Properties

Label 425.2.m.e.76.6
Level $425$
Weight $2$
Character 425.76
Analytic conductor $3.394$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [425,2,Mod(26,425)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(425, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("425.26");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 425 = 5^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 425.m (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.39364208590\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(6\) over \(\Q(\zeta_{8})\)
Twist minimal: no (minimal twist has level 85)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 76.6
Character \(\chi\) \(=\) 425.76
Dual form 425.2.m.e.151.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.63043 - 1.63043i) q^{2} +(0.718554 - 1.73474i) q^{3} -3.31660i q^{4} +(-1.65683 - 3.99993i) q^{6} +(-1.42808 + 0.591528i) q^{7} +(-2.14663 - 2.14663i) q^{8} +(-0.371694 - 0.371694i) q^{9} +(-1.76717 - 4.26632i) q^{11} +(-5.75346 - 2.38316i) q^{12} +3.51782i q^{13} +(-1.36393 + 3.29282i) q^{14} -0.366652 q^{16} +(-1.14190 + 3.96182i) q^{17} -1.21204 q^{18} +(4.68326 - 4.68326i) q^{19} +2.90239i q^{21} +(-9.83718 - 4.07469i) q^{22} +(0.993477 + 2.39846i) q^{23} +(-5.26632 + 2.18138i) q^{24} +(5.73556 + 5.73556i) q^{26} +(4.29235 - 1.77795i) q^{27} +(1.96187 + 4.73636i) q^{28} +(0.904478 + 0.374647i) q^{29} +(-0.468546 + 1.13117i) q^{31} +(3.69546 - 3.69546i) q^{32} -8.67078 q^{33} +(4.59768 + 8.32127i) q^{34} +(-1.23276 + 1.23276i) q^{36} +(-0.156011 + 0.376644i) q^{37} -15.2714i q^{38} +(6.10251 + 2.52774i) q^{39} +(-9.45483 + 3.91632i) q^{41} +(4.73214 + 4.73214i) q^{42} +(3.00290 + 3.00290i) q^{43} +(-14.1497 + 5.86100i) q^{44} +(5.53032 + 2.29073i) q^{46} +3.99531i q^{47} +(-0.263460 + 0.636048i) q^{48} +(-3.26025 + 3.26025i) q^{49} +(6.05223 + 4.82770i) q^{51} +11.6672 q^{52} +(1.24288 - 1.24288i) q^{53} +(4.09956 - 9.89721i) q^{54} +(4.33534 + 1.79576i) q^{56} +(-4.75907 - 11.4894i) q^{57} +(2.08552 - 0.863853i) q^{58} +(1.10431 + 1.10431i) q^{59} +(12.9280 - 5.35497i) q^{61} +(1.08036 + 2.60823i) q^{62} +(0.750675 + 0.310940i) q^{63} -12.7837i q^{64} +(-14.1371 + 14.1371i) q^{66} -8.84212 q^{67} +(13.1398 + 3.78724i) q^{68} +4.87459 q^{69} +(-0.495735 + 1.19681i) q^{71} +1.59578i q^{72} +(-9.03279 - 3.74150i) q^{73} +(0.359726 + 0.868456i) q^{74} +(-15.5325 - 15.5325i) q^{76} +(5.04730 + 5.04730i) q^{77} +(14.0710 - 5.82841i) q^{78} +(-4.17760 - 10.0856i) q^{79} -10.3007i q^{81} +(-9.03016 + 21.8007i) q^{82} +(-8.97341 + 8.97341i) q^{83} +9.62608 q^{84} +9.79203 q^{86} +(1.29983 - 1.29983i) q^{87} +(-5.36476 + 12.9517i) q^{88} +8.62631i q^{89} +(-2.08089 - 5.02371i) q^{91} +(7.95476 - 3.29497i) q^{92} +(1.62561 + 1.62561i) q^{93} +(6.51407 + 6.51407i) q^{94} +(-3.75529 - 9.06606i) q^{96} +(5.47747 + 2.26884i) q^{97} +10.6312i q^{98} +(-0.928920 + 2.24261i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{9} + 24 q^{14} + 8 q^{16} + 24 q^{19} - 32 q^{24} - 16 q^{26} - 24 q^{29} - 24 q^{31} - 8 q^{34} + 8 q^{36} + 24 q^{39} - 48 q^{41} - 72 q^{44} - 16 q^{46} - 48 q^{49} - 32 q^{54} + 24 q^{56}+ \cdots + 80 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/425\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{5}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.63043 1.63043i 1.15289 1.15289i 0.166917 0.985971i \(-0.446619\pi\)
0.985971 0.166917i \(-0.0533812\pi\)
\(3\) 0.718554 1.73474i 0.414857 1.00155i −0.568957 0.822367i \(-0.692653\pi\)
0.983815 0.179188i \(-0.0573469\pi\)
\(4\) 3.31660i 1.65830i
\(5\) 0 0
\(6\) −1.65683 3.99993i −0.676396 1.63296i
\(7\) −1.42808 + 0.591528i −0.539762 + 0.223577i −0.635873 0.771794i \(-0.719360\pi\)
0.0961108 + 0.995371i \(0.469360\pi\)
\(8\) −2.14663 2.14663i −0.758948 0.758948i
\(9\) −0.371694 0.371694i −0.123898 0.123898i
\(10\) 0 0
\(11\) −1.76717 4.26632i −0.532821 1.28634i −0.929647 0.368451i \(-0.879888\pi\)
0.396826 0.917894i \(-0.370112\pi\)
\(12\) −5.75346 2.38316i −1.66088 0.687959i
\(13\) 3.51782i 0.975667i 0.872937 + 0.487834i \(0.162213\pi\)
−0.872937 + 0.487834i \(0.837787\pi\)
\(14\) −1.36393 + 3.29282i −0.364526 + 0.880044i
\(15\) 0 0
\(16\) −0.366652 −0.0916631
\(17\) −1.14190 + 3.96182i −0.276952 + 0.960884i
\(18\) −1.21204 −0.285681
\(19\) 4.68326 4.68326i 1.07441 1.07441i 0.0774135 0.996999i \(-0.475334\pi\)
0.996999 0.0774135i \(-0.0246662\pi\)
\(20\) 0 0
\(21\) 2.90239i 0.633353i
\(22\) −9.83718 4.07469i −2.09729 0.868728i
\(23\) 0.993477 + 2.39846i 0.207154 + 0.500114i 0.992973 0.118343i \(-0.0377581\pi\)
−0.785819 + 0.618457i \(0.787758\pi\)
\(24\) −5.26632 + 2.18138i −1.07498 + 0.445273i
\(25\) 0 0
\(26\) 5.73556 + 5.73556i 1.12483 + 1.12483i
\(27\) 4.29235 1.77795i 0.826064 0.342167i
\(28\) 1.96187 + 4.73636i 0.370758 + 0.895088i
\(29\) 0.904478 + 0.374647i 0.167957 + 0.0695702i 0.465078 0.885270i \(-0.346026\pi\)
−0.297120 + 0.954840i \(0.596026\pi\)
\(30\) 0 0
\(31\) −0.468546 + 1.13117i −0.0841534 + 0.203164i −0.960355 0.278781i \(-0.910070\pi\)
0.876201 + 0.481945i \(0.160070\pi\)
\(32\) 3.69546 3.69546i 0.653271 0.653271i
\(33\) −8.67078 −1.50939
\(34\) 4.59768 + 8.32127i 0.788496 + 1.42709i
\(35\) 0 0
\(36\) −1.23276 + 1.23276i −0.205460 + 0.205460i
\(37\) −0.156011 + 0.376644i −0.0256480 + 0.0619198i −0.936185 0.351509i \(-0.885669\pi\)
0.910537 + 0.413428i \(0.135669\pi\)
