Properties

Label 765.2.bh.b.739.4
Level $765$
Weight $2$
Character 765.739
Analytic conductor $6.109$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [765,2,Mod(19,765)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(765, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 4, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("765.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 765 = 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 765.bh (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.10855575463\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 739.4
Character \(\chi\) \(=\) 765.739
Dual form 765.2.bh.b.559.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.176012 + 0.176012i) q^{2} -1.93804i q^{4} +(-0.0665446 - 2.23508i) q^{5} +(-0.547653 - 1.32215i) q^{7} +(0.693142 - 0.693142i) q^{8} +(0.381688 - 0.405113i) q^{10} +(-1.03080 - 2.48857i) q^{11} -0.174664 q^{13} +(0.136321 - 0.329108i) q^{14} -3.63208 q^{16} +(2.27165 + 3.44088i) q^{17} +(-2.69404 + 2.69404i) q^{19} +(-4.33167 + 0.128966i) q^{20} +(0.256585 - 0.619452i) q^{22} +(2.54807 - 1.05544i) q^{23} +(-4.99114 + 0.297464i) q^{25} +(-0.0307430 - 0.0307430i) q^{26} +(-2.56238 + 1.06137i) q^{28} +(-5.94408 - 2.46212i) q^{29} +(-0.188417 + 0.454879i) q^{31} +(-2.02557 - 2.02557i) q^{32} +(-0.205798 + 1.00547i) q^{34} +(-2.91867 + 1.31203i) q^{35} +(5.30576 + 2.19772i) q^{37} -0.948365 q^{38} +(-1.59535 - 1.50310i) q^{40} +(-5.54000 + 2.29474i) q^{41} +(8.00004 - 8.00004i) q^{43} +(-4.82296 + 1.99773i) q^{44} +(0.634261 + 0.262720i) q^{46} +2.65291 q^{47} +(3.50159 - 3.50159i) q^{49} +(-0.930858 - 0.826143i) q^{50} +0.338506i q^{52} +(-8.73501 - 8.73501i) q^{53} +(-5.49356 + 2.46952i) q^{55} +(-1.29604 - 0.536837i) q^{56} +(-0.612867 - 1.47959i) q^{58} +(5.72232 + 5.72232i) q^{59} +(-6.41902 + 2.65884i) q^{61} +(-0.113228 + 0.0469005i) q^{62} +6.55110i q^{64} +(0.0116230 + 0.390388i) q^{65} +12.3901i q^{67} +(6.66855 - 4.40254i) q^{68} +(-0.744653 - 0.282788i) q^{70} +(4.67878 - 11.2956i) q^{71} +(5.99425 - 14.4714i) q^{73} +(0.547052 + 1.32070i) q^{74} +(5.22115 + 5.22115i) q^{76} +(-2.72575 + 2.72575i) q^{77} +(-4.94031 - 11.9270i) q^{79} +(0.241695 + 8.11797i) q^{80} +(-1.37901 - 0.571204i) q^{82} +(6.06390 + 6.06390i) q^{83} +(7.53946 - 5.30628i) q^{85} +2.81621 q^{86} +(-2.43943 - 1.01044i) q^{88} -11.4907i q^{89} +(0.0956555 + 0.230933i) q^{91} +(-2.04549 - 4.93826i) q^{92} +(0.466944 + 0.466944i) q^{94} +(6.20066 + 5.84211i) q^{95} +(0.879757 - 2.12392i) q^{97} +1.23264 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 16 q^{10} + 24 q^{14} + 8 q^{16} - 24 q^{19} + 8 q^{20} + 16 q^{25} + 16 q^{26} - 24 q^{29} - 24 q^{31} + 8 q^{34} - 8 q^{35} + 16 q^{40} + 48 q^{41} - 72 q^{44} - 16 q^{46} + 48 q^{49} - 16 q^{50}+ \cdots + 88 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/765\mathbb{Z}\right)^\times\).

\(n\) \(307\) \(496\) \(596\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.176012 + 0.176012i 0.124459 + 0.124459i 0.766593 0.642134i \(-0.221951\pi\)
−0.642134 + 0.766593i \(0.721951\pi\)
\(3\) 0 0
\(4\) 1.93804i 0.969020i
\(5\) −0.0665446 2.23508i −0.0297596 0.999557i
\(6\) 0 0
\(7\) −0.547653 1.32215i −0.206993 0.499726i 0.785954 0.618286i \(-0.212172\pi\)
−0.992947 + 0.118559i \(0.962172\pi\)
\(8\) 0.693142 0.693142i 0.245063 0.245063i
\(9\) 0 0
\(10\) 0.381688 0.405113i 0.120700 0.128108i
\(11\) −1.03080 2.48857i −0.310798 0.750333i −0.999676 0.0254558i \(-0.991896\pi\)
0.688878 0.724878i \(-0.258104\pi\)
\(12\) 0 0
\(13\) −0.174664 −0.0484432 −0.0242216 0.999707i \(-0.507711\pi\)
−0.0242216 + 0.999707i \(0.507711\pi\)
\(14\) 0.136321 0.329108i 0.0364333 0.0879578i
\(15\) 0 0
\(16\) −3.63208 −0.908019
\(17\) 2.27165 + 3.44088i 0.550955 + 0.834535i
\(18\) 0 0
\(19\) −2.69404 + 2.69404i −0.618055 + 0.618055i −0.945032 0.326978i \(-0.893970\pi\)
0.326978 + 0.945032i \(0.393970\pi\)
\(20\) −4.33167 + 0.128966i −0.968591 + 0.0288377i
\(21\) 0 0
\(22\) 0.256585 0.619452i 0.0547042 0.132068i
\(23\) 2.54807 1.05544i 0.531309 0.220075i −0.100867 0.994900i \(-0.532162\pi\)
0.632176 + 0.774825i \(0.282162\pi\)
\(24\) 0 0
\(25\) −4.99114 + 0.297464i −0.998229 + 0.0594929i
\(26\) −0.0307430 0.0307430i −0.00602920 0.00602920i
\(27\) 0 0
\(28\) −2.56238 + 1.06137i −0.484245 + 0.200581i
\(29\) −5.94408 2.46212i −1.10379 0.457204i −0.244994 0.969525i \(-0.578786\pi\)
−0.858794 + 0.512321i \(0.828786\pi\)
\(30\) 0 0
\(31\) −0.188417 + 0.454879i −0.0338407 + 0.0816987i −0.939896 0.341460i \(-0.889079\pi\)
0.906056 + 0.423159i \(0.139079\pi\)
\(32\) −2.02557 2.02557i −0.358074 0.358074i
\(33\) 0 0
\(34\) −0.205798 + 1.00547i −0.0352941 + 0.172437i
\(35\) −2.91867 + 1.31203i −0.493345 + 0.221773i
\(36\) 0 0
\(37\) 5.30576 + 2.19772i 0.872261 + 0.361302i 0.773490 0.633808i \(-0.218509\pi\)
0.0987704 + 0.995110i \(0.468509\pi\)
\(38\) −0.948365 −0.153845
\(39\) 0 0
\(40\) −1.59535 1.50310i −0.252247 0.237661i
\(41\) −5.54000 + 2.29474i −0.865203 + 0.358379i −0.770740 0.637150i \(-0.780113\pi\)
−0.0944627 + 0.995528i \(0.530113\pi\)
\(42\) 0 0
\(43\) 8.00004 8.00004i 1.22000 1.22000i 0.252363 0.967633i \(-0.418792\pi\)
0.967633 0.252363i \(-0.0812076\pi\)
\(44\) −4.82296 + 1.99773i −0.727088 + 0.301170i
\(45\) 0 0
\(46\) 0.634261 + 0.262720i 0.0935167 + 0.0387359i
\(47\) 2.65291 0.386967 0.193483 0.981104i \(-0.438021\pi\)
0.193483 + 0.981104i \(0.438021\pi\)
\(48\) 0 0
\(49\) 3.50159 3.50159i 0.500227 0.500227i
\(50\) −0.930858 0.826143i −0.131643 0.116834i
\(51\) 0 0
\(52\) 0.338506i 0.0469424i
\(53\) −8.73501 8.73501i −1.19985 1.19985i −0.974212 0.225633i \(-0.927555\pi\)
−0.225633 0.974212i \(-0.572445\pi\)
\(54\) 0 0
\(55\) −5.49356 + 2.46952i −0.740752 + 0.332990i
\(56\) −1.29604 0.536837i −0.173191 0.0717379i
\(57\) 0 0
\(58\) −0.612867 1.47959i −0.0804733 0.194280i
\(59\) 5.72232 + 5.72232i 0.744982 + 0.744982i 0.973532 0.228550i \(-0.0733984\pi\)
−0.228550 + 0.973532i \(0.573398\pi\)
\(60\) 0 0
\(61\) −6.41902 + 2.65884i −0.821871 + 0.340430i −0.753679 0.657242i \(-0.771723\pi\)
−0.0681914 + 0.997672i \(0.521723\pi\)
\(62\) −0.113228 + 0.0469005i −0.0143799 + 0.00595637i
\(63\) 0 0
\(64\) 6.55110i 0.818888i
\(65\) 0.0116230 + 0.390388i 0.00144165 + 0.0484217i
\(66\) 0 0
