Properties

Label 7225.2.a.by.1.11
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.248918 q^{2} -1.64368 q^{3} -1.93804 q^{4} +0.409143 q^{6} -1.43109 q^{7} +0.980251 q^{8} -0.298307 q^{9} +O(q^{10})\) \(q-0.248918 q^{2} -1.64368 q^{3} -1.93804 q^{4} +0.409143 q^{6} -1.43109 q^{7} +0.980251 q^{8} -0.298307 q^{9} +2.69361 q^{11} +3.18552 q^{12} +0.174664 q^{13} +0.356224 q^{14} +3.63208 q^{16} +0.0742541 q^{18} -3.80994 q^{19} +2.35225 q^{21} -0.670490 q^{22} -2.75801 q^{23} -1.61122 q^{24} -0.0434772 q^{26} +5.42137 q^{27} +2.77350 q^{28} -6.43383 q^{29} -0.492358 q^{31} -2.86459 q^{32} -4.42745 q^{33} +0.578130 q^{36} +5.74291 q^{37} +0.948365 q^{38} -0.287093 q^{39} -5.99645 q^{41} -0.585519 q^{42} +11.3138 q^{43} -5.22033 q^{44} +0.686519 q^{46} -2.65291 q^{47} -5.96998 q^{48} -4.95199 q^{49} -0.338506 q^{52} -12.3532 q^{53} -1.34948 q^{54} -1.40282 q^{56} +6.26234 q^{57} +1.60150 q^{58} +8.09258 q^{59} -6.94789 q^{61} +0.122557 q^{62} +0.426903 q^{63} -6.55110 q^{64} +1.10207 q^{66} +12.3901 q^{67} +4.53329 q^{69} +12.2263 q^{71} -0.292415 q^{72} +15.6637 q^{73} -1.42952 q^{74} +7.38382 q^{76} -3.85480 q^{77} +0.0714627 q^{78} +12.9096 q^{79} -8.01609 q^{81} +1.49263 q^{82} -8.57565 q^{83} -4.55876 q^{84} -2.81621 q^{86} +10.5752 q^{87} +2.64042 q^{88} +11.4907 q^{89} -0.249960 q^{91} +5.34513 q^{92} +0.809280 q^{93} +0.660358 q^{94} +4.70848 q^{96} +2.29892 q^{97} +1.23264 q^{98} -0.803523 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 8 q^{4} - 8 q^{9} - 8 q^{16} - 16 q^{19} - 32 q^{21} - 48 q^{26} + 8 q^{36} - 56 q^{49} - 64 q^{59} - 104 q^{64} - 16 q^{66} - 32 q^{69} - 48 q^{76} - 88 q^{81} - 96 q^{84} - 112 q^{89} - 128 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.248918 −0.176012 −0.0880060 0.996120i \(-0.528049\pi\)
−0.0880060 + 0.996120i \(0.528049\pi\)
\(3\) −1.64368 −0.948981 −0.474490 0.880261i \(-0.657368\pi\)
−0.474490 + 0.880261i \(0.657368\pi\)
\(4\) −1.93804 −0.969020
\(5\) 0 0
\(6\) 0.409143 0.167032
\(7\) −1.43109 −0.540900 −0.270450 0.962734i \(-0.587172\pi\)
−0.270450 + 0.962734i \(0.587172\pi\)
\(8\) 0.980251 0.346571
\(9\) −0.298307 −0.0994356
\(10\) 0 0
\(11\) 2.69361 0.812155 0.406077 0.913839i \(-0.366896\pi\)
0.406077 + 0.913839i \(0.366896\pi\)
\(12\) 3.18552 0.919581
\(13\) 0.174664 0.0484432 0.0242216 0.999707i \(-0.492289\pi\)
0.0242216 + 0.999707i \(0.492289\pi\)
\(14\) 0.356224 0.0952049
\(15\) 0 0
\(16\) 3.63208 0.908019
\(17\) 0 0
\(18\) 0.0742541 0.0175019
\(19\) −3.80994 −0.874061 −0.437031 0.899447i \(-0.643970\pi\)
−0.437031 + 0.899447i \(0.643970\pi\)
\(20\) 0 0
\(21\) 2.35225 0.513304
\(22\) −0.670490 −0.142949
\(23\) −2.75801 −0.575085 −0.287542 0.957768i \(-0.592838\pi\)
−0.287542 + 0.957768i \(0.592838\pi\)
\(24\) −1.61122 −0.328889
\(25\) 0 0
\(26\) −0.0434772 −0.00852658
\(27\) 5.42137 1.04334
\(28\) 2.77350 0.524143
\(29\) −6.43383 −1.19473 −0.597366 0.801969i \(-0.703786\pi\)
−0.597366 + 0.801969i \(0.703786\pi\)
\(30\) 0 0
\(31\) −0.492358 −0.0884300 −0.0442150 0.999022i \(-0.514079\pi\)
−0.0442150 + 0.999022i \(0.514079\pi\)
\(32\) −2.86459 −0.506393
\(33\) −4.42745 −0.770719
\(34\) 0 0
\(35\) 0 0
\(36\) 0.578130 0.0963551
\(37\) 5.74291 0.944128 0.472064 0.881564i \(-0.343509\pi\)
0.472064 + 0.881564i \(0.343509\pi\)
\(38\) 0.948365 0.153845
\(39\) −0.287093 −0.0459716
\(40\) 0 0
\(41\) −5.99645 −0.936489 −0.468244 0.883599i \(-0.655113\pi\)
−0.468244 + 0.883599i \(0.655113\pi\)
\(42\) −0.585519 −0.0903476
\(43\) 11.3138 1.72533 0.862667 0.505772i \(-0.168792\pi\)
0.862667 + 0.505772i \(0.168792\pi\)
\(44\) −5.22033 −0.786994
\(45\) 0 0
\(46\) 0.686519 0.101222
\(47\) −2.65291 −0.386967 −0.193483 0.981104i \(-0.561979\pi\)
−0.193483 + 0.981104i \(0.561979\pi\)
\(48\) −5.96998 −0.861693
\(49\) −4.95199 −0.707427
\(50\) 0 0
\(51\) 0 0
\(52\) −0.338506 −0.0469424
\(53\) −12.3532 −1.69684 −0.848419 0.529326i \(-0.822445\pi\)
−0.848419 + 0.529326i \(0.822445\pi\)
\(54\) −1.34948 −0.183641
\(55\) 0 0
\(56\) −1.40282 −0.187460
\(57\) 6.26234 0.829467
\(58\) 1.60150 0.210287
\(59\) 8.09258 1.05356 0.526782 0.850000i \(-0.323398\pi\)
0.526782 + 0.850000i \(0.323398\pi\)
\(60\) 0 0
\(61\) −6.94789 −0.889587 −0.444793 0.895633i \(-0.646723\pi\)
−0.444793 + 0.895633i \(0.646723\pi\)
\(62\) 0.122557 0.0155647
\(63\) 0.426903 0.0537847
\(64\) −6.55110 −0.818888
\(65\) 0 0
\(66\) 1.10207 0.135656
\(67\) 12.3901 1.51369 0.756845 0.653594i \(-0.226740\pi\)
0.756845 + 0.653594i \(0.226740\pi\)
\(68\) 0 0
\(69\) 4.53329 0.545744
\(70\) 0 0
\(71\) 12.2263 1.45099 0.725494 0.688228i \(-0.241611\pi\)
0.725494 + 0.688228i \(0.241611\pi\)
\(72\) −0.292415 −0.0344615
\(73\) 15.6637 1.83330 0.916651 0.399690i \(-0.130882\pi\)
0.916651 + 0.399690i \(0.130882\pi\)
\(74\) −1.42952 −0.166178
\(75\) 0 0
\(76\) 7.38382 0.846983
\(77\) −3.85480 −0.439295