\(38\) 15.2714i 2.47735i
\(39\) 6.10251 + 2.52774i 0.977184 + 0.404763i
\(40\) 0 0
\(41\) −9.45483 + 3.91632i −1.47660 + 0.611626i −0.968353 0.249586i \(-0.919705\pi\)
−0.508244 + 0.861213i \(0.669705\pi\)
\(42\) 4.73214 + 4.73214i 0.730186 + 0.730186i
\(43\) 3.00290 + 3.00290i 0.457938 + 0.457938i 0.897978 0.440040i \(-0.145036\pi\)
−0.440040 + 0.897978i \(0.645036\pi\)
\(44\) −14.1497 + 5.86100i −2.13315 + 0.883579i
\(45\) 0 0
\(46\) 5.53032 + 2.29073i 0.815402 + 0.337750i
\(47\) 3.99531i 0.582776i 0.956605 + 0.291388i \(0.0941171\pi\)
−0.956605 + 0.291388i \(0.905883\pi\)
\(48\) −0.263460 + 0.636048i −0.0380271 + 0.0918056i
\(49\) −3.26025 + 3.26025i −0.465750 + 0.465750i
\(50\) 0 0
\(51\) 6.05223 + 4.82770i 0.847482 + 0.676013i
\(52\) 11.6672 1.61795
\(53\) 1.24288 1.24288i 0.170723 0.170723i −0.616574 0.787297i \(-0.711480\pi\)
0.787297 + 0.616574i \(0.211480\pi\)
\(54\) 4.09956 9.89721i 0.557879 1.34684i
\(55\) 0 0
\(56\) 4.33534 + 1.79576i 0.579335 + 0.239968i
\(57\) −4.75907 11.4894i −0.630355 1.52181i
\(58\) 2.08552 0.863853i 0.273843 0.113429i
\(59\) 1.10431 + 1.10431i 0.143769 + 0.143769i 0.775328 0.631559i \(-0.217585\pi\)
−0.631559 + 0.775328i \(0.717585\pi\)
\(60\) 0 0
\(61\) 12.9280 5.35497i 1.65527 0.685634i 0.657566 0.753397i \(-0.271586\pi\)
0.997701 + 0.0677633i \(0.0215863\pi\)
\(62\) 1.08036 + 2.60823i 0.137206 + 0.331245i
\(63\) 0.750675 + 0.310940i 0.0945761 + 0.0391747i
\(64\) 12.7837i 1.59796i
\(65\) 0 0
\(66\) −14.1371 + 14.1371i −1.74016 + 1.74016i
\(67\) −8.84212 −1.08024 −0.540119 0.841589i \(-0.681621\pi\)
−0.540119 + 0.841589i \(0.681621\pi\)
\(68\) 13.1398 + 3.78724i 1.59344 + 0.459271i
\(69\) 4.87459 0.586831
\(70\) 0 0
\(71\) −0.495735 + 1.19681i −0.0588329 + 0.142035i −0.950562 0.310534i \(-0.899492\pi\)
0.891730 + 0.452569i \(0.149492\pi\)
\(72\) 1.59578i 0.188064i
\(73\) −9.03279 3.74150i −1.05721 0.437910i −0.214748 0.976669i \(-0.568893\pi\)
−0.842460 + 0.538760i \(0.818893\pi\)
\(74\) 0.359726 + 0.868456i 0.0418173 + 0.100956i
\(75\) 0 0
\(76\) −15.5325 15.5325i −1.78170 1.78170i
\(77\) 5.04730 + 5.04730i 0.575193 + 0.575193i
\(78\) 14.0710 5.82841i 1.59323 0.659937i
\(79\) −4.17760 10.0856i −0.470017 1.13472i −0.964155 0.265338i \(-0.914516\pi\)
0.494139 0.869383i \(-0.335484\pi\)
\(80\) 0 0
\(81\) 10.3007i 1.14452i
\(82\) −9.03016 + 21.8007i −0.997214 + 2.40749i
\(83\) −8.97341 + 8.97341i −0.984959 + 0.984959i −0.999889 0.0149292i \(-0.995248\pi\)
0.0149292 + 0.999889i \(0.495248\pi\)
\(84\) 9.62608 1.05029
\(85\) 0 0
\(86\) 9.79203 1.05590
\(87\) 1.29983 1.29983i 0.139357 0.139357i
\(88\) −5.36476 + 12.9517i −0.571885 + 1.38065i
\(89\) 8.62631i 0.914387i 0.889367 + 0.457193i \(0.151145\pi\)
