539 0.633539i
\(112\) 4.80216 + 1.98912i 0.453761 + 0.187954i
\(113\) −2.18632 + 5.27825i −0.205672 + 0.496536i −0.992733 0.120339i \(-0.961602\pi\)
0.787061 + 0.616875i \(0.211602\pi\)
\(114\) −1.44015 + 0.596531i −0.134883 + 0.0558703i
\(115\) 0 0
\(116\) 4.77168 + 11.5199i 0.443040 + 1.06959i
\(117\) 0.0368428 + 0.0368428i 0.00340612 + 0.00340612i
\(118\) −2.01439 −0.185440
\(119\) 3.30529 + 4.88787i 0.302995 + 0.448070i
\(120\) 0 0
\(121\) 2.64772 + 2.64772i 0.240702 + 0.240702i
\(122\) 0.661835 + 1.59781i 0.0599197 + 0.144659i
\(123\) 9.85627i 0.888710i
\(124\) −0.881574 + 0.365160i −0.0791676 + 0.0327923i
\(125\) 0 0
\(126\) 0.0981752 + 0.0406655i 0.00874614 + 0.00362277i
\(127\) 11.5590 11.5590i 1.02569 1.02569i 0.0260300 0.999661i \(-0.491713\pi\)
0.999661 0.0260300i \(-0.00828653\pi\)
\(128\) 5.20422 5.20422i 0.459992 0.459992i
\(129\) −17.1807 7.11648i −1.51268 0.626571i
\(130\) 0 0
\(131\) −8.90518 + 3.68865i −0.778049 + 0.322279i −0.736128 0.676842i \(-0.763348\pi\)
−0.0419214 + 0.999121i \(0.513348\pi\)
\(132\) 8.58057i 0.746842i
\(133\) −2.08653 5.03733i −0.180925 0.436791i
\(134\) −2.18080 2.18080i −0.188393 0.188393i
\(135\) 0 0
\(136\) 3.95959 0.810442i 0.339532 0.0694949i
\(137\) −6.60524 −0.564324 −0.282162 0.959367i \(-0.591052\pi\)
−0.282162 + 0.959367i \(0.591052\pi\)
\(138\) −0.797913 0.797913i −0.0679229 0.0679229i
\(139\) 1.75923 + 4.24715i 0.149216 + 0.360239i 0.980759 0.195221i \(-0.0625424\pi\)
−0.831544 + 0.555459i \(0.812542\pi\)
\(140\) 0 0
\(141\) −4.02862 + 1.66871i −0.339271 + 0.140531i
\(142\) −1.16464 + 2.81168i −0.0977340 + 0.235951i
\(143\) 0.434665 + 0.180044i 0.0363485 + 0.0150561i
\(144\) −0.766131 + 0.766131i −0.0638443 + 0.0638443i
\(145\) 0 0
\(146\) −3.60220 1.49208i −0.298120 0.123485i
\(147\) −3.11485 + 7.51992i −0.256909 + 0.620232i
\(148\) 10.2828 4.25926i 0.845238 0.350109i
\(149\) 11.6404i 0.953619i 0.879007 + 0.476810i \(0.158207\pi\)
−0.879007 + 0.476810i \(0.841793\pi\)
\(150\) 0 0
\(151\) 0.0974235 + 0.0974235i 0.00792821 + 0.00792821i 0.711060 0.703132i \(-0.248216\pi\)
−0.703132 + 0.711060i \(0.748216\pi\)
\(152\) −3.73470 −0.302924
\(153\) −1.20497 + 0.246631i −0.0974160 + 0.0199390i
\(154\) 0.959530 0.0773211
\(155\) 0 0
\(156\) −0.212924 0.514044i −0.0170476 0.0411565i
\(157\) 9.66489i 0.771343i −0.922636 0.385671i \(-0.873970\pi\)
0.922636 0.385671i \(-0.126030\pi\)
\(158\) −2.96884 + 1.22973i −0.236188 + 0.0978323i
\(159\) −7.77027 + 18.7591i −0.616222 + 1.48769i
\(160\) 0 0
\(161\) 2.79092 2.79092i 0.219955 0.219955i
\(162\) 1.41093 1.41093i 0.110853 0.110853i
\(163\) −11.4699 4.75100i −0.898394 0.372127i −0.114792 0.993390i \(-0.536620\pi\)
−0.783602 + 0.621263i \(0.786620\pi\)
\(164\) 4.44730 10.7367i 0.347276 0.838399i
\(165\) 0 0
\(166\) 2.13464i 0.165680i
\(167\) 1.60248 + 3.86872i 0.124003 + 0.299371i 0.973675 0.227942i \(-0.0731997\pi\)
−0.849671 + 0.527313i \(0.823200\pi\)
\(168\) −1.63045 1.63045i −0.125792 0.125792i
\(169\) 12.9695 0.997653
\(170\) 0 0
\(171\) 1.13653 0.0869128
\(172\) −15.5044 15.5044i −1.18220 1.18220i
\(173\) 1.13080 + 2.73000i 0.0859733 + 0.207558i 0.961019 0.276483i \(-0.0891688\pi\)
−0.875046 + 0.484040i \(0.839169\pi\)
\(174\) 2.63235i 0.199558i
\(175\) 0 0
\(176\) −3.74395 + 9.03869i −0.282211 + 0.681317i
\(177\) −12.2891 5.09032i −0.923706 0.382612i
\(178\) 2.02250 2.02250i 0.151593 0.151593i
\(179\) 16.4589 16.4589i 1.23019 1.23019i 0.266304 0.963889i \(-0.414197\pi\)
0.963889 0.266304i \(-0.0858027\pi\)
\(180\) 0 0
\(181\) 4.37037 10.5510i 0.324847 0.784250i −0.674112 0.738629i \(-0.735474\pi\)
0.998959 0.0456205i \(-0.0145265\pi\)
\(182\) −0.0574834 + 0.0238104i −0.00426096 + 0.00176495i
\(183\) 11.4201i 0.844200i
\(184\) −1.03460 2.49775i −0.0762717 0.184136i
\(185\) 0 0
\(186\) 0.201445 0.0147706
\(187\) −9.20002 + 6.22126i −0.672772 + 0.454944i
\(188\) −5.14145 −0.374978
\(189\) 5.48605 + 5.48605i 0.399052 + 0.399052i
\(190\) 0 0
\(191\) 3.08201i 0.223007i 0.993764 + 0.111503i \(0.0355666\pi\)
−0.993764 + 0.111503i \(0.964433\pi\)
\(192\) 9.94828 4.12071i 0.717955 0.297387i
\(193\) 6.11743 14.7688i 0.440343 1.06308i −0.535486 0.844544i \(-0.679872\pi\)
0.975829 0.218537i \(-0.0701284\pi\)
\(194\) 0.528683 + 0.218988i 0.0379572 + 0.0157224i
\(195\) 0 0
\(196\) −6.78621 + 6.78621i −0.484729 + 0.484729i
\(197\) −9.86109 4.08460i −0.702573 0.291015i 0.00265412 0.999996i \(-0.499155\pi\)
−0.705228 + 0.708981i \(0.749155\pi\)
\(198\) −0.0765412 + 0.184787i −0.00543954 + 0.0131322i
\(199\) −14.6337 + 6.06147i −1.03735 + 0.429686i −0.835362 0.549701i \(-0.814742\pi\)
−0.201993 + 0.979387i \(0.564742\pi\)
\(200\) 0 0
\(201\) −7.79349 18.8152i −0.549710 1.32712i
\(202\) 0.156812 + 0.156812i 0.0110333 + 0.0110333i
\(203\) 9.20737 0.646230
\(204\) 12.8959 + 2.49095i 0.902892 + 0.174402i
\(205\) 0 0
\(206\) −0.0646205 0.0646205i −0.00450232 0.00450232i
\(207\) 0.314846 + 0.760106i 0.0218833 + 0.0528310i
\(208\) 0.634394i 0.0439873i
\(209\) 9.48133 3.92729i 0.655837 0.271657i
\(210\) 0 0
\(211\) −4.54512 1.88265i −0.312899 0.129607i 0.220707 0.975340i \(-0.429164\pi\)
−0.533606 + 0.845733i \(0.679164\pi\)
\(212\) −16.9288 + 16.9288i −1.16267 + 1.16267i
\(213\) −14.2101 + 14.2101i −0.973658 + 0.973658i
\(214\) −1.52873 0.633221i −0.104502 0.0432861i
\(215\) 0 0
\(216\) 4.90977 2.03370i 0.334068 0.138375i
\(217\) 0.704606i 0.0478318i
\(218\) 0.842025 + 2.03283i 0.0570292 + 0.137681i
\(219\) −18.2053 18.2053i −1.23020 1.23020i
\(220\) 0 0
\(221\) 0.396776 0.600998i 0.0266900 0.0404275i
\(222\) −2.34967 −0.157700
\(223\) 7.10210 + 7.10210i 0.475592 + 0.475592i 0.903719 0.428127i \(-0.140826\pi\)