\(78\) 0.0714627 0.00809156
\(79\) 12.9096 1.45245 0.726224 0.687458i \(-0.241273\pi\)
0.726224 + 0.687458i \(0.241273\pi\)
\(80\) 0 0
\(81\) −8.01609 −0.890677
\(82\) 1.49263 0.164833
\(83\) −8.57565 −0.941300 −0.470650 0.882320i \(-0.655981\pi\)
−0.470650 + 0.882320i \(0.655981\pi\)
\(84\) −4.55876 −0.497401
\(85\) 0 0
\(86\) −2.81621 −0.303679
\(87\) 10.5752 1.13378
\(88\) 2.64042 0.281469
\(89\) 11.4907 1.21801 0.609006 0.793165i \(-0.291568\pi\)
0.609006 + 0.793165i \(0.291568\pi\)
\(90\) 0 0
\(91\) −0.249960 −0.0262029
\(92\) 5.34513 0.557268
\(93\) 0.809280 0.0839184
\(94\) 0.660358 0.0681108
\(95\) 0 0
\(96\) 4.70848 0.480557
\(97\) 2.29892 0.233419 0.116710 0.993166i \(-0.462765\pi\)
0.116710 + 0.993166i \(0.462765\pi\)
\(98\) 1.23264 0.124516
\(99\) −0.803523 −0.0807571
\(100\) 0 0
\(101\) 0.890917 0.0886495 0.0443248 0.999017i \(-0.485886\pi\)
0.0443248 + 0.999017i \(0.485886\pi\)
\(102\) 0 0
\(103\) −0.367137 −0.0361751 −0.0180875 0.999836i \(-0.505758\pi\)
−0.0180875 + 0.999836i \(0.505758\pi\)
\(104\) 0.171215 0.0167890
\(105\) 0 0
\(106\) 3.07493 0.298664
\(107\) 6.64750 0.642638 0.321319 0.946971i \(-0.395874\pi\)
0.321319 + 0.946971i \(0.395874\pi\)
\(108\) −10.5068 −1.01102
\(109\) 8.83952 0.846672 0.423336 0.905973i \(-0.360859\pi\)
0.423336 + 0.905973i \(0.360859\pi\)
\(110\) 0 0
\(111\) −9.43952 −0.895960
\(112\) −5.19782 −0.491148
\(113\) 5.71314 0.537447 0.268723 0.963217i \(-0.413398\pi\)
0.268723 + 0.963217i \(0.413398\pi\)
\(114\) −1.55881 −0.145996
\(115\) 0 0
\(116\) 12.4690 1.15772
\(117\) −0.0521036 −0.00481698
\(118\) −2.01439 −0.185440
\(119\) 0 0
\(120\) 0 0
\(121\) −3.74445 −0.340404
\(122\) 1.72946 0.156578
\(123\) 9.85627 0.888710
\(124\) 0.954208 0.0856904
\(125\) 0 0
\(126\) −0.106264 −0.00946675
\(127\) −16.3468 −1.45055 −0.725273 0.688461i \(-0.758287\pi\)
−0.725273 + 0.688461i \(0.758287\pi\)
\(128\) 7.35987 0.650527
\(129\) −18.5963 −1.63731
\(130\) 0 0
\(131\) −9.63890 −0.842155 −0.421077 0.907025i \(-0.638348\pi\)
−0.421077 + 0.907025i \(0.638348\pi\)
\(132\) 8.58057 0.746842
\(133\) 5.45236 0.472780
\(134\) −3.08412 −0.266427
\(135\) 0 0
\(136\) 0 0
\(137\) 6.60524 0.564324 0.282162 0.959367i \(-0.408948\pi\)
0.282162 + 0.959367i \(0.408948\pi\)
\(138\) −1.12842 −0.0960575
\(139\) −4.59708 −0.389919 −0.194960 0.980811i \(-0.562458\pi\)
−0.194960 + 0.980811i \(0.562458\pi\)
\(140\) 0 0
\(141\) 4.36054 0.367224
\(142\) −3.04334 −0.255391
\(143\) 0.470478 0.0393434
\(144\) −1.08347 −0.0902894
\(145\) 0 0
\(146\) −3.89899 −0.322683
\(147\) 8.13950 0.671335
\(148\) −11.1300 −0.914879
\(149\) −11.6404 −0.953619 −0.476810 0.879007i \(-0.658207\pi\)
−0.476810 + 0.879007i \(0.658207\pi\)
\(150\) 0 0
\(151\) 0.137778 0.0112122 0.00560609 0.999984i \(-0.498216\pi\)
0.00560609 + 0.999984i \(0.498216\pi\)
\(152\) −3.73470 −0.302924
\(153\) 0 0
\(154\) 0.959530 0.0773211
\(155\) 0 0
\(156\) 0.556397 0.0445474
\(157\) 9.66489 0.771343 0.385671 0.922636i \(-0.373970\pi\)
0.385671 + 0.922636i \(0.373970\pi\)
\(158\) −3.21345 −0.255648
\(159\) 20.3047 1.61027
\(160\) 0 0
\(161\) 3.94695 0.311063
\(162\) 1.99535 0.156770
\(163\) 12.4150 0.972415 0.486207 0.873843i \(-0.338380\pi\)
0.486207 + 0.873843i \(0.338380\pi\)
\(164\) 11.6214 0.907476
\(165\) 0 0
\(166\) 2.13464 0.165680
\(167\) −4.18747 −0.324036 −0.162018 0.986788i \(-0.551800\pi\)
−0.162018 + 0.986788i \(0.551800\pi\)
\(168\) 2.30580 0.177896
\(169\) −12.9695 −0.997653
\(170\) 0 0
\(171\) 1.13653 0.0869128
\(172\) −21.9265 −1.67188
\(173\) 2.95493 0.224659 0.112329 0.993671i \(-0.464169\pi\)
0.112329 + 0.993671i \(0.464169\pi\)
\(174\) −2.63235 −0.199558
\(175\) 0 0
\(176\) 9.78341 0.737452
\(177\) −13.3016 −0.999812
\(178\) −2.86025 −0.214385
\(179\) −23.2764 −1.73976 −0.869878 0.493267i \(-0.835803\pi\)
−0.869878 + 0.493267i \(0.835803\pi\)
\(180\) 0 0
\(181\) 11.4203 0.848866 0.424433 0.905459i \(-0.360474\pi\)
0.424433 + 0.905459i \(0.360474\pi\)
\(182\) 0.0622196 0.00461203
\(183\) 11.4201 0.844200
\(184\) −2.70354 −0.199308
\(185\) 0 0
\(186\) −0.201445 −0.0147706
\(187\) 0 0
\(188\) 5.14145 0.374978
\(189\) −7.75845 −0.564344
\(190\) 0 0
\(191\) 3.08201 0.223007 0.111503 0.993764i \(-0.464433\pi\)
0.111503 + 0.993764i \(0.464433\pi\)
\(192\) 10.7679 0.777109
\(193\) 15.9856 1.15067 0.575335 0.817918i \(-0.304872\pi\)
0.575335 + 0.817918i \(0.304872\pi\)
\(194\) −0.572242 −0.0410846
\(195\) 0 0
\(196\) 9.59715 0.685511
\(197\) 10.6736 0.760460 0.380230 0.924892i \(-0.375845\pi\)
0.380230 + 0.924892i \(0.375845\pi\)
\(198\) 0.200012 0.0142142
\(199\) −15.8394 −1.12282 −0.561412 0.827536i \(-0.689742\pi\)
−0.561412 + 0.827536i \(0.689742\pi\)
\(200\) 0 0
\(201\) −20.3654 −1.43646
\(202\) −0.221766 −0.0156034
\(203\) 9.20737 0.646230
\(204\) 0 0
\(205\) 0 0
\(206\) 0.0913871 0.00636724
