Properties

Label 425.2.m.e.151.6
Level $425$
Weight $2$
Character 425.151
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 151.6
Character \(\chi\) \(=\) 425.151
Dual form 425.2.m.e.76.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63043 + 1.63043i) q^{2} +(0.718554 + 1.73474i) q^{3} +3.31660i q^{4} +(-1.65683 + 3.99993i) q^{6} +(-1.42808 - 0.591528i) q^{7} +(-2.14663 + 2.14663i) q^{8} +(-0.371694 + 0.371694i) q^{9} +(-1.76717 + 4.26632i) q^{11} +(-5.75346 + 2.38316i) q^{12} -3.51782i q^{13} +(-1.36393 - 3.29282i) q^{14} -0.366652 q^{16} +(-1.14190 - 3.96182i) q^{17} -1.21204 q^{18} +(4.68326 + 4.68326i) q^{19} -2.90239i q^{21} +(-9.83718 + 4.07469i) q^{22} +(0.993477 - 2.39846i) q^{23} +(-5.26632 - 2.18138i) q^{24} +(5.73556 - 5.73556i) q^{26} +(4.29235 + 1.77795i) q^{27} +(1.96187 - 4.73636i) q^{28} +(0.904478 - 0.374647i) q^{29} +(-0.468546 - 1.13117i) q^{31} +(3.69546 + 3.69546i) q^{32} -8.67078 q^{33} +(4.59768 - 8.32127i) q^{34} +(-1.23276 - 1.23276i) q^{36} +(-0.156011 - 0.376644i) q^{37} +15.2714i q^{38} +(6.10251 - 2.52774i) q^{39} +(-9.45483 - 3.91632i) q^{41} +(4.73214 - 4.73214i) q^{42} +(3.00290 - 3.00290i) q^{43} +(-14.1497 - 5.86100i) q^{44} +(5.53032 - 2.29073i) q^{46} -3.99531i q^{47} +(-0.263460 - 0.636048i) q^{48} +(-3.26025 - 3.26025i) q^{49} +(6.05223 - 4.82770i) q^{51} +11.6672 q^{52} +(1.24288 + 1.24288i) q^{53} +(4.09956 + 9.89721i) q^{54} +(4.33534 - 1.79576i) q^{56} +(-4.75907 + 11.4894i) q^{57} +(2.08552 + 0.863853i) q^{58} +(1.10431 - 1.10431i) q^{59} +(12.9280 + 5.35497i) q^{61} +(1.08036 - 2.60823i) q^{62} +(0.750675 - 0.310940i) q^{63} +12.7837i q^{64} +(-14.1371 - 14.1371i) q^{66} -8.84212 q^{67} +(13.1398 - 3.78724i) q^{68} +4.87459 q^{69} +(-0.495735 - 1.19681i) q^{71} -1.59578i q^{72} +(-9.03279 + 3.74150i) q^{73} +(0.359726 - 0.868456i) q^{74} +(-15.5325 + 15.5325i) q^{76} +(5.04730 - 5.04730i) q^{77} +(14.0710 + 5.82841i) q^{78} +(-4.17760 + 10.0856i) q^{79} +10.3007i q^{81} +(-9.03016 - 21.8007i) q^{82} +(-8.97341 - 8.97341i) q^{83} +9.62608 q^{84} +9.79203 q^{86} +(1.29983 + 1.29983i) q^{87} +(-5.36476 - 12.9517i) q^{88} -8.62631i q^{89} +(-2.08089 + 5.02371i) q^{91} +(7.95476 + 3.29497i) q^{92} +(1.62561 - 1.62561i) q^{93} +(6.51407 - 6.51407i) q^{94} +(-3.75529 + 9.06606i) q^{96} +(5.47747 - 2.26884i) q^{97} -10.6312i q^{98} +(-0.928920 - 2.24261i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 24 q^{14} + 8 q^{16} + 24 q^{19} - 32 q^{24} - 16 q^{26} - 24 q^{29} - 24 q^{31} - 8 q^{34} + 8 q^{36} + 24 q^{39} - 48 q^{41} - 72 q^{44} - 16 q^{46} - 48 q^{49} - 32 q^{54} + 24 q^{56}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63043 + 1.63043i 1.15289 + 1.15289i 0.985971 + 0.166917i \(0.0533812\pi\)
0.166917 + 0.985971i \(0.446619\pi\)
\(3\) 0.718554 + 1.73474i 0.414857 + 1.00155i 0.983815 + 0.179188i \(0.0573469\pi\)
−0.568957 + 0.822367i \(0.692653\pi\)
\(4\) 3.31660i 1.65830i
\(5\) 0 0
\(6\) −1.65683 + 3.99993i −0.676396 + 1.63296i
\(7\) −1.42808 0.591528i −0.539762 0.223577i 0.0961108 0.995371i \(-0.469360\pi\)
−0.635873 + 0.771794i \(0.719360\pi\)
\(8\) −2.14663 + 2.14663i −0.758948 + 0.758948i
\(9\) −0.371694 + 0.371694i −0.123898 + 0.123898i
\(10\) 0 0
\(11\) −1.76717 + 4.26632i −0.532821 + 1.28634i 0.396826 + 0.917894i \(0.370112\pi\)
−0.929647 + 0.368451i \(0.879888\pi\)
\(12\) −5.75346 + 2.38316i −1.66088 + 0.687959i
\(13\) 3.51782i 0.975667i −0.872937 0.487834i \(-0.837787\pi\)
0.872937 0.487834i \(-0.162213\pi\)
\(14\) −1.36393 3.29282i −0.364526 0.880044i
\(15\) 0 0
\(16\) −0.366652 −0.0916631
\(17\) −1.14190 3.96182i −0.276952 0.960884i
\(18\) −1.21204 −0.285681
\(19\) 4.68326 + 4.68326i 1.07441 + 1.07441i 0.996999 + 0.0774135i \(0.0246662\pi\)
0.0774135 + 0.996999i \(0.475334\pi\)
\(20\) 0 0
\(21\) 2.90239i 0.633353i
\(22\) −9.83718 + 4.07469i −2.09729 + 0.868728i
\(23\) 0.993477 2.39846i 0.207154 0.500114i −0.785819 0.618457i \(-0.787758\pi\)
0.992973 + 0.118343i \(0.0377581\pi\)
\(24\) −5.26632 2.18138i −1.07498 0.445273i
\(25\) 0 0
\(26\) 5.73556 5.73556i 1.12483 1.12483i
\(27\) 4.29235 + 1.77795i 0.826064 + 0.342167i
\(28\) 1.96187 4.73636i 0.370758 0.895088i
\(29\) 0.904478 0.374647i 0.167957 0.0695702i −0.297120 0.954840i \(-0.596026\pi\)
0.465078 + 0.885270i \(0.346026\pi\)
\(30\) 0 0
\(31\) −0.468546 1.13117i −0.0841534 0.203164i 0.876201 0.481945i \(-0.160070\pi\)
−0.960355 + 0.278781i \(0.910070\pi\)
\(32\) 3.69546 + 3.69546i 0.653271 + 0.653271i
\(33\) −8.67078 −1.50939
\(34\) 4.59768 8.32127i 0.788496 1.42709i
\(35\) 0 0
\(36\) −1.23276 1.23276i −0.205460 0.205460i
\(37\) −0.156011 0.376644i −0.0256480 0.0619198i 0.910537 0.413428i \(-0.135669\pi\)
−0.936185 + 0.351509i \(0.885669\pi\)
\(38\) 15.2714i 2.47735i
\(39\) 6.10251 2.52774i 0.977184 0.404763i
\(40\) 0 0
\(41\) −9.45483 3.91632i −1.47660 0.611626i −0.508244 0.861213i \(-0.669705\pi\)
−0.968353 + 0.249586i \(0.919705\pi\)
\(42\) 4.73214 4.73214i 0.730186 0.730186i
\(43\) 3.00290 3.00290i 0.457938 0.457938i −0.440040 0.897978i \(-0.645036\pi\)
0.897978 + 0.440040i \(0.145036\pi\)
\(44\) −14.1497 5.86100i −2.13315 0.883579i
\(45\) 0 0
\(46\) 5.53032 2.29073i 0.815402 0.337750i
\(47\) 3.99531i 0.582776i −0.956605 0.291388i \(-0.905883\pi\)
0.956605 0.291388i \(-0.0941171\pi\)
\(48\) −0.263460 0.636048i −0.0380271 0.0918056i
\(49\) −3.26025 3.26025i −0.465750 0.465750i
\(50\) 0 0
\(51\) 6.05223 4.82770i 0.847482 0.676013i
\(52\) 11.6672 1.61795
\(53\) 1.24288 + 1.24288i 0.170723 + 0.170723i 0.787297 0.616574i \(-0.211480\pi\)
−0.616574 + 0.787297i \(0.711480\pi\)
\(54\) 4.09956 + 9.89721i 0.557879 + 1.34684i
\(55\) 0 0
\(56\) 4.33534 1.79576i 0.579335 0.239968i
\(57\) −4.75907 + 11.4894i −0.630355 + 1.52181i
\(58\) 2.08552 + 0.863853i 0.273843 + 0.113429i
\(59\) 1.10431 1.10431i 0.143769 0.143769i −0.631559 0.775328i \(-0.717585\pi\)
0.775328 + 0.631559i \(0.217585\pi\)
\(60\) 0 0
\(61\) 12.9280 + 5.35497i 1.65527 + 0.685634i 0.997701 0.0677633i \(-0.0215863\pi\)
0.657566 + 0.753397i \(0.271586\pi\)
\(62\) 1.08036 2.60823i 0.137206 0.331245i
\(63\) 0.750675 0.310940i 0.0945761 0.0391747i
\(64\) 12.7837i 1.59796i
\(65\) 0 0
\(66\) −14.1371 14.1371i −1.74016 1.74016i
\(67\) −8.84212 −1.08024 −0.540119 0.841589i \(-0.681621\pi\)
−0.540119 + 0.841589i \(0.681621\pi\)
\(68\) 13.1398 3.78724i 1.59344 0.459271i
\(69\) 4.87459 0.586831
\(70\) 0 0
\(71\) −0.495735 1.19681i −0.0588329 0.142035i 0.891730 0.452569i \(-0.149492\pi\)
−0.950562 + 0.310534i \(0.899492\pi\)
\(72\) 1.59578i 0.188064i
\(73\) −9.03279 + 3.74150i −1.05721 + 0.437910i −0.842460 0.538760i \(-0.818893\pi\)
−0.214748 + 0.976669i \(0.568893\pi\)