−0.889367 + 0.457193i \(0.848855\pi\)
\(90\) 0 0
\(91\) −2.08089 5.02371i −0.218136 0.526628i
\(92\) 7.95476 3.29497i 0.829341 0.343524i
\(93\) 1.62561 + 1.62561i 0.168568 + 0.168568i
\(94\) 6.51407 + 6.51407i 0.671875 + 0.671875i
\(95\) 0 0
\(96\) −3.75529 9.06606i −0.383272 0.925301i
\(97\) 5.47747 + 2.26884i 0.556152 + 0.230366i 0.643014 0.765855i \(-0.277684\pi\)
−0.0868615 + 0.996220i \(0.527684\pi\)
\(98\) 10.6312i 1.07392i
\(99\) −0.928920 + 2.24261i −0.0933600 + 0.225391i
\(100\) 0 0
\(101\) 5.79390 0.576515 0.288257 0.957553i \(-0.406924\pi\)
0.288257 + 0.957553i \(0.406924\pi\)
\(102\) 17.7390 1.99652i 1.75642 0.197685i
\(103\) 6.99141 0.688885 0.344442 0.938807i \(-0.388068\pi\)
0.344442 + 0.938807i \(0.388068\pi\)
\(104\) 7.55145 7.55145i 0.740481 0.740481i
\(105\) 0 0
\(106\) 4.05286i 0.393649i
\(107\) −1.29113 0.534802i −0.124818 0.0517013i 0.319400 0.947620i \(-0.396519\pi\)
−0.444218 + 0.895919i \(0.646519\pi\)
\(108\) −5.89676 14.2360i −0.567416 1.36986i
\(109\) −10.0234 + 4.15183i −0.960068 + 0.397673i −0.807006 0.590543i \(-0.798914\pi\)
−0.153062 + 0.988217i \(0.548914\pi\)
\(110\) 0 0
\(111\) 0.541278 + 0.541278i 0.0513758 + 0.0513758i
\(112\) 0.523607 0.216885i 0.0494762 0.0204937i
\(113\) −1.52342 3.67787i −0.143312 0.345985i 0.835883 0.548907i \(-0.184956\pi\)
−0.979195 + 0.202923i \(0.934956\pi\)
\(114\) −26.4920 10.9734i −2.48121 1.02775i
\(115\) 0 0
\(116\) 1.24256 2.99980i 0.115368 0.278524i
\(117\) 1.30755 1.30755i 0.120883 0.120883i
\(118\) 3.60100 0.331499
\(119\) −0.712807 6.33325i −0.0653429 0.580568i
\(120\) 0 0
\(121\) −7.30044 + 7.30044i −0.663677 + 0.663677i
\(122\) 12.3474 29.8092i 1.11788 2.69880i
\(123\) 19.2158i 1.73263i
\(124\) 3.75164 + 1.55398i 0.336908 + 0.139552i
\(125\) 0 0
\(126\) 1.73089 0.716957i 0.154200 0.0638716i
\(127\) 8.82196 + 8.82196i 0.782822 + 0.782822i 0.980306 0.197484i \(-0.0632770\pi\)
−0.197484 + 0.980306i \(0.563277\pi\)
\(128\) −13.4520 13.4520i −1.18900 1.18900i
\(129\) 7.36700 3.05151i 0.648629 0.268671i
\(130\) 0 0
\(131\) −7.19402 2.97986i −0.628544 0.260352i 0.0455901 0.998960i \(-0.485483\pi\)
−0.674134 + 0.738609i \(0.735483\pi\)
\(132\) 28.7575i 2.50302i
\(133\) −3.91777 + 9.45832i −0.339713 + 0.820141i
\(134\) −14.4165 + 14.4165i −1.24539 + 1.24539i
\(135\) 0 0
\(136\) 10.9558 6.05333i 0.939454 0.519069i
\(137\) −15.2375 −1.30182 −0.650912 0.759153i \(-0.725613\pi\)
−0.650912 + 0.759153i \(0.725613\pi\)
\(138\) 7.94767 7.94767i 0.676551 0.676551i
\(139\) 0.0176413 0.0425899i 0.00149632 0.00361243i −0.923130 0.384489i \(-0.874378\pi\)
0.924626 + 0.380876i \(0.124378\pi\)
\(140\) 0 0
\(141\) 6.93084 + 2.87085i 0.583682 + 0.241769i