\(67\) 12.3901i 1.51369i 0.653594 + 0.756845i \(0.273260\pi\)
−0.653594 + 0.756845i \(0.726740\pi\)
\(68\) 6.66855 4.40254i 0.808681 0.533886i
\(69\) 0 0
\(70\) −0.744653 0.282788i −0.0890031 0.0337996i
\(71\) 4.67878 11.2956i 0.555269 1.34054i −0.358205 0.933643i \(-0.616611\pi\)
0.913474 0.406896i \(-0.133389\pi\)
\(72\) 0 0
\(73\) 5.99425 14.4714i 0.701574 1.69375i −0.0184781 0.999829i \(-0.505882\pi\)
0.720052 0.693920i \(-0.244118\pi\)
\(74\) 0.547052 + 1.32070i 0.0635935 + 0.153528i
\(75\) 0 0
\(76\) 5.22115 + 5.22115i 0.598907 + 0.598907i
\(77\) −2.72575 + 2.72575i −0.310628 + 0.310628i
\(78\) 0 0
\(79\) −4.94031 11.9270i −0.555828 1.34189i −0.913042 0.407865i \(-0.866273\pi\)
0.357214 0.934022i \(-0.383727\pi\)
\(80\) 0.241695 + 8.11797i 0.0270223 + 0.907617i
\(81\) 0 0
\(82\) −1.37901 0.571204i −0.152286 0.0630789i
\(83\) 6.06390 + 6.06390i 0.665600 + 0.665600i 0.956694 0.291094i \(-0.0940194\pi\)
−0.291094 + 0.956694i \(0.594019\pi\)
\(84\) 0 0
\(85\) 7.53946 5.30628i 0.817769 0.575546i
\(86\) 2.81621 0.303679
\(87\) 0 0
\(88\) −2.43943 1.01044i −0.260044 0.107714i
\(89\) 11.4907i 1.21801i −0.793165 0.609006i \(-0.791568\pi\)
0.793165 0.609006i \(-0.208432\pi\)
\(90\) 0 0
\(91\) 0.0956555 + 0.230933i 0.0100274 + 0.0242083i
\(92\) −2.04549 4.93826i −0.213257 0.514849i
\(93\) 0 0
\(94\) 0.466944 + 0.466944i 0.0481616 + 0.0481616i
\(95\) 6.20066 + 5.84211i 0.636174 + 0.599388i
\(96\) 0 0
\(97\) 0.879757 2.12392i 0.0893258 0.215651i −0.872903 0.487894i \(-0.837765\pi\)
0.962229 + 0.272242i \(0.0877653\pi\)
\(98\) 1.23264 0.124516
\(99\) 0 0
\(100\) 0.576498 + 9.67303i 0.0576498 + 0.967303i
\(101\) 0.890917 0.0886495 0.0443248 0.999017i \(-0.485886\pi\)
0.0443248 + 0.999017i \(0.485886\pi\)
\(102\) 0 0
\(103\) 0.367137i 0.0361751i −0.999836 0.0180875i \(-0.994242\pi\)
0.999836 0.0180875i \(-0.00575776\pi\)
\(104\) −0.121067 + 0.121067i −0.0118716 + 0.0118716i
\(105\) 0 0
\(106\) 3.07493i 0.298664i
\(107\) 2.54389 6.14149i 0.245927 0.593720i −0.751924 0.659250i \(-0.770874\pi\)
0.997851 + 0.0655301i \(0.0208738\pi\)
\(108\) 0 0
\(109\) 8.16665 3.38274i 0.782223 0.324007i 0.0444107 0.999013i \(-0.485859\pi\)
0.737812 + 0.675006i \(0.235859\pi\)
\(110\) −1.40160 0.532267i −0.133637 0.0507497i
\(111\) 0 0
\(112\) 1.98912 + 4.80216i 0.187954 + 0.453761i
\(113\) 5.27825 2.18632i 0.496536 0.205672i −0.120339 0.992733i \(-0.538398\pi\)
0.616875 + 0.787061i \(0.288398\pi\)
\(114\) 0 0
\(115\) −2.52856 5.62490i −0.235789 0.524524i
\(116\) −4.77168 + 11.5199i −0.443040 + 1.06959i
\(117\) 0 0
\(118\) 2.01439i 0.185440i
\(119\) 3.30529 4.88787i 0.302995 0.448070i
\(120\) 0 0
\(121\) 2.64772 2.64772i 0.240702 0.240702i
\(122\) −1.59781 0.661835i −0.144659 0.0599197i
\(123\) 0 0
\(124\) 0.881574 + 0.365160i 0.0791676 + 0.0327923i
\(125\) 0.996990 + 11.1358i 0.0891735 + 0.996016i
\(126\) 0 0
\(127\) −11.5590 + 11.5590i −1.02569 + 1.02569i −0.0260300 + 0.999661i \(0.508287\pi\)
−0.999661 + 0.0260300i \(0.991713\pi\)
\(128\) −5.20422 + 5.20422i −0.459992 + 0.459992i
\(129\) 0 0
\(130\) −0.0666672 + 0.0707588i −0.00584710 + 0.00620596i
\(131\) 8.90518 + 3.68865i 0.778049 + 0.322279i 0.736128 0.676842i \(-0.236652\pi\)
0.0419214 + 0.999121i \(0.486652\pi\)
\(132\) 0 0
\(133\) 5.03733 + 2.08653i 0.436791 + 0.180925i
\(134\) −2.18080 + 2.18080i −0.188393 + 0.188393i
\(135\) 0 0
\(136\) 3.95959 + 0.810442i 0.339532 + 0.0694949i
\(137\) 6.60524i 0.564324i 0.959367 + 0.282162i \(0.0910515\pi\)
−0.959367 + 0.282162i \(0.908948\pi\)
\(138\) 0 0
\(139\) −1.75923 + 4.24715i −0.149216 + 0.360239i −0.980759 0.195221i \(-0.937458\pi\)
0.831544 + 0.555459i \(0.187458\pi\)
\(140\) 2.54277 + 5.65650i 0.214903 + 0.478061i
\(141\) 0 0
\(142\) 2.81168 1.16464i 0.235951 0.0977340i
\(143\) 0.180044 + 0.434665i 0.0150561 + 0.0363485i
\(144\) 0 0
\(145\) −5.10748 + 13.4493i −0.424153 + 1.11691i
\(146\) 3.60220 1.49208i 0.298120 0.123485i
\(147\) 0 0
\(148\) 4.25926 10.2828i 0.350109 0.845238i
\(149\) 11.6404i 0.953619i −0.879007 0.476810i \(-0.841793\pi\)
0.879007 0.476810i \(-0.158207\pi\)
\(150\) 0 0
\(151\) 0.0974235 0.0974235i 0.00792821 0.00792821i −0.703132 0.711060i \(-0.748216\pi\)
0.711060 + 0.703132i \(0.248216\pi\)
\(152\) 3.73470i 0.302924i
\(153\) 0 0
\(154\) −0.959530 −0.0773211
\(155\) 1.02923 + 0.390857i 0.0826696 + 0.0313944i
\(156\) 0 0
\(157\) −9.66489 −0.771343 −0.385671 0.922636i \(-0.626030\pi\)
−0.385671 + 0.922636i \(0.626030\pi\)
\(158\) 1.22973 2.96884i 0.0978323 0.236188i
\(159\) 0 0
\(160\) −4.39252 + 4.66210i −0.347259 + 0.368572i
\(161\) −2.79092 2.79092i −0.219955 0.219955i
\(162\) 0 0
\(163\) 4.75100 + 11.4699i 0.372127 + 0.898394i 0.993390 + 0.114792i \(0.0366200\pi\)
−0.621263 + 0.783602i \(0.713380\pi\)
\(164\) 4.44730 + 10.7367i 0.347276 + 0.838399i
\(165\) 0 0
\(166\) 2.13464i 0.165680i
\(167\) −3.86872 1.60248i −0.299371 0.124003i 0.227942 0.973675i \(-0.426800\pi\)
−0.527313 + 0.849671i \(0.676800\pi\)
\(168\) 0 0
\(169\) −12.9695 −0.997653
\(170\) 2.26100 + 0.393067i 0.173411 + 0.0301468i
\(171\) 0 0
\(172\) −15.5044 15.5044i −1.18220 1.18220i
\(173\) 2.73000 + 1.13080i 0.207558 + 0.0859733i 0.484040 0.875046i \(-0.339169\pi\)
−0.276483 + 0.961019i \(0.589169\pi\)
\(174\) 0 0
\(175\) 3.12671 + 6.43614i 0.236357 + 0.486527i
\(176\) 3.74395 + 9.03869i 0.282211 + 0.681317i
\(177\) 0 0
\(178\) 2.02250 2.02250i 0.151593 0.151593i
\(179\) 16.4589 + 16.4589i 1.23019 + 1.23019i 0.963889 + 0.266304i \(0.0858027\pi\)
0.266304 + 0.963889i \(0.414197\pi\)
\(180\) 0 0
\(181\) 4.37037 + 10.5510i 0.324847 + 0.784250i 0.998959 + 0.0456205i \(0.0145265\pi\)
−0.674112 + 0.738629i \(0.735474\pi\)
\(182\) −0.0238104 + 0.0574834i −0.00176495 + 0.00426096i
\(183\) 0 0
\(184\) 1.03460 2.49775i 0.0762717 0.184136i
\(185\) 4.55900 12.0050i 0.335184 0.882627i
\(186\) 0 0
\(187\) 6.22126 9.20002i 0.454944 0.672772i
\(188\) 5.14145i 0.374978i
\(189\) 0 0
\(190\) 0.0631085 + 2.11967i 0.00457837 + 0.153777i
\(191\) 3.08201i 0.223007i 0.993764 + 0.111503i \(0.0355666\pi\)
−0.993764 + 0.111503i \(0.964433\pi\)
\(192\) 0 0
\(193\) 14.7688 6.11743i 1.06308 0.440343i 0.218537 0.975829i \(-0.429872\pi\)
0.844544 + 0.535486i \(0.179872\pi\)
\(194\) 0.528683 0.218988i 0.0379572 0.0157224i
\(195\) 0 0
\(196\) −6.78621 6.78621i −0.484729 0.484729i