\(74\) 0.359726 0.868456i 0.0418173 0.100956i
\(75\) 0 0
\(76\) −15.5325 + 15.5325i −1.78170 + 1.78170i
\(77\) 5.04730 5.04730i 0.575193 0.575193i
\(78\) 14.0710 + 5.82841i 1.59323 + 0.659937i
\(79\) −4.17760 + 10.0856i −0.470017 + 1.13472i 0.494139 + 0.869383i \(0.335484\pi\)
−0.964155 + 0.265338i \(0.914516\pi\)
\(80\) 0 0
\(81\) 10.3007i 1.14452i
\(82\) −9.03016 21.8007i −0.997214 2.40749i
\(83\) −8.97341 8.97341i −0.984959 0.984959i 0.0149292 0.999889i \(-0.495248\pi\)
−0.999889 + 0.0149292i \(0.995248\pi\)
\(84\) 9.62608 1.05029
\(85\) 0 0
\(86\) 9.79203 1.05590
\(87\) 1.29983 + 1.29983i 0.139357 + 0.139357i
\(88\) −5.36476 12.9517i −0.571885 1.38065i
\(89\) 8.62631i 0.914387i −0.889367 0.457193i \(-0.848855\pi\)
0.889367 0.457193i \(-0.151145\pi\)
\(90\) 0 0
\(91\) −2.08089 + 5.02371i −0.218136 + 0.526628i
\(92\) 7.95476 + 3.29497i 0.829341 + 0.343524i
\(93\) 1.62561 1.62561i 0.168568 0.168568i
\(94\) 6.51407 6.51407i 0.671875 0.671875i
\(95\) 0 0
\(96\) −3.75529 + 9.06606i −0.383272 + 0.925301i
\(97\) 5.47747 2.26884i 0.556152 0.230366i −0.0868615 0.996220i \(-0.527684\pi\)
0.643014 + 0.765855i \(0.277684\pi\)
\(98\) 10.6312i 1.07392i
\(99\) −0.928920 2.24261i −0.0933600 0.225391i
\(100\) 0 0
\(101\) 5.79390 0.576515 0.288257 0.957553i \(-0.406924\pi\)
0.288257 + 0.957553i \(0.406924\pi\)
\(102\) 17.7390 + 1.99652i 1.75642 + 0.197685i
\(103\) 6.99141 0.688885 0.344442 0.938807i \(-0.388068\pi\)
0.344442 + 0.938807i \(0.388068\pi\)
\(104\) 7.55145 + 7.55145i 0.740481 + 0.740481i
\(105\) 0 0
\(106\) 4.05286i 0.393649i
\(107\) −1.29113 + 0.534802i −0.124818 + 0.0517013i −0.444218 0.895919i \(-0.646519\pi\)
0.319400 + 0.947620i \(0.396519\pi\)
\(108\) −5.89676 + 14.2360i −0.567416 + 1.36986i
\(109\) −10.0234 4.15183i −0.960068 0.397673i −0.153062 0.988217i \(-0.548914\pi\)
−0.807006 + 0.590543i \(0.798914\pi\)
\(110\) 0 0
\(111\) 0.541278 0.541278i 0.0513758 0.0513758i
\(112\) 0.523607 + 0.216885i 0.0494762 + 0.0204937i
\(113\) −1.52342 + 3.67787i −0.143312 + 0.345985i −0.979195 0.202923i \(-0.934956\pi\)
0.835883 + 0.548907i \(0.184956\pi\)
\(114\) −26.4920 + 10.9734i −2.48121 + 1.02775i
\(115\) 0 0
\(116\) 1.24256 + 2.99980i 0.115368 + 0.278524i
\(117\) 1.30755 + 1.30755i 0.120883 + 0.120883i
\(118\) 3.60100 0.331499
\(119\) −0.712807 + 6.33325i −0.0653429 + 0.580568i
\(120\) 0 0
\(121\) −7.30044 7.30044i −0.663677 0.663677i
\(122\) 12.3474 + 29.8092i 1.11788 + 2.69880i
\(123\) 19.2158i 1.73263i
\(124\) 3.75164 1.55398i 0.336908 0.139552i
\(125\) 0 0
\(126\) 1.73089 + 0.716957i 0.154200 + 0.0638716i
\(127\) 8.82196 8.82196i 0.782822 0.782822i −0.197484 0.980306i \(-0.563277\pi\)
0.980306 + 0.197484i \(0.0632770\pi\)
\(128\) −13.4520 + 13.4520i −1.18900 + 1.18900i
\(129\) 7.36700 + 3.05151i 0.648629 + 0.268671i
\(130\) 0 0
\(131\) −7.19402 + 2.97986i −0.628544 + 0.260352i −0.674134 0.738609i \(-0.735483\pi\)
0.0455901 + 0.998960i \(0.485483\pi\)
\(132\) 28.7575i 2.50302i
\(133\) −3.91777 9.45832i −0.339713 0.820141i
\(134\) −14.4165 14.4165i −1.24539 1.24539i
\(135\) 0 0
\(136\) 10.9558 + 6.05333i 0.939454 + 0.519069i
\(137\) −15.2375 −1.30182 −0.650912 0.759153i \(-0.725613\pi\)
−0.650912 + 0.759153i \(0.725613\pi\)
\(138\) 7.94767 + 7.94767i 0.676551 + 0.676551i
\(139\) 0.0176413 + 0.0425899i 0.00149632 + 0.00361243i 0.924626 0.380876i \(-0.124378\pi\)
−0.923130 + 0.384489i \(0.874378\pi\)
\(140\) 0 0
\(141\) 6.93084 2.87085i 0.583682 0.241769i
\(142\) 1.14305 2.75957i 0.0959229 0.231578i
\(143\) 15.0081 + 6.21658i 1.25504 + 0.519856i
\(144\) 0.136282 0.136282i 0.0113569 0.0113569i
\(145\) 0 0
\(146\) −20.8276 8.62707i −1.72370 0.713981i
\(147\) 3.31303 7.99837i 0.273254 0.659694i
\(148\) 1.24918 0.517426i 0.102682 0.0425322i
\(149\) 1.49474i 0.122454i −0.998124 0.0612268i \(-0.980499\pi\)
0.998124 0.0612268i \(-0.0195013\pi\)
\(150\) 0 0
\(151\) 3.73457 + 3.73457i 0.303915 + 0.303915i 0.842543 0.538629i \(-0.181057\pi\)
−0.538629 + 0.842543i \(0.681057\pi\)
\(152\) −20.1064 −1.63085
\(153\) 1.89702 + 1.04815i 0.153365 + 0.0847377i
\(154\) 16.4585 1.32627
\(155\) 0 0
\(156\) 8.38352 + 20.2396i 0.671219 + 1.62047i
\(157\) 12.6990i 1.01349i 0.862096 + 0.506745i \(0.169152\pi\)
−0.862096 + 0.506745i \(0.830848\pi\)
\(158\) −23.2552 + 9.63261i −1.85008 + 0.766329i
\(159\) −1.26300 + 3.04916i −0.100163 + 0.241814i
\(160\) 0 0
\(161\) −2.83752 + 2.83752i −0.223628 + 0.223628i
\(162\) −16.7945 + 16.7945i −1.31950 + 1.31950i
\(163\) −3.75157 1.55395i −0.293846 0.121715i 0.230890 0.972980i \(-0.425836\pi\)
−0.524736 + 0.851265i \(0.675836\pi\)
\(164\) 12.9889 31.3579i 1.01426 2.44864i
\(165\) 0 0
\(166\) 29.2610i 2.27110i
\(167\) −6.18724 14.9373i −0.478783 1.15589i −0.960180 0.279382i \(-0.909870\pi\)
0.481397 0.876503i \(-0.340130\pi\)
\(168\) 6.23036 + 6.23036i 0.480683 + 0.480683i
\(169\) 0.624957 0.0480736
\(170\) 0 0
\(171\) −3.48148 −0.266235
\(172\) 9.95942 + 9.95942i 0.759399 + 0.759399i
\(173\) 0.603220 + 1.45630i 0.0458620 + 0.110721i 0.945150 0.326635i \(-0.105915\pi\)
−0.899288 + 0.437356i \(0.855915\pi\)
\(174\) 4.23857i 0.321326i
\(175\) 0 0
\(176\) 0.647936 1.56426i 0.0488400 0.117910i
\(177\) 2.70920 + 1.12219i 0.203636 + 0.0843489i
\(178\) 14.0646 14.0646i 1.05419 1.05419i
\(179\) −2.43803 + 2.43803i −0.182227 + 0.182227i −0.792325 0.610099i \(-0.791130\pi\)
0.610099 + 0.792325i \(0.291130\pi\)
\(180\) 0 0
\(181\) 5.63559 13.6055i 0.418890 1.01129i −0.563780 0.825925i \(-0.690653\pi\)
0.982670 0.185365i \(-0.0593466\pi\)
\(182\) −11.5836 + 4.79806i −0.858630 + 0.355656i
\(183\) 26.2747i 1.94228i
\(184\) 3.01599 + 7.28124i 0.222342 + 0.536780i
\(185\) 0 0
\(186\) 5.30090 0.388681
\(187\) 18.9204 + 2.12948i 1.38359 + 0.155723i
\(188\) 13.2509 0.966418
\(189\) −5.07810 5.07810i −0.369377 0.369377i
\(190\) 0 0
\(191\) 15.5715i 1.12671i −0.826214 0.563356i \(-0.809510\pi\)
0.826214 0.563356i \(-0.190490\pi\)
\(192\) −22.1764 + 9.18577i −1.60044 + 0.662926i
\(193\) 0.0405694 0.0979433i 0.00292025 0.00705011i −0.922413 0.386206i \(-0.873785\pi\)
0.925333 + 0.379156i \(0.123785\pi\)
\(194\) 12.6298 + 5.23144i 0.906768 + 0.375595i
\(195\) 0 0
\(196\) 10.8130 10.8130i 0.772355 0.772355i
\(197\) −9.74194 4.03524i −0.694085 0.287499i 0.00761621 0.999971i \(-0.497576\pi\)
−0.701701 + 0.712472i \(0.747576\pi\)
\(198\) 2.14188 5.17096i 0.152217 0.367484i
\(199\) −1.06359 + 0.440552i −0.0753957 + 0.0312299i −0.420063 0.907495i \(-0.637992\pi\)
0.344667 + 0.938725i \(0.387992\pi\)
\(200\) 0 0
\(201\) −6.35355 15.3388i −0.448145 1.08192i
\(202\) 9.44655 + 9.44655i 0.664657 + 0.664657i
\(203\) −1.51328 −0.106211