\(207\) 0.822733 0.0571839
\(208\) 0.634394 0.0439873
\(209\) −10.2625 −0.709873
\(210\) 0 0
\(211\) 4.91960 0.338679 0.169340 0.985558i \(-0.445836\pi\)
0.169340 + 0.985558i \(0.445836\pi\)
\(212\) 23.9409 1.64427
\(213\) −20.0961 −1.37696
\(214\) −1.65468 −0.113112
\(215\) 0 0
\(216\) 5.31430 0.361592
\(217\) 0.704606 0.0478318
\(218\) −2.20032 −0.149024
\(219\) −25.7462 −1.73977
\(220\) 0 0
\(221\) 0 0
\(222\) 2.34967 0.157700
\(223\) 10.0439 0.672589 0.336294 0.941757i \(-0.390826\pi\)
0.336294 + 0.941757i \(0.390826\pi\)
\(224\) 4.09948 0.273908
\(225\) 0 0
\(226\) −1.42211 −0.0945971
\(227\) −4.47736 −0.297173 −0.148586 0.988899i \(-0.547472\pi\)
−0.148586 + 0.988899i \(0.547472\pi\)
\(228\) −12.1367 −0.803770
\(229\) 1.19796 0.0791636 0.0395818 0.999216i \(-0.487397\pi\)
0.0395818 + 0.999216i \(0.487397\pi\)
\(230\) 0 0
\(231\) 6.33606 0.416882
\(232\) −6.30676 −0.414059
\(233\) 25.4544 1.66757 0.833785 0.552089i \(-0.186169\pi\)
0.833785 + 0.552089i \(0.186169\pi\)
\(234\) 0.0129695 0.000847845 0
\(235\) 0 0
\(236\) −15.6837 −1.02092
\(237\) −21.2194 −1.37835
\(238\) 0 0
\(239\) −6.21407 −0.401955 −0.200977 0.979596i \(-0.564412\pi\)
−0.200977 + 0.979596i \(0.564412\pi\)
\(240\) 0 0
\(241\) −26.8044 −1.72662 −0.863312 0.504671i \(-0.831614\pi\)
−0.863312 + 0.504671i \(0.831614\pi\)
\(242\) 0.932062 0.0599152
\(243\) −3.08820 −0.198108
\(244\) 13.4653 0.862027
\(245\) 0 0
\(246\) −2.45341 −0.156423
\(247\) −0.665461 −0.0423423
\(248\) −0.482634 −0.0306473
\(249\) 14.0957 0.893276
\(250\) 0 0
\(251\) −10.6052 −0.669394 −0.334697 0.942326i \(-0.608634\pi\)
−0.334697 + 0.942326i \(0.608634\pi\)
\(252\) −0.827355 −0.0521185
\(253\) −7.42901 −0.467058
\(254\) 4.06903 0.255313
\(255\) 0 0
\(256\) 11.2702 0.704387
\(257\) 1.54024 0.0960773 0.0480386 0.998845i \(-0.484703\pi\)
0.0480386 + 0.998845i \(0.484703\pi\)
\(258\) 4.62895 0.288186
\(259\) −8.21860 −0.510679
\(260\) 0 0
\(261\) 1.91925 0.118799
\(262\) 2.39930 0.148229
\(263\) 0.426435 0.0262951 0.0131476 0.999914i \(-0.495815\pi\)
0.0131476 + 0.999914i \(0.495815\pi\)
\(264\) −4.34001 −0.267109
\(265\) 0 0
\(266\) −1.35719 −0.0832149
\(267\) −18.8871 −1.15587
\(268\) −24.0125 −1.46680
\(269\) 17.1047 1.04289 0.521447 0.853284i \(-0.325392\pi\)
0.521447 + 0.853284i \(0.325392\pi\)
\(270\) 0 0
\(271\) −16.0704 −0.976208 −0.488104 0.872785i \(-0.662311\pi\)
−0.488104 + 0.872785i \(0.662311\pi\)
\(272\) 0 0
\(273\) 0.410855 0.0248661
\(274\) −1.64417 −0.0993277
\(275\) 0 0
\(276\) −8.78570 −0.528837
\(277\) −16.7628 −1.00718 −0.503588 0.863944i \(-0.667987\pi\)
−0.503588 + 0.863944i \(0.667987\pi\)
\(278\) 1.14430 0.0686305
\(279\) 0.146874 0.00879309
\(280\) 0 0
\(281\) −7.83833 −0.467596 −0.233798 0.972285i \(-0.575115\pi\)
−0.233798 + 0.972285i \(0.575115\pi\)
\(282\) −1.08542 −0.0646358
\(283\) −6.58054 −0.391173 −0.195586 0.980686i \(-0.562661\pi\)
−0.195586 + 0.980686i \(0.562661\pi\)
\(284\) −23.6950 −1.40604
\(285\) 0 0
\(286\) −0.117111 −0.00692490
\(287\) 8.58145 0.506547
\(288\) 0.854527 0.0503535
\(289\) 0 0
\(290\) 0 0
\(291\) −3.77869 −0.221511
\(292\) −30.3569 −1.77651
\(293\) 3.15115 0.184092 0.0920461 0.995755i \(-0.470659\pi\)
0.0920461 + 0.995755i \(0.470659\pi\)
\(294\) −2.02607 −0.118163
\(295\) 0 0
\(296\) 5.62949 0.327207
\(297\) 14.6031 0.847356
\(298\) 2.89751 0.167848
\(299\) −0.481726 −0.0278589
\(300\) 0 0
\(301\) −16.1910 −0.933233
\(302\) −0.0342954 −0.00197348
\(303\) −1.46438 −0.0841267
\(304\) −13.8380 −0.793664
\(305\) 0 0
\(306\) 0 0
\(307\) −14.9905 −0.855551 −0.427775 0.903885i \(-0.640703\pi\)
−0.427775 + 0.903885i \(0.640703\pi\)
\(308\) 7.47075 0.425685
\(309\) 0.603457 0.0343294
\(310\) 0 0
\(311\) −10.0288 −0.568678 −0.284339 0.958724i \(-0.591774\pi\)
−0.284339 + 0.958724i \(0.591774\pi\)
\(312\) −0.281423 −0.0159324
\(313\) 3.54087 0.200142 0.100071 0.994980i \(-0.468093\pi\)
0.100071 + 0.994980i \(0.468093\pi\)
\(314\) −2.40577 −0.135765
\(315\) 0 0
\(316\) −25.0194 −1.40745
\(317\) −12.2108 −0.685829 −0.342914 0.939367i \(-0.611414\pi\)
−0.342914 + 0.939367i \(0.611414\pi\)
\(318\) −5.05421 −0.283426
\(319\) −17.3302 −0.970307
\(320\) 0 0
\(321\) −10.9264 −0.609851
\(322\) −0.982469 −0.0547508
\(323\) 0 0
\(324\) 15.5355 0.863084
\(325\) 0 0
\(326\) −3.09031 −0.171157
\(327\) −14.5294 −0.803475
\(328\) −5.87803 −0.324560
\(329\) 3.79655 0.209310
\(330\) 0 0
\(331\) −18.4933 −1.01649 −0.508243 0.861214i \(-0.669705\pi\)
−0.508243 + 0.861214i \(0.669705\pi\)
\(332\) 16.6200 0.912139
\(333\) −1.71315 −0.0938800
\(334\) 1.04234 0.0570343
\(335\) 0 0
\(336\) 8.54356 0.466090
\(337\) −18.4415 −1.00457 −0.502287 0.864701i \(-0.667508\pi\)
−0.502287 + 0.864701i \(0.667508\pi\)
\(338\) 3.22835 0.175599
\(339\) −9.39059 −0.510027
\(340\) 0 0
\(341\) −1.32622 −0.0718189
\(342\) −0.282904 −0.0152977