\(197\) 4.08460 + 9.86109i 0.291015 + 0.702573i 0.999996 0.00265412i \(-0.000844833\pi\)
−0.708981 + 0.705228i \(0.750845\pi\)
\(198\) 0 0
\(199\) 14.6337 + 6.06147i 1.03735 + 0.429686i 0.835362 0.549701i \(-0.185258\pi\)
0.201993 + 0.979387i \(0.435258\pi\)
\(200\) −3.25339 + 3.66576i −0.230049 + 0.259208i
\(201\) 0 0
\(202\) 0.156812 + 0.156812i 0.0110333 + 0.0110333i
\(203\) 9.20737i 0.646230i
\(204\) 0 0
\(205\) 5.49759 + 12.2296i 0.383968 + 0.854154i
\(206\) 0.0646205 0.0646205i 0.00450232 0.00450232i
\(207\) 0 0
\(208\) 0.634394 0.0439873
\(209\) 9.48133 + 3.92729i 0.655837 + 0.271657i
\(210\) 0 0
\(211\) −4.54512 + 1.88265i −0.312899 + 0.129607i −0.533606 0.845733i \(-0.679164\pi\)
0.220707 + 0.975340i \(0.429164\pi\)
\(212\) −16.9288 + 16.9288i −1.16267 + 1.16267i
\(213\) 0 0
\(214\) 1.52873 0.633221i 0.104502 0.0432861i
\(215\) −18.4131 17.3484i −1.25576 1.18315i
\(216\) 0 0
\(217\) 0.704606 0.0478318
\(218\) 2.03283 + 0.842025i 0.137681 + 0.0570292i
\(219\) 0 0
\(220\) 4.78603 + 10.6467i 0.322674 + 0.717803i
\(221\) −0.396776 0.600998i −0.0266900 0.0404275i
\(222\) 0 0
\(223\) −7.10210 7.10210i −0.475592 0.475592i 0.428127 0.903719i \(-0.359174\pi\)
−0.903719 + 0.428127i \(0.859174\pi\)
\(224\) −1.56880 + 3.78743i −0.104820 + 0.253058i
\(225\) 0 0
\(226\) 1.31385 + 0.544216i 0.0873963 + 0.0362007i
\(227\) −4.13654 + 1.71341i −0.274552 + 0.113723i −0.515711 0.856762i \(-0.672472\pi\)
0.241160 + 0.970485i \(0.422472\pi\)
\(228\) 0 0
\(229\) −0.847088 0.847088i −0.0559771 0.0559771i 0.678564 0.734541i \(-0.262603\pi\)
−0.734541 + 0.678564i \(0.762603\pi\)
\(230\) 0.544992 1.43511i 0.0359357 0.0946280i
\(231\) 0 0
\(232\) −5.82669 + 2.41349i −0.382541 + 0.158454i
\(233\) 9.74096 23.5168i 0.638152 1.54063i −0.190987 0.981592i \(-0.561169\pi\)
0.829139 0.559042i \(-0.188831\pi\)
\(234\) 0 0
\(235\) −0.176537 5.92946i −0.0115160 0.386795i
\(236\) 11.0901 11.0901i 0.721903 0.721903i
\(237\) 0 0
\(238\) 1.44209 0.278553i 0.0934770 0.0180559i
\(239\) −6.21407 −0.401955 −0.200977 0.979596i \(-0.564412\pi\)
−0.200977 + 0.979596i \(0.564412\pi\)
\(240\) 0 0
\(241\) 10.2576 24.7640i 0.660750 1.59519i −0.135880 0.990725i \(-0.543386\pi\)
0.796631 0.604467i \(-0.206614\pi\)
\(242\) 0.932062 0.0599152
\(243\) 0 0
\(244\) 5.15294 + 12.4403i 0.329883 + 0.796409i
\(245\) −8.05933 7.59330i −0.514892 0.485118i
\(246\) 0 0
\(247\) 0.470552 0.470552i 0.0299405 0.0299405i
\(248\) 0.184696 + 0.445895i 0.0117282 + 0.0283144i
\(249\) 0 0
\(250\) −1.78455 + 2.13552i −0.112865 + 0.135062i
\(251\) 10.6052i 0.669394i 0.942326 + 0.334697i \(0.108634\pi\)
−0.942326 + 0.334697i \(0.891366\pi\)
\(252\) 0 0
\(253\) −5.25310 5.25310i −0.330260 0.330260i
\(254\) −4.06903 −0.255313
\(255\) 0 0
\(256\) 11.2702 0.704387
\(257\) −1.08911 1.08911i −0.0679369 0.0679369i 0.672322 0.740259i \(-0.265297\pi\)
−0.740259 + 0.672322i \(0.765297\pi\)
\(258\) 0 0
\(259\) 8.21860i 0.510679i
\(260\) 0.756588 0.0225258i 0.0469216 0.00139699i
\(261\) 0 0
\(262\) 0.918172 + 2.21666i 0.0567249 + 0.136946i
\(263\) 0.301535 0.301535i 0.0185935 0.0185935i −0.697749 0.716342i \(-0.745815\pi\)
0.716342 + 0.697749i \(0.245815\pi\)
\(264\) 0 0
\(265\) −18.9421 + 20.1047i −1.16361 + 1.23502i
\(266\) 0.519375 + 1.25388i 0.0318449 + 0.0768805i
\(267\) 0 0
\(268\) 24.0125 1.46680
\(269\) 6.54570 15.8027i 0.399098 0.963508i −0.588782 0.808292i \(-0.700392\pi\)
0.987880 0.155217i \(-0.0496075\pi\)
\(270\) 0 0
\(271\) 16.0704 0.976208 0.488104 0.872785i \(-0.337689\pi\)
0.488104 + 0.872785i \(0.337689\pi\)
\(272\) −8.25079 12.4975i −0.500278 0.757774i
\(273\) 0 0
\(274\) −1.16260 + 1.16260i −0.0702353 + 0.0702353i
\(275\) 5.88514 + 12.1142i 0.354887 + 0.730514i
\(276\) 0 0
\(277\) 6.41483 15.4868i 0.385430 0.930510i −0.605465 0.795872i \(-0.707013\pi\)
0.990895 0.134638i \(-0.0429871\pi\)
\(278\) −1.05719 + 0.437904i −0.0634063 + 0.0262637i
\(279\) 0 0
\(280\) −1.11363 + 2.93247i −0.0665521 + 0.175249i
\(281\) −5.54254 5.54254i −0.330640 0.330640i 0.522189 0.852830i \(-0.325115\pi\)
−0.852830 + 0.522189i \(0.825115\pi\)
\(282\) 0 0
\(283\) 6.07963 2.51826i 0.361396 0.149695i −0.194594 0.980884i \(-0.562339\pi\)
0.555991 + 0.831189i \(0.312339\pi\)
\(284\) −21.8913 9.06767i −1.29901 0.538067i
\(285\) 0 0
\(286\) −0.0448163 + 0.108196i −0.00265004 + 0.00639777i
\(287\) 6.06800 + 6.06800i 0.358183 + 0.358183i
\(288\) 0 0
\(289\) −6.67925 + 15.6329i −0.392897 + 0.919582i
\(290\) −3.26622 + 1.46826i −0.191799 + 0.0862194i
\(291\) 0 0
\(292\) −28.0461 11.6171i −1.64128 0.679839i
\(293\) −3.15115 −0.184092 −0.0920461 0.995755i \(-0.529341\pi\)
−0.0920461 + 0.995755i \(0.529341\pi\)
\(294\) 0 0
\(295\) 12.4090 13.1706i 0.722482 0.766823i
\(296\) 5.20097 2.15431i 0.302300 0.125217i
\(297\) 0 0
\(298\) 2.04885 2.04885i 0.118687 0.118687i
\(299\) −0.445057 + 0.184348i −0.0257383 + 0.0106611i
\(300\) 0 0
\(301\) −14.9585 6.19602i −0.862195 0.357133i
\(302\) 0.0342954 0.00197348
\(303\) 0 0
\(304\) 9.78495 9.78495i 0.561205 0.561205i
\(305\) 6.36987 + 14.1701i 0.364738 + 0.811376i
\(306\) 0 0
\(307\) 14.9905i 0.855551i 0.903885 + 0.427775i \(0.140703\pi\)
−0.903885 + 0.427775i \(0.859297\pi\)
\(308\) 5.28261 + 5.28261i 0.301005 + 0.301005i
\(309\) 0 0
\(310\) 0.112361 + 0.249952i 0.00638167 + 0.0141963i
\(311\) −9.26536 3.83784i −0.525390 0.217624i 0.104193 0.994557i \(-0.466774\pi\)
−0.629583 + 0.776933i \(0.716774\pi\)
\(312\) 0 0
\(313\) −1.35503 3.27134i −0.0765910 0.184907i 0.880946 0.473216i \(-0.156907\pi\)
−0.957537 + 0.288309i \(0.906907\pi\)
\(314\) −1.70114 1.70114i −0.0960007 0.0960007i
\(315\) 0 0
\(316\) −23.1149 + 9.57451i −1.30032 + 0.538608i
\(317\) 11.2813 4.67288i 0.633623 0.262455i −0.0426686 0.999089i \(-0.513586\pi\)
0.676292 + 0.736634i \(0.263586\pi\)
\(318\) 0 0
\(319\) 17.3302i 0.970307i
\(320\) 14.6422 0.435940i 0.818525 0.0243698i
\(321\) 0 0
\(322\) 0.982469i 0.0547508i
\(323\) −15.3897 3.14995i −0.856308 0.175268i
\(324\) 0 0
\(325\) 0.871775 0.0519564i 0.0483574 0.00288203i
\(326\) −1.18261 + 2.85508i −0.0654988 + 0.158128i
\(327\) 0 0
\(328\) −2.24942 + 5.43059i −0.124204 + 0.299854i
\(329\) −1.45288 3.50755i −0.0800996 0.193378i
\(330\) 0 0
\(331\) −13.0768 13.0768i −0.718764 0.718764i 0.249588 0.968352i \(-0.419705\pi\)
−0.968352 + 0.249588i \(0.919705\pi\)