\(204\) 16.0116 + 20.0728i 1.12103 + 1.40538i
\(205\) 0 0
\(206\) 11.3990 + 11.3990i 0.794207 + 0.794207i
\(207\) 0.522226 + 1.26076i 0.0362972 + 0.0876291i
\(208\) 1.28982i 0.0894327i
\(209\) −28.2564 + 11.7042i −1.95453 + 0.809595i
\(210\) 0 0
\(211\) −3.86883 1.60252i −0.266341 0.110322i 0.245516 0.969392i \(-0.421042\pi\)
−0.511858 + 0.859070i \(0.671042\pi\)
\(212\) −4.12214 + 4.12214i −0.283110 + 0.283110i
\(213\) 1.71994 1.71994i 0.117849 0.117849i
\(214\) −2.97705 1.23313i −0.203507 0.0842954i
\(215\) 0 0
\(216\) −13.0307 + 5.39749i −0.886627 + 0.367253i
\(217\) 1.89256i 0.128475i
\(218\) −9.57319 23.1117i −0.648378 1.56532i
\(219\) −12.9811 12.9811i −0.877181 0.877181i
\(220\) 0 0
\(221\) −13.9370 + 4.01701i −0.937503 + 0.270213i
\(222\) 1.76503 0.118461
\(223\) −5.40538 5.40538i −0.361971 0.361971i 0.502567 0.864538i \(-0.332389\pi\)
−0.864538 + 0.502567i \(0.832389\pi\)
\(224\) −3.09143 7.46336i −0.206555 0.498667i
\(225\) 0 0
\(226\) −8.48034 + 3.51267i −0.564104 + 0.233660i
\(227\) −9.13285 + 22.0487i −0.606169 + 1.46342i 0.260967 + 0.965348i \(0.415959\pi\)
−0.867135 + 0.498073i \(0.834041\pi\)
\(228\) −38.1059 15.7840i −2.52362 1.04532i
\(229\) 9.73973 9.73973i 0.643620 0.643620i −0.307824 0.951443i \(-0.599601\pi\)
0.951443 + 0.307824i \(0.0996007\pi\)
\(230\) 0 0
\(231\) 12.3825 + 5.12901i 0.814711 + 0.337464i
\(232\) −1.13735 + 2.74581i −0.0746708 + 0.180271i
\(233\) 5.37022 2.22442i 0.351815 0.145727i −0.199775 0.979842i \(-0.564021\pi\)
0.551590 + 0.834115i \(0.314021\pi\)
\(234\) 4.26374i 0.278730i
\(235\) 0 0
\(236\) 3.66256 + 3.66256i 0.238412 + 0.238412i
\(237\) −20.4978 −1.33147
\(238\) −11.4881 + 9.16375i −0.744663 + 0.593997i
\(239\) −5.09183 −0.329363 −0.164682 0.986347i \(-0.552660\pi\)
−0.164682 + 0.986347i \(0.552660\pi\)
\(240\) 0 0
\(241\) −2.03293 4.90792i −0.130952 0.316147i 0.844780 0.535114i \(-0.179731\pi\)
−0.975732 + 0.218967i \(0.929731\pi\)
\(242\) 23.8057i 1.53029i
\(243\) −4.99192 + 2.06772i −0.320232 + 0.132644i
\(244\) −17.7603 + 42.8772i −1.13699 + 2.74493i
\(245\) 0 0
\(246\) 31.3300 31.3300i 1.99753 1.99753i
\(247\) 16.4748 16.4748i 1.04827 1.04827i
\(248\) 3.43400 + 1.42241i 0.218059 + 0.0903231i
\(249\) 9.11868 22.0144i 0.577873 1.39511i
\(250\) 0 0
\(251\) 28.2032i 1.78017i 0.455797 + 0.890084i \(0.349354\pi\)
−0.455797 + 0.890084i \(0.650646\pi\)
\(252\) 1.03126 + 2.48969i 0.0649635 + 0.156836i
\(253\) 8.47698 + 8.47698i 0.532943 + 0.532943i
\(254\) 28.7672 1.80501
\(255\) 0 0
\(256\) −18.2976 −1.14360
\(257\) −2.32880 2.32880i −0.145267 0.145267i 0.630733 0.776000i \(-0.282754\pi\)
−0.776000 + 0.630733i \(0.782754\pi\)
\(258\) 7.03611 + 16.9867i 0.438049 + 1.05754i
\(259\) 0.630161i 0.0391563i
\(260\) 0 0
\(261\) −0.196935 + 0.475443i −0.0121900 + 0.0294292i
\(262\) −16.5878 6.87089i −1.02480 0.424485i
\(263\) −19.6841 + 19.6841i −1.21377 + 1.21377i −0.243997 + 0.969776i \(0.578459\pi\)
−0.969776 + 0.243997i \(0.921541\pi\)
\(264\) 18.6130 18.6130i 1.14555 1.14555i
\(265\) 0 0
\(266\) 9.03349 21.8088i 0.553879 1.33718i
\(267\) 14.9644 6.19847i 0.915808 0.379340i
\(268\) 29.3258i 1.79136i
\(269\) 5.61079 + 13.5456i 0.342096 + 0.825892i 0.997504 + 0.0706169i \(0.0224968\pi\)
−0.655408 + 0.755275i \(0.727503\pi\)
\(270\) 0 0
\(271\) −2.50962 −0.152449 −0.0762244 0.997091i \(-0.524287\pi\)
−0.0762244 + 0.997091i \(0.524287\pi\)
\(272\) 0.418682 + 1.45261i 0.0253863 + 0.0880776i
\(273\) −10.2101 −0.617942
\(274\) −24.8436 24.8436i −1.50086 1.50086i
\(275\) 0 0
\(276\) 16.1671i 0.973144i
\(277\) −22.1415 + 9.17130i −1.33035 + 0.551050i −0.930756 0.365641i \(-0.880850\pi\)
−0.399596 + 0.916691i \(0.630850\pi\)
\(278\) −0.0406769 + 0.0982028i −0.00243964 + 0.00588981i
\(279\) 0.594605 + 0.246293i 0.0355981 + 0.0147452i
\(280\) 0 0
\(281\) −10.0556 + 10.0556i −0.599865 + 0.599865i −0.940277 0.340411i \(-0.889434\pi\)
0.340411 + 0.940277i \(0.389434\pi\)
\(282\) 15.9810 + 6.61953i 0.951652 + 0.394187i
\(283\) 3.83106 9.24901i 0.227733 0.549796i −0.768168 0.640249i \(-0.778831\pi\)
0.995901 + 0.0904523i \(0.0288313\pi\)
\(284\) 3.96934 1.64416i 0.235537 0.0975627i
\(285\) 0 0
\(286\) 14.3340 + 34.6054i 0.847589 + 2.04626i
\(287\) 11.1856 + 11.1856i 0.660265 + 0.660265i
\(288\) −2.74716 −0.161878
\(289\) −14.3921 + 9.04804i −0.846595 + 0.532238i
\(290\) 0 0
\(291\) 7.87171 + 7.87171i 0.461448 + 0.461448i
\(292\) −12.4091 29.9582i −0.726187 1.75317i
\(293\) 11.2943i 0.659821i 0.944012 + 0.329910i \(0.107019\pi\)
−0.944012 + 0.329910i \(0.892981\pi\)
\(294\) 18.4425 7.63911i 1.07559 0.445522i
\(295\) 0 0
\(296\) 1.14341 + 0.473617i 0.0664595 + 0.0275284i
\(297\) −15.1706 + 15.1706i −0.880289 + 0.880289i
\(298\) 2.43706 2.43706i 0.141175 0.141175i
\(299\) −8.43736 3.49487i −0.487945 0.202114i
\(300\) 0 0
\(301\) −6.06467 + 2.51207i −0.349562 + 0.144793i
\(302\) 12.1779i 0.700759i
\(303\) 4.16323 + 10.0509i 0.239171 + 0.577411i
\(304\) −1.71713 1.71713i −0.0984840 0.0984840i
\(305\) 0 0
\(306\) 1.38403 + 4.80190i 0.0791200 + 0.274506i
\(307\) 25.1396 1.43479 0.717397 0.696664i \(-0.245333\pi\)
0.717397 + 0.696664i \(0.245333\pi\)
\(308\) 16.7399 + 16.7399i 0.953844 + 0.953844i
\(309\) 5.02371 + 12.1283i 0.285789 + 0.689955i
\(310\) 0 0
\(311\) −20.6277 + 8.54428i −1.16969 + 0.484502i −0.881090 0.472948i \(-0.843190\pi\)
−0.288600 + 0.957450i \(0.593190\pi\)
\(312\) −7.67370 + 18.5260i −0.434438 + 1.04883i
\(313\) 27.4658 + 11.3767i 1.55246 + 0.643049i 0.983759 0.179496i \(-0.0574469\pi\)
0.568699 + 0.822546i \(0.307447\pi\)
\(314\) −20.7048 + 20.7048i −1.16844 + 1.16844i
\(315\) 0 0
\(316\) −33.4500 13.8554i −1.88171 0.779430i
\(317\) −4.55229 + 10.9902i −0.255682 + 0.617271i −0.998644 0.0520626i \(-0.983420\pi\)
0.742962 + 0.669334i \(0.233420\pi\)
\(318\) −7.03067 + 2.91220i −0.394261 + 0.163308i
\(319\) 4.52086i 0.253120i
\(320\) 0 0
\(321\) −1.85549 1.85549i −0.103563 0.103563i
\(322\) −9.25275 −0.515636
\(323\) 13.2064 23.9021i 0.734824 1.32995i
\(324\) −34.1632 −1.89795
\(325\) 0 0
\(326\) −3.58307 8.65029i −0.198448 0.479095i
\(327\) 20.3714i 1.12654i
\(328\) 28.7029 11.8891i 1.58485 0.656468i
\(329\) −2.36334 + 5.70561i −0.130295 + 0.314560i
\(330\) 0 0
\(331\) 6.46861 6.46861i 0.355547 0.355547i −0.506621 0.862169i \(-0.669106\pi\)
0.862169 + 0.506621i \(0.169106\pi\)
\(332\) 29.7612 29.7612i 1.63336 1.63336i
\(333\) 0.197984 + 0.0820079i 0.0108495 + 0.00449400i
\(334\) 14.2664 34.4421i 0.780623 1.88459i
\(335\) 0 0
\(336\) 1.06417i 0.0580551i
\(337\) 8.23886 + 19.8904i 0.448799 + 1.08350i 0.972772 + 0.231763i \(0.0744493\pi\)
−0.523973 + 0.851735i \(0.675551\pi\)
\(338\) 1.01895 + 1.01895i 0.0554235 + 0.0554235i