−0.428127 + 0.903719i \(0.640826\pi\)
\(224\) −1.56880 3.78743i −0.104820 0.253058i
\(225\) 0 0
\(226\) 1.31385 0.544216i 0.0873963 0.0362007i
\(227\) −1.71341 + 4.13654i −0.113723 + 0.274552i −0.970485 0.241160i \(-0.922472\pi\)
0.856762 + 0.515711i \(0.172472\pi\)
\(228\) −11.2128 4.64450i −0.742587 0.307589i
\(229\) 0.847088 0.847088i 0.0559771 0.0559771i −0.678564 0.734541i \(-0.737397\pi\)
0.734541 + 0.678564i \(0.237397\pi\)
\(230\) 0 0
\(231\) 5.85376 + 2.42471i 0.385149 + 0.159534i
\(232\) 2.41349 5.82669i 0.158454 0.382541i
\(233\) −23.5168 + 9.74096i −1.54063 + 0.638152i −0.981592 0.190987i \(-0.938831\pi\)
−0.559042 + 0.829139i \(0.688831\pi\)
\(234\) 0.0129695i 0.000847845i
\(235\) 0 0
\(236\) −11.0901 11.0901i −0.721903 0.721903i
\(237\) −21.2194 −1.37835
\(238\) 0.278553 1.44209i 0.0180559 0.0934770i
\(239\) −6.21407 −0.401955 −0.200977 0.979596i \(-0.564412\pi\)
−0.200977 + 0.979596i \(0.564412\pi\)
\(240\) 0 0
\(241\) 10.2576 + 24.7640i 0.660750 + 1.59519i 0.796631 + 0.604467i \(0.206614\pi\)
−0.135880 + 0.990725i \(0.543386\pi\)
\(242\) 0.932062i 0.0599152i
\(243\) −2.85312 + 1.18180i −0.183028 + 0.0758126i
\(244\) −5.15294 + 12.4403i −0.329883 + 0.796409i
\(245\) 0 0
\(246\) −1.73482 + 1.73482i −0.110608 + 0.110608i
\(247\) −0.470552 + 0.470552i −0.0299405 + 0.0299405i
\(248\) 0.445895 + 0.184696i 0.0283144 + 0.0117282i
\(249\) 5.39417 13.0227i 0.341842 0.825279i
\(250\) 0 0
\(251\) 10.6052i 0.669394i 0.942326 + 0.334697i \(0.108634\pi\)
−0.942326 + 0.334697i \(0.891366\pi\)
\(252\) 0.316615 + 0.764376i 0.0199449 + 0.0481512i
\(253\) 5.25310 + 5.25310i 0.330260 + 0.330260i
\(254\) −4.06903 −0.255313
\(255\) 0 0
\(256\) 11.2702 0.704387
\(257\) 1.08911 + 1.08911i 0.0679369 + 0.0679369i 0.740259 0.672322i \(-0.234703\pi\)
−0.672322 + 0.740259i \(0.734703\pi\)
\(258\) 1.77142 + 4.27659i 0.110284 + 0.266249i
\(259\) 8.21860i 0.510679i
\(260\) 0 0
\(261\) −0.734467 + 1.77316i −0.0454624 + 0.109756i
\(262\) 2.21666 + 0.918172i 0.136946 + 0.0567249i
\(263\) −0.301535 + 0.301535i −0.0185935 + 0.0185935i −0.716342 0.697749i \(-0.754185\pi\)
0.697749 + 0.716342i \(0.254185\pi\)
\(264\) 3.06885 3.06885i 0.188875 0.188875i
\(265\) 0 0
\(266\) −0.519375 + 1.25388i −0.0318449 + 0.0768805i
\(267\) 17.4494 7.22777i 1.06789 0.442333i
\(268\) 24.0125i 1.46680i
\(269\) 6.54570 + 15.8027i 0.399098 + 0.963508i 0.987880 + 0.155217i \(0.0496075\pi\)
−0.588782 + 0.808292i \(0.700392\pi\)
\(270\) 0 0
\(271\) 16.0704 0.976208 0.488104 0.872785i \(-0.337689\pi\)
0.488104 + 0.872785i \(0.337689\pi\)
\(272\) 12.4975 + 8.25079i 0.757774 + 0.500278i
\(273\) −0.410855 −0.0248661
\(274\) 1.16260 + 1.16260i 0.0702353 + 0.0702353i
\(275\) 0 0
\(276\) 8.78570i 0.528837i
\(277\) −15.4868 + 6.41483i −0.930510 + 0.385430i −0.795872 0.605465i \(-0.792987\pi\)
−0.134638 + 0.990895i \(0.542987\pi\)
\(278\) 0.437904 1.05719i 0.0262637 0.0634063i
\(279\) −0.135694 0.0562061i −0.00812376 0.00336497i
\(280\) 0 0
\(281\) 5.54254 5.54254i 0.330640 0.330640i −0.522189 0.852830i \(-0.674885\pi\)
0.852830 + 0.522189i \(0.174885\pi\)
\(282\) 1.00280 + 0.415372i 0.0597157 + 0.0247350i
\(283\) 2.51826 6.07963i 0.149695 0.361396i −0.831189 0.555991i \(-0.812339\pi\)
0.980884 + 0.194594i \(0.0623390\pi\)
\(284\) −21.8913 + 9.06767i −1.29901 + 0.538067i
\(285\) 0 0
\(286\) −0.0448163 0.108196i −0.00265004 0.00639777i
\(287\) −6.06800 6.06800i −0.358183 0.358183i
\(288\) 0.854527 0.0503535
\(289\) 6.67925 + 15.6329i 0.392897 + 0.919582i
\(290\) 0 0
\(291\) 2.67194 + 2.67194i 0.156632 + 0.156632i
\(292\) −11.6171 28.0461i −0.679839 1.64128i
\(293\) 3.15115i 0.184092i −0.995755 0.0920461i \(-0.970659\pi\)
0.995755 0.0920461i \(-0.0293407\pi\)
\(294\) 1.87185 0.775344i 0.109168 0.0452190i
\(295\) 0 0
\(296\) −5.20097 2.15431i −0.302300 0.125217i
\(297\) −10.3259 + 10.3259i −0.599171 + 0.599171i
\(298\) 2.04885 2.04885i 0.118687 0.118687i
\(299\) −0.445057 0.184348i −0.0257383 0.0106611i
\(300\) 0 0
\(301\) −14.9585 + 6.19602i −0.862195 + 0.357133i
\(302\) 0.0342954i 0.00197348i
\(303\) 0.560396 + 1.35292i 0.0321939 + 0.0777229i
\(304\) −9.78495 9.78495i −0.561205 0.561205i
\(305\) 0 0
\(306\) 0.255499 + 0.168679i 0.0146059 + 0.00964273i
\(307\) 14.9905 0.855551 0.427775 0.903885i \(-0.359297\pi\)
0.427775 + 0.903885i \(0.359297\pi\)
\(308\) 5.28261 + 5.28261i 0.301005 + 0.301005i
\(309\) −0.230933 0.557521i −0.0131373 0.0317163i
\(310\) 0 0
\(311\) 9.26536 3.83784i 0.525390 0.217624i −0.104193 0.994557i \(-0.533226\pi\)
0.629583 + 0.776933i \(0.283226\pi\)
\(312\) −0.107696 + 0.260001i −0.00609708 + 0.0147196i
\(313\) 3.27134 + 1.35503i 0.184907 + 0.0765910i 0.473216 0.880946i \(-0.343093\pi\)
−0.288309 + 0.957537i \(0.593093\pi\)
\(314\) −1.70114 + 1.70114i −0.0960007 + 0.0960007i
\(315\) 0 0
\(316\) −23.1149 9.57451i −1.30032 0.538608i
\(317\) 4.67288 11.2813i 0.262455 0.633623i −0.736634 0.676292i \(-0.763586\pi\)
0.999089 + 0.0426686i \(0.0135860\pi\)
\(318\) 4.66948 1.93416i 0.261851 0.108462i
\(319\) 17.3302i 0.970307i
\(320\) 0 0
\(321\) −7.72612 7.72612i −0.431230 0.431230i
\(322\) −0.982469 −0.0547508
\(323\) −3.14995 15.3897i −0.175268 0.856308i
\(324\) 15.5355 0.863084
\(325\) 0 0
\(326\) 1.18261 + 2.85508i 0.0654988 + 0.158128i
\(327\) 14.5294i 0.803475i
\(328\) −5.43059 + 2.24942i −0.299854 + 0.124204i
\(329\) −1.45288 + 3.50755i −0.0800996 + 0.193378i
\(330\) 0 0
\(331\) −13.0768 + 13.0768i −0.718764 + 0.718764i −0.968352 0.249588i \(-0.919705\pi\)
0.249588 + 0.968352i \(0.419705\pi\)
\(332\) 11.7521 11.7521i 0.644979 0.644979i
\(333\) 1.58274 + 0.655594i 0.0867338 + 0.0359263i