\(343\) 17.1043 0.923547
\(344\) 11.0903 0.597951
\(345\) 0 0
\(346\) −0.735536 −0.0395427
\(347\) 5.07535 0.272459 0.136229 0.990677i \(-0.456502\pi\)
0.136229 + 0.990677i \(0.456502\pi\)
\(348\) −20.4951 −1.09865
\(349\) −24.4627 −1.30946 −0.654730 0.755863i \(-0.727218\pi\)
−0.654730 + 0.755863i \(0.727218\pi\)
\(350\) 0 0
\(351\) 0.946920 0.0505429
\(352\) −7.71610 −0.411270
\(353\) 17.5325 0.933161 0.466580 0.884479i \(-0.345486\pi\)
0.466580 + 0.884479i \(0.345486\pi\)
\(354\) 3.31102 0.175979
\(355\) 0 0
\(356\) −22.2695 −1.18028
\(357\) 0 0
\(358\) 5.79391 0.306218
\(359\) −2.01791 −0.106501 −0.0532505 0.998581i \(-0.516958\pi\)
−0.0532505 + 0.998581i \(0.516958\pi\)
\(360\) 0 0
\(361\) −4.48433 −0.236017
\(362\) −2.84273 −0.149410
\(363\) 6.15468 0.323037
\(364\) 0.484432 0.0253911
\(365\) 0 0
\(366\) −2.84268 −0.148589
\(367\) −32.4048 −1.69152 −0.845758 0.533567i \(-0.820851\pi\)
−0.845758 + 0.533567i \(0.820851\pi\)
\(368\) −10.0173 −0.522188
\(369\) 1.78878 0.0931203
\(370\) 0 0
\(371\) 17.6785 0.917819
\(372\) −1.56842 −0.0813186
\(373\) 20.6108 1.06719 0.533593 0.845741i \(-0.320841\pi\)
0.533593 + 0.845741i \(0.320841\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −2.60052 −0.134111
\(377\) −1.12376 −0.0578766
\(378\) 1.93122 0.0993313
\(379\) 16.6023 0.852803 0.426402 0.904534i \(-0.359781\pi\)
0.426402 + 0.904534i \(0.359781\pi\)
\(380\) 0 0
\(381\) 26.8690 1.37654
\(382\) −0.767169 −0.0392518
\(383\) −23.2319 −1.18709 −0.593546 0.804800i \(-0.702273\pi\)
−0.593546 + 0.804800i \(0.702273\pi\)
\(384\) −12.0973 −0.617338
\(385\) 0 0
\(386\) −3.97912 −0.202532
\(387\) −3.37498 −0.171560
\(388\) −4.45539 −0.226188
\(389\) −36.6648 −1.85898 −0.929490 0.368849i \(-0.879752\pi\)
−0.929490 + 0.368849i \(0.879752\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −4.85419 −0.245174
\(393\) 15.8433 0.799189
\(394\) −2.65685 −0.133850
\(395\) 0 0
\(396\) 1.55726 0.0782553
\(397\) −9.81212 −0.492456 −0.246228 0.969212i \(-0.579191\pi\)
−0.246228 + 0.969212i \(0.579191\pi\)
\(398\) 3.94272 0.197630
\(399\) −8.96195 −0.448659
\(400\) 0 0
\(401\) 21.4897 1.07314 0.536572 0.843854i \(-0.319719\pi\)
0.536572 + 0.843854i \(0.319719\pi\)
\(402\) 5.06932 0.252835
\(403\) −0.0859973 −0.00428383
\(404\) −1.72663 −0.0859032
\(405\) 0 0
\(406\) −2.29188 −0.113744
\(407\) 15.4692 0.766779
\(408\) 0 0
\(409\) 31.2735 1.54638 0.773189 0.634176i \(-0.218661\pi\)
0.773189 + 0.634176i \(0.218661\pi\)
\(410\) 0 0
\(411\) −10.8569 −0.535532
\(412\) 0.711526 0.0350544
\(413\) −11.5812 −0.569873
\(414\) −0.204793 −0.0100650
\(415\) 0 0
\(416\) −0.500342 −0.0245313
\(417\) 7.55614 0.370026
\(418\) 2.55453 0.124946
\(419\) 20.3462 0.993976 0.496988 0.867757i \(-0.334439\pi\)
0.496988 + 0.867757i \(0.334439\pi\)
\(420\) 0 0
\(421\) 1.80862 0.0881467 0.0440733 0.999028i \(-0.485966\pi\)
0.0440733 + 0.999028i \(0.485966\pi\)
\(422\) −1.22458 −0.0596116
\(423\) 0.791381 0.0384783
\(424\) −12.1092 −0.588075
\(425\) 0 0
\(426\) 5.00228 0.242361
\(427\) 9.94304 0.481177
\(428\) −12.8831 −0.622729
\(429\) −0.773317 −0.0373361
\(430\) 0 0
\(431\) −16.6638 −0.802665 −0.401333 0.915932i \(-0.631453\pi\)
−0.401333 + 0.915932i \(0.631453\pi\)
\(432\) 19.6908 0.947376
\(433\) 16.3183 0.784209 0.392104 0.919921i \(-0.371747\pi\)
0.392104 + 0.919921i \(0.371747\pi\)
\(434\) −0.175390 −0.00841897
\(435\) 0 0
\(436\) −17.1313 −0.820442
\(437\) 10.5079 0.502659
\(438\) 6.40870 0.306220
\(439\) −24.0274 −1.14677 −0.573383 0.819288i \(-0.694369\pi\)
−0.573383 + 0.819288i \(0.694369\pi\)
\(440\) 0 0
\(441\) 1.47721 0.0703434
\(442\) 0 0
\(443\) −21.2757 −1.01084 −0.505419 0.862874i \(-0.668662\pi\)
−0.505419 + 0.862874i \(0.668662\pi\)
\(444\) 18.2942 0.868203
\(445\) 0 0
\(446\) −2.50011 −0.118384
\(447\) 19.1331 0.904966
\(448\) 9.37520 0.442937
\(449\) 29.2011 1.37808 0.689042 0.724721i \(-0.258031\pi\)
0.689042 + 0.724721i \(0.258031\pi\)
\(450\) 0 0
\(451\) −16.1521 −0.760574
\(452\) −11.0723 −0.520797
\(453\) −0.226463 −0.0106402
\(454\) 1.11450 0.0523059
\(455\) 0 0
\(456\) 6.13866 0.287469
\(457\) 1.03811 0.0485608 0.0242804 0.999705i \(-0.492271\pi\)
0.0242804 + 0.999705i \(0.492271\pi\)
\(458\) −0.298195 −0.0139337
\(459\) 0 0
\(460\) 0 0
\(461\) −0.0701975 −0.00326943 −0.00163471 0.999999i \(-0.500520\pi\)
−0.00163471 + 0.999999i \(0.500520\pi\)
\(462\) −1.57716 −0.0733762
\(463\) −40.0649 −1.86197 −0.930987 0.365051i \(-0.881051\pi\)
−0.930987 + 0.365051i \(0.881051\pi\)
\(464\) −23.3682 −1.08484
\(465\) 0 0
\(466\) −6.33606 −0.293512
\(467\) −22.7070 −1.05076 −0.525378 0.850869i \(-0.676076\pi\)
−0.525378 + 0.850869i \(0.676076\pi\)
\(468\) 0.100979 0.00466775
\(469\) −17.7313 −0.818755
\(470\) 0 0
\(471\) −15.8860 −0.731989
\(472\) 7.93276 0.365135
\(473\) 30.4749 1.40124
\(474\) 5.28189 0.242605
\(475\) 0 0
\(476\) 0 0