\(339\) −7.47482 −0.405977
\(340\) 0 0
\(341\) 5.65394 0.306178
\(342\) −5.67630 5.67630i −0.306939 0.306939i
\(343\) 6.86805 + 16.5810i 0.370840 + 0.895287i
\(344\) 12.8922i 0.695102i
\(345\) 0 0
\(346\) −1.39089 + 3.35791i −0.0747748 + 0.180522i
\(347\) 5.04551 + 2.08992i 0.270857 + 0.112193i 0.513978 0.857803i \(-0.328171\pi\)
−0.243121 + 0.969996i \(0.578171\pi\)
\(348\) −4.31103 + 4.31103i −0.231096 + 0.231096i
\(349\) 23.3519 23.3519i 1.25000 1.25000i 0.294280 0.955719i \(-0.404920\pi\)
0.955719 0.294280i \(-0.0950800\pi\)
\(350\) 0 0
\(351\) 6.25451 15.0997i 0.333841 0.805963i
\(352\) −22.2965 + 9.23552i −1.18841 + 0.492255i
\(353\) 12.4962i 0.665103i 0.943085 + 0.332552i \(0.107910\pi\)
−0.943085 + 0.332552i \(0.892090\pi\)
\(354\) 2.58752 + 6.24682i 0.137525 + 0.332015i
\(355\) 0 0
\(356\) 28.6100 1.51633
\(357\) −11.4988 + 3.31425i −0.608579 + 0.175409i
\(358\) −7.95007 −0.420174
\(359\) 12.8609 + 12.8609i 0.678775 + 0.678775i 0.959723 0.280948i \(-0.0906489\pi\)
−0.280948 + 0.959723i \(0.590649\pi\)
\(360\) 0 0
\(361\) 24.8658i 1.30872i
\(362\) 31.3713 12.9944i 1.64884 0.682971i
\(363\) 7.41863 17.9102i 0.389377 0.940040i
\(364\) −16.6617 6.90148i −0.873308 0.361736i
\(365\) 0 0
\(366\) −42.8390 + 42.8390i −2.23923 + 2.23923i
\(367\) 21.0350 + 8.71298i 1.09802 + 0.454814i 0.856796 0.515656i \(-0.172452\pi\)
0.241222 + 0.970470i \(0.422452\pi\)
\(368\) −0.364260 + 0.879403i −0.0189884 + 0.0458420i
\(369\) 4.96998 2.05863i 0.258727 0.107168i
\(370\) 0 0
\(371\) −1.03973 2.51013i −0.0539800 0.130319i
\(372\) 5.39152 + 5.39152i 0.279537 + 0.279537i
\(373\) −24.5550 −1.27141 −0.635705 0.771932i \(-0.719291\pi\)
−0.635705 + 0.771932i \(0.719291\pi\)
\(374\) 27.3763 + 34.3203i 1.41560 + 1.77466i
\(375\) 0 0
\(376\) 8.57645 + 8.57645i 0.442297 + 0.442297i
\(377\) −1.31794 3.18179i −0.0678774 0.163871i
\(378\) 16.5590i 0.851701i
\(379\) 17.2403 7.14115i 0.885573 0.366816i 0.106918 0.994268i \(-0.465902\pi\)
0.778656 + 0.627451i \(0.215902\pi\)
\(380\) 0 0
\(381\) 21.6429 + 8.96478i 1.10880 + 0.459280i
\(382\) 25.3882 25.3882i 1.29897 1.29897i
\(383\) 18.1834 18.1834i 0.929126 0.929126i −0.0685233 0.997650i \(-0.521829\pi\)
0.997650 + 0.0685233i \(0.0218288\pi\)
\(384\) −33.0017 13.6698i −1.68411 0.697582i
\(385\) 0 0
\(386\) 0.225835 0.0935440i 0.0114947 0.00476127i
\(387\) 2.23232i 0.113475i
\(388\) 7.52485 + 18.1666i 0.382016 + 0.922269i
\(389\) 16.9576 + 16.9576i 0.859782 + 0.859782i 0.991312 0.131530i \(-0.0419890\pi\)
−0.131530 + 0.991312i \(0.541989\pi\)
\(390\) 0 0
\(391\) −10.6368 1.19716i −0.537924 0.0605432i
\(392\) 13.9971 0.706961
\(393\) −10.3386 10.3386i −0.521513 0.521513i
\(394\) −9.30437 22.4627i −0.468747 1.13166i
\(395\) 0 0
\(396\) 7.43785 3.08086i 0.373766 0.154819i
\(397\) 5.47839 13.2260i 0.274953 0.663794i −0.724729 0.689034i \(-0.758035\pi\)
0.999681 + 0.0252400i \(0.00803499\pi\)
\(398\) −2.45239 1.01581i −0.122927 0.0509182i
\(399\) 13.5926 13.5926i 0.680483 0.680483i
\(400\) 0 0
\(401\) −2.72816 1.13004i −0.136238 0.0564316i 0.313523 0.949581i \(-0.398491\pi\)
−0.449761 + 0.893149i \(0.648491\pi\)
\(402\) 14.6499 35.3679i 0.730668 1.76399i
\(403\) −3.97925 + 1.64826i −0.198221 + 0.0821057i
\(404\) 19.2161i 0.956036i
\(405\) 0 0
\(406\) −2.46729 2.46729i −0.122450 0.122450i
\(407\) 1.88258 0.0933161
\(408\) −2.62862 + 23.3552i −0.130136 + 1.15625i
\(409\) −2.54353 −0.125769 −0.0628846 0.998021i \(-0.520030\pi\)
−0.0628846 + 0.998021i \(0.520030\pi\)
\(410\) 0 0
\(411\) −10.9489 26.4331i −0.540072 1.30385i
\(412\) 23.1878i 1.14238i
\(413\) −2.23027 + 0.923809i −0.109744 + 0.0454576i
\(414\) −1.20414 + 2.90704i −0.0591800 + 0.142873i
\(415\) 0 0
\(416\) 13.0000 13.0000i 0.637375 0.637375i
\(417\) −0.0612063 + 0.0612063i −0.00299729 + 0.00299729i
\(418\) −65.1529 26.9872i −3.18673 1.31999i
\(419\) −2.20082 + 5.31324i −0.107517 + 0.259569i −0.968477 0.249104i \(-0.919864\pi\)
0.860960 + 0.508673i \(0.169864\pi\)
\(420\) 0 0
\(421\) 19.5960i 0.955050i 0.878618 + 0.477525i \(0.158466\pi\)
−0.878618 + 0.477525i \(0.841534\pi\)
\(422\) −3.69506 8.92065i −0.179873 0.434251i
\(423\) 1.48503 + 1.48503i 0.0722048 + 0.0722048i
\(424\) −5.33601 −0.259140
\(425\) 0 0
\(426\) 5.60850 0.271733
\(427\) −15.2946 15.2946i −0.740158 0.740158i
\(428\) −1.77373 4.28216i −0.0857364 0.206986i
\(429\) 30.5022i 1.47266i
\(430\) 0 0
\(431\) 9.87988 23.8521i 0.475897 1.14892i −0.485620 0.874170i \(-0.661406\pi\)
0.961517 0.274747i \(-0.0885940\pi\)
\(432\) −1.57380 0.651890i −0.0757196 0.0313641i
\(433\) 27.4660 27.4660i 1.31993 1.31993i 0.406105 0.913826i \(-0.366887\pi\)
0.913826 0.406105i \(-0.133113\pi\)
\(434\) −3.08568 + 3.08568i −0.148117 + 0.148117i
\(435\) 0 0
\(436\) 13.7700 33.2437i 0.659462 1.59208i
\(437\) 15.8853 6.57992i 0.759898 0.314760i
\(438\) 42.3295i 2.02258i
\(439\) 1.30810 + 3.15802i 0.0624320 + 0.150724i 0.952017 0.306046i \(-0.0990061\pi\)
−0.889585 + 0.456770i \(0.849006\pi\)
\(440\) 0 0
\(441\) 2.42363 0.115411
\(442\) −29.2727 16.1738i −1.39236 0.769310i
\(443\) −19.8457 −0.942899 −0.471449 0.881893i \(-0.656269\pi\)
−0.471449 + 0.881893i \(0.656269\pi\)
\(444\) 1.79520 + 1.79520i 0.0851966 + 0.0851966i
\(445\) 0 0
\(446\) 17.6262i 0.834624i
\(447\) 2.59299 1.07405i 0.122644 0.0508008i
\(448\) 7.56191 18.2561i 0.357267 0.862518i
\(449\) 5.56173 + 2.30374i 0.262474 + 0.108720i 0.510040 0.860151i \(-0.329631\pi\)
−0.247566 + 0.968871i \(0.579631\pi\)
\(450\) 0 0
\(451\) 33.4166 33.4166i 1.57352 1.57352i
\(452\) −12.1980 5.05259i −0.573747 0.237654i
\(453\) −3.79502 + 9.16200i −0.178306 + 0.430468i
\(454\) −50.8393 + 21.0583i −2.38600 + 0.988316i
\(455\) 0 0
\(456\) −14.4476 34.8795i −0.676569 1.63338i
\(457\) −20.2147 20.2147i −0.945603 0.945603i 0.0529924 0.998595i \(-0.483124\pi\)
−0.998595 + 0.0529924i \(0.983124\pi\)
\(458\) 31.7599 1.48404
\(459\) 2.14248 19.0358i 0.100002 0.888515i
\(460\) 0 0
\(461\) −5.44426 5.44426i −0.253565 0.253565i 0.568866 0.822430i \(-0.307382\pi\)
−0.822430 + 0.568866i \(0.807382\pi\)
\(462\) 11.8264 + 28.5513i 0.550212 + 1.32833i
\(463\) 26.7823i 1.24468i 0.782748 + 0.622339i \(0.213817\pi\)
−0.782748 + 0.622339i \(0.786183\pi\)
\(464\) −0.331629 + 0.137365i −0.0153955 + 0.00637702i
\(465\) 0 0
\(466\) 12.3825 + 5.12901i 0.573610 + 0.237597i
\(467\) 7.30998 7.30998i 0.338266 0.338266i −0.517449 0.855714i \(-0.673118\pi\)
0.855714 + 0.517449i \(0.173118\pi\)
\(468\) −4.33663 + 4.33663i −0.200461 + 0.200461i
\(469\) 12.6272 + 5.23037i 0.583071 + 0.241516i
\(470\) 0 0
\(471\) −22.0295 + 9.12492i −1.01507 + 0.420454i
\(472\) 4.74109i 0.218227i