\(334\) 0.398886 0.962996i 0.0218261 0.0526928i
\(335\) 0 0
\(336\) 8.54356i 0.466090i
\(337\) 7.05727 + 17.0378i 0.384434 + 0.928106i 0.991096 + 0.133146i \(0.0425080\pi\)
−0.606662 + 0.794960i \(0.707492\pi\)
\(338\) −2.28279 2.28279i −0.124167 0.124167i
\(339\) 9.39059 0.510027
\(340\) 0 0
\(341\) −1.32622 −0.0718189
\(342\) −0.200043 0.200043i −0.0108171 0.0108171i
\(343\) 6.54555 + 15.8023i 0.353426 + 0.853247i
\(344\) 11.0903i 0.597951i
\(345\) 0 0
\(346\) 0.281477 0.679547i 0.0151323 0.0365327i
\(347\) 4.68901 + 1.94225i 0.251719 + 0.104265i 0.504975 0.863134i \(-0.331502\pi\)
−0.253256 + 0.967399i \(0.581502\pi\)
\(348\) 14.4922 14.4922i 0.776865 0.776865i
\(349\) 17.2978 17.2978i 0.925928 0.925928i −0.0715119 0.997440i \(-0.522782\pi\)
0.997440 + 0.0715119i \(0.0227824\pi\)
\(350\) 0 0
\(351\) 0.362371 0.874840i 0.0193419 0.0466955i
\(352\) 7.12875 2.95282i 0.379964 0.157386i
\(353\) 17.5325i 0.933161i 0.884479 + 0.466580i \(0.154514\pi\)
−0.884479 + 0.466580i \(0.845486\pi\)
\(354\) 1.26707 + 3.05899i 0.0673442 + 0.162583i
\(355\) 0 0
\(356\) 22.2695 1.18028
\(357\) 5.34349 8.09381i 0.282807 0.428370i
\(358\) −5.79391 −0.306218
\(359\) 1.42687 + 1.42687i 0.0753076 + 0.0753076i 0.743757 0.668450i \(-0.233042\pi\)
−0.668450 + 0.743757i \(0.733042\pi\)
\(360\) 0 0
\(361\) 4.48433i 0.236017i
\(362\) −2.62634 + 1.08786i −0.138037 + 0.0571769i
\(363\) 2.35530 5.68619i 0.123621 0.298447i
\(364\) −0.447557 0.185384i −0.0234584 0.00971677i
\(365\) 0 0
\(366\) 2.01008 2.01008i 0.105069 0.105069i
\(367\) 29.9381 + 12.4008i 1.56276 + 0.647315i 0.985566 0.169294i \(-0.0541488\pi\)
0.577191 + 0.816609i \(0.304149\pi\)
\(368\) 3.83345 9.25478i 0.199833 0.482439i
\(369\) 1.65262 0.684538i 0.0860320 0.0356356i
\(370\) 0 0
\(371\) 6.76525 + 16.3328i 0.351234 + 0.847955i
\(372\) 1.10904 + 1.10904i 0.0575009 + 0.0575009i
\(373\) 20.6108 1.06719 0.533593 0.845741i \(-0.320841\pi\)
0.533593 + 0.845741i \(0.320841\pi\)
\(374\) 2.71433 + 0.524297i 0.140355 + 0.0271107i
\(375\) 0 0
\(376\) 1.83884 + 1.83884i 0.0948311 + 0.0948311i
\(377\) −0.430044 1.03822i −0.0221484 0.0534710i
\(378\) 1.93122i 0.0993313i
\(379\) −15.3385 + 6.35343i −0.787887 + 0.326354i −0.740094 0.672504i \(-0.765219\pi\)
−0.0477935 + 0.998857i \(0.515219\pi\)
\(380\) 0 0
\(381\) −24.8237 10.2823i −1.27176 0.526779i
\(382\) 0.542471 0.542471i 0.0277552 0.0277552i
\(383\) −16.4274 + 16.4274i −0.839401 + 0.839401i −0.988780 0.149379i \(-0.952273\pi\)
0.149379 + 0.988780i \(0.452273\pi\)
\(384\) −11.1764 4.62944i −0.570346 0.236245i
\(385\) 0 0
\(386\) −3.67622 + 1.52274i −0.187115 + 0.0775055i
\(387\) 3.37498i 0.171560i
\(388\) 1.70500 + 4.11624i 0.0865584 + 0.208971i
\(389\) −25.9259 25.9259i −1.31450 1.31450i −0.918064 0.396433i \(-0.870248\pi\)
−0.396433 0.918064i \(-0.629752\pi\)
\(390\) 0 0
\(391\) 9.41996 6.36999i 0.476388 0.322144i
\(392\) 4.85419 0.245174
\(393\) 11.2029 + 11.2029i 0.565112 + 0.565112i
\(394\) 1.01673 + 2.45461i 0.0512222 + 0.123661i
\(395\) 0 0
\(396\) −1.43872 + 0.595938i −0.0722984 + 0.0299470i
\(397\) −3.75494 + 9.06522i −0.188455 + 0.454970i −0.989662 0.143416i \(-0.954191\pi\)
0.801208 + 0.598386i \(0.204191\pi\)
\(398\) 3.64259 + 1.50881i 0.182587 + 0.0756299i
\(399\) −6.33706 + 6.33706i −0.317250 + 0.317250i
\(400\) 0 0
\(401\) 19.8539 + 8.22376i 0.991457 + 0.410675i 0.818657 0.574282i \(-0.194719\pi\)
0.172799 + 0.984957i \(0.444719\pi\)
\(402\) −1.93994 + 4.68344i −0.0967556 + 0.233589i
\(403\) 0.0794512 0.0329097i 0.00395774 0.00163935i
\(404\) 1.72663i 0.0859032i
\(405\) 0 0
\(406\) −1.62061 1.62061i −0.0804293 0.0804293i
\(407\) 15.4692 0.766779
\(408\) −3.72133 5.50311i −0.184233 0.272445i
\(409\) 31.2735 1.54638 0.773189 0.634176i \(-0.218661\pi\)
0.773189 + 0.634176i \(0.218661\pi\)
\(410\) 0 0
\(411\) 4.15476 + 10.0305i 0.204939 + 0.494767i
\(412\) 0.711526i 0.0350544i
\(413\) −10.6996 + 4.43193i −0.526494 + 0.218081i
\(414\) 0.0783710 0.189204i 0.00385173 0.00929889i
\(415\) 0 0
\(416\) −0.353795 + 0.353795i −0.0173462 + 0.0173462i
\(417\) 5.34300 5.34300i 0.261648 0.261648i
\(418\) −2.36008 0.977576i −0.115435 0.0478148i
\(419\) 7.78615 18.7974i 0.380378 0.918314i −0.611514 0.791234i \(-0.709439\pi\)
0.991892 0.127081i \(-0.0405608\pi\)
\(420\) 0 0
\(421\) 1.80862i 0.0881467i −0.999028 0.0440733i \(-0.985966\pi\)
0.999028 0.0440733i \(-0.0140335\pi\)
\(422\) 0.468626 + 1.13136i 0.0228124 + 0.0550740i
\(423\) −0.559591 0.559591i −0.0272083 0.0272083i
\(424\) 12.1092 0.588075
\(425\) 0 0
\(426\) 5.00228 0.242361
\(427\) 7.03079 + 7.03079i 0.340244 + 0.340244i
\(428\) −4.93016 11.9024i −0.238308 0.575327i
\(429\) 0.773317i 0.0373361i
\(430\) 0 0
\(431\) 6.37695 15.3953i 0.307167 0.741566i −0.692628 0.721295i \(-0.743547\pi\)
0.999795 0.0202708i \(-0.00645283\pi\)
\(432\) 18.1920 + 7.53536i 0.875261 + 0.362545i
\(433\) −11.5388 + 11.5388i −0.554519 + 0.554519i −0.927742 0.373222i \(-0.878253\pi\)
0.373222 + 0.927742i \(0.378253\pi\)
\(434\) 0.124019 0.124019i 0.00595311 0.00595311i
\(435\) 0 0
\(436\) −6.55588 + 15.8273i −0.313970 + 0.757990i
\(437\) −9.70800 + 4.02118i −0.464396 + 0.192359i
\(438\) 6.40870i 0.306220i
\(439\) −9.19489 22.1984i −0.438848 1.05947i −0.976347 0.216209i \(-0.930631\pi\)
0.537499 0.843264i \(-0.319369\pi\)
\(440\) 0 0
\(441\) −1.47721 −0.0703434
\(442\) −0.175620 + 0.0359457i −0.00835340 + 0.00170976i
\(443\) 21.2757 1.01084 0.505419 0.862874i \(-0.331338\pi\)
0.505419 + 0.862874i \(0.331338\pi\)
\(444\) −12.9359 12.9359i −0.613912 0.613912i
\(445\) 0 0
\(446\) 2.50011i 0.118384i
\(447\) 17.6767 7.32193i 0.836080 0.346316i
\(448\) 3.58773 8.66156i 0.169504 0.409220i