\(332\) 11.7521 11.7521i 0.644979 0.644979i
\(333\) 0 0
\(334\) −0.398886 0.962996i −0.0218261 0.0526928i
\(335\) 27.6928 0.824493i 1.51302 0.0450469i
\(336\) 0 0
\(337\) 17.0378 + 7.05727i 0.928106 + 0.384434i 0.794960 0.606662i \(-0.207492\pi\)
0.133146 + 0.991096i \(0.457492\pi\)
\(338\) −2.28279 2.28279i −0.124167 0.124167i
\(339\) 0 0
\(340\) −10.2838 14.6118i −0.557716 0.792434i
\(341\) 1.32622 0.0718189
\(342\) 0 0
\(343\) −15.8023 6.54555i −0.853247 0.353426i
\(344\) 11.0903i 0.597951i
\(345\) 0 0
\(346\) 0.281477 + 0.679547i 0.0151323 + 0.0365327i
\(347\) −1.94225 4.68901i −0.104265 0.251719i 0.863134 0.504975i \(-0.168498\pi\)
−0.967399 + 0.253256i \(0.918498\pi\)
\(348\) 0 0
\(349\) −17.2978 17.2978i −0.925928 0.925928i 0.0715119 0.997440i \(-0.477218\pi\)
−0.997440 + 0.0715119i \(0.977218\pi\)
\(350\) −0.582500 + 1.68318i −0.0311359 + 0.0899695i
\(351\) 0 0
\(352\) −2.95282 + 7.12875i −0.157386 + 0.379964i
\(353\) 17.5325 0.933161 0.466580 0.884479i \(-0.345486\pi\)
0.466580 + 0.884479i \(0.345486\pi\)
\(354\) 0 0
\(355\) −25.5579 9.70578i −1.35647 0.515130i
\(356\) −22.2695 −1.18028
\(357\) 0 0
\(358\) 5.79391i 0.306218i
\(359\) 1.42687 1.42687i 0.0753076 0.0753076i −0.668450 0.743757i \(-0.733042\pi\)
0.743757 + 0.668450i \(0.233042\pi\)
\(360\) 0 0
\(361\) 4.48433i 0.236017i
\(362\) −1.08786 + 2.62634i −0.0571769 + 0.138037i
\(363\) 0 0
\(364\) 0.447557 0.185384i 0.0234584 0.00971677i
\(365\) −32.7436 12.4346i −1.71388 0.650858i
\(366\) 0 0
\(367\) 12.4008 + 29.9381i 0.647315 + 1.56276i 0.816609 + 0.577191i \(0.195851\pi\)
−0.169294 + 0.985566i \(0.554149\pi\)
\(368\) −9.25478 + 3.83345i −0.482439 + 0.199833i
\(369\) 0 0
\(370\) 2.91546 1.31059i 0.151568 0.0681343i
\(371\) −6.76525 + 16.3328i −0.351234 + 0.847955i
\(372\) 0 0
\(373\) 20.6108i 1.06719i −0.845741 0.533593i \(-0.820841\pi\)
0.845741 0.533593i \(-0.179159\pi\)
\(374\) 2.71433 0.524297i 0.140355 0.0271107i
\(375\) 0 0
\(376\) 1.83884 1.83884i 0.0948311 0.0948311i
\(377\) 1.03822 + 0.430044i 0.0534710 + 0.0221484i
\(378\) 0 0
\(379\) 15.3385 + 6.35343i 0.787887 + 0.326354i 0.740094 0.672504i \(-0.234781\pi\)
0.0477935 + 0.998857i \(0.484781\pi\)
\(380\) 11.3222 12.0171i 0.580819 0.616465i
\(381\) 0 0
\(382\) −0.542471 + 0.542471i −0.0277552 + 0.0277552i
\(383\) 16.4274 16.4274i 0.839401 0.839401i −0.149379 0.988780i \(-0.547727\pi\)
0.988780 + 0.149379i \(0.0477274\pi\)
\(384\) 0 0
\(385\) 6.27365 + 5.91088i 0.319735 + 0.301246i
\(386\) 3.67622 + 1.52274i 0.187115 + 0.0775055i
\(387\) 0 0
\(388\) −4.11624 1.70500i −0.208971 0.0865584i
\(389\) −25.9259 + 25.9259i −1.31450 + 1.31450i −0.396433 + 0.918064i \(0.629752\pi\)
−0.918064 + 0.396433i \(0.870248\pi\)
\(390\) 0 0
\(391\) 9.41996 + 6.36999i 0.476388 + 0.322144i
\(392\) 4.85419i 0.245174i
\(393\) 0 0
\(394\) −1.01673 + 2.45461i −0.0512222 + 0.123661i
\(395\) −26.3289 + 11.8356i −1.32475 + 0.595516i
\(396\) 0 0
\(397\) 9.06522 3.75494i 0.454970 0.188455i −0.143416 0.989662i \(-0.545809\pi\)
0.598386 + 0.801208i \(0.295809\pi\)
\(398\) 1.50881 + 3.64259i 0.0756299 + 0.182587i
\(399\) 0 0
\(400\) 18.1282 1.08041i 0.906411 0.0540207i
\(401\) −19.8539 + 8.22376i −0.991457 + 0.410675i −0.818657 0.574282i \(-0.805281\pi\)
−0.172799 + 0.984957i \(0.555281\pi\)
\(402\) 0 0
\(403\) 0.0329097 0.0794512i 0.00163935 0.00395774i
\(404\) 1.72663i 0.0859032i
\(405\) 0 0
\(406\) −1.62061 + 1.62061i −0.0804293 + 0.0804293i
\(407\) 15.4692i 0.766779i
\(408\) 0 0
\(409\) −31.2735 −1.54638 −0.773189 0.634176i \(-0.781339\pi\)
−0.773189 + 0.634176i \(0.781339\pi\)
\(410\) −1.18492 + 3.12020i −0.0585190 + 0.154096i
\(411\) 0 0
\(412\) −0.711526 −0.0350544
\(413\) 4.43193 10.6996i 0.218081 0.526494i
\(414\) 0 0
\(415\) 13.1498 13.9568i 0.645497 0.685113i
\(416\) 0.353795 + 0.353795i 0.0173462 + 0.0173462i
\(417\) 0 0
\(418\) 0.977576 + 2.36008i 0.0478148 + 0.115435i
\(419\) 7.78615 + 18.7974i 0.380378 + 0.918314i 0.991892 + 0.127081i \(0.0405608\pi\)
−0.611514 + 0.791234i \(0.709439\pi\)
\(420\) 0 0
\(421\) 1.80862i 0.0881467i 0.999028 + 0.0440733i \(0.0140335\pi\)
−0.999028 + 0.0440733i \(0.985966\pi\)
\(422\) −1.13136 0.468626i −0.0550740 0.0228124i
\(423\) 0 0
\(424\) −12.1092 −0.588075
\(425\) −12.3616 16.4982i −0.599628 0.800279i
\(426\) 0 0
\(427\) 7.03079 + 7.03079i 0.340244 + 0.340244i
\(428\) −11.9024 4.93016i −0.575327 0.238308i
\(429\) 0 0
\(430\) −0.187403 6.29444i −0.00903738 0.303545i
\(431\) −6.37695 15.3953i −0.307167 0.741566i −0.999795 0.0202708i \(-0.993547\pi\)
0.692628 0.721295i \(-0.256453\pi\)
\(432\) 0 0
\(433\) −11.5388 + 11.5388i −0.554519 + 0.554519i −0.927742 0.373222i \(-0.878253\pi\)
0.373222 + 0.927742i \(0.378253\pi\)
\(434\) 0.124019 + 0.124019i 0.00595311 + 0.00595311i
\(435\) 0 0
\(436\) −6.55588 15.8273i −0.313970 0.757990i
\(437\) −4.02118 + 9.70800i −0.192359 + 0.464396i
\(438\) 0 0
\(439\) 9.19489 22.1984i 0.438848 1.05947i −0.537499 0.843264i \(-0.680631\pi\)
0.976347 0.216209i \(-0.0693692\pi\)
\(440\) −2.09609 + 5.51955i −0.0999271 + 0.263134i
\(441\) 0 0
\(442\) 0.0359457 0.175620i 0.00170976 0.00835340i
\(443\) 21.2757i 1.01084i 0.862874 + 0.505419i \(0.168662\pi\)
−0.862874 + 0.505419i \(0.831338\pi\)
\(444\) 0 0
\(445\) −25.6826 + 0.764644i −1.21747 + 0.0362476i
\(446\) 2.50011i 0.118384i
\(447\) 0 0
\(448\) 8.66156 3.58773i 0.409220 0.169504i
\(449\) −26.9783 + 11.1748i −1.27318 + 0.527370i −0.913931 0.405870i \(-0.866969\pi\)
−0.359253 + 0.933240i \(0.616969\pi\)
\(450\) 0 0
\(451\) 11.4213 + 11.4213i 0.537807 + 0.537807i
\(452\) −4.23718 10.2295i −0.199300 0.481153i
\(453\) 0 0
\(454\) −1.02966 0.426500i −0.0483244 0.0200166i
\(455\) 0.509787 0.229165i 0.0238992 0.0107434i
\(456\) 0 0
\(457\) −0.734055 0.734055i −0.0343376 0.0343376i 0.689729 0.724067i \(-0.257729\pi\)
−0.724067 + 0.689729i \(0.757729\pi\)
\(458\) 0.298195i 0.0139337i
\(459\) 0 0
\(460\) −10.9013 + 4.90045i −0.508274 + 0.228485i
\(461\) −0.0496372 + 0.0496372i −0.00231183 + 0.00231183i −0.708262 0.705950i \(-0.750520\pi\)
0.705950 + 0.708262i \(0.250520\pi\)
\(462\) 0 0
\(463\) −40.0649 −1.86197 −0.930987 0.365051i \(-0.881051\pi\)
−0.930987 + 0.365051i \(0.881051\pi\)
\(464\) 21.5894 + 8.94260i 1.00226 + 0.415150i
\(465\) 0 0
\(466\) 5.85376 2.42471i 0.271170 0.112322i