\(473\) 7.50470 + 18.1180i 0.345067 + 0.833065i
\(474\) −33.4202 33.4202i −1.53504 1.53504i
\(475\) 0 0
\(476\) −21.0049 2.36410i −0.962758 0.108358i
\(477\) −0.923943 −0.0423044
\(478\) −8.30188 8.30188i −0.379719 0.379719i
\(479\) −9.90265 23.9071i −0.452464 1.09234i −0.971383 0.237520i \(-0.923665\pi\)
0.518919 0.854823i \(-0.326335\pi\)
\(480\) 0 0
\(481\) −1.32496 + 0.548818i −0.0604132 + 0.0250239i
\(482\) 4.68748 11.3166i 0.213509 0.515456i
\(483\) −6.96128 2.88346i −0.316749 0.131202i
\(484\) 24.2127 24.2127i 1.10058 1.10058i
\(485\) 0 0
\(486\) −11.5103 4.76770i −0.522116 0.216267i
\(487\) −9.08625 + 21.9361i −0.411737 + 0.994021i 0.572934 + 0.819601i \(0.305805\pi\)
−0.984671 + 0.174420i \(0.944195\pi\)
\(488\) −39.2469 + 16.2566i −1.77662 + 0.735901i
\(489\) 7.62461i 0.344797i
\(490\) 0 0
\(491\) 28.3186 + 28.3186i 1.27800 + 1.27800i 0.941786 + 0.336213i \(0.109146\pi\)
0.336213 + 0.941786i \(0.390854\pi\)
\(492\) 63.7312 2.87322
\(493\) −2.51711 3.15557i −0.113365 0.142120i
\(494\) 53.7221 2.41707
\(495\) 0 0
\(496\) 0.171794 + 0.414746i 0.00771376 + 0.0186227i
\(497\) 2.00238i 0.0898188i
\(498\) 50.7604 21.0256i 2.27463 0.942181i
\(499\) −1.39163 + 3.35969i −0.0622979 + 0.150400i −0.951963 0.306213i \(-0.900938\pi\)
0.889665 + 0.456614i \(0.150938\pi\)
\(500\) 0 0
\(501\) 21.4666 21.4666i 0.959055 0.959055i
\(502\) −45.9833 + 45.9833i −2.05233 + 2.05233i
\(503\) 32.6193 + 13.5113i 1.45442 + 0.602441i 0.963246 0.268620i \(-0.0865676\pi\)
0.491175 + 0.871061i \(0.336568\pi\)
\(504\) −0.943948 + 2.27889i −0.0420468 + 0.101510i
\(505\) 0 0
\(506\) 27.6423i 1.22885i
\(507\) 0.449066 + 1.08414i 0.0199437 + 0.0481484i
\(508\) 29.2589 + 29.2589i 1.29816 + 1.29816i
\(509\) 8.67454 0.384492 0.192246 0.981347i \(-0.438423\pi\)
0.192246 + 0.981347i \(0.438423\pi\)
\(510\) 0 0
\(511\) 15.1127 0.668547
\(512\) −2.92908 2.92908i −0.129448 0.129448i
\(513\) 11.7756 + 28.4288i 0.519905 + 1.25516i
\(514\) 7.59390i 0.334953i
\(515\) 0 0
\(516\) −10.1207 + 24.4334i −0.445537 + 1.07562i
\(517\) 17.0453 + 7.06039i 0.749651 + 0.310515i
\(518\) −1.02743 + 1.02743i −0.0451428 + 0.0451428i
\(519\) −2.09286 + 2.09286i −0.0918666 + 0.0918666i
\(520\) 0 0
\(521\) −5.43328 + 13.1171i −0.238036 + 0.574670i −0.997080 0.0763698i \(-0.975667\pi\)
0.759043 + 0.651040i \(0.225667\pi\)
\(522\) −1.09627 + 0.454088i −0.0479822 + 0.0198749i
\(523\) 28.1516i 1.23098i 0.788143 + 0.615492i \(0.211043\pi\)
−0.788143 + 0.615492i \(0.788957\pi\)
\(524\) −9.88301 23.8597i −0.431742 1.04232i
\(525\) 0 0
\(526\) −64.1871 −2.79869
\(527\) −3.94647 + 3.14799i −0.171911 + 0.137128i
\(528\) 3.17916 0.138355
\(529\) 11.4978 + 11.4978i 0.499905 + 0.499905i
\(530\) 0 0
\(531\) 0.820931i 0.0356254i
\(532\) 31.3695 12.9937i 1.36004 0.563347i
\(533\) −13.7769 + 33.2604i −0.596744 + 1.44067i
\(534\) 34.5046 + 14.2923i 1.49316 + 0.618488i
\(535\) 0 0
\(536\) 18.9808 18.9808i 0.819844 0.819844i
\(537\) −5.98121 2.47750i −0.258108 0.106912i
\(538\) −12.9372 + 31.2332i −0.557763 + 1.34656i
\(539\) 19.6707 8.14787i 0.847277 0.350954i
\(540\) 0 0
\(541\) −7.68568 18.5549i −0.330433 0.797736i −0.998558 0.0536867i \(-0.982903\pi\)
0.668125 0.744049i \(-0.267097\pi\)
\(542\) −4.09177 4.09177i −0.175756 0.175756i
\(543\) 27.6515 1.18664
\(544\) 10.4209 18.8606i 0.446793 0.808642i
\(545\) 0 0
\(546\) −16.6468 16.6468i −0.712418 0.712418i
\(547\) −0.767610 1.85317i −0.0328206 0.0792360i 0.906619 0.421949i \(-0.138654\pi\)
−0.939440 + 0.342713i \(0.888654\pi\)
\(548\) 50.5366i 2.15882i
\(549\) −6.79569 + 2.81487i −0.290033 + 0.120136i
\(550\) 0 0
\(551\) 5.99047 + 2.48133i 0.255203 + 0.105708i
\(552\) −10.4639 + 10.4639i −0.445375 + 0.445375i
\(553\) 11.9319 11.9319i 0.507394 0.507394i
\(554\) −51.0533 21.1470i −2.16905 0.898448i
\(555\) 0 0
\(556\) −0.141254 + 0.0585092i −0.00599050 + 0.00248134i
\(557\) 16.9217i 0.716994i 0.933531 + 0.358497i \(0.116711\pi\)
−0.933531 + 0.358497i \(0.883289\pi\)
\(558\) 0.567898 + 1.37103i 0.0240410 + 0.0580402i
\(559\) −10.5637 10.5637i −0.446795 0.446795i
\(560\) 0 0
\(561\) 9.90120 + 34.3521i 0.418029 + 1.45035i
\(562\) −32.7898 −1.38316
\(563\) −29.9664 29.9664i −1.26293 1.26293i −0.949664 0.313271i \(-0.898575\pi\)
−0.313271 0.949664i \(-0.601425\pi\)
\(564\) 9.52146 + 22.9868i 0.400926 + 0.967921i
\(565\) 0 0
\(566\) 21.3261 8.83358i 0.896404 0.371303i
\(567\) 6.09313 14.7101i 0.255887 0.617767i
\(568\) 3.63327 + 1.50495i 0.152448 + 0.0631462i
\(569\) −29.3744 + 29.3744i −1.23144 + 1.23144i −0.268030 + 0.963411i \(0.586373\pi\)
−0.963411 + 0.268030i \(0.913627\pi\)
\(570\) 0 0
\(571\) −17.6451 7.30885i −0.738426 0.305866i −0.0184165 0.999830i \(-0.505862\pi\)
−0.720009 + 0.693964i \(0.755862\pi\)
\(572\) −20.6179 + 49.7761i −0.862079 + 2.08124i
\(573\) 27.0125 11.1889i 1.12846 0.467425i
\(574\) 36.4747i 1.52242i
\(575\) 0 0
\(576\) −4.75162 4.75162i −0.197984 0.197984i
\(577\) 3.81985 0.159023 0.0795113 0.996834i \(-0.474664\pi\)
0.0795113 + 0.996834i \(0.474664\pi\)
\(578\) −38.2175 8.71313i −1.58964 0.362418i
\(579\) 0.199058 0.00827256
\(580\) 0 0
\(581\) 7.50668 + 18.1227i 0.311430 + 0.751857i
\(582\) 25.6686i 1.06400i
\(583\) −7.49891 + 3.10615i −0.310573 + 0.128644i
\(584\) 11.3584 27.4217i 0.470015 1.13472i
\(585\) 0 0
\(586\) −18.4146 + 18.4146i −0.760700 + 0.760700i
\(587\) −4.90654 + 4.90654i −0.202514 + 0.202514i −0.801076 0.598562i \(-0.795739\pi\)
0.598562 + 0.801076i \(0.295739\pi\)
\(588\) 26.5274 + 10.9880i 1.09397 + 0.453138i
\(589\) 3.10324 7.49188i 0.127867 0.308698i
\(590\) 0 0
\(591\) 19.7993i 0.814435i
\(592\) 0.0572018 + 0.138097i 0.00235098 + 0.00567576i
\(593\) −26.3112 26.3112i −1.08047 1.08047i −0.996465 0.0840076i \(-0.973228\pi\)
−0.0840076 0.996465i \(-0.526772\pi\)
\(594\) −49.4693 −2.02975
\(595\) 0 0
\(596\) 4.95745 0.203065
\(597\) −1.52849 1.52849i −0.0625569 0.0625569i
\(598\) −8.05839 19.4547i −0.329532 0.795561i
\(599\) 20.3199i 0.830249i −0.909765 0.415124i \(-0.863738\pi\)
0.909765 0.415124i \(-0.136262\pi\)
\(600\) 0 0
\(601\) 9.23333 22.2912i 0.376636 0.909279i −0.615956 0.787780i \(-0.711230\pi\)
0.992592 0.121498i \(-0.0387699\pi\)
\(602\) −13.9838 5.79226i −0.569936 0.236075i
\(603\) 3.28656 3.28656i 0.133839 0.133839i
\(604\) −12.3861 + 12.3861i −0.503982 + 0.503982i
\(605\) 0 0
\(606\) −9.59948 + 23.1752i −0.389952 + 0.941428i
\(607\) 1.47684 0.611728i 0.0599432 0.0248293i −0.352510 0.935808i \(-0.614672\pi\)
0.412454 + 0.910979i \(0.364672\pi\)
\(608\) 34.6136i 1.40377i
\(609\) −1.08737 2.62515i −0.0440625 0.106376i
\(610\) 0 0
\(611\) −14.0548 −0.568595
\(612\) −3.47629 + 6.29168i −0.140521 + 0.254326i