\(449\) −26.9783 11.1748i −1.27318 0.527370i −0.359253 0.933240i \(-0.616969\pi\)
−0.913931 + 0.405870i \(0.866969\pi\)
\(450\) 0 0
\(451\) 11.4213 11.4213i 0.537807 0.537807i
\(452\) 10.2295 + 4.23718i 0.481153 + 0.199300i
\(453\) 0.0866636 0.209224i 0.00407181 0.00983022i
\(454\) 1.02966 0.426500i 0.0483244 0.0200166i
\(455\) 0 0
\(456\) 2.34916 + 5.67138i 0.110010 + 0.265587i
\(457\) −0.734055 0.734055i −0.0343376 0.0343376i 0.689729 0.724067i \(-0.257729\pi\)
−0.724067 + 0.689729i \(0.757729\pi\)
\(458\) −0.298195 −0.0139337
\(459\) 12.5214 + 18.5167i 0.584448 + 0.864283i
\(460\) 0 0
\(461\) 0.0496372 + 0.0496372i 0.00231183 + 0.00231183i 0.708262 0.705950i \(-0.249480\pi\)
−0.705950 + 0.708262i \(0.749480\pi\)
\(462\) −0.603554 1.45711i −0.0280799 0.0677908i
\(463\) 40.0649i 1.86197i 0.365051 + 0.930987i \(0.381051\pi\)
−0.365051 + 0.930987i \(0.618949\pi\)
\(464\) 21.5894 8.94260i 1.00226 0.415150i
\(465\) 0 0
\(466\) 5.85376 + 2.42471i 0.271170 + 0.112322i
\(467\) 16.0563 16.0563i 0.742997 0.742997i −0.230156 0.973154i \(-0.573924\pi\)
0.973154 + 0.230156i \(0.0739238\pi\)
\(468\) 0.0714028 0.0714028i 0.00330059 0.00330059i
\(469\) −16.3816 6.78547i −0.756431 0.313324i
\(470\) 0 0
\(471\) −14.6768 + 6.07932i −0.676270 + 0.280120i
\(472\) 7.93276i 0.365135i
\(473\) −11.6622 28.1552i −0.536231 1.29458i
\(474\) 3.73486 + 3.73486i 0.171548 + 0.171548i
\(475\) 0 0
\(476\) 9.47288 6.40578i 0.434189 0.293608i
\(477\) −3.68503 −0.168726
\(478\) 1.09375 + 1.09375i 0.0500270 + 0.0500270i
\(479\) 8.90144 + 21.4900i 0.406717 + 0.981902i 0.985995 + 0.166772i \(0.0533345\pi\)
−0.579278 + 0.815130i \(0.696665\pi\)
\(480\) 0 0
\(481\) −0.926726 + 0.383863i −0.0422551 + 0.0175026i
\(482\) 2.55331 6.16422i 0.116300 0.280773i
\(483\) −5.99370 2.48267i −0.272723 0.112965i
\(484\) 5.13139 5.13139i 0.233245 0.233245i
\(485\) 0 0
\(486\) 0.710195 + 0.294172i 0.0322151 + 0.0133439i
\(487\) −6.47199 + 15.6248i −0.293274 + 0.708026i 0.706726 + 0.707488i \(0.250171\pi\)
−1.00000 0.000538564i \(0.999829\pi\)
\(488\) 6.29224 2.60633i 0.284837 0.117983i
\(489\) 20.4063i 0.922803i
\(490\) 0 0
\(491\) −14.8915 14.8915i −0.672045 0.672045i 0.286142 0.958187i \(-0.407627\pi\)
−0.958187 + 0.286142i \(0.907627\pi\)
\(492\) −19.1018 −0.861177
\(493\) 26.0459 + 5.03100i 1.17305 + 0.226585i
\(494\) 0.165646 0.00745275
\(495\) 0 0
\(496\) 0.684345 + 1.65216i 0.0307280 + 0.0741840i
\(497\) 17.4968i 0.784840i
\(498\) −3.24159 + 1.34271i −0.145259 + 0.0601682i
\(499\) −8.62028 + 20.8112i −0.385897 + 0.931637i 0.604903 + 0.796299i \(0.293212\pi\)
−0.990800 + 0.135338i \(0.956788\pi\)
\(500\) 0 0
\(501\) 4.86693 4.86693i 0.217438 0.217438i
\(502\) 1.86664 1.86664i 0.0833122 0.0833122i
\(503\) 26.8129 + 11.1063i 1.19553 + 0.495204i 0.889551 0.456835i \(-0.151017\pi\)
0.305977 + 0.952039i \(0.401017\pi\)
\(504\) 0.160142 0.386618i 0.00713330 0.0172213i
\(505\) 0 0
\(506\) 1.84922i 0.0822077i
\(507\) −8.15794 19.6950i −0.362307 0.874686i
\(508\) −22.4017 22.4017i −0.993915 0.993915i
\(509\) 4.38401 0.194318 0.0971589 0.995269i \(-0.469024\pi\)
0.0971589 + 0.995269i \(0.469024\pi\)
\(510\) 0 0
\(511\) −22.4162 −0.991633
\(512\) −12.3921 12.3921i −0.547660 0.547660i
\(513\) −7.90437 19.0828i −0.348987 0.842528i
\(514\) 0.383393i 0.0169107i
\(515\) 0 0
\(516\) −13.7920 + 33.2969i −0.607160 + 1.46581i
\(517\) −6.60196 2.73462i −0.290354 0.120269i
\(518\) −1.44657 + 1.44657i −0.0635587 + 0.0635587i
\(519\) 3.43439 3.43439i 0.150753 0.150753i
\(520\) 0 0
\(521\) −1.22242 + 2.95118i −0.0535551 + 0.129294i −0.948393 0.317099i \(-0.897291\pi\)
0.894837 + 0.446392i \(0.147291\pi\)
\(522\) 0.441372 0.182822i 0.0193183 0.00800192i
\(523\) 34.0520i 1.48899i −0.667629 0.744494i \(-0.732691\pi\)
0.667629 0.744494i \(-0.267309\pi\)
\(524\) 7.14875 + 17.2586i 0.312294 + 0.753945i
\(525\) 0 0
\(526\) 0.106148 0.00462825
\(527\) −0.385004 + 1.99320i −0.0167710 + 0.0868251i
\(528\) 16.0808 0.699828
\(529\) 10.8848 + 10.8848i 0.473251 + 0.473251i
\(530\) 0 0
\(531\) 2.41407i 0.104762i
\(532\) −9.76254 + 4.04377i −0.423260 + 0.175320i
\(533\) −0.400810 + 0.967641i −0.0173610 + 0.0419132i
\(534\) −4.34347 1.79913i −0.187961 0.0778558i
\(535\) 0 0
\(536\) −8.58809 + 8.58809i −0.370949 + 0.370949i
\(537\) −35.3467 14.6411i −1.52532 0.631808i
\(538\) 1.62934 3.93359i 0.0702460 0.169589i
\(539\) −12.3234 + 5.10452i −0.530806 + 0.219867i
\(540\) 0 0
\(541\) −10.3587 25.0081i −0.445355 1.07518i −0.974042 0.226366i \(-0.927315\pi\)
0.528687 0.848817i \(-0.322685\pi\)
\(542\) −2.82859 2.82859i −0.121498 0.121498i
\(543\) −18.7714 −0.805557
\(544\) −2.36836 11.5711i −0.101543 0.496108i
\(545\) 0 0
\(546\) 0.0723153 + 0.0723153i 0.00309481 + 0.00309481i
\(547\) 5.17849 + 12.5020i 0.221416 + 0.534546i 0.995083 0.0990470i \(-0.0315794\pi\)
−0.773667 + 0.633593i \(0.781579\pi\)
\(548\) 12.8012i 0.546841i
\(549\) −1.91484 + 0.793151i −0.0817232 + 0.0338509i
\(550\) 0 0
\(551\) −22.6466 9.38053i −0.964778 0.399624i
\(552\) −3.14221 + 3.14221i −0.133742 + 0.133742i
\(553\) −13.0637 + 13.0637i −0.555524 + 0.555524i
\(554\) 3.85494 + 1.59677i 0.163781 + 0.0678402i
\(555\) 0 0
\(556\) 8.23114 3.40945i 0.349078 0.144593i
\(557\) 30.5182i 1.29310i −0.762873 0.646548i \(-0.776212\pi\)
0.762873 0.646548i \(-0.223788\pi\)
\(558\) 0.0139907 + 0.0337766i 0.000592275 + 0.00142988i
\(559\) 1.39732 + 1.39732i 0.0591005 + 0.0591005i
\(560\) 0 0
\(561\) 15.2343 + 10.0576i 0.643192 + 0.424632i
\(562\) −1.95111 −0.0823024
\(563\) 5.73355 + 5.73355i 0.241640 + 0.241640i 0.817529 0.575888i \(-0.195344\pi\)
−0.575888 + 0.817529i \(0.695344\pi\)
\(564\) 3.23402 + 7.80762i 0.136177 + 0.328760i