\(477\) 3.68503 0.168726
\(478\) 1.54680 0.0707488
\(479\) −23.2606 −1.06280 −0.531402 0.847120i \(-0.678335\pi\)
−0.531402 + 0.847120i \(0.678335\pi\)
\(480\) 0 0
\(481\) 1.00308 0.0457366
\(482\) 6.67211 0.303906
\(483\) −6.48753 −0.295193
\(484\) 7.25689 0.329859
\(485\) 0 0
\(486\) 0.768709 0.0348694
\(487\) 16.9121 0.766362 0.383181 0.923673i \(-0.374829\pi\)
0.383181 + 0.923673i \(0.374829\pi\)
\(488\) −6.81068 −0.308305
\(489\) −20.4063 −0.922803
\(490\) 0 0
\(491\) −21.0598 −0.950416 −0.475208 0.879874i \(-0.657627\pi\)
−0.475208 + 0.879874i \(0.657627\pi\)
\(492\) −19.1018 −0.861177
\(493\) 0 0
\(494\) 0.165646 0.00745275
\(495\) 0 0
\(496\) −1.78828 −0.0802962
\(497\) −17.4968 −0.784840
\(498\) −3.50867 −0.157227
\(499\) 22.5259 1.00840 0.504198 0.863588i \(-0.331788\pi\)
0.504198 + 0.863588i \(0.331788\pi\)
\(500\) 0 0
\(501\) 6.88288 0.307504
\(502\) 2.63983 0.117821
\(503\) −29.0221 −1.29403 −0.647015 0.762477i \(-0.723983\pi\)
−0.647015 + 0.762477i \(0.723983\pi\)
\(504\) 0.418472 0.0186402
\(505\) 0 0
\(506\) 1.84922 0.0822077
\(507\) 21.3177 0.946754
\(508\) 31.6808 1.40561
\(509\) −4.38401 −0.194318 −0.0971589 0.995269i \(-0.530976\pi\)
−0.0971589 + 0.995269i \(0.530976\pi\)
\(510\) 0 0
\(511\) −22.4162 −0.991633
\(512\) −17.5251 −0.774508
\(513\) −20.6551 −0.911946
\(514\) −0.383393 −0.0169107
\(515\) 0 0
\(516\) 36.0403 1.58658
\(517\) −7.14592 −0.314277
\(518\) 2.04576 0.0898856
\(519\) −4.85696 −0.213197
\(520\) 0 0
\(521\) −3.19433 −0.139946 −0.0699732 0.997549i \(-0.522291\pi\)
−0.0699732 + 0.997549i \(0.522291\pi\)
\(522\) −0.477738 −0.0209100
\(523\) −34.0520 −1.48899 −0.744494 0.667629i \(-0.767309\pi\)
−0.744494 + 0.667629i \(0.767309\pi\)
\(524\) 18.6806 0.816065
\(525\) 0 0
\(526\) −0.106148 −0.00462825
\(527\) 0 0
\(528\) −16.0808 −0.699828
\(529\) −15.3934 −0.669278
\(530\) 0 0
\(531\) −2.41407 −0.104762
\(532\) −10.5669 −0.458133
\(533\) −1.04737 −0.0453665
\(534\) 4.70134 0.203447
\(535\) 0 0
\(536\) 12.1454 0.524601
\(537\) 38.2589 1.65100
\(538\) −4.25768 −0.183562
\(539\) −13.3387 −0.574540
\(540\) 0 0
\(541\) −27.0686 −1.16377 −0.581885 0.813271i \(-0.697685\pi\)
−0.581885 + 0.813271i \(0.697685\pi\)
\(542\) 4.00022 0.171824
\(543\) −18.7714 −0.805557
\(544\) 0 0
\(545\) 0 0
\(546\) −0.102269 −0.00437672
\(547\) 13.5320 0.578588 0.289294 0.957240i \(-0.406579\pi\)
0.289294 + 0.957240i \(0.406579\pi\)
\(548\) −12.8012 −0.546841
\(549\) 2.07260 0.0884566
\(550\) 0 0
\(551\) 24.5125 1.04427
\(552\) 4.44376 0.189139
\(553\) −18.4748 −0.785629
\(554\) 4.17256 0.177275
\(555\) 0 0
\(556\) 8.90933 0.377840
\(557\) −30.5182 −1.29310 −0.646548 0.762873i \(-0.723788\pi\)
−0.646548 + 0.762873i \(0.723788\pi\)
\(558\) −0.0365595 −0.00154769
\(559\) 1.97611 0.0835807
\(560\) 0 0
\(561\) 0 0
\(562\) 1.95111 0.0823024
\(563\) 8.10847 0.341731 0.170866 0.985294i \(-0.445344\pi\)
0.170866 + 0.985294i \(0.445344\pi\)
\(564\) −8.45091 −0.355847
\(565\) 0 0
\(566\) 1.63802 0.0688510
\(567\) 11.4717 0.481767
\(568\) 11.9848 0.502871
\(569\) 3.83428 0.160741 0.0803706 0.996765i \(-0.474390\pi\)
0.0803706 + 0.996765i \(0.474390\pi\)
\(570\) 0 0
\(571\) 6.56720 0.274829 0.137414 0.990514i \(-0.456121\pi\)
0.137414 + 0.990514i \(0.456121\pi\)
\(572\) −0.911805 −0.0381245
\(573\) −5.06585 −0.211629
\(574\) −2.13608 −0.0891583
\(575\) 0 0
\(576\) 1.95424 0.0814266
\(577\) 23.2880 0.969493 0.484746 0.874655i \(-0.338912\pi\)
0.484746 + 0.874655i \(0.338912\pi\)
\(578\) 0 0
\(579\) −26.2753 −1.09196
\(580\) 0 0
\(581\) 12.2725 0.509149
\(582\) 0.940585 0.0389885
\(583\) −33.2746 −1.37809
\(584\) 15.3544 0.635369
\(585\) 0 0
\(586\) −0.784379 −0.0324024
\(587\) −36.7815 −1.51814 −0.759068 0.651011i \(-0.774345\pi\)
−0.759068 + 0.651011i \(0.774345\pi\)
\(588\) −15.7747 −0.650537
\(589\) 1.87585 0.0772932
\(590\) 0 0
\(591\) −17.5440 −0.721662
\(592\) 20.8587 0.857287
\(593\) 27.0504 1.11083 0.555414 0.831574i \(-0.312560\pi\)
0.555414 + 0.831574i \(0.312560\pi\)
\(594\) −3.63497 −0.149145
\(595\) 0 0
\(596\) 22.5596 0.924076
\(597\) 26.0349 1.06554
\(598\) 0.119910 0.00490350
\(599\) 12.2973 0.502456 0.251228 0.967928i \(-0.419166\pi\)
0.251228 + 0.967928i \(0.419166\pi\)
\(600\) 0 0
\(601\) 8.07150 0.329243 0.164622 0.986357i \(-0.447360\pi\)
0.164622 + 0.986357i \(0.447360\pi\)
\(602\) 4.03024 0.164260
\(603\) −3.69605 −0.150515
\(604\) −0.267019 −0.0108648
\(605\) 0 0
\(606\) 0.364512 0.0148073
\(607\) 24.1032 0.978317 0.489158 0.872195i \(-0.337304\pi\)
0.489158 + 0.872195i \(0.337304\pi\)
\(608\) 10.9139 0.442619
\(609\) −15.1340 −0.613260
\(610\) 0 0
\(611\) −0.463369 −0.0187459
\(612\) 0 0
\(613\) 39.8359 1.60896 0.804478 0.593983i \(-0.202445\pi\)
0.804478 + 0.593983i \(0.202445\pi\)
\(614\) 3.73140 0.150587
\(615\) 0 0
\(616\) −3.77867 −0.152247