\(613\) −29.2631 −1.18192 −0.590962 0.806699i \(-0.701252\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(614\) 40.9884 + 40.9884i 1.65416 + 1.65416i
\(615\) 0 0
\(616\) 21.6694i 0.873084i
\(617\) 16.5320 6.84778i 0.665553 0.275681i −0.0242199 0.999707i \(-0.507710\pi\)
0.689773 + 0.724025i \(0.257710\pi\)
\(618\) −11.5836 + 27.9652i −0.465959 + 1.12492i
\(619\) −2.87805 1.19213i −0.115678 0.0479156i 0.324094 0.946025i \(-0.394941\pi\)
−0.439772 + 0.898109i \(0.644941\pi\)
\(620\) 0 0
\(621\) 8.52871 8.52871i 0.342245 0.342245i
\(622\) −47.5629 19.7012i −1.90710 0.789946i
\(623\) −5.10271 + 12.3190i −0.204436 + 0.493551i
\(624\) −2.23750 + 0.926803i −0.0895717 + 0.0371018i
\(625\) 0 0
\(626\) 26.2321 + 63.3299i 1.04845 + 2.53117i
\(627\) −40.6075 40.6075i −1.62171 1.62171i
\(628\) −42.1175 −1.68067
\(629\) −1.31405 + 1.04818i −0.0523945 + 0.0417936i
\(630\) 0 0
\(631\) 25.7673 + 25.7673i 1.02578 + 1.02578i 0.999659 + 0.0261195i \(0.00831503\pi\)
0.0261195 + 0.999659i \(0.491685\pi\)
\(632\) −12.6823 30.6179i −0.504476 1.21791i
\(633\) 7.86292i 0.312523i
\(634\) −25.3410 + 10.4966i −1.00642 + 0.416872i
\(635\) 0 0
\(636\) −10.1128 4.18888i −0.401000 0.166100i
\(637\) −11.4690 + 11.4690i −0.454417 + 0.454417i
\(638\) −7.37095 + 7.37095i −0.291819 + 0.291819i
\(639\) 0.629108 + 0.260585i 0.0248871 + 0.0103086i
\(640\) 0 0
\(641\) 3.63772 1.50679i 0.143681 0.0595147i −0.309684 0.950840i \(-0.600223\pi\)
0.453365 + 0.891325i \(0.350223\pi\)
\(642\) 6.05049i 0.238794i
\(643\) 5.70294 + 13.7681i 0.224902 + 0.542962i 0.995543 0.0943078i \(-0.0300638\pi\)
−0.770641 + 0.637270i \(0.780064\pi\)
\(644\) −9.41093 9.41093i −0.370843 0.370843i
\(645\) 0 0
\(646\) 60.5028 17.4385i 2.38045 0.686109i
\(647\) −28.8503 −1.13422 −0.567110 0.823642i \(-0.691939\pi\)
−0.567110 + 0.823642i \(0.691939\pi\)
\(648\) −22.1117 22.1117i −0.868629 0.868629i
\(649\) 2.75984 + 6.66285i 0.108333 + 0.261540i
\(650\) 0 0
\(651\) −3.28310 + 1.35990i −0.128675 + 0.0532988i
\(652\) 5.15384 12.4425i 0.201840 0.487285i
\(653\) −13.0606 5.40988i −0.511101 0.211705i 0.112202 0.993685i \(-0.464210\pi\)
−0.623303 + 0.781980i \(0.714210\pi\)
\(654\) 33.2141 33.2141i 1.29877 1.29877i
\(655\) 0 0
\(656\) 3.46664 + 1.43593i 0.135349 + 0.0560636i
\(657\) 1.96674 4.74813i 0.0767298 0.185242i
\(658\) −13.1559 + 5.44933i −0.512868 + 0.212437i
\(659\) 38.8064i 1.51168i 0.654756 + 0.755840i \(0.272771\pi\)
−0.654756 + 0.755840i \(0.727229\pi\)
\(660\) 0 0
\(661\) −12.4897 12.4897i −0.485794 0.485794i 0.421182 0.906976i \(-0.361615\pi\)
−0.906976 + 0.421182i \(0.861615\pi\)
\(662\) 21.0932 0.819812
\(663\) −16.9830 21.2906i −0.659563 0.826860i
\(664\) 38.5252 1.49507
\(665\) 0 0
\(666\) 0.189092 + 0.456508i 0.00732716 + 0.0176893i
\(667\) 2.54156i 0.0984097i
\(668\) 49.5412 20.5206i 1.91681 0.793967i
\(669\) 5.49289 13.2610i 0.212367 0.512700i
\(670\) 0 0
\(671\) −45.6921 + 45.6921i −1.76392 + 1.76392i
\(672\) 10.7257 10.7257i 0.413751 0.413751i
\(673\) −36.0132 14.9171i −1.38821 0.575014i −0.441543 0.897240i \(-0.645569\pi\)
−0.946663 + 0.322227i \(0.895569\pi\)
\(674\) −18.9970 + 45.8627i −0.731736 + 1.76657i
\(675\) 0 0
\(676\) 2.07274i 0.0797206i
\(677\) 17.7215 + 42.7835i 0.681094 + 1.64431i 0.761995 + 0.647583i \(0.224220\pi\)
−0.0809013 + 0.996722i \(0.525780\pi\)
\(678\) −12.1872 12.1872i −0.468046 0.468046i
\(679\) −9.16432 −0.351694
\(680\) 0 0
\(681\) −44.8112 −1.71717
\(682\) 9.21835 + 9.21835i 0.352989 + 0.352989i
\(683\) −11.1344 26.8809i −0.426048 1.02857i −0.980529 0.196374i \(-0.937083\pi\)
0.554482 0.832196i \(-0.312917\pi\)
\(684\) 11.5467i 0.441498i
\(685\) 0 0
\(686\) −15.8362 + 38.2320i −0.604629 + 1.45970i
\(687\) 23.8945 + 9.89741i 0.911631 + 0.377610i
\(688\) −1.10102 + 1.10102i −0.0419760 + 0.0419760i
\(689\) 4.37223 4.37223i 0.166569 0.166569i
\(690\) 0 0
\(691\) −2.96838 + 7.16631i −0.112923 + 0.272619i −0.970230 0.242186i \(-0.922136\pi\)
0.857307 + 0.514805i \(0.172136\pi\)
\(692\) −4.82998 + 2.00064i −0.183608 + 0.0760530i
\(693\) 3.75210i 0.142531i
\(694\) 4.81889 + 11.6338i 0.182922 + 0.441614i
\(695\) 0 0
\(696\) −5.58052 −0.211529
\(697\) −4.71927 + 41.9305i −0.178755 + 1.58823i
\(698\) 76.1473 2.88222
\(699\) 7.71759 + 7.71759i 0.291906 + 0.291906i
\(700\) 0 0
\(701\) 4.74948i 0.179386i −0.995969 0.0896928i \(-0.971411\pi\)
0.995969 0.0896928i \(-0.0285885\pi\)
\(702\) 34.8166 14.4215i 1.31407 0.544304i
\(703\) 1.03328 2.49456i 0.0389709 0.0940840i
\(704\) −54.5393 22.5909i −2.05553 0.851427i
\(705\) 0 0
\(706\) −20.3741 + 20.3741i −0.766790 + 0.766790i
\(707\) −8.27413 3.42726i −0.311181 0.128895i
\(708\) −3.72186 + 8.98535i −0.139876 + 0.337690i
\(709\) −40.1605 + 16.6350i −1.50826 + 0.624741i −0.975198 0.221336i \(-0.928958\pi\)
−0.533061 + 0.846077i \(0.678958\pi\)
\(710\) 0 0
\(711\) −2.19597 5.30155i −0.0823555 0.198824i
\(712\) 18.5175 + 18.5175i 0.693972 + 0.693972i
\(713\) −3.17856 −0.119038
\(714\) −24.1516 13.3443i −0.903850 0.499397i
\(715\) 0 0
\(716\) −8.08597 8.08597i −0.302187 0.302187i
\(717\) −3.65876 8.83302i −0.136639 0.329875i
\(718\) 41.9377i 1.56510i
\(719\) 35.1404 14.5556i 1.31052 0.542833i 0.385481 0.922716i \(-0.374036\pi\)
0.925035 + 0.379883i \(0.124036\pi\)
\(720\) 0 0
\(721\) −9.98427 4.13562i −0.371834 0.154019i
\(722\) −40.5419 + 40.5419i −1.50881 + 1.50881i
\(723\) 7.05322 7.05322i 0.262312 0.262312i
\(724\) 45.1241 + 18.6910i 1.67702 + 0.694646i
\(725\) 0 0
\(726\) 41.2968 17.1057i 1.53267 0.634852i
\(727\) 32.4604i 1.20389i 0.798538 + 0.601944i \(0.205607\pi\)
−0.798538 + 0.601944i \(0.794393\pi\)
\(728\) −6.31715 15.2509i −0.234129 0.565238i
\(729\) 14.6770 + 14.6770i 0.543594 + 0.543594i
\(730\) 0 0
\(731\) −15.3260 8.46794i −0.566852 0.313198i
\(732\) −87.1427 −3.22089
\(733\) 27.9059 + 27.9059i 1.03073 + 1.03073i 0.999513 + 0.0312144i \(0.00993745\pi\)
0.0312144 + 0.999513i \(0.490063\pi\)
\(734\) 20.0902 + 48.5020i 0.741543 + 1.79024i
\(735\) 0 0
\(736\) 12.5348 5.19208i 0.462038 0.191382i
\(737\) 15.6255 37.7234i 0.575574 1.38956i
\(738\) 11.4597 + 4.74674i 0.421836 + 0.174730i
\(739\) 6.57694 6.57694i 0.241937 0.241937i −0.575714 0.817651i \(-0.695276\pi\)
0.817651 + 0.575714i \(0.195276\pi\)
\(740\) 0 0
\(741\) 40.4177 + 16.7416i 1.48478 + 0.615016i
\(742\) 2.39738 5.78779i 0.0880107 0.212477i
\(743\) 38.4742 15.9365i 1.41148 0.584655i 0.458777 0.888551i \(-0.348288\pi\)
0.952705 + 0.303896i \(0.0982877\pi\)
\(744\) 6.97919i 0.255869i
\(745\) 0 0
\(746\) −40.0352 40.0352i −1.46579 1.46579i
\(747\) 6.67072 0.244069
\(748\) −7.06265 + 62.7513i −0.258236 + 2.29442i
\(749\) 2.16018 0.0789312
\(750\) 0 0