\(142\) 1.14305 + 2.75957i 0.0959229 + 0.231578i
\(143\) 15.0081 6.21658i 1.25504 0.519856i
\(144\) 0.136282 + 0.136282i 0.0113569 + 0.0113569i
\(145\) 0 0
\(146\) −20.8276 + 8.62707i −1.72370 + 0.713981i
\(147\) 3.31303 + 7.99837i 0.273254 + 0.659694i
\(148\) 1.24918 + 0.517426i 0.102682 + 0.0425322i
\(149\) 1.49474i 0.122454i 0.998124 + 0.0612268i \(0.0195013\pi\)
−0.998124 + 0.0612268i \(0.980499\pi\)
\(150\) 0 0
\(151\) 3.73457 3.73457i 0.303915 0.303915i −0.538629 0.842543i \(-0.681057\pi\)
0.842543 + 0.538629i \(0.181057\pi\)
\(152\) −20.1064 −1.63085
\(153\) 1.89702 1.04815i 0.153365 0.0847377i
\(154\) 16.4585 1.32627
\(155\) 0 0
\(156\) 8.38352 20.2396i 0.671219 1.62047i
\(157\) 12.6990i 1.01349i −0.862096 0.506745i \(-0.830848\pi\)
0.862096 0.506745i \(-0.169152\pi\)
\(158\) −23.2552 9.63261i −1.85008 0.766329i
\(159\) −1.26300 3.04916i −0.100163 0.241814i
\(160\) 0 0
\(161\) −2.83752 2.83752i −0.223628 0.223628i
\(162\) −16.7945 16.7945i −1.31950 1.31950i
\(163\) −3.75157 + 1.55395i −0.293846 + 0.121715i −0.524736 0.851265i \(-0.675836\pi\)
0.230890 + 0.972980i \(0.425836\pi\)
\(164\) 12.9889 + 31.3579i 1.01426 + 2.44864i
\(165\) 0 0
\(166\) 29.2610i 2.27110i
\(167\) −6.18724 + 14.9373i −0.478783 + 1.15589i 0.481397 + 0.876503i \(0.340130\pi\)
−0.960180 + 0.279382i \(0.909870\pi\)
\(168\) 6.23036 6.23036i 0.480683 0.480683i
\(169\) 0.624957 0.0480736
\(170\) 0 0
\(171\) −3.48148 −0.266235
\(172\) 9.95942 9.95942i 0.759399 0.759399i
\(173\) 0.603220 1.45630i 0.0458620 0.110721i −0.899288 0.437356i \(-0.855915\pi\)
0.945150 + 0.326635i \(0.105915\pi\)
\(174\) 4.23857i 0.321326i
\(175\) 0 0
\(176\) 0.647936 + 1.56426i 0.0488400 + 0.117910i
\(177\) 2.70920 1.12219i 0.203636 0.0843489i
\(178\) 14.0646 + 14.0646i 1.05419 + 1.05419i
\(179\) −2.43803 2.43803i −0.182227 0.182227i 0.610099 0.792325i \(-0.291130\pi\)
−0.792325 + 0.610099i \(0.791130\pi\)
\(180\) 0 0
\(181\) 5.63559 + 13.6055i 0.418890 + 1.01129i 0.982670 + 0.185365i \(0.0593466\pi\)
−0.563780 + 0.825925i \(0.690653\pi\)
\(182\) −11.5836 4.79806i −0.858630 0.355656i
\(183\) 26.2747i 1.94228i
\(184\) 3.01599 7.28124i 0.222342 0.536780i
\(185\) 0 0
\(186\) 5.30090 0.388681
\(187\) 18.9204 2.12948i 1.38359 0.155723i
\(188\) 13.2509 0.966418
\(189\) −5.07810 + 5.07810i −0.369377 + 0.369377i
\(190\) 0 0
\(191\) 15.5715i 1.12671i 0.826214 + 0.563356i \(0.190490\pi\)
−0.826214 + 0.563356i \(0.809510\pi\)
\(192\) −22.1764 9.18577i −1.60044 0.662926i
\(193\) 0.0405694 + 0.0979433i 0.00292025 + 0.00705011i 0.925333 0.379156i \(-0.123785\pi\)
−0.922413 + 0.386206i \(0.873785\pi\)
\(194\) 12.6298 5.23144i 0.906768 0.375595i
\(195\) 0 0
\(196\) 10.8130 + 10.8130i 0.772355 + 0.772355i