\(617\) −25.7956 −1.03849 −0.519246 0.854625i \(-0.673787\pi\)
−0.519246 + 0.854625i \(0.673787\pi\)
\(618\) −0.150211 −0.00604239
\(619\) −3.76840 −0.151465 −0.0757323 0.997128i \(-0.524129\pi\)
−0.0757323 + 0.997128i \(0.524129\pi\)
\(620\) 0 0
\(621\) −14.9522 −0.600011
\(622\) 2.49634 0.100094
\(623\) −16.4442 −0.658823
\(624\) −1.04274 −0.0417431
\(625\) 0 0
\(626\) −0.881389 −0.0352274
\(627\) 16.8683 0.673656
\(628\) −18.7309 −0.747446
\(629\) 0 0
\(630\) 0 0
\(631\) −19.3142 −0.768887 −0.384444 0.923148i \(-0.625607\pi\)
−0.384444 + 0.923148i \(0.625607\pi\)
\(632\) 12.6547 0.503376
\(633\) −8.08627 −0.321400
\(634\) 3.03950 0.120714
\(635\) 0 0
\(636\) −39.3513 −1.56038
\(637\) −0.864936 −0.0342700
\(638\) 4.31382 0.170786
\(639\) −3.64717 −0.144280
\(640\) 0 0
\(641\) 20.6563 0.815875 0.407938 0.913010i \(-0.366248\pi\)
0.407938 + 0.913010i \(0.366248\pi\)
\(642\) 2.71978 0.107341
\(643\) −29.0196 −1.14442 −0.572211 0.820107i \(-0.693914\pi\)
−0.572211 + 0.820107i \(0.693914\pi\)
\(644\) −7.64935 −0.301426
\(645\) 0 0
\(646\) 0 0
\(647\) 41.2848 1.62307 0.811536 0.584302i \(-0.198632\pi\)
0.811536 + 0.584302i \(0.198632\pi\)
\(648\) −7.85778 −0.308683
\(649\) 21.7983 0.855657
\(650\) 0 0
\(651\) −1.15815 −0.0453915
\(652\) −24.0607 −0.942289
\(653\) 24.5583 0.961039 0.480519 0.876984i \(-0.340448\pi\)
0.480519 + 0.876984i \(0.340448\pi\)
\(654\) 3.61663 0.141421
\(655\) 0 0
\(656\) −21.7796 −0.850350
\(657\) −4.67260 −0.182295
\(658\) −0.945030 −0.0368411
\(659\) 17.7024 0.689588 0.344794 0.938678i \(-0.387949\pi\)
0.344794 + 0.938678i \(0.387949\pi\)
\(660\) 0 0
\(661\) 14.1853 0.551743 0.275871 0.961195i \(-0.411034\pi\)
0.275871 + 0.961195i \(0.411034\pi\)
\(662\) 4.60333 0.178914
\(663\) 0 0
\(664\) −8.40629 −0.326227
\(665\) 0 0
\(666\) 0.426434 0.0165240
\(667\) 17.7445 0.687072
\(668\) 8.11549 0.313998
\(669\) −16.5090 −0.638274
\(670\) 0 0
\(671\) −18.7149 −0.722482
\(672\) −6.73825 −0.259933
\(673\) −0.325055 −0.0125300 −0.00626498 0.999980i \(-0.501994\pi\)
−0.00626498 + 0.999980i \(0.501994\pi\)
\(674\) 4.59044 0.176817
\(675\) 0 0
\(676\) 25.1354 0.966746
\(677\) 17.2971 0.664783 0.332392 0.943141i \(-0.392144\pi\)
0.332392 + 0.943141i \(0.392144\pi\)
\(678\) 2.33749 0.0897708
\(679\) −3.28995 −0.126257
\(680\) 0 0
\(681\) 7.35936 0.282011
\(682\) 0.330121 0.0126410
\(683\) −34.4818 −1.31941 −0.659705 0.751525i \(-0.729319\pi\)
−0.659705 + 0.751525i \(0.729319\pi\)
\(684\) −2.20264 −0.0842202
\(685\) 0 0
\(686\) −4.25758 −0.162555
\(687\) −1.96907 −0.0751248
\(688\) 41.0925 1.56664
\(689\) −2.15766 −0.0822002
\(690\) 0 0
\(691\) 42.1292 1.60267 0.801335 0.598216i \(-0.204124\pi\)
0.801335 + 0.598216i \(0.204124\pi\)
\(692\) −5.72677 −0.217699
\(693\) 1.14991 0.0436815
\(694\) −1.26335 −0.0479560
\(695\) 0 0
\(696\) 10.3663 0.392934
\(697\) 0 0
\(698\) 6.08922 0.230481
\(699\) −41.8389 −1.58249
\(700\) 0 0
\(701\) 29.6266 1.11898 0.559491 0.828836i \(-0.310997\pi\)
0.559491 + 0.828836i \(0.310997\pi\)
\(702\) −0.235706 −0.00889614
\(703\) −21.8802 −0.825226
\(704\) −17.6461 −0.665064
\(705\) 0 0
\(706\) −4.36416 −0.164247
\(707\) −1.27498 −0.0479505
\(708\) 25.7791 0.968838
\(709\) −16.2739 −0.611181 −0.305590 0.952163i \(-0.598854\pi\)
−0.305590 + 0.952163i \(0.598854\pi\)
\(710\) 0 0
\(711\) −3.85103 −0.144425
\(712\) 11.2638 0.422128
\(713\) 1.35793 0.0508547
\(714\) 0 0
\(715\) 0 0
\(716\) 45.1105 1.68586
\(717\) 10.2140 0.381447
\(718\) 0.502294 0.0187454
\(719\) −31.4210 −1.17181 −0.585903 0.810381i \(-0.699260\pi\)
−0.585903 + 0.810381i \(0.699260\pi\)
\(720\) 0 0
\(721\) 0.525405 0.0195671
\(722\) 1.11623 0.0415418
\(723\) 44.0579 1.63853
\(724\) −22.1330 −0.822568
\(725\) 0 0
\(726\) −1.53201 −0.0568584
\(727\) 21.6544 0.803118 0.401559 0.915833i \(-0.368468\pi\)
0.401559 + 0.915833i \(0.368468\pi\)
\(728\) −0.245023 −0.00908117
\(729\) 29.1243 1.07868
\(730\) 0 0
\(731\) 0 0
\(732\) −22.1327 −0.818047
\(733\) −31.4552 −1.16182 −0.580912 0.813966i \(-0.697304\pi\)
−0.580912 + 0.813966i \(0.697304\pi\)
\(734\) 8.06615 0.297727
\(735\) 0 0
\(736\) 7.90057 0.291219
\(737\) 33.3741 1.22935
\(738\) −0.445261 −0.0163903
\(739\) 13.7032 0.504079 0.252040 0.967717i \(-0.418899\pi\)
0.252040 + 0.967717i \(0.418899\pi\)
\(740\) 0 0
\(741\) 1.09381 0.0401820
\(742\) −4.40049 −0.161547
\(743\) −16.2215 −0.595109 −0.297554 0.954705i \(-0.596171\pi\)
−0.297554 + 0.954705i \(0.596171\pi\)
\(744\) 0.793297 0.0290837
\(745\) 0 0
\(746\) −5.13041 −0.187838
\(747\) 2.55818 0.0935988
\(748\) 0 0
\(749\) −9.51315 −0.347603
\(750\) 0 0
\(751\) 11.1467 0.406751 0.203375 0.979101i \(-0.434809\pi\)
0.203375 + 0.979101i \(0.434809\pi\)
\(752\) −9.63558 −0.351373
\(753\) 17.4316 0.635242
\(754\) 0.279725 0.0101870
\(755\) 0 0
\(756\) 15.0362 0.546861
\(757\) −19.8933 −0.723034 −0.361517 0.932365i \(-0.617741\pi\)