\(751\) 5.95174 + 14.3688i 0.217182 + 0.524324i 0.994494 0.104791i \(-0.0334174\pi\)
−0.777312 + 0.629115i \(0.783417\pi\)
\(752\) 1.46489i 0.0534190i
\(753\) −48.9252 + 20.2655i −1.78293 + 0.738516i
\(754\) 3.03888 7.33650i 0.110669 0.267179i
\(755\) 0 0
\(756\) 16.8420 16.8420i 0.612539 0.612539i
\(757\) 29.1872 29.1872i 1.06083 1.06083i 0.0627989 0.998026i \(-0.479997\pi\)
0.998026 0.0627989i \(-0.0200027\pi\)
\(758\) 39.7522 + 16.4659i 1.44387 + 0.598069i
\(759\) −8.61422 + 20.7966i −0.312676 + 0.754867i
\(760\) 0 0
\(761\) 42.6707i 1.54681i −0.633910 0.773407i \(-0.718551\pi\)
0.633910 0.773407i \(-0.281449\pi\)
\(762\) 20.6708 + 49.9037i 0.748823 + 1.80782i
\(763\) 11.8583 + 11.8583i 0.429298 + 0.429298i
\(764\) 51.6444 1.86843
\(765\) 0 0
\(766\) 59.2934 2.14236
\(767\) −3.88477 3.88477i −0.140271 0.140271i
\(768\) −13.1479 31.7417i −0.474432 1.14538i
\(769\) 8.29133i 0.298993i 0.988762 + 0.149497i \(0.0477653\pi\)
−0.988762 + 0.149497i \(0.952235\pi\)
\(770\) 0 0
\(771\) 2.36650 5.71325i 0.0852276 0.205758i
\(772\) 0.324839 + 0.134553i 0.0116912 + 0.00484266i
\(773\) 0.168240 0.168240i 0.00605117 0.00605117i −0.704075 0.710126i \(-0.748638\pi\)
0.710126 + 0.704075i \(0.248638\pi\)
\(774\) −3.63964 + 3.63964i −0.130824 + 0.130824i
\(775\) 0 0
\(776\) −6.88773 + 16.6285i −0.247255 + 0.596927i
\(777\) −1.09317 + 0.452805i −0.0392171 + 0.0162443i
\(778\) 55.2962i 1.98246i
\(779\) −25.9383 62.6205i −0.929335 2.24361i
\(780\) 0 0
\(781\) 5.98202 0.214054
\(782\) −15.3906 19.2944i −0.550366 0.689965i
\(783\) 4.54845 0.162548
\(784\) 1.19538 + 1.19538i 0.0426921 + 0.0426921i
\(785\) 0 0
\(786\) 33.7127i 1.20249i
\(787\) 1.37415 0.569193i 0.0489833 0.0202895i −0.358057 0.933700i \(-0.616561\pi\)
0.407041 + 0.913410i \(0.366561\pi\)
\(788\) 13.3833 32.3102i 0.476761 1.15100i
\(789\) −48.2909 20.0028i −1.71920 0.712117i
\(790\) 0 0
\(791\) 4.35113 4.35113i 0.154708 0.154708i
\(792\) 6.80811 + 2.82001i 0.241915 + 0.100205i
\(793\) 18.8378 45.4785i 0.668951 1.61499i
\(794\) 30.4962 12.6319i 1.08227 0.448291i
\(795\) 0 0
\(796\) −1.46114 3.52750i −0.0517886 0.125029i
\(797\) −0.399266 0.399266i −0.0141427 0.0141427i 0.700000 0.714143i \(-0.253183\pi\)
−0.714143 + 0.700000i \(0.753183\pi\)
\(798\) 44.3237 1.56904
\(799\) −15.8287 + 4.56226i −0.559980 + 0.161401i
\(800\) 0 0
\(801\) 3.20635 + 3.20635i 0.113291 + 0.113291i
\(802\) −2.60563 6.29054i −0.0920078 0.222127i
\(803\) 45.1486i 1.59326i
\(804\) 50.8728 21.0722i 1.79414 0.743159i
\(805\) 0 0
\(806\) −9.17526 3.80052i −0.323185 0.133868i
\(807\) −19.4666 + 19.4666i −0.685255 + 0.685255i
\(808\) −12.4374 + 12.4374i −0.437545 + 0.437545i
\(809\) −43.3268 17.9466i −1.52329 0.630967i −0.545042 0.838409i \(-0.683486\pi\)
−0.978247 + 0.207442i \(0.933486\pi\)
\(810\) 0 0
\(811\) 5.97603 2.47535i 0.209847 0.0869215i −0.275284 0.961363i \(-0.588772\pi\)
0.485131 + 0.874441i \(0.338772\pi\)
\(812\) 5.01894i 0.176130i
\(813\) −1.80330 4.35355i −0.0632445 0.152686i
\(814\) 3.06942 + 3.06942i 0.107583 + 0.107583i
\(815\) 0 0
\(816\) −2.21906 + 1.77009i −0.0776828 + 0.0619654i
\(817\) 28.1267 0.984028
\(818\) −4.14704 4.14704i −0.144998 0.144998i
\(819\) −1.09383 2.64074i −0.0382215 0.0922748i
\(820\) 0 0
\(821\) 10.8492 4.49387i 0.378638 0.156837i −0.185244 0.982693i \(-0.559307\pi\)
0.563882 + 0.825856i \(0.309307\pi\)
\(822\) 25.2458 60.9488i 0.880549 2.12583i
\(823\) 22.3851 + 9.27219i 0.780294 + 0.323208i 0.737034 0.675855i \(-0.236226\pi\)
0.0432598 + 0.999064i \(0.486226\pi\)
\(824\) −15.0080 + 15.0080i −0.522828 + 0.522828i
\(825\) 0 0
\(826\) −5.14251 2.13010i −0.178931 0.0741155i
\(827\) 3.17168 7.65712i 0.110290 0.266264i −0.859092 0.511821i \(-0.828971\pi\)
0.969382 + 0.245557i \(0.0789710\pi\)
\(828\) −4.18145 + 1.73202i −0.145316 + 0.0601917i
\(829\) 42.2364i 1.46693i −0.679726 0.733466i \(-0.737902\pi\)
0.679726 0.733466i \(-0.262098\pi\)
\(830\) 0 0
\(831\) −31.8197 31.8197i −1.10381 1.10381i
\(832\) 44.9707 1.55908
\(833\) −9.19366 + 16.6394i −0.318541 + 0.576523i
\(834\) −0.199585 −0.00691107
\(835\) 0 0
\(836\) −38.8181 93.7152i −1.34255 3.24121i
\(837\) 5.68844i 0.196621i
\(838\) −12.2511 + 5.07459i −0.423209 + 0.175299i
\(839\) −2.83865 + 6.85310i −0.0980009 + 0.236595i −0.965275 0.261236i \(-0.915870\pi\)
0.867274 + 0.497831i \(0.165870\pi\)
\(840\) 0 0
\(841\) −19.8284 + 19.8284i −0.683737 + 0.683737i
\(842\) −31.9499 + 31.9499i −1.10107 + 1.10107i
\(843\) −24.6693 10.2184i −0.849656 0.351939i
\(844\) 5.31493 12.8314i 0.182947 0.441674i
\(845\) 0 0
\(846\) 4.84248i 0.166488i
\(847\) 6.10717 + 14.7440i 0.209845 + 0.506610i
\(848\) −0.455705 0.455705i −0.0156490 0.0156490i
\(849\) 18.7975 0.645128
\(850\) 0 0
\(851\) −1.05836 −0.0362801
\(852\) 5.70437 + 5.70437i 0.195429 + 0.195429i
\(853\) −5.50010 13.2784i −0.188320 0.454644i 0.801317 0.598241i \(-0.204133\pi\)
−0.989636 + 0.143596i \(0.954133\pi\)
\(854\) 49.8736i 1.70664i
\(855\) 0 0
\(856\) 1.62355 3.91960i 0.0554918 0.133969i
\(857\) −40.0122 16.5736i −1.36679 0.566143i −0.425873 0.904783i \(-0.640033\pi\)
−0.940916 + 0.338640i \(0.890033\pi\)
\(858\) −49.7317 + 49.7317i −1.69781 + 1.69781i
\(859\) −9.67814 + 9.67814i −0.330214 + 0.330214i −0.852668 0.522454i \(-0.825017\pi\)
0.522454 + 0.852668i \(0.325017\pi\)
\(860\) 0 0
\(861\) −11.3667 + 27.4416i −0.387376 + 0.935208i
\(862\) 54.9977 22.7808i 1.87323 0.775917i
\(863\) 6.87984i 0.234192i 0.993121 + 0.117096i \(0.0373586\pi\)
−0.993121 + 0.117096i \(0.962641\pi\)
\(864\) 9.29187 + 22.4326i 0.316116 + 0.763171i
\(865\) 0 0
\(866\) 89.5628 3.04347
\(867\) −26.0375 18.4651i −0.884281 0.627108i
\(868\) −6.27686 −0.213050
\(869\) −35.6460 35.6460i −1.20921 1.20921i
\(870\) 0 0
\(871\) 31.1050i 1.05395i
\(872\) 30.4290 12.6041i 1.03046 0.426829i
\(873\) −1.19263 + 2.87925i −0.0403643 + 0.0974480i
\(874\) 36.6280 + 15.1718i 1.23896 + 0.513194i
\(875\) 0 0
\(876\) 43.0531 43.0531i 1.45463 1.45463i
\(877\) −26.2792 10.8852i −0.887385 0.367567i −0.108029 0.994148i \(-0.534454\pi\)
−0.779356 + 0.626581i \(0.784454\pi\)
\(878\) −3.01618 + 7.28169i −0.101791 + 0.245745i
\(879\) −19.5927 + 8.11558i −0.660847 + 0.273732i
\(880\) 0 0
\(881\) −8.01474 19.3493i −0.270023 0.651894i 0.729460 0.684023i \(-0.239771\pi\)
−0.999484 + 0.0321289i \(0.989771\pi\)
\(882\) 3.95156 + 3.95156i 0.133056 + 0.133056i
\(883\) 7.88825 0.265461 0.132730 0.991152i \(-0.457626\pi\)
0.132730 + 0.991152i \(0.457626\pi\)
\(884\) −13.3228 46.2234i −0.448095 1.55466i
\(885\) 0 0
\(886\) −32.3571 32.3571i −1.08706 1.08706i
\(887\) −2.09077 5.04757i −0.0702013 0.169481i 0.884884 0.465811i \(-0.154237\pi\)