\(467\) 16.0563 16.0563i 0.742997 0.742997i −0.230156 0.973154i \(-0.573924\pi\)
0.973154 + 0.230156i \(0.0739238\pi\)
\(468\) 0 0
\(469\) 16.3816 6.78547i 0.756431 0.313324i
\(470\) 1.01258 1.07473i 0.0467070 0.0495735i
\(471\) 0 0
\(472\) 7.93276 0.365135
\(473\) −28.1552 11.6622i −1.29458 0.536231i
\(474\) 0 0
\(475\) 12.6449 14.2477i 0.580190 0.653730i
\(476\) −9.47288 6.40578i −0.434189 0.293608i
\(477\) 0 0
\(478\) −1.09375 1.09375i −0.0500270 0.0500270i
\(479\) 8.90144 21.4900i 0.406717 0.981902i −0.579278 0.815130i \(-0.696665\pi\)
0.985995 0.166772i \(-0.0533345\pi\)
\(480\) 0 0
\(481\) −0.926726 0.383863i −0.0422551 0.0175026i
\(482\) 6.16422 2.55331i 0.280773 0.116300i
\(483\) 0 0
\(484\) −5.13139 5.13139i −0.233245 0.233245i
\(485\) −4.80567 1.82499i −0.218214 0.0828685i
\(486\) 0 0
\(487\) 15.6248 6.47199i 0.708026 0.293274i 0.000538564 1.00000i \(-0.499829\pi\)
0.707488 + 0.706726i \(0.249829\pi\)
\(488\) −2.60633 + 6.29224i −0.117983 + 0.284837i
\(489\) 0 0
\(490\) −0.0820256 2.75505i −0.00370554 0.124460i
\(491\) 14.8915 14.8915i 0.672045 0.672045i −0.286142 0.958187i \(-0.592373\pi\)
0.958187 + 0.286142i \(0.0923729\pi\)
\(492\) 0 0
\(493\) −5.03100 26.0459i −0.226585 1.17305i
\(494\) 0.165646 0.00745275
\(495\) 0 0
\(496\) 0.684345 1.65216i 0.0307280 0.0741840i
\(497\) −17.4968 −0.784840
\(498\) 0 0
\(499\) 8.62028 + 20.8112i 0.385897 + 0.931637i 0.990800 + 0.135338i \(0.0432120\pi\)
−0.604903 + 0.796299i \(0.706788\pi\)
\(500\) 21.5816 1.93221i 0.965159 0.0864109i
\(501\) 0 0
\(502\) −1.86664 + 1.86664i −0.0833122 + 0.0833122i
\(503\) 11.1063 + 26.8129i 0.495204 + 1.19553i 0.952039 + 0.305977i \(0.0989829\pi\)
−0.456835 + 0.889551i \(0.651017\pi\)
\(504\) 0 0
\(505\) −0.0592857 1.99127i −0.00263818 0.0886103i
\(506\) 1.84922i 0.0822077i
\(507\) 0 0
\(508\) 22.4017 + 22.4017i 0.993915 + 0.993915i
\(509\) 4.38401 0.194318 0.0971589 0.995269i \(-0.469024\pi\)
0.0971589 + 0.995269i \(0.469024\pi\)
\(510\) 0 0
\(511\) −22.4162 −0.991633
\(512\) 12.3921 + 12.3921i 0.547660 + 0.547660i
\(513\) 0 0
\(514\) 0.383393i 0.0169107i
\(515\) −0.820579 + 0.0244310i −0.0361590 + 0.00107656i
\(516\) 0 0
\(517\) −2.73462 6.60196i −0.120269 0.290354i
\(518\) 1.44657 1.44657i 0.0635587 0.0635587i
\(519\) 0 0
\(520\) 0.278651 + 0.262538i 0.0122197 + 0.0115131i
\(521\) 1.22242 + 2.95118i 0.0535551 + 0.129294i 0.948393 0.317099i \(-0.102709\pi\)
−0.894837 + 0.446392i \(0.852709\pi\)
\(522\) 0 0
\(523\) 34.0520 1.48899 0.744494 0.667629i \(-0.232691\pi\)
0.744494 + 0.667629i \(0.232691\pi\)
\(524\) 7.14875 17.2586i 0.312294 0.753945i
\(525\) 0 0
\(526\) 0.106148 0.00462825
\(527\) −1.99320 + 0.385004i −0.0868251 + 0.0167710i
\(528\) 0 0
\(529\) −10.8848 + 10.8848i −0.473251 + 0.473251i
\(530\) −6.87271 + 0.204620i −0.298531 + 0.00888812i
\(531\) 0 0
\(532\) 4.04377 9.76254i 0.175320 0.423260i
\(533\) 0.967641 0.400810i 0.0419132 0.0173610i
\(534\) 0 0
\(535\) −13.8960 5.27710i −0.600776 0.228149i
\(536\) 8.58809 + 8.58809i 0.370949 + 0.370949i
\(537\) 0 0
\(538\) 3.93359 1.62934i 0.169589 0.0702460i
\(539\) −12.3234 5.10452i −0.530806 0.219867i
\(540\) 0 0
\(541\) −10.3587 + 25.0081i −0.445355 + 1.07518i 0.528687 + 0.848817i \(0.322685\pi\)
−0.974042 + 0.226366i \(0.927315\pi\)
\(542\) 2.82859 + 2.82859i 0.121498 + 0.121498i
\(543\) 0 0
\(544\) 2.36836 11.5711i 0.101543 0.496108i
\(545\) −8.10412 18.0280i −0.347143 0.772234i
\(546\) 0 0
\(547\) 12.5020 + 5.17849i 0.534546 + 0.221416i 0.633593 0.773667i \(-0.281579\pi\)
−0.0990470 + 0.995083i \(0.531579\pi\)
\(548\) 12.8012 0.546841
\(549\) 0 0
\(550\) −1.09639 + 3.16810i −0.0467502 + 0.135088i
\(551\) 22.6466 9.38053i 0.964778 0.399624i
\(552\) 0 0
\(553\) −13.0637 + 13.0637i −0.555524 + 0.555524i
\(554\) 3.85494 1.59677i 0.163781 0.0678402i
\(555\) 0 0
\(556\) 8.23114 + 3.40945i 0.349078 + 0.144593i
\(557\) 30.5182 1.29310 0.646548 0.762873i \(-0.276212\pi\)
0.646548 + 0.762873i \(0.276212\pi\)
\(558\) 0 0
\(559\) −1.39732 + 1.39732i −0.0591005 + 0.0591005i
\(560\) 10.6008 4.76539i 0.447967 0.201375i
\(561\) 0 0
\(562\) 1.95111i 0.0823024i
\(563\) 5.73355 + 5.73355i 0.241640 + 0.241640i 0.817529 0.575888i \(-0.195344\pi\)
−0.575888 + 0.817529i \(0.695344\pi\)
\(564\) 0 0
\(565\) −5.23784 11.6518i −0.220358 0.490196i
\(566\) 1.51333 + 0.626842i 0.0636101 + 0.0263481i
\(567\) 0 0
\(568\) −4.58638 11.0725i −0.192440 0.464592i
\(569\) 2.71124 + 2.71124i 0.113661 + 0.113661i 0.761650 0.647989i \(-0.224390\pi\)
−0.647989 + 0.761650i \(0.724390\pi\)
\(570\) 0 0
\(571\) 6.06730 2.51316i 0.253909 0.105172i −0.252099 0.967701i \(-0.581121\pi\)
0.506007 + 0.862529i \(0.331121\pi\)
\(572\) 0.842398 0.348933i 0.0352224 0.0145896i
\(573\) 0 0
\(574\) 2.13608i 0.0891583i
\(575\) −12.4038 + 6.02583i −0.517275 + 0.251295i
\(576\) 0 0
\(577\) 23.2880i 0.969493i 0.874655 + 0.484746i \(0.161088\pi\)
−0.874655 + 0.484746i \(0.838912\pi\)
\(578\) −3.92720 + 1.57595i −0.163350 + 0.0655508i
\(579\) 0 0
\(580\) 26.0653 + 9.89850i 1.08230 + 0.411013i
\(581\) 4.69649 11.3383i 0.194843 0.470393i
\(582\) 0 0
\(583\) −12.7337 + 30.7418i −0.527374 + 1.27319i
\(584\) −5.87587 14.1856i −0.243145 0.587004i
\(585\) 0 0
\(586\) −0.554640 0.554640i −0.0229120 0.0229120i
\(587\) −26.0085 + 26.0085i −1.07348 + 1.07348i −0.0764077 + 0.997077i \(0.524345\pi\)
−0.997077 + 0.0764077i \(0.975655\pi\)
\(588\) 0 0
\(589\) −0.717858 1.73306i −0.0295788 0.0714096i
\(590\) 4.50232 0.134047i 0.185358 0.00551862i
\(591\) 0 0
\(592\) −19.2709 7.98227i −0.792030 0.328069i
\(593\) −19.1275 19.1275i −0.785474 0.785474i 0.195275 0.980749i \(-0.437440\pi\)
−0.980749 + 0.195275i \(0.937440\pi\)
\(594\) 0 0
\(595\) −11.1447 7.06231i −0.456889 0.289527i
\(596\) −22.5596 −0.924076
\(597\) 0 0
\(598\) −0.110783 0.0458877i −0.00453025 0.00187649i
\(599\) 12.2973i 0.502456i −0.967928 0.251228i \(-0.919166\pi\)
0.967928 0.251228i \(-0.0808344\pi\)
\(600\) 0 0
\(601\) −3.08883 7.45710i −0.125996 0.304181i 0.848277 0.529553i \(-0.177640\pi\)
−0.974273 + 0.225372i \(0.927640\pi\)
\(602\) −1.54230 3.72345i −0.0628596 0.151757i
\(603\) 0 0
\(604\) −0.188811 0.188811i −0.00768260 0.00768260i
\(605\) −6.09406 5.74168i −0.247759 0.233432i
\(606\) 0 0
\(607\) 9.22388 22.2684i 0.374386 0.903847i −0.618610 0.785698i \(-0.712304\pi\)
0.992996 0.118149i \(-0.0376960\pi\)