\(565\) 0 0
\(566\) −1.51333 + 0.626842i −0.0636101 + 0.0263481i
\(567\) 4.39004 10.5985i 0.184364 0.445095i
\(568\) 11.0725 + 4.58638i 0.464592 + 0.192440i
\(569\) 2.71124 2.71124i 0.113661 0.113661i −0.647989 0.761650i \(-0.724390\pi\)
0.761650 + 0.647989i \(0.224390\pi\)
\(570\) 0 0
\(571\) 6.06730 + 2.51316i 0.253909 + 0.105172i 0.506007 0.862529i \(-0.331121\pi\)
−0.252099 + 0.967701i \(0.581121\pi\)
\(572\) 0.348933 0.842398i 0.0145896 0.0352224i
\(573\) 4.68023 1.93862i 0.195520 0.0809869i
\(574\) 2.13608i 0.0891583i
\(575\) 0 0
\(576\) 1.38186 + 1.38186i 0.0575773 + 0.0575773i
\(577\) 23.2880 0.969493 0.484746 0.874655i \(-0.338912\pi\)
0.484746 + 0.874655i \(0.338912\pi\)
\(578\) 1.57595 3.92720i 0.0655508 0.163350i
\(579\) −26.2753 −1.09196
\(580\) 0 0
\(581\) −4.69649 11.3383i −0.194843 0.470393i
\(582\) 0.940585i 0.0389885i
\(583\) −30.7418 + 12.7337i −1.27319 + 0.527374i
\(584\) −5.87587 + 14.1856i −0.243145 + 0.587004i
\(585\) 0 0
\(586\) −0.554640 + 0.554640i −0.0229120 + 0.0229120i
\(587\) −26.0085 + 26.0085i −1.07348 + 1.07348i −0.0764077 + 0.997077i \(0.524345\pi\)
−0.997077 + 0.0764077i \(0.975655\pi\)
\(588\) 14.5739 + 6.03671i 0.601017 + 0.248950i
\(589\) 0.717858 1.73306i 0.0295788 0.0714096i
\(590\) 0 0
\(591\) 17.5440i 0.721662i
\(592\) −7.98227 19.2709i −0.328069 0.792030i
\(593\) −19.1275 19.1275i −0.785474 0.785474i 0.195275 0.980749i \(-0.437440\pi\)
−0.980749 + 0.195275i \(0.937440\pi\)
\(594\) 3.63497 0.149145
\(595\) 0 0
\(596\) 22.5596 0.924076
\(597\) 18.4095 + 18.4095i 0.753450 + 0.753450i
\(598\) 0.0458877 + 0.110783i 0.00187649 + 0.00453025i
\(599\) 12.2973i 0.502456i 0.967928 + 0.251228i \(0.0808344\pi\)
−0.967928 + 0.251228i \(0.919166\pi\)
\(600\) 0 0
\(601\) −3.08883 + 7.45710i −0.125996 + 0.304181i −0.974273 0.225372i \(-0.927640\pi\)
0.848277 + 0.529553i \(0.177640\pi\)
\(602\) 3.72345 + 1.54230i 0.151757 + 0.0628596i
\(603\) 2.61350 2.61350i 0.106430 0.106430i
\(604\) 0.188811 0.188811i 0.00768260 0.00768260i
\(605\) 0 0
\(606\) 0.139493 0.336765i 0.00566651 0.0136802i
\(607\) −22.2684 + 9.22388i −0.903847 + 0.374386i −0.785698 0.618610i \(-0.787696\pi\)
−0.118149 + 0.992996i \(0.537696\pi\)
\(608\) 10.9139i 0.442619i
\(609\) −5.79153 13.9820i −0.234685 0.566579i
\(610\) 0 0
\(611\) 0.463369 0.0187459
\(612\) 0.477981 + 2.33528i 0.0193212 + 0.0943980i
\(613\) −39.8359 −1.60896 −0.804478 0.593983i \(-0.797555\pi\)
−0.804478 + 0.593983i \(0.797555\pi\)
\(614\) −2.63850 2.63850i −0.106481 0.106481i
\(615\) 0 0
\(616\) 3.77867i 0.152247i
\(617\) −23.8320 + 9.87155i −0.959442 + 0.397414i −0.806772 0.590863i \(-0.798787\pi\)
−0.152670 + 0.988277i \(0.548787\pi\)
\(618\) −0.0574834 + 0.138777i −0.00231232 + 0.00558244i
\(619\) 3.48155 + 1.44210i 0.139935 + 0.0579630i 0.451552 0.892245i \(-0.350871\pi\)
−0.311617 + 0.950208i \(0.600871\pi\)
\(620\) 0 0
\(621\) 10.5728 10.5728i 0.424272 0.424272i
\(622\) −2.30632 0.955308i −0.0924749 0.0383044i
\(623\) 6.29293 15.1925i 0.252121 0.608673i
\(624\) −0.963369 + 0.399041i −0.0385656 + 0.0159744i
\(625\) 0 0
\(626\) −0.337293 0.814297i −0.0134809 0.0325459i
\(627\) −11.9277 11.9277i −0.476347 0.476347i
\(628\) −18.7309 −0.747446
\(629\) 4.49073 23.2489i 0.179057 0.926994i
\(630\) 0 0
\(631\) 13.6572 + 13.6572i 0.543685 + 0.543685i 0.924607 0.380922i \(-0.124393\pi\)
−0.380922 + 0.924607i \(0.624393\pi\)
\(632\) 4.84274 + 11.6914i 0.192634 + 0.465059i
\(633\) 8.08627i 0.321400i
\(634\) −2.80813 + 1.16317i −0.111525 + 0.0461952i
\(635\) 0 0
\(636\) 36.3558 + 15.0591i 1.44160 + 0.597131i
\(637\) 0.611602 0.611602i 0.0242326 0.0242326i
\(638\) 3.05033 3.05033i 0.120764 0.120764i
\(639\) −3.36955 1.39571i −0.133297 0.0552136i
\(640\) 0 0
\(641\) 19.0839 7.90483i 0.753770 0.312222i 0.0274914 0.999622i \(-0.491248\pi\)
0.726279 + 0.687400i \(0.241248\pi\)
\(642\) 2.71978i 0.107341i
\(643\) 11.1053 + 26.8106i 0.437951 + 1.05731i 0.976655 + 0.214813i \(0.0689141\pi\)
−0.538704 + 0.842495i \(0.681086\pi\)
\(644\) −5.40890 5.40890i −0.213141 0.213141i
\(645\) 0 0
\(646\) −2.15435 + 3.26321i −0.0847618 + 0.128389i
\(647\) −41.2848 −1.62307 −0.811536 0.584302i \(-0.801368\pi\)
−0.811536 + 0.584302i \(0.801368\pi\)
\(648\) −5.55629 5.55629i −0.218272 0.218272i
\(649\) −8.34184 20.1390i −0.327446 0.790524i
\(650\) 0 0
\(651\) 1.06999 0.443205i 0.0419362 0.0173706i
\(652\) −9.20763 + 22.2292i −0.360598 + 0.870562i
\(653\) 22.6889 + 9.39804i 0.887884 + 0.367774i 0.779549 0.626341i \(-0.215448\pi\)
0.108335 + 0.994114i \(0.465448\pi\)
\(654\) 2.55734 2.55734i 0.0999999 0.0999999i
\(655\) 0 0
\(656\) −20.1217 8.33468i −0.785621 0.325415i
\(657\) 1.78813 4.31692i 0.0697614 0.168419i
\(658\) 0.873094 0.361647i 0.0340368 0.0140985i
\(659\) 17.7024i 0.689588i −0.938678 0.344794i \(-0.887949\pi\)
0.938678 0.344794i \(-0.112051\pi\)
\(660\) 0 0
\(661\) 10.0305 + 10.0305i 0.390141 + 0.390141i 0.874738 0.484597i \(-0.161034\pi\)
−0.484597 + 0.874738i \(0.661034\pi\)
\(662\) 4.60333 0.178914
\(663\) −1.16223 0.224495i −0.0451373 0.00871867i
\(664\) −8.40629 −0.326227
\(665\) 0 0
\(666\) −0.163189 0.393974i −0.00632346 0.0152662i
\(667\) 17.7445i 0.687072i
\(668\) 7.49773 3.10566i 0.290096 0.120162i
\(669\) 6.31771 15.2523i 0.244257 0.589688i
\(670\) 0 0
\(671\) −13.2335 + 13.2335i −0.510872 + 0.510872i
\(672\) −4.76466 + 4.76466i −0.183801 + 0.183801i
\(673\) 0.300312 + 0.124393i 0.0115762 + 0.00479501i 0.388464 0.921464i \(-0.373006\pi\)
−0.376888 + 0.926259i \(0.623006\pi\)
\(674\) 1.75668 4.24101i 0.0676650 0.163358i
\(675\) 0 0
\(676\) 25.1354i 0.966746i
\(677\) −6.61933 15.9805i −0.254402 0.614180i 0.744148 0.668014i \(-0.232856\pi\)