−0.955086 + 0.296330i \(0.904237\pi\)
\(888\) 2.32385i 0.0779832i
\(889\) −17.8169 + 7.37999i −0.597559 + 0.247517i
\(890\) 0 0
\(891\) −43.9459 18.2030i −1.47224 0.609823i
\(892\) 17.9275 17.9275i 0.600257 0.600257i
\(893\) 18.7111 18.7111i 0.626142 0.626142i
\(894\) 5.97884 + 2.47652i 0.199962 + 0.0828272i
\(895\) 0 0
\(896\) 27.1677 11.2532i 0.907608 0.375944i
\(897\) 17.1479i 0.572552i
\(898\) 5.31191 + 12.8241i 0.177261 + 0.427946i
\(899\) −0.847580 0.847580i −0.0282684 0.0282684i
\(900\) 0 0
\(901\) 3.50483 6.34333i 0.116763 0.211327i
\(902\) 108.967 3.62820
\(903\) −8.71558 8.71558i −0.290036 0.290036i
\(904\) −4.62480 11.1653i −0.153819 0.371351i
\(905\) 0 0
\(906\) −21.1255 + 8.75048i −0.701848 + 0.290715i
\(907\) 5.49369 13.2629i 0.182415 0.440388i −0.806048 0.591850i \(-0.798398\pi\)
0.988463 + 0.151461i \(0.0483979\pi\)
\(908\) −73.1267 30.2901i −2.42679 1.00521i
\(909\) −2.15356 + 2.15356i −0.0714290 + 0.0714290i
\(910\) 0 0
\(911\) 21.5527 + 8.92744i 0.714074 + 0.295779i 0.709989 0.704213i \(-0.248700\pi\)
0.00408474 + 0.999992i \(0.498700\pi\)
\(912\) 1.74493 4.21262i 0.0577803 0.139494i
\(913\) 54.1410 22.4259i 1.79180 0.742190i
\(914\) 65.9172i 2.18035i
\(915\) 0 0
\(916\) 32.3028 + 32.3028i 1.06732 + 1.06732i
\(917\) 12.0363 0.397473
\(918\) 34.5297 27.5434i 1.13965 0.909067i
\(919\) −27.6524 −0.912170 −0.456085 0.889936i \(-0.650749\pi\)
−0.456085 + 0.889936i \(0.650749\pi\)
\(920\) 0 0
\(921\) 18.0642 + 43.6108i 0.595235 + 1.43703i
\(922\) 17.7530i 0.584663i
\(923\) −4.21016 + 1.74390i −0.138579 + 0.0574013i
\(924\) −17.0109 + 41.0679i −0.559618 + 1.35104i
\(925\) 0 0
\(926\) −43.6666 + 43.6666i −1.43497 + 1.43497i
\(927\) −2.59867 + 2.59867i −0.0853514 + 0.0853514i
\(928\) 4.72696 + 1.95797i 0.155170 + 0.0642735i
\(929\) −0.372470 + 0.899221i −0.0122203 + 0.0295025i −0.929872 0.367883i \(-0.880083\pi\)
0.917652 + 0.397386i \(0.130083\pi\)
\(930\) 0 0
\(931\) 30.5372i 1.00082i
\(932\) 7.37752 + 17.8109i 0.241659 + 0.583415i
\(933\) −29.6443 29.6443i −0.970510 0.970510i
\(934\) 23.8368 0.779965
\(935\) 0 0
\(936\) −5.61366 −0.183488
\(937\) 2.88720 + 2.88720i 0.0943206 + 0.0943206i 0.752693 0.658372i \(-0.228755\pi\)
−0.658372 + 0.752693i \(0.728755\pi\)
\(938\) 12.0601 + 29.1156i 0.393775 + 0.950656i
\(939\) 55.8209i 1.82164i
\(940\) 0 0
\(941\) 6.25311 15.0963i 0.203846 0.492127i −0.788586 0.614924i \(-0.789187\pi\)
0.992432 + 0.122798i \(0.0391866\pi\)
\(942\) −50.7951 21.0400i −1.65499 0.685521i
\(943\) −18.7863 + 18.7863i −0.611767 + 0.611767i
\(944\) −0.404898 + 0.404898i −0.0131783 + 0.0131783i
\(945\) 0 0
\(946\) −17.3042 + 41.7760i −0.562607 + 1.35825i
\(947\) −15.3016 + 6.33813i −0.497235 + 0.205961i −0.617184 0.786819i \(-0.711727\pi\)
0.119950 + 0.992780i \(0.461727\pi\)
\(948\) 67.9831i 2.20799i
\(949\) 13.1619 + 31.7757i 0.427254 + 1.03148i
\(950\) 0 0
\(951\) −22.3363 −0.724303
\(952\) −12.0650 15.1253i −0.391030 0.490213i
\(953\) −57.0108 −1.84676 −0.923380 0.383887i \(-0.874585\pi\)
−0.923380 + 0.383887i \(0.874585\pi\)
\(954\) −1.50642 1.50642i −0.0487723 0.0487723i
\(955\) 0 0
\(956\) 16.8876i 0.546184i
\(957\) −7.84253 + 3.24848i −0.253513 + 0.105009i
\(958\) 22.8333 55.1244i 0.737710 1.78099i
\(959\) 21.7603 + 9.01339i 0.702675 + 0.291058i
\(960\) 0 0
\(961\) 20.8603 20.8603i 0.672913 0.672913i
\(962\) −3.05507 1.26545i −0.0984994 0.0407998i
\(963\) 0.281121 0.678687i 0.00905901 0.0218704i
\(964\) 16.2776 6.74242i 0.524267 0.217159i
\(965\) 0 0
\(966\) −6.64861 16.0512i −0.213915 0.516437i
\(967\) 7.19460 + 7.19460i 0.231363 + 0.231363i 0.813261 0.581899i \(-0.197690\pi\)
−0.581899 + 0.813261i \(0.697690\pi\)
\(968\) 31.3427 1.00739
\(969\) 50.9535 + 5.73480i 1.63686 + 0.184228i
\(970\) 0 0
\(971\) 10.6541 + 10.6541i 0.341905 + 0.341905i 0.857083 0.515178i \(-0.172274\pi\)
−0.515178 + 0.857083i \(0.672274\pi\)
\(972\) −6.85781 16.5562i −0.219965 0.531041i
\(973\) 0.0712569i 0.00228439i
\(974\) −50.5798 + 20.9508i −1.62068 + 0.671309i
\(975\) 0 0
\(976\) −4.74010 1.96341i −0.151727 0.0628473i
\(977\) 12.7437 12.7437i 0.407708 0.407708i −0.473231 0.880939i \(-0.656912\pi\)
0.880939 + 0.473231i \(0.156912\pi\)
\(978\) 12.4314 12.4314i 0.397512 0.397512i
\(979\) 36.8026 + 15.2441i 1.17622 + 0.487205i
\(980\) 0 0
\(981\) 5.26885 2.18243i 0.168221 0.0696796i
\(982\) 92.3429i 2.94678i
\(983\) −9.17720 22.1557i −0.292707 0.706658i 0.707293 0.706921i \(-0.249916\pi\)
−1.00000 0.000262992i \(0.999916\pi\)
\(984\) 41.2492 + 41.2492i 1.31498 + 1.31498i
\(985\) 0 0
\(986\) 1.04096 9.24892i 0.0331511 0.294546i
\(987\) −11.5960 −0.369103
\(988\) 54.6405 + 54.6405i 1.73835 + 1.73835i
\(989\) −4.21904 10.1857i −0.134158 0.323885i
\(990\) 0 0
\(991\) 32.6010 13.5038i 1.03560 0.428961i 0.200872 0.979617i \(-0.435622\pi\)
0.834732 + 0.550656i \(0.185622\pi\)
\(992\) 2.44870 5.91169i 0.0777463 0.187696i
\(993\) 15.8694 + 6.57333i 0.503601 + 0.208598i
\(994\) −3.26473 + 3.26473i −0.103551 + 0.103551i
\(995\) 0 0
\(996\) 73.0132 + 30.2430i 2.31351 + 0.958287i
\(997\) 19.6247 47.3783i 0.621522 1.50049i −0.228394 0.973569i \(-0.573348\pi\)
0.849916 0.526918i \(-0.176652\pi\)
\(998\) −7.74670 + 3.20879i −0.245217 + 0.101572i
\(999\) 1.89407i 0.0599257i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.e.151.6 24
5.2 odd 4 85.2.m.a.49.1 24
5.3 odd 4 85.2.m.a.49.6 yes 24
5.4 even 2 inner 425.2.m.e.151.1 24
15.2 even 4 765.2.bh.b.559.6 24
15.8 even 4 765.2.bh.b.559.1 24
17.5 odd 16 7225.2.a.by.1.1 24
17.8 even 8 inner 425.2.m.e.76.6 24
17.12 odd 16 7225.2.a.by.1.2 24
85.8 odd 8 85.2.m.a.59.1 yes 24
85.12 even 16 1445.2.b.i.579.1 24
85.22 even 16 1445.2.b.i.579.2 24
85.29 odd 16 7225.2.a.by.1.23 24
85.39 odd 16 7225.2.a.by.1.24 24
85.42 odd 8 85.2.m.a.59.6 yes 24
85.59 even 8 inner 425.2.m.e.76.1 24
85.63 even 16 1445.2.b.i.579.24 24
85.73 even 16 1445.2.b.i.579.23 24
255.8 even 8 765.2.bh.b.739.6 24
255.212 even 8 765.2.bh.b.739.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.1 24 5.2 odd 4
85.2.m.a.49.6 yes 24 5.3 odd 4
85.2.m.a.59.1 yes 24 85.8 odd 8
85.2.m.a.59.6 yes 24 85.42 odd 8
425.2.m.e.76.1 24 85.59 even 8 inner
425.2.m.e.76.6 24 17.8 even 8 inner
425.2.m.e.151.1 24 5.4 even 2 inner
425.2.m.e.151.6 24 1.1 even 1 trivial
765.2.bh.b.559.1 24 15.8 even 4
765.2.bh.b.559.6 24 15.2 even 4
765.2.bh.b.739.1 24 255.212 even 8
765.2.bh.b.739.6 24 255.8 even 8
1445.2.b.i.579.1 24 85.12 even 16
1445.2.b.i.579.2 24 85.22 even 16
1445.2.b.i.579.23 24 85.73 even 16
1445.2.b.i.579.24 24 85.63 even 16
7225.2.a.by.1.1 24 17.5 odd 16
7225.2.a.by.1.2 24 17.12 odd 16
7225.2.a.by.1.23 24 85.29 odd 16
7225.2.a.by.1.24 24 85.39 odd 16