\(608\) 10.9139 0.442619
\(609\) 0 0
\(610\) −1.37293 + 3.61527i −0.0555882 + 0.146378i
\(611\) −0.463369 −0.0187459
\(612\) 0 0
\(613\) 39.8359i 1.60896i 0.593983 + 0.804478i \(0.297555\pi\)
−0.593983 + 0.804478i \(0.702445\pi\)
\(614\) −2.63850 + 2.63850i −0.106481 + 0.106481i
\(615\) 0 0
\(616\) 3.77867i 0.152247i
\(617\) −9.87155 + 23.8320i −0.397414 + 0.959442i 0.590863 + 0.806772i \(0.298787\pi\)
−0.988277 + 0.152670i \(0.951213\pi\)
\(618\) 0 0
\(619\) −3.48155 + 1.44210i −0.139935 + 0.0579630i −0.451552 0.892245i \(-0.649129\pi\)
0.311617 + 0.950208i \(0.399129\pi\)
\(620\) 0.757496 1.99468i 0.0304218 0.0801085i
\(621\) 0 0
\(622\) −0.955308 2.30632i −0.0383044 0.0924749i
\(623\) −15.1925 + 6.29293i −0.608673 + 0.252121i
\(624\) 0 0
\(625\) 24.8230 2.96938i 0.992921 0.118775i
\(626\) 0.337293 0.814297i 0.0134809 0.0325459i
\(627\) 0 0
\(628\) 18.7309i 0.747446i
\(629\) 4.49073 + 23.2489i 0.179057 + 0.926994i
\(630\) 0 0
\(631\) 13.6572 13.6572i 0.543685 0.543685i −0.380922 0.924607i \(-0.624393\pi\)
0.924607 + 0.380922i \(0.124393\pi\)
\(632\) −11.6914 4.84274i −0.465059 0.192634i
\(633\) 0 0
\(634\) 2.80813 + 1.16317i 0.111525 + 0.0461952i
\(635\) 26.6043 + 25.0660i 1.05576 + 0.994713i
\(636\) 0 0
\(637\) −0.611602 + 0.611602i −0.0242326 + 0.0242326i
\(638\) −3.05033 + 3.05033i −0.120764 + 0.120764i
\(639\) 0 0
\(640\) 11.9781 + 11.2855i 0.473478 + 0.446099i
\(641\) −19.0839 7.90483i −0.753770 0.312222i −0.0274914 0.999622i \(-0.508752\pi\)
−0.726279 + 0.687400i \(0.758752\pi\)
\(642\) 0 0
\(643\) −26.8106 11.1053i −1.05731 0.437951i −0.214813 0.976655i \(-0.568914\pi\)
−0.842495 + 0.538704i \(0.818914\pi\)
\(644\) −5.40890 + 5.40890i −0.213141 + 0.213141i
\(645\) 0 0
\(646\) −2.15435 3.26321i −0.0847618 0.128389i
\(647\) 41.2848i 1.62307i 0.584302 + 0.811536i \(0.301368\pi\)
−0.584302 + 0.811536i \(0.698632\pi\)
\(648\) 0 0
\(649\) 8.34184 20.1390i 0.327446 0.790524i
\(650\) 0.162588 + 0.144298i 0.00637721 + 0.00565983i
\(651\) 0 0
\(652\) 22.2292 9.20763i 0.870562 0.360598i
\(653\) 9.39804 + 22.6889i 0.367774 + 0.887884i 0.994114 + 0.108335i \(0.0345519\pi\)
−0.626341 + 0.779549i \(0.715448\pi\)
\(654\) 0 0
\(655\) 7.65182 20.1492i 0.298981 0.787296i
\(656\) 20.1217 8.33468i 0.785621 0.325415i
\(657\) 0 0
\(658\) 0.361647 0.873094i 0.0140985 0.0340368i
\(659\) 17.7024i 0.689588i 0.938678 + 0.344794i \(0.112051\pi\)
−0.938678 + 0.344794i \(0.887949\pi\)
\(660\) 0 0
\(661\) 10.0305 10.0305i 0.390141 0.390141i −0.484597 0.874738i \(-0.661034\pi\)
0.874738 + 0.484597i \(0.161034\pi\)
\(662\) 4.60333i 0.178914i
\(663\) 0 0
\(664\) 8.40629 0.326227
\(665\) 4.32835 11.3977i 0.167846 0.441982i
\(666\) 0 0
\(667\) −17.7445 −0.687072
\(668\) −3.10566 + 7.49773i −0.120162 + 0.290096i
\(669\) 0 0
\(670\) 5.01938 + 4.72914i 0.193916 + 0.182703i
\(671\) 13.2335 + 13.2335i 0.510872 + 0.510872i
\(672\) 0 0
\(673\) −0.124393 0.300312i −0.00479501 0.0115762i 0.921464 0.388464i \(-0.126994\pi\)
−0.926259 + 0.376888i \(0.876994\pi\)
\(674\) 1.75668 + 4.24101i 0.0676650 + 0.163358i
\(675\) 0 0
\(676\) 25.1354i 0.966746i
\(677\) 15.9805 + 6.61933i 0.614180 + 0.254402i 0.668014 0.744148i \(-0.267144\pi\)
−0.0538347 + 0.998550i \(0.517144\pi\)
\(678\) 0 0
\(679\) −3.28995 −0.126257
\(680\) 1.54791 8.90392i 0.0593597 0.341450i
\(681\) 0 0
\(682\) 0.233431 + 0.233431i 0.00893852 + 0.00893852i
\(683\) −31.8570 13.1956i −1.21898 0.504916i −0.321891 0.946777i \(-0.604319\pi\)
−0.897084 + 0.441860i \(0.854319\pi\)
\(684\) 0 0
\(685\) 14.7632 0.439543i 0.564074 0.0167941i
\(686\) −1.62931 3.93350i −0.0622072 0.150182i
\(687\) 0 0
\(688\) −29.0568 + 29.0568i −1.10778 + 1.10778i
\(689\) 1.52569 + 1.52569i 0.0581243 + 0.0581243i
\(690\) 0 0
\(691\) 16.1221 + 38.9223i 0.613315 + 1.48067i 0.859337 + 0.511409i \(0.170876\pi\)
−0.246022 + 0.969264i \(0.579124\pi\)
\(692\) 2.19154 5.29084i 0.0833098 0.201128i
\(693\) 0 0
\(694\) 0.483462 1.16718i 0.0183520 0.0443056i
\(695\) 9.60978 + 3.64938i 0.364520 + 0.138429i
\(696\) 0 0
\(697\) −20.4808 13.8496i −0.775767 0.524591i
\(698\) 6.08922i 0.230481i
\(699\) 0 0
\(700\) 12.4735 6.05969i 0.471454 0.229035i
\(701\) 29.6266i 1.11898i 0.828836 + 0.559491i \(0.189003\pi\)
−0.828836 + 0.559491i \(0.810997\pi\)
\(702\) 0 0
\(703\) −20.2146 + 8.37317i −0.762409 + 0.315800i
\(704\) 16.3029 6.75289i 0.614439 0.254509i
\(705\) 0 0
\(706\) 3.08593 + 3.08593i 0.116140 + 0.116140i
\(707\) −0.487914 1.17793i −0.0183499 0.0443005i
\(708\) 0 0
\(709\) 15.0352 + 6.22777i 0.564657 + 0.233889i 0.646706 0.762740i \(-0.276146\pi\)
−0.0820483 + 0.996628i \(0.526146\pi\)
\(710\) −2.79015 6.20682i −0.104713 0.232938i
\(711\) 0 0
\(712\) −7.96469 7.96469i −0.298489 0.298489i
\(713\) 1.35793i 0.0508547i
\(714\) 0 0
\(715\) 0.959530 0.431337i 0.0358844 0.0161311i
\(716\) 31.8979 31.8979i 1.19208 1.19208i
\(717\) 0 0
\(718\) 0.502294 0.0187454
\(719\) 29.0292 + 12.0243i 1.08261 + 0.448430i 0.851423 0.524480i \(-0.175740\pi\)
0.231184 + 0.972910i \(0.425740\pi\)
\(720\) 0 0
\(721\) −0.485411 + 0.201064i −0.0180776 + 0.00748800i
\(722\) −0.789295 + 0.789295i −0.0293745 + 0.0293745i
\(723\) 0 0
\(724\) 20.4483 8.46994i 0.759953 0.314783i
\(725\) 30.4002 + 10.5206i 1.12903 + 0.390727i
\(726\) 0 0
\(727\) 21.6544 0.803118 0.401559 0.915833i \(-0.368468\pi\)
0.401559 + 0.915833i \(0.368468\pi\)
\(728\) 0.226372 + 0.0937664i 0.00838991 + 0.00347521i
\(729\) 0 0
\(730\) −3.57462 7.95190i −0.132303 0.294313i
\(731\) 45.7004 + 9.35389i 1.69029 + 0.345966i
\(732\) 0 0
\(733\) 22.2422 + 22.2422i 0.821534 + 0.821534i 0.986328 0.164794i \(-0.0526959\pi\)
−0.164794 + 0.986328i \(0.552696\pi\)
\(734\) −3.08678 + 7.45215i −0.113935 + 0.275064i
\(735\) 0 0
\(736\) −7.29917 3.02342i −0.269051 0.111445i
\(737\) 30.8337 12.7717i 1.13577 0.470452i
\(738\) 0 0
\(739\) −9.68961 9.68961i −0.356438 0.356438i 0.506060 0.862498i \(-0.331101\pi\)
−0.862498 + 0.506060i \(0.831101\pi\)
\(740\) −23.2662 8.83552i −0.855283 0.324800i
\(741\) 0 0
\(742\) −4.06552 + 1.68400i −0.149250 + 0.0618214i
\(743\) −6.20770 + 14.9867i −0.227738 + 0.549809i −0.995901 0.0904453i \(-0.971171\pi\)
0.768163 + 0.640254i \(0.221171\pi\)
\(744\) 0 0
\(745\) −26.0172 + 0.774605i −0.953197 + 0.0283793i
\(746\) 3.62775 3.62775i 0.132821 0.132821i
\(747\) 0 0