−0.361517 + 0.932365i \(0.617741\pi\)
\(758\) −4.13262 −0.150104
\(759\) 12.2109 0.443229
\(760\) 0 0
\(761\) −45.4255 −1.64667 −0.823337 0.567553i \(-0.807890\pi\)
−0.823337 + 0.567553i \(0.807890\pi\)
\(762\) −6.68819 −0.242288
\(763\) −12.6501 −0.457965
\(764\) −5.97306 −0.216098
\(765\) 0 0
\(766\) 5.78284 0.208942
\(767\) 1.41349 0.0510380
\(768\) −18.5246 −0.668450
\(769\) −5.98158 −0.215701 −0.107851 0.994167i \(-0.534397\pi\)
−0.107851 + 0.994167i \(0.534397\pi\)
\(770\) 0 0
\(771\) −2.53166 −0.0911755
\(772\) −30.9808 −1.11502
\(773\) −13.1506 −0.472995 −0.236497 0.971632i \(-0.575999\pi\)
−0.236497 + 0.971632i \(0.575999\pi\)
\(774\) 0.840094 0.0301965
\(775\) 0 0
\(776\) 2.25351 0.0808964
\(777\) 13.5088 0.484625
\(778\) 9.12654 0.327202
\(779\) 22.8462 0.818548
\(780\) 0 0
\(781\) 32.9328 1.17843
\(782\) 0 0
\(783\) −34.8802 −1.24652
\(784\) −17.9860 −0.642357
\(785\) 0 0
\(786\) −3.94369 −0.140667
\(787\) −25.6968 −0.915993 −0.457997 0.888954i \(-0.651433\pi\)
−0.457997 + 0.888954i \(0.651433\pi\)
\(788\) −20.6858 −0.736901
\(789\) −0.700924 −0.0249536
\(790\) 0 0
\(791\) −8.17600 −0.290705
\(792\) −0.787654 −0.0279881
\(793\) −1.21355 −0.0430944
\(794\) 2.44242 0.0866781
\(795\) 0 0
\(796\) 30.6974 1.08804
\(797\) −50.4438 −1.78681 −0.893405 0.449251i \(-0.851691\pi\)
−0.893405 + 0.449251i \(0.851691\pi\)
\(798\) 2.23080 0.0789693
\(799\) 0 0
\(800\) 0 0
\(801\) −3.42776 −0.121114
\(802\) −5.34918 −0.188886
\(803\) 42.1920 1.48892
\(804\) 39.4689 1.39196
\(805\) 0 0
\(806\) 0.0214063 0.000754005 0
\(807\) −28.1148 −0.989686
\(808\) 0.873322 0.0307234
\(809\) 9.20169 0.323514 0.161757 0.986831i \(-0.448284\pi\)
0.161757 + 0.986831i \(0.448284\pi\)
\(810\) 0 0
\(811\) 10.7139 0.376214 0.188107 0.982148i \(-0.439765\pi\)
0.188107 + 0.982148i \(0.439765\pi\)
\(812\) −17.8442 −0.626210
\(813\) 26.4147 0.926403
\(814\) −3.85056 −0.134962
\(815\) 0 0
\(816\) 0 0
\(817\) −43.1048 −1.50805
\(818\) −7.78456 −0.272181
\(819\) 0.0745647 0.00260550
\(820\) 0 0
\(821\) −28.1783 −0.983431 −0.491715 0.870756i \(-0.663630\pi\)
−0.491715 + 0.870756i \(0.663630\pi\)
\(822\) 2.70249 0.0942600
\(823\) −35.3425 −1.23196 −0.615981 0.787761i \(-0.711240\pi\)
−0.615981 + 0.787761i \(0.711240\pi\)
\(824\) −0.359886 −0.0125372
\(825\) 0 0
\(826\) 2.88277 0.100304
\(827\) −39.2434 −1.36463 −0.682314 0.731059i \(-0.739026\pi\)
−0.682314 + 0.731059i \(0.739026\pi\)
\(828\) −1.59449 −0.0554123
\(829\) −17.4130 −0.604779 −0.302389 0.953184i \(-0.597784\pi\)
−0.302389 + 0.953184i \(0.597784\pi\)
\(830\) 0 0
\(831\) 27.5526 0.955791
\(832\) −1.14424 −0.0396695
\(833\) 0 0
\(834\) −1.88086 −0.0651290
\(835\) 0 0
\(836\) 19.8892 0.687881
\(837\) −2.66925 −0.0922629
\(838\) −5.06454 −0.174952
\(839\) −26.9046 −0.928851 −0.464426 0.885612i \(-0.653739\pi\)
−0.464426 + 0.885612i \(0.653739\pi\)
\(840\) 0 0
\(841\) 12.3941 0.427384
\(842\) −0.450198 −0.0155149
\(843\) 12.8837 0.443739
\(844\) −9.53439 −0.328187
\(845\) 0 0
\(846\) −0.196989 −0.00677263
\(847\) 5.35863 0.184125
\(848\) −44.8676 −1.54076
\(849\) 10.8163 0.371215
\(850\) 0 0
\(851\) −15.8390 −0.542954
\(852\) 38.9470 1.33430
\(853\) 16.3461 0.559681 0.279841 0.960046i \(-0.409718\pi\)
0.279841 + 0.960046i \(0.409718\pi\)
\(854\) −2.47501 −0.0846930
\(855\) 0 0
\(856\) 6.51622 0.222720
\(857\) 3.86719 0.132101 0.0660503 0.997816i \(-0.478960\pi\)
0.0660503 + 0.997816i \(0.478960\pi\)
\(858\) 0.192493 0.00657160
\(859\) 39.0324 1.33177 0.665883 0.746056i \(-0.268055\pi\)
0.665883 + 0.746056i \(0.268055\pi\)
\(860\) 0 0
\(861\) −14.1052 −0.480703
\(862\) 4.14792 0.141279
\(863\) −22.1279 −0.753243 −0.376621 0.926367i \(-0.622914\pi\)
−0.376621 + 0.926367i \(0.622914\pi\)
\(864\) −15.5300 −0.528342
\(865\) 0 0
\(866\) −4.06193 −0.138030
\(867\) 0 0
\(868\) −1.36556 −0.0463500
\(869\) 34.7736 1.17961
\(870\) 0 0
\(871\) 2.16411 0.0733280
\(872\) 8.66494 0.293432
\(873\) −0.685782 −0.0232102
\(874\) −2.61560 −0.0884740
\(875\) 0 0
\(876\) 49.8972 1.68587
\(877\) −19.7374 −0.666484 −0.333242 0.942841i \(-0.608143\pi\)
−0.333242 + 0.942841i \(0.608143\pi\)
\(878\) 5.98086 0.201844
\(879\) −5.17949 −0.174700
\(880\) 0 0
\(881\) 11.4321 0.385159 0.192579 0.981281i \(-0.438315\pi\)
0.192579 + 0.981281i \(0.438315\pi\)
\(882\) −0.367705 −0.0123813
\(883\) −13.2658 −0.446431 −0.223216 0.974769i \(-0.571655\pi\)
−0.223216 + 0.974769i \(0.571655\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 5.29591 0.177919
\(887\) 30.6070 1.02768 0.513842 0.857885i \(-0.328222\pi\)
0.513842 + 0.857885i \(0.328222\pi\)
\(888\) −9.25310 −0.310514
\(889\) 23.3937 0.784601
\(890\) 0 0
\(891\) −21.5923 −0.723368
\(892\) −19.4655 −0.651752
\(893\) 10.1074 0.338233
\(894\) −4.76259 −0.159285
\(895\) 0 0
\(896\) −10.5326 −0.351870
\(897\) 0.791804 0.0264376
\(898\) −7.26869 −0.242559