−0.998550 + 0.0538347i \(0.982856\pi\)
\(678\) −1.65286 1.65286i −0.0634775 0.0634775i
\(679\) 3.28995 0.126257
\(680\) 0 0
\(681\) 7.35936 0.282011
\(682\) 0.233431 + 0.233431i 0.00893852 + 0.00893852i
\(683\) −13.1956 31.8570i −0.504916 1.21898i −0.946777 0.321891i \(-0.895681\pi\)
0.441860 0.897084i \(-0.354319\pi\)
\(684\) 2.20264i 0.0842202i
\(685\) 0 0
\(686\) 1.62931 3.93350i 0.0622072 0.150182i
\(687\) −1.81919 0.753531i −0.0694062 0.0287490i
\(688\) −29.0568 + 29.0568i −1.10778 + 1.10778i
\(689\) 1.52569 1.52569i 0.0581243 0.0581243i
\(690\) 0 0
\(691\) 16.1221 38.9223i 0.613315 1.48067i −0.246022 0.969264i \(-0.579124\pi\)
0.859337 0.511409i \(-0.170876\pi\)
\(692\) 5.29084 2.19154i 0.201128 0.0833098i
\(693\) 1.14991i 0.0436815i
\(694\) −0.483462 1.16718i −0.0183520 0.0443056i
\(695\) 0 0
\(696\) −10.3663 −0.392934
\(697\) −13.8496 20.4808i −0.524591 0.775767i
\(698\) −6.08922 −0.230481
\(699\) 29.5846 + 29.5846i 1.11899 + 1.11899i
\(700\) 0 0
\(701\) 29.6266i 1.11898i 0.828836 + 0.559491i \(0.189003\pi\)
−0.828836 + 0.559491i \(0.810997\pi\)
\(702\) −0.217764 + 0.0902007i −0.00821897 + 0.00340441i
\(703\) −8.37317 + 20.2146i −0.315800 + 0.762409i
\(704\) 16.3029 + 6.75289i 0.614439 + 0.254509i
\(705\) 0 0
\(706\) 3.08593 3.08593i 0.116140 0.116140i
\(707\) 1.17793 + 0.487914i 0.0443005 + 0.0183499i
\(708\) −9.86523 + 23.8168i −0.370758 + 0.895089i
\(709\) −15.0352 + 6.22777i −0.564657 + 0.233889i −0.646706 0.762740i \(-0.723854\pi\)
0.0820483 + 0.996628i \(0.473854\pi\)
\(710\) 0 0
\(711\) −1.47373 3.55789i −0.0552691 0.133431i
\(712\) −7.96469 7.96469i −0.298489 0.298489i
\(713\) 1.35793 0.0508547
\(714\) −2.36512 + 0.484090i −0.0885125 + 0.0181166i
\(715\) 0 0
\(716\) −31.8979 31.8979i −1.19208 1.19208i
\(717\) 3.90871 + 9.43647i 0.145974 + 0.352411i
\(718\) 0.502294i 0.0187454i
\(719\) 29.0292 12.0243i 1.08261 0.448430i 0.231184 0.972910i \(-0.425740\pi\)
0.851423 + 0.524480i \(0.175740\pi\)
\(720\) 0 0
\(721\) −0.485411 0.201064i −0.0180776 0.00748800i
\(722\) −0.789295 + 0.789295i −0.0293745 + 0.0293745i
\(723\) 31.1537 31.1537i 1.15862 1.15862i
\(724\) −20.4483 8.46994i −0.759953 0.314783i
\(725\) 0 0
\(726\) −1.41540 + 0.586276i −0.0525303 + 0.0217588i
\(727\) 21.6544i 0.803118i 0.915833 + 0.401559i \(0.131532\pi\)
−0.915833 + 0.401559i \(0.868468\pi\)
\(728\) 0.0937664 + 0.226372i 0.00347521 + 0.00838991i
\(729\) 20.5940 + 20.5940i 0.762740 + 0.762740i
\(730\) 0 0
\(731\) −45.7004 + 9.35389i −1.69029 + 0.345966i
\(732\) 22.1327 0.818047
\(733\) −22.2422 22.2422i −0.821534 0.821534i 0.164794 0.986328i \(-0.447304\pi\)
−0.986328 + 0.164794i \(0.947304\pi\)
\(734\) −3.08678 7.45215i −0.113935 0.275064i
\(735\) 0 0
\(736\) −7.29917 + 3.02342i −0.269051 + 0.111445i
\(737\) 12.7717 30.8337i 0.470452 1.13577i
\(738\) −0.411368 0.170394i −0.0151426 0.00627229i
\(739\) 9.68961 9.68961i 0.356438 0.356438i −0.506060 0.862498i \(-0.668899\pi\)
0.862498 + 0.506060i \(0.168899\pi\)
\(740\) 0 0
\(741\) 1.01055 + 0.418582i 0.0371233 + 0.0153770i
\(742\) 1.68400 4.06552i 0.0618214 0.149250i
\(743\) 14.9867 6.20770i 0.549809 0.227738i −0.0904453 0.995901i \(-0.528829\pi\)
0.640254 + 0.768163i \(0.278829\pi\)
\(744\) 0.793297i 0.0290837i
\(745\) 0 0
\(746\) −3.62775 3.62775i −0.132821 0.132821i
\(747\) 2.55818 0.0935988
\(748\) 12.0570 + 17.8300i 0.440849 + 0.651929i
\(749\) −9.51315 −0.347603
\(750\) 0 0
\(751\) −4.26568 10.2983i −0.155657 0.375789i 0.826743 0.562580i \(-0.190191\pi\)
−0.982400 + 0.186791i \(0.940191\pi\)
\(752\) 9.63558i 0.351373i
\(753\) 16.1047 6.67077i 0.586887 0.243096i
\(754\) −0.107046 + 0.258432i −0.00389838 + 0.00941153i
\(755\) 0 0
\(756\) 10.6322 10.6322i 0.386689 0.386689i
\(757\) −14.0667 + 14.0667i −0.511262 + 0.511262i −0.914913 0.403651i \(-0.867741\pi\)
0.403651 + 0.914913i \(0.367741\pi\)
\(758\) 3.81804 + 1.58149i 0.138678 + 0.0574421i
\(759\) 4.67292 11.2814i 0.169616 0.409490i
\(760\) 0 0
\(761\) 45.4255i 1.64667i 0.567553 + 0.823337i \(0.307890\pi\)
−0.567553 + 0.823337i \(0.692110\pi\)
\(762\) 2.55946 + 6.17908i 0.0927194 + 0.223844i
\(763\) 8.94498 + 8.94498i 0.323830 + 0.323830i
\(764\) 5.97306 0.216098
\(765\) 0 0
\(766\) 5.78284 0.208942
\(767\) 0.999485 + 0.999485i 0.0360893 + 0.0360893i
\(768\) −7.08907 17.1145i −0.255805 0.617567i
\(769\) 5.98158i 0.215701i −0.994167 0.107851i \(-0.965603\pi\)
0.994167 0.107851i \(-0.0343968\pi\)
\(770\) 0 0
\(771\) 0.968824 2.33895i 0.0348913 0.0842352i
\(772\) −28.6225 11.8558i −1.03015 0.426701i
\(773\) 9.29889 9.29889i 0.334458 0.334458i −0.519819 0.854277i \(-0.674001\pi\)
0.854277 + 0.519819i \(0.174001\pi\)
\(774\) −0.594036 + 0.594036i −0.0213522 + 0.0213522i
\(775\) 0 0
\(776\) 0.862382 2.08197i 0.0309577 0.0747385i
\(777\) −12.4805 + 5.16958i −0.447735 + 0.185458i
\(778\) 9.12654i 0.327202i
\(779\) 8.74284 + 21.1071i 0.313245 + 0.756240i
\(780\) 0 0
\(781\) −32.9328 −1.17843
\(782\) −2.77922 0.536831i −0.0993847 0.0191970i
\(783\) 34.8802 1.24652
\(784\) 12.7180 + 12.7180i 0.454215 + 0.454215i
\(785\) 0 0
\(786\) 3.94369i 0.140667i
\(787\) −23.7408 + 9.83375i −0.846267 + 0.350535i −0.763322 0.646019i \(-0.776433\pi\)
−0.0829458 + 0.996554i \(0.526433\pi\)
\(788\) −7.91611 + 19.1112i −0.282000 + 0.680808i
\(789\) 0.647570 + 0.268232i 0.0230541 + 0.00954932i
\(790\) 0 0
\(791\) 5.78130 5.78130i 0.205560 0.205560i
\(792\) 0.727698 + 0.301422i 0.0258576 + 0.0107106i
\(793\) 0.464405 1.12117i 0.0164915 0.0398140i
\(794\) 2.25650 0.934673i 0.0800802 0.0331703i
\(795\) 0 0
\(796\) 11.7474 + 28.3607i 0.416375 + 1.00522i