\(748\) −17.8300 12.0570i −0.651929 0.440849i
\(749\) −9.51315 −0.347603
\(750\) 0 0
\(751\) −4.26568 + 10.2983i −0.155657 + 0.375789i −0.982400 0.186791i \(-0.940191\pi\)
0.826743 + 0.562580i \(0.190191\pi\)
\(752\) −9.63558 −0.351373
\(753\) 0 0
\(754\) 0.107046 + 0.258432i 0.00389838 + 0.00941153i
\(755\) −0.224232 0.211266i −0.00816064 0.00768876i
\(756\) 0 0
\(757\) 14.0667 14.0667i 0.511262 0.511262i −0.403651 0.914913i \(-0.632259\pi\)
0.914913 + 0.403651i \(0.132259\pi\)
\(758\) 1.58149 + 3.81804i 0.0574421 + 0.138678i
\(759\) 0 0
\(760\) 8.34734 0.248524i 0.302790 0.00901491i
\(761\) 45.4255i 1.64667i 0.567553 + 0.823337i \(0.307890\pi\)
−0.567553 + 0.823337i \(0.692110\pi\)
\(762\) 0 0
\(763\) −8.94498 8.94498i −0.323830 0.323830i
\(764\) 5.97306 0.216098
\(765\) 0 0
\(766\) 5.78284 0.208942
\(767\) −0.999485 0.999485i −0.0360893 0.0360893i
\(768\) 0 0
\(769\) 5.98158i 0.215701i −0.994167 0.107851i \(-0.965603\pi\)
0.994167 0.107851i \(-0.0343968\pi\)
\(770\) 0.0638515 + 2.14462i 0.00230105 + 0.0772868i
\(771\) 0 0
\(772\) −11.8558 28.6225i −0.426701 1.03015i
\(773\) −9.29889 + 9.29889i −0.334458 + 0.334458i −0.854277 0.519819i \(-0.825999\pi\)
0.519819 + 0.854277i \(0.325999\pi\)
\(774\) 0 0
\(775\) 0.805106 2.32641i 0.0289203 0.0835673i
\(776\) −0.862382 2.08197i −0.0309577 0.0747385i
\(777\) 0 0
\(778\) −9.12654 −0.327202
\(779\) 8.74284 21.1071i 0.313245 0.756240i
\(780\) 0 0
\(781\) −32.9328 −1.17843
\(782\) 0.536831 + 2.77922i 0.0191970 + 0.0993847i
\(783\) 0 0
\(784\) −12.7180 + 12.7180i −0.454215 + 0.454215i
\(785\) 0.643146 + 21.6018i 0.0229549 + 0.771001i
\(786\) 0 0
\(787\) 9.83375 23.7408i 0.350535 0.846267i −0.646019 0.763322i \(-0.723567\pi\)
0.996554 0.0829458i \(-0.0264328\pi\)
\(788\) 19.1112 7.91611i 0.680808 0.282000i
\(789\) 0 0
\(790\) −6.71742 2.55099i −0.238995 0.0907601i
\(791\) −5.78130 5.78130i −0.205560 0.205560i
\(792\) 0 0
\(793\) 1.12117 0.464405i 0.0398140 0.0164915i
\(794\) 2.25650 + 0.934673i 0.0800802 + 0.0331703i
\(795\) 0 0
\(796\) 11.7474 28.3607i 0.416375 1.00522i
\(797\) −35.6691 35.6691i −1.26347 1.26347i −0.949402 0.314064i \(-0.898309\pi\)
−0.314064 0.949402i \(-0.601691\pi\)
\(798\) 0 0
\(799\) 6.02647 + 9.12834i 0.213201 + 0.322937i
\(800\) 10.7125 + 9.50739i 0.378743 + 0.336137i
\(801\) 0 0
\(802\) −4.94200 2.04704i −0.174508 0.0722836i
\(803\) −42.1920 −1.48892
\(804\) 0 0
\(805\) −6.05219 + 6.42363i −0.213312 + 0.226403i
\(806\) 0.0197769 0.00819184i 0.000696610 0.000288545i
\(807\) 0 0
\(808\) 0.617532 0.617532i 0.0217247 0.0217247i
\(809\) 8.50125 3.52133i 0.298888 0.123803i −0.228200 0.973614i \(-0.573284\pi\)
0.527088 + 0.849811i \(0.323284\pi\)
\(810\) 0 0
\(811\) 9.89831 + 4.10002i 0.347577 + 0.143971i 0.549640 0.835401i \(-0.314765\pi\)
−0.202064 + 0.979372i \(0.564765\pi\)
\(812\) 17.8442 0.626210
\(813\) 0 0
\(814\) 2.72276 2.72276i 0.0954327 0.0954327i
\(815\) 25.3200 11.3821i 0.886922 0.398698i
\(816\) 0 0
\(817\) 43.1048i 1.50805i
\(818\) −5.50452 5.50452i −0.192461 0.192461i
\(819\) 0 0
\(820\) 23.7015 10.6545i 0.827692 0.372073i
\(821\) −26.0334 10.7834i −0.908572 0.376343i −0.121062 0.992645i \(-0.538630\pi\)
−0.787510 + 0.616302i \(0.788630\pi\)
\(822\) 0 0
\(823\) 13.5250 + 32.6522i 0.471452 + 1.13819i 0.963522 + 0.267630i \(0.0862404\pi\)
−0.492070 + 0.870556i \(0.663760\pi\)
\(824\) −0.254478 0.254478i −0.00886516 0.00886516i
\(825\) 0 0
\(826\) 2.66333 1.10319i 0.0926692 0.0383848i
\(827\) 36.2562 15.0178i 1.26075 0.522221i 0.350612 0.936521i \(-0.385974\pi\)
0.910140 + 0.414300i \(0.135974\pi\)
\(828\) 0 0
\(829\) 17.4130i 0.604779i 0.953184 + 0.302389i \(0.0977843\pi\)
−0.953184 + 0.302389i \(0.902216\pi\)
\(830\) 4.77108 0.142049i 0.165607 0.00493058i
\(831\) 0 0
\(832\) 1.14424i 0.0396695i
\(833\) 20.0029 + 4.09416i 0.693059 + 0.141854i
\(834\) 0 0
\(835\) −3.32422 + 8.75353i −0.115039 + 0.302928i
\(836\) 7.61125 18.3752i 0.263241 0.635519i
\(837\) 0 0
\(838\) −1.93812 + 4.67903i −0.0669511 + 0.161634i
\(839\) 10.2960 + 24.8566i 0.355456 + 0.858147i 0.995927 + 0.0901643i \(0.0287392\pi\)
−0.640471 + 0.767982i \(0.721261\pi\)
\(840\) 0 0
\(841\) 8.76397 + 8.76397i 0.302206 + 0.302206i
\(842\) −0.318338 + 0.318338i −0.0109707 + 0.0109707i
\(843\) 0 0
\(844\) 3.64865 + 8.80862i 0.125592 + 0.303205i
\(845\) 0.863049 + 28.9878i 0.0296898 + 0.997211i
\(846\) 0 0
\(847\) −4.95073 2.05066i −0.170109 0.0704615i
\(848\) 31.7262 + 31.7262i 1.08948 + 1.08948i
\(849\) 0 0
\(850\) 0.728077 5.07967i 0.0249728 0.174231i
\(851\) 15.8390 0.542954
\(852\) 0 0
\(853\) −15.1019 6.25540i −0.517078 0.214181i 0.108855 0.994058i \(-0.465282\pi\)
−0.625933 + 0.779877i \(0.715282\pi\)
\(854\) 2.47501i 0.0846930i
\(855\) 0 0
\(856\) −2.49365 6.02020i −0.0852311 0.205766i
\(857\) −1.47991 3.57282i −0.0505527 0.122045i 0.896586 0.442870i \(-0.146040\pi\)
−0.947138 + 0.320825i \(0.896040\pi\)
\(858\) 0 0
\(859\) 27.6000 + 27.6000i 0.941701 + 0.941701i 0.998392 0.0566905i \(-0.0180548\pi\)
−0.0566905 + 0.998392i \(0.518055\pi\)
\(860\) −33.6218 + 35.6853i −1.14649 + 1.21686i
\(861\) 0 0
\(862\) 1.58734 3.83218i 0.0540650 0.130524i
\(863\) −22.1279 −0.753243 −0.376621 0.926367i \(-0.622914\pi\)
−0.376621 + 0.926367i \(0.622914\pi\)
\(864\) 0 0
\(865\) 2.34576 6.17700i 0.0797583 0.210024i
\(866\) −4.06193 −0.138030
\(867\) 0 0
\(868\) 1.36556i 0.0463500i
\(869\) −24.5886 + 24.5886i −0.834112 + 0.834112i
\(870\) 0 0
\(871\) 2.16411i 0.0733280i
\(872\) 3.31593 8.00536i 0.112292 0.271096i
\(873\) 0 0
\(874\) −2.41650 + 1.00095i −0.0817393 + 0.0338575i
\(875\) 14.1772 7.41673i 0.479277 0.250731i
\(876\) 0 0
\(877\) 7.55317 + 18.2350i 0.255052 + 0.615751i 0.998598 0.0529342i \(-0.0168574\pi\)
−0.743546 + 0.668685i \(0.766857\pi\)
\(878\) 5.52560 2.28878i 0.186480 0.0772425i
\(879\) 0 0
\(880\) 19.9530 8.96949i 0.672617 0.302362i
\(881\) −4.37489 + 10.5619i −0.147394 + 0.355840i −0.980283 0.197600i \(-0.936685\pi\)
0.832889 + 0.553440i \(0.186685\pi\)
\(882\) 0 0
\(883\) 13.2658i 0.446431i 0.974769 + 0.223216i \(0.0716554\pi\)
−0.974769 + 0.223216i \(0.928345\pi\)
\(884\) −1.16476 + 0.768967i −0.0391751 + 0.0258631i
\(885\) 0 0
\(886\) −3.74477 + 3.74477i −0.125808 + 0.125808i
\(887\) −28.2772 11.7128i −0.949455 0.393277i −0.146429 0.989221i \(-0.546778\pi\)
−0.803026 + 0.595944i \(0.796778\pi\)