\(899\) 3.16774 0.105650
\(900\) 0 0
\(901\) 0 0
\(902\) 4.02056 0.133870
\(903\) 26.6129 0.885620
\(904\) 5.60031 0.186263
\(905\) 0 0
\(906\) 0.0563708 0.00187279
\(907\) −0.766017 −0.0254352 −0.0127176 0.999919i \(-0.504048\pi\)
−0.0127176 + 0.999919i \(0.504048\pi\)
\(908\) 8.67730 0.287966
\(909\) −0.265767 −0.00881492
\(910\) 0 0
\(911\) 8.43534 0.279475 0.139738 0.990189i \(-0.455374\pi\)
0.139738 + 0.990189i \(0.455374\pi\)
\(912\) 22.7453 0.753172
\(913\) −23.0995 −0.764482
\(914\) −0.258405 −0.00854727
\(915\) 0 0
\(916\) −2.32170 −0.0767111
\(917\) 13.7941 0.455522
\(918\) 0 0
\(919\) 13.0143 0.429302 0.214651 0.976691i \(-0.431139\pi\)
0.214651 + 0.976691i \(0.431139\pi\)
\(920\) 0 0
\(921\) 24.6396 0.811901
\(922\) 0.0174735 0.000575458 0
\(923\) 2.13549 0.0702905
\(924\) −12.2795 −0.403967
\(925\) 0 0
\(926\) 9.97290 0.327730
\(927\) 0.109519 0.00359709
\(928\) 18.4303 0.605004
\(929\) −25.8490 −0.848078 −0.424039 0.905644i \(-0.639388\pi\)
−0.424039 + 0.905644i \(0.639388\pi\)
\(930\) 0 0
\(931\) 18.8668 0.618335
\(932\) −49.3316 −1.61591
\(933\) 16.4841 0.539665
\(934\) 5.65220 0.184946
\(935\) 0 0
\(936\) −0.0510746 −0.00166942
\(937\) −0.870730 −0.0284455 −0.0142228 0.999899i \(-0.504527\pi\)
−0.0142228 + 0.999899i \(0.504527\pi\)
\(938\) 4.41365 0.144111
\(939\) −5.82007 −0.189931
\(940\) 0 0
\(941\) −53.3440 −1.73896 −0.869482 0.493965i \(-0.835547\pi\)
−0.869482 + 0.493965i \(0.835547\pi\)
\(942\) 3.95432 0.128839
\(943\) 16.5383 0.538560
\(944\) 29.3929 0.956657
\(945\) 0 0
\(946\) −7.58577 −0.246635
\(947\) −13.6405 −0.443255 −0.221628 0.975131i \(-0.571137\pi\)
−0.221628 + 0.975131i \(0.571137\pi\)
\(948\) 41.1240 1.33564
\(949\) 2.73590 0.0888109
\(950\) 0 0
\(951\) 20.0707 0.650838
\(952\) 0 0
\(953\) −10.3660 −0.335788 −0.167894 0.985805i \(-0.553697\pi\)
−0.167894 + 0.985805i \(0.553697\pi\)
\(954\) −0.917273 −0.0296978
\(955\) 0 0
\(956\) 12.0431 0.389502
\(957\) 28.4854 0.920803
\(958\) 5.78999 0.187066
\(959\) −9.45267 −0.305243
\(960\) 0 0
\(961\) −30.7576 −0.992180
\(962\) −0.249685 −0.00805018
\(963\) −1.98299 −0.0639011
\(964\) 51.9480 1.67313
\(965\) 0 0
\(966\) 1.61487 0.0519575
\(967\) −14.3299 −0.460817 −0.230408 0.973094i \(-0.574006\pi\)
−0.230408 + 0.973094i \(0.574006\pi\)
\(968\) −3.67050 −0.117974
\(969\) 0 0
\(970\) 0 0
\(971\) −29.7422 −0.954471 −0.477236 0.878775i \(-0.658361\pi\)
−0.477236 + 0.878775i \(0.658361\pi\)
\(972\) 5.98505 0.191971
\(973\) 6.57882 0.210907
\(974\) −4.20974 −0.134889
\(975\) 0 0
\(976\) −25.2353 −0.807762
\(977\) 37.1142 1.18739 0.593695 0.804690i \(-0.297669\pi\)
0.593695 + 0.804690i \(0.297669\pi\)
\(978\) 5.07949 0.162424
\(979\) 30.9515 0.989215
\(980\) 0 0
\(981\) −2.63689 −0.0841894
\(982\) 5.24217 0.167284
\(983\) −46.4624 −1.48192 −0.740961 0.671549i \(-0.765629\pi\)
−0.740961 + 0.671549i \(0.765629\pi\)
\(984\) 9.66161 0.308001
\(985\) 0 0
\(986\) 0 0
\(987\) −6.24032 −0.198631
\(988\) 1.28969 0.0410305
\(989\) −31.2035 −0.992213
\(990\) 0 0
\(991\) 44.3013 1.40728 0.703638 0.710559i \(-0.251558\pi\)
0.703638 + 0.710559i \(0.251558\pi\)
\(992\) 1.41040 0.0447804
\(993\) 30.3972 0.964625
\(994\) 4.35528 0.138141
\(995\) 0 0
\(996\) −27.3179 −0.865602
\(997\) −24.6310 −0.780072 −0.390036 0.920800i \(-0.627538\pi\)
−0.390036 + 0.920800i \(0.627538\pi\)
\(998\) −5.60711 −0.177490
\(999\) 31.1344 0.985050
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.by.1.11 24
5.2 odd 4 1445.2.b.i.579.12 24
5.3 odd 4 1445.2.b.i.579.13 24
5.4 even 2 inner 7225.2.a.by.1.14 24
17.5 odd 16 425.2.m.e.76.4 24
17.7 odd 16 425.2.m.e.151.4 24
17.16 even 2 inner 7225.2.a.by.1.12 24
85.7 even 16 85.2.m.a.49.3 24
85.22 even 16 85.2.m.a.59.4 yes 24
85.24 odd 16 425.2.m.e.151.3 24
85.33 odd 4 1445.2.b.i.579.14 24
85.39 odd 16 425.2.m.e.76.3 24
85.58 even 16 85.2.m.a.49.4 yes 24
85.67 odd 4 1445.2.b.i.579.11 24
85.73 even 16 85.2.m.a.59.3 yes 24
85.84 even 2 inner 7225.2.a.by.1.13 24
255.92 odd 16 765.2.bh.b.559.4 24
255.107 odd 16 765.2.bh.b.739.3 24
255.143 odd 16 765.2.bh.b.559.3 24
255.158 odd 16 765.2.bh.b.739.4 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.3 24 85.7 even 16
85.2.m.a.49.4 yes 24 85.58 even 16
85.2.m.a.59.3 yes 24 85.73 even 16
85.2.m.a.59.4 yes 24 85.22 even 16
425.2.m.e.76.3 24 85.39 odd 16
425.2.m.e.76.4 24 17.5 odd 16
425.2.m.e.151.3 24 85.24 odd 16
425.2.m.e.151.4 24 17.7 odd 16
765.2.bh.b.559.3 24 255.143 odd 16
765.2.bh.b.559.4 24 255.92 odd 16
765.2.bh.b.739.3 24 255.107 odd 16
765.2.bh.b.739.4 24 255.158 odd 16
1445.2.b.i.579.11 24 85.67 odd 4
1445.2.b.i.579.12 24 5.2 odd 4
1445.2.b.i.579.13 24 5.3 odd 4
1445.2.b.i.579.14 24 85.33 odd 4
7225.2.a.by.1.11 24 1.1 even 1 trivial
7225.2.a.by.1.12 24 17.16 even 2 inner
7225.2.a.by.1.13 24 85.84 even 2 inner
7225.2.a.by.1.14 24 5.4 even 2 inner