\(797\) 35.6691 + 35.6691i 1.26347 + 1.26347i 0.949402 + 0.314064i \(0.101691\pi\)
0.314064 + 0.949402i \(0.398309\pi\)
\(798\) 2.23080 0.0789693
\(799\) −6.02647 + 9.12834i −0.213201 + 0.322937i
\(800\) 0 0
\(801\) 2.42379 + 2.42379i 0.0856404 + 0.0856404i
\(802\) −2.04704 4.94200i −0.0722836 0.174508i
\(803\) 42.1920i 1.48892i
\(804\) −36.4645 + 15.1041i −1.28600 + 0.532680i
\(805\) 0 0
\(806\) −0.0197769 0.00819184i −0.000696610 0.000288545i
\(807\) 19.8801 19.8801i 0.699814 0.699814i
\(808\) 0.617532 0.617532i 0.0217247 0.0217247i
\(809\) 8.50125 + 3.52133i 0.298888 + 0.123803i 0.527088 0.849811i \(-0.323284\pi\)
−0.228200 + 0.973614i \(0.573284\pi\)
\(810\) 0 0
\(811\) 9.89831 4.10002i 0.347577 0.143971i −0.202064 0.979372i \(-0.564765\pi\)
0.549640 + 0.835401i \(0.314765\pi\)
\(812\) 17.8442i 0.626210i
\(813\) −10.1085 24.4040i −0.354519 0.855885i
\(814\) −2.72276 2.72276i −0.0954327 0.0954327i
\(815\) 0 0
\(816\) 4.66829 24.1681i 0.163423 0.846054i
\(817\) 43.1048 1.50805
\(818\) −5.50452 5.50452i −0.192461 0.192461i
\(819\) −0.0285347 0.0688888i −0.000997083 0.00240717i
\(820\) 0 0
\(821\) 26.0334 10.7834i 0.908572 0.376343i 0.121062 0.992645i \(-0.461370\pi\)
0.787510 + 0.616302i \(0.211370\pi\)
\(822\) 1.03420 2.49677i 0.0360718 0.0870849i
\(823\) −32.6522 13.5250i −1.13819 0.471452i −0.267630 0.963522i \(-0.586240\pi\)
−0.870556 + 0.492070i \(0.836240\pi\)
\(824\) −0.254478 + 0.254478i −0.00886516 + 0.00886516i
\(825\) 0 0
\(826\) 2.66333 + 1.10319i 0.0926692 + 0.0383848i
\(827\) 15.0178 36.2562i 0.522221 1.26075i −0.414300 0.910140i \(-0.635974\pi\)
0.936521 0.350612i \(-0.114026\pi\)
\(828\) 1.47312 0.610184i 0.0511943 0.0212054i
\(829\) 17.4130i 0.604779i 0.953184 + 0.302389i \(0.0977843\pi\)
−0.953184 + 0.302389i \(0.902216\pi\)
\(830\) 0 0
\(831\) 19.4827 + 19.4827i 0.675846 + 0.675846i
\(832\) −1.14424 −0.0396695
\(833\) 4.09416 + 20.0029i 0.141854 + 0.693059i
\(834\) −1.88086 −0.0651290
\(835\) 0 0
\(836\) −7.61125 18.3752i −0.263241 0.635519i
\(837\) 2.66925i 0.0922629i
\(838\) −4.67903 + 1.93812i −0.161634 + 0.0669511i
\(839\) 10.2960 24.8566i 0.355456 0.858147i −0.640471 0.767982i \(-0.721261\pi\)
0.995927 0.0901643i \(-0.0287392\pi\)
\(840\) 0 0
\(841\) 8.76397 8.76397i 0.302206 0.302206i
\(842\) −0.318338 + 0.318338i −0.0109707 + 0.0109707i
\(843\) −11.9030 4.93039i −0.409962 0.169812i
\(844\) −3.64865 + 8.80862i −0.125592 + 0.303205i
\(845\) 0 0
\(846\) 0.196989i 0.00677263i
\(847\) −2.05066 4.95073i −0.0704615 0.170109i
\(848\) 31.7262 + 31.7262i 1.08948 + 1.08948i
\(849\) −10.8163 −0.371215
\(850\) 0 0
\(851\) −15.8390 −0.542954
\(852\) 27.5397 + 27.5397i 0.943494 + 0.943494i
\(853\) 6.25540 + 15.1019i 0.214181 + 0.517078i 0.994058 0.108855i \(-0.0347184\pi\)
−0.779877 + 0.625933i \(0.784718\pi\)
\(854\) 2.47501i 0.0846930i
\(855\) 0 0
\(856\) −2.49365 + 6.02020i −0.0852311 + 0.205766i
\(857\) 3.57282 + 1.47991i 0.122045 + 0.0505527i 0.442870 0.896586i \(-0.353960\pi\)
−0.320825 + 0.947138i \(0.603960\pi\)
\(858\) −0.136113 + 0.136113i −0.00464682 + 0.00464682i
\(859\) −27.6000 + 27.6000i −0.941701 + 0.941701i −0.998392 0.0566905i \(-0.981945\pi\)
0.0566905 + 0.998392i \(0.481945\pi\)
\(860\) 0 0
\(861\) −5.39782 + 13.0315i −0.183957 + 0.444112i
\(862\) −3.83218 + 1.58734i −0.130524 + 0.0540650i
\(863\) 22.1279i 0.753243i −0.926367 0.376621i \(-0.877086\pi\)
0.926367 0.376621i \(-0.122914\pi\)
\(864\) −5.94308 14.3479i −0.202188 0.488124i
\(865\) 0 0
\(866\) 4.06193 0.138030
\(867\) 19.5383 19.9761i 0.663554 0.678425i
\(868\) 1.36556 0.0463500
\(869\) −24.5886 24.5886i −0.834112 0.834112i
\(870\) 0 0
\(871\) 2.16411i 0.0733280i
\(872\) 8.00536 3.31593i 0.271096 0.112292i
\(873\) −0.262437 + 0.633580i −0.00888216 + 0.0214434i
\(874\) 2.41650 + 1.00095i 0.0817393 + 0.0338575i
\(875\) 0 0
\(876\) −35.2826 + 35.2826i −1.19209 + 1.19209i
\(877\) 18.2350 + 7.55317i 0.615751 + 0.255052i 0.668685 0.743546i \(-0.266857\pi\)
−0.0529342 + 0.998598i \(0.516857\pi\)
\(878\) −2.28878 + 5.52560i −0.0772425 + 0.186480i
\(879\) −4.78523 + 1.98211i −0.161402 + 0.0668548i
\(880\) 0 0
\(881\) 4.37489 + 10.5619i 0.147394 + 0.355840i 0.980283 0.197600i \(-0.0633147\pi\)
−0.832889 + 0.553440i \(0.813315\pi\)
\(882\) 0.260007 + 0.260007i 0.00875489 + 0.00875489i
\(883\) −13.2658 −0.446431 −0.223216 0.974769i \(-0.571655\pi\)
−0.223216 + 0.974769i \(0.571655\pi\)
\(884\) −1.16476 0.768967i −0.0391751 0.0258631i
\(885\) 0 0
\(886\) −3.74477 3.74477i −0.125808 0.125808i
\(887\) 11.7128 + 28.2772i 0.393277 + 0.949455i 0.989221 + 0.146429i \(0.0467781\pi\)
−0.595944 + 0.803026i \(0.703222\pi\)
\(888\) 9.25310i 0.310514i
\(889\) −21.6130 + 8.95239i −0.724876 + 0.300254i
\(890\) 0 0
\(891\) 19.9486 + 8.26300i 0.668305 + 0.276821i
\(892\) 13.7642 13.7642i 0.460858 0.460858i
\(893\) 7.14704 7.14704i 0.239167 0.239167i
\(894\) −4.40006 1.82256i −0.147160 0.0609557i
\(895\) 0 0
\(896\) −9.73087 + 4.03066i −0.325086 + 0.134655i
\(897\) 0.791804i 0.0264376i
\(898\) 2.78161 + 6.71539i 0.0928234 + 0.224096i
\(899\) 2.23993 + 2.23993i 0.0747059 + 0.0747059i
\(900\) 0 0
\(901\) 10.2132 + 49.8989i 0.340252 + 1.66237i
\(902\) −4.02056 −0.133870
\(903\) 18.8181 + 18.8181i 0.626228 + 0.626228i
\(904\) −2.14315 5.17401i −0.0712799 0.172085i
\(905\) 0 0
\(906\) −0.0520798 + 0.0215722i −0.00173024 + 0.000716687i
\(907\) −0.293142 + 0.707707i −0.00973362 + 0.0234990i −0.928672 0.370903i \(-0.879048\pi\)
0.918938 + 0.394402i \(0.129048\pi\)
\(908\) 8.01678 + 3.32066i 0.266046 + 0.110200i
\(909\) −0.187925 + 0.187925i −0.00623309 + 0.00623309i
\(910\) 0 0
\(911\) 7.79323 + 3.22806i 0.258201 + 0.106951i 0.508029 0.861340i \(-0.330374\pi\)