\(888\) 0 0
\(889\) 21.6130 + 8.95239i 0.724876 + 0.300254i
\(890\) −4.65504 4.38586i −0.156037 0.147014i
\(891\) 0 0
\(892\) −13.7642 + 13.7642i −0.460858 + 0.460858i
\(893\) −7.14704 + 7.14704i −0.239167 + 0.239167i
\(894\) 0 0
\(895\) 35.6916 37.8821i 1.19304 1.26626i
\(896\) 9.73087 + 4.03066i 0.325086 + 0.134655i
\(897\) 0 0
\(898\) −6.71539 2.78161i −0.224096 0.0928234i
\(899\) 2.23993 2.23993i 0.0747059 0.0747059i
\(900\) 0 0
\(901\) 10.2132 49.8989i 0.340252 1.66237i
\(902\) 4.02056i 0.133870i
\(903\) 0 0
\(904\) 2.14315 5.17401i 0.0712799 0.172085i
\(905\) 23.2915 10.4702i 0.774235 0.348042i
\(906\) 0 0
\(907\) 0.707707 0.293142i 0.0234990 0.00973362i −0.370903 0.928672i \(-0.620952\pi\)
0.394402 + 0.918938i \(0.370952\pi\)
\(908\) 3.32066 + 8.01678i 0.110200 + 0.266046i
\(909\) 0 0
\(910\) 0.130064 + 0.0493929i 0.00431159 + 0.00163736i
\(911\) −7.79323 + 3.22806i −0.258201 + 0.106951i −0.508029 0.861340i \(-0.669626\pi\)
0.249828 + 0.968290i \(0.419626\pi\)
\(912\) 0 0
\(913\) 8.83979 21.3412i 0.292555 0.706289i
\(914\) 0.258405i 0.00854727i
\(915\) 0 0
\(916\) −1.64169 + 1.64169i −0.0542430 + 0.0542430i
\(917\) 13.7941i 0.455522i
\(918\) 0 0
\(919\) −13.0143 −0.429302 −0.214651 0.976691i \(-0.568861\pi\)
−0.214651 + 0.976691i \(0.568861\pi\)
\(920\) −5.65150 2.14620i −0.186324 0.0707581i
\(921\) 0 0
\(922\) −0.0174735 −0.000575458
\(923\) −0.817217 + 1.97294i −0.0268990 + 0.0649400i
\(924\) 0 0
\(925\) −27.1355 9.39084i −0.892211 0.308769i
\(926\) −7.05190 7.05190i −0.231740 0.231740i
\(927\) 0 0
\(928\) 7.05297 + 17.0274i 0.231525 + 0.558951i
\(929\) −9.89198 23.8814i −0.324545 0.783522i −0.998979 0.0451859i \(-0.985612\pi\)
0.674433 0.738336i \(-0.264388\pi\)
\(930\) 0 0
\(931\) 18.8668i 0.618335i
\(932\) −45.5764 18.8784i −1.49291 0.618382i
\(933\) 0 0
\(934\) 5.65220 0.184946
\(935\) −20.9767 13.2928i −0.686013 0.434721i
\(936\) 0 0
\(937\) −0.615699 0.615699i −0.0201140 0.0201140i 0.696978 0.717092i \(-0.254527\pi\)
−0.717092 + 0.696978i \(0.754527\pi\)
\(938\) 4.07768 + 1.68903i 0.133141 + 0.0551488i
\(939\) 0 0
\(940\) −11.4915 + 0.342135i −0.374812 + 0.0111592i
\(941\) −20.4139 49.2834i −0.665473 1.60659i −0.789100 0.614265i \(-0.789453\pi\)
0.123627 0.992329i \(-0.460547\pi\)
\(942\) 0 0
\(943\) −11.6943 + 11.6943i −0.380820 + 0.380820i
\(944\) −20.7839 20.7839i −0.676458 0.676458i
\(945\) 0 0
\(946\) −2.90295 7.00834i −0.0943830 0.227861i
\(947\) 5.21997 12.6021i 0.169626 0.409514i −0.816091 0.577924i \(-0.803863\pi\)
0.985717 + 0.168409i \(0.0538631\pi\)
\(948\) 0 0
\(949\) −1.04698 + 2.52764i −0.0339865 + 0.0820506i
\(950\) 4.73343 0.282105i 0.153573 0.00915269i
\(951\) 0 0
\(952\) −1.09695 5.67902i −0.0355525 0.184058i
\(953\) 10.3660i 0.335788i 0.985805 + 0.167894i \(0.0536967\pi\)
−0.985805 + 0.167894i \(0.946303\pi\)
\(954\) 0 0
\(955\) 6.88853 0.205091i 0.222908 0.00663659i
\(956\) 12.0431i 0.389502i
\(957\) 0 0
\(958\) 5.34925 2.21573i 0.172827 0.0715871i
\(959\) 8.73313 3.61738i 0.282007 0.116811i
\(960\) 0 0
\(961\) 21.7489 + 21.7489i 0.701577 + 0.701577i
\(962\) −0.0955505 0.230679i −0.00308067 0.00743740i
\(963\) 0 0
\(964\) −47.9937 19.8796i −1.54577 0.640280i
\(965\) −14.6557 32.6023i −0.471784 1.04951i
\(966\) 0 0
\(967\) 10.1327 + 10.1327i 0.325847 + 0.325847i 0.851005 0.525158i \(-0.175994\pi\)
−0.525158 + 0.851005i \(0.675994\pi\)
\(968\) 3.67050i 0.117974i
\(969\) 0 0
\(970\) −0.524635 1.16708i −0.0168450 0.0374725i
\(971\) −21.0309 + 21.0309i −0.674913 + 0.674913i −0.958845 0.283931i \(-0.908361\pi\)
0.283931 + 0.958845i \(0.408361\pi\)
\(972\) 0 0
\(973\) 6.57882 0.210907
\(974\) 3.88929 + 1.61100i 0.124621 + 0.0516197i
\(975\) 0 0
\(976\) 23.3144 9.65712i 0.746274 0.309117i
\(977\) −26.2437 + 26.2437i −0.839611 + 0.839611i −0.988808 0.149196i \(-0.952331\pi\)
0.149196 + 0.988808i \(0.452331\pi\)
\(978\) 0 0
\(979\) −28.5955 + 11.8446i −0.913916 + 0.378556i
\(980\) −14.7161 + 15.6193i −0.470089 + 0.498940i
\(981\) 0 0
\(982\) 5.24217 0.167284
\(983\) 42.9257 + 17.7804i 1.36912 + 0.567107i 0.941549 0.336877i \(-0.109371\pi\)
0.427568 + 0.903983i \(0.359371\pi\)
\(984\) 0 0
\(985\) 21.7685 9.78559i 0.693602 0.311795i
\(986\) 3.69887 5.46991i 0.117796 0.174197i
\(987\) 0 0
\(988\) −0.911949 0.911949i −0.0290130 0.0290130i
\(989\) 11.9411 28.8283i 0.379703 0.916685i
\(990\) 0 0
\(991\) −40.9290 16.9534i −1.30015 0.538541i −0.378158 0.925741i \(-0.623442\pi\)
−0.921996 + 0.387200i \(0.873442\pi\)
\(992\) 1.30304 0.539738i 0.0413717 0.0171367i
\(993\) 0 0
\(994\) −3.07965 3.07965i −0.0976806 0.0976806i
\(995\) 12.5741 33.1108i 0.398625 1.04968i
\(996\) 0 0
\(997\) −22.7561 + 9.42589i −0.720693 + 0.298521i −0.712721 0.701447i \(-0.752538\pi\)
−0.00797178 + 0.999968i \(0.502538\pi\)
\(998\) −2.14575 + 5.18029i −0.0679224 + 0.163979i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 765.2.bh.b.739.4 24
3.2 odd 2 85.2.m.a.59.3 yes 24
5.4 even 2 inner 765.2.bh.b.739.3 24
15.2 even 4 425.2.m.e.76.4 24
15.8 even 4 425.2.m.e.76.3 24
15.14 odd 2 85.2.m.a.59.4 yes 24
17.15 even 8 inner 765.2.bh.b.559.3 24
51.32 odd 8 85.2.m.a.49.4 yes 24
51.41 even 16 1445.2.b.i.579.13 24
51.44 even 16 1445.2.b.i.579.14 24
85.49 even 8 inner 765.2.bh.b.559.4 24
255.32 even 8 425.2.m.e.151.4 24
255.44 even 16 1445.2.b.i.579.11 24
255.83 even 8 425.2.m.e.151.3 24
255.92 odd 16 7225.2.a.by.1.11 24
255.134 odd 8 85.2.m.a.49.3 24
255.143 odd 16 7225.2.a.by.1.14 24
255.194 even 16 1445.2.b.i.579.12 24
255.197 odd 16 7225.2.a.by.1.12 24
255.248 odd 16 7225.2.a.by.1.13 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.3 24 255.134 odd 8
85.2.m.a.49.4 yes 24 51.32 odd 8
85.2.m.a.59.3 yes 24 3.2 odd 2
85.2.m.a.59.4 yes 24 15.14 odd 2
425.2.m.e.76.3 24 15.8 even 4
425.2.m.e.76.4 24 15.2 even 4
425.2.m.e.151.3 24 255.83 even 8
425.2.m.e.151.4 24 255.32 even 8
765.2.bh.b.559.3 24 17.15 even 8 inner
765.2.bh.b.559.4 24 85.49 even 8 inner
765.2.bh.b.739.3 24 5.4 even 2 inner
765.2.bh.b.739.4 24 1.1 even 1 trivial
1445.2.b.i.579.11 24 255.44 even 16
1445.2.b.i.579.12 24 255.194 even 16
1445.2.b.i.579.13 24 51.41 even 16
1445.2.b.i.579.14 24 51.44 even 16
7225.2.a.by.1.11 24 255.92 odd 16
7225.2.a.by.1.12 24 255.197 odd 16
7225.2.a.by.1.13 24 255.248 odd 16
7225.2.a.by.1.14 24 255.143 odd 16