−0.249828 + 0.968290i \(0.580374\pi\)
\(912\) −8.70425 + 21.0139i −0.288226 + 0.695840i
\(913\) 21.3412 8.83979i 0.706289 0.292555i
\(914\) 0.258405i 0.00854727i
\(915\) 0 0
\(916\) −1.64169 1.64169i −0.0542430 0.0542430i
\(917\) 13.7941 0.455522
\(918\) 1.05524 5.46306i 0.0348281 0.180308i
\(919\) 13.0143 0.429302 0.214651 0.976691i \(-0.431139\pi\)
0.214651 + 0.976691i \(0.431139\pi\)
\(920\) 0 0
\(921\) −9.42915 22.7640i −0.310701 0.750099i
\(922\) 0.0174735i 0.000575458i
\(923\) 1.97294 0.817217i 0.0649400 0.0268990i
\(924\) 4.69918 11.3448i 0.154592 0.373217i
\(925\) 0 0
\(926\) 7.05190 7.05190i 0.231740 0.231740i
\(927\) 0.0774419 0.0774419i 0.00254353 0.00254353i
\(928\) −17.0274 7.05297i −0.558951 0.231525i
\(929\) −9.89198 + 23.8814i −0.324545 + 0.783522i 0.674433 + 0.738336i \(0.264388\pi\)
−0.998979 + 0.0451859i \(0.985612\pi\)
\(930\) 0 0
\(931\) 18.8668i 0.618335i
\(932\) 18.8784 + 45.5764i 0.618382 + 1.49291i
\(933\) −11.6560 11.6560i −0.381601 0.381601i
\(934\) −5.65220 −0.184946
\(935\) 0 0
\(936\) −0.0510746 −0.00166942
\(937\) −0.615699 0.615699i −0.0201140 0.0201140i 0.696978 0.717092i \(-0.254527\pi\)
−0.717092 + 0.696978i \(0.754527\pi\)
\(938\) 1.68903 + 4.07768i 0.0551488 + 0.133141i
\(939\) 5.82007i 0.189931i
\(940\) 0 0
\(941\) 20.4139 49.2834i 0.665473 1.60659i −0.123627 0.992329i \(-0.539453\pi\)
0.789100 0.614265i \(-0.210547\pi\)
\(942\) 3.65332 + 1.51325i 0.119032 + 0.0493045i
\(943\) −11.6943 + 11.6943i −0.380820 + 0.380820i
\(944\) −20.7839 + 20.7839i −0.676458 + 0.676458i
\(945\) 0 0
\(946\) −2.90295 + 7.00834i −0.0943830 + 0.227861i
\(947\) 12.6021 5.21997i 0.409514 0.169626i −0.168409 0.985717i \(-0.553863\pi\)
0.577924 + 0.816091i \(0.303863\pi\)
\(948\) 41.1240i 1.33564i
\(949\) 1.04698 + 2.52764i 0.0339865 + 0.0820506i
\(950\) 0 0
\(951\) −20.0707 −0.650838
\(952\) −5.67902 1.09695i −0.184058 0.0355525i
\(953\) 10.3660 0.335788 0.167894 0.985805i \(-0.446303\pi\)
0.167894 + 0.985805i \(0.446303\pi\)
\(954\) 0.648610 + 0.648610i 0.0209995 + 0.0209995i
\(955\) 0 0
\(956\) 12.0431i 0.389502i
\(957\) 26.3171 10.9009i 0.850711 0.352376i
\(958\) 2.21573 5.34925i 0.0715871 0.172827i
\(959\) 8.73313 + 3.61738i 0.282007 + 0.116811i
\(960\) 0 0
\(961\) 21.7489 21.7489i 0.701577 0.701577i
\(962\) 0.230679 + 0.0955505i 0.00743740 + 0.00308067i
\(963\) 0.758859 1.83205i 0.0244539 0.0590369i
\(964\) 47.9937 19.8796i 1.54577 0.640280i
\(965\) 0 0
\(966\) 0.617983 + 1.49194i 0.0198833 + 0.0480025i
\(967\) 10.1327 + 10.1327i 0.325847 + 0.325847i 0.851005 0.525158i \(-0.175994\pi\)
−0.525158 + 0.851005i \(0.675994\pi\)
\(968\) −3.67050 −0.117974
\(969\) −21.3890 + 14.4637i −0.687113 + 0.464641i
\(970\) 0 0
\(971\) 21.0309 + 21.0309i 0.674913 + 0.674913i 0.958845 0.283931i \(-0.0916388\pi\)
−0.283931 + 0.958845i \(0.591639\pi\)
\(972\) 2.29038 + 5.52946i 0.0734639 + 0.177358i
\(973\) 6.57882i 0.210907i
\(974\) 3.88929 1.61100i 0.124621 0.0516197i
\(975\) 0 0
\(976\) 23.3144 + 9.65712i 0.746274 + 0.309117i
\(977\) −26.2437 + 26.2437i −0.839611 + 0.839611i −0.988808 0.149196i \(-0.952331\pi\)
0.149196 + 0.988808i \(0.452331\pi\)
\(978\) 3.59174 3.59174i 0.114851 0.114851i
\(979\) 28.5955 + 11.8446i 0.913916 + 0.378556i
\(980\) 0 0
\(981\) −2.43617 + 1.00909i −0.0777808 + 0.0322179i
\(982\) 5.24217i 0.167284i
\(983\) 17.7804 + 42.9257i 0.567107 + 1.36912i 0.903983 + 0.427568i \(0.140629\pi\)
−0.336877 + 0.941549i \(0.609371\pi\)
\(984\) 6.83179 + 6.83179i 0.217790 + 0.217790i
\(985\) 0 0
\(986\) −3.69887 5.46991i −0.117796 0.174197i
\(987\) 6.24032 0.198631
\(988\) 0.911949 + 0.911949i 0.0290130 + 0.0290130i
\(989\) 11.9411 + 28.8283i 0.379703 + 0.916685i
\(990\) 0 0
\(991\) −40.9290 + 16.9534i −1.30015 + 0.538541i −0.921996 0.387200i \(-0.873442\pi\)
−0.378158 + 0.925741i \(0.623442\pi\)
\(992\) 0.539738 1.30304i 0.0171367 0.0413717i
\(993\) 28.0833 + 11.6325i 0.891198 + 0.369146i
\(994\) 3.07965 3.07965i 0.0976806 0.0976806i
\(995\) 0 0
\(996\) −25.2385 10.4541i −0.799712 0.331252i
\(997\) 9.42589 22.7561i 0.298521 0.720693i −0.701447 0.712721i \(-0.747462\pi\)
0.999968 0.00797178i \(-0.00253752\pi\)
\(998\) 5.18029 2.14575i 0.163979 0.0679224i
\(999\) 31.1344i 0.985050i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.e.151.3 24
5.2 odd 4 85.2.m.a.49.4 yes 24
5.3 odd 4 85.2.m.a.49.3 24
5.4 even 2 inner 425.2.m.e.151.4 24
15.2 even 4 765.2.bh.b.559.3 24
15.8 even 4 765.2.bh.b.559.4 24
17.5 odd 16 7225.2.a.by.1.14 24
17.8 even 8 inner 425.2.m.e.76.3 24
17.12 odd 16 7225.2.a.by.1.13 24
85.8 odd 8 85.2.m.a.59.4 yes 24
85.12 even 16 1445.2.b.i.579.14 24
85.22 even 16 1445.2.b.i.579.13 24
85.29 odd 16 7225.2.a.by.1.12 24
85.39 odd 16 7225.2.a.by.1.11 24
85.42 odd 8 85.2.m.a.59.3 yes 24
85.59 even 8 inner 425.2.m.e.76.4 24
85.63 even 16 1445.2.b.i.579.11 24
85.73 even 16 1445.2.b.i.579.12 24
255.8 even 8 765.2.bh.b.739.3 24
255.212 even 8 765.2.bh.b.739.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.3 24 5.3 odd 4
85.2.m.a.49.4 yes 24 5.2 odd 4
85.2.m.a.59.3 yes 24 85.42 odd 8
85.2.m.a.59.4 yes 24 85.8 odd 8
425.2.m.e.76.3 24 17.8 even 8 inner
425.2.m.e.76.4 24 85.59 even 8 inner
425.2.m.e.151.3 24 1.1 even 1 trivial
425.2.m.e.151.4 24 5.4 even 2 inner
765.2.bh.b.559.3 24 15.2 even 4
765.2.bh.b.559.4 24 15.8 even 4
765.2.bh.b.739.3 24 255.8 even 8
765.2.bh.b.739.4 24 255.212 even 8
1445.2.b.i.579.11 24 85.63 even 16
1445.2.b.i.579.12 24 85.73 even 16
1445.2.b.i.579.13 24 85.22 even 16
1445.2.b.i.579.14 24 85.12 even 16
7225.2.a.by.1.11 24 85.39 odd 16
7225.2.a.by.1.12 24 85.29 odd 16
7225.2.a.by.1.13 24 17.12 odd 16
7225.2.a.by.1.14 24 17.5 odd 16