\(197\) −9.74194 + 4.03524i −0.694085 + 0.287499i −0.701701 0.712472i \(-0.747576\pi\)
0.00761621 + 0.999971i \(0.497576\pi\)
\(198\) 2.14188 + 5.17096i 0.152217 + 0.367484i
\(199\) −1.06359 0.440552i −0.0753957 0.0312299i 0.344667 0.938725i \(-0.387992\pi\)
−0.420063 + 0.907495i \(0.637992\pi\)
\(200\) 0 0
\(201\) −6.35355 + 15.3388i −0.448145 + 1.08192i
\(202\) 9.44655 9.44655i 0.664657 0.664657i
\(203\) −1.51328 −0.106211
\(204\) 16.0116 20.0728i 1.12103 1.40538i
\(205\) 0 0
\(206\) 11.3990 11.3990i 0.794207 0.794207i
\(207\) 0.522226 1.26076i 0.0362972 0.0876291i
\(208\) 1.28982i 0.0894327i
\(209\) −28.2564 11.7042i −1.95453 0.809595i
\(210\) 0 0
\(211\) −3.86883 + 1.60252i −0.266341 + 0.110322i −0.511858 0.859070i \(-0.671042\pi\)
0.245516 + 0.969392i \(0.421042\pi\)
\(212\) −4.12214 4.12214i −0.283110 0.283110i
\(213\) 1.71994 + 1.71994i 0.117849 + 0.117849i
\(214\) −2.97705 + 1.23313i −0.203507 + 0.0842954i
\(215\) 0 0
\(216\) −13.0307 5.39749i −0.886627 0.367253i
\(217\) 1.89256i 0.128475i
\(218\) −9.57319 + 23.1117i −0.648378 + 1.56532i
\(219\) −12.9811 + 12.9811i −0.877181 + 0.877181i
\(220\) 0 0
\(221\) −13.9370 4.01701i −0.937503 0.270213i
\(222\) 1.76503 0.118461
\(223\) −5.40538 + 5.40538i −0.361971 + 0.361971i −0.864538 0.502567i \(-0.832389\pi\)
0.502567 + 0.864538i \(0.332389\pi\)
\(224\) −3.09143 + 7.46336i −0.206555 + 0.498667i
\(225\) 0 0
\(226\) −8.48034 3.51267i −0.564104 0.233660i
\(227\) −9.13285 22.0487i −0.606169 1.46342i −0.867135 0.498073i \(-0.834041\pi\)
0.260967 0.965348i \(-0.415959\pi\)
\(228\) −38.1059 + 15.7840i −2.52362 + 1.04532i
\(229\) 9.73973 + 9.73973i 0.643620 + 0.643620i 0.951443 0.307824i \(-0.0996007\pi\)
−0.307824 + 0.951443i \(0.599601\pi\)
\(230\) 0 0
\(231\) 12.3825 5.12901i 0.814711 0.337464i
\(232\) −1.13735 2.74581i −0.0746708 0.180271i
\(233\) 5.37022 + 2.22442i 0.351815 + 0.145727i 0.551590 0.834115i \(-0.314021\pi\)
−0.199775 + 0.979842i \(0.564021\pi\)
\(234\) 4.26374i 0.278730i
\(235\) 0 0
\(236\) 3.66256 3.66256i 0.238412 0.238412i
\(237\) −20.4978 −1.33147
\(238\) −11.4881 9.16375i −0.744663 0.593997i
\(239\) −5.09183 −0.329363 −0.164682 0.986347i \(-0.552660\pi\)
−0.164682 + 0.986347i \(0.552660\pi\)
\(240\) 0 0
\(241\) −2.03293 + 4.90792i −0.130952 + 0.316147i −0.975732 0.218967i \(-0.929731\pi\)
0.844780 + 0.535114i \(0.179731\pi\)
\(242\) 23.8057i 1.53029i
\(243\) −4.99192 2.06772i −0.320232 0.132644i
\(244\) −17.7603 42.8772i −1.13699 2.74493i
\(245\) 0 0
\(246\) 31.3300 + 31.3300i 1.99753 + 1.99753i
\(247\) 16.4748 + 16.4748i 1.04827 + 1.04827i
\(248\) 3.43400 1.42241i 0.218059 0.0903231i
\(249\) 9.11868 + 22.0144i 0.577873 + 1.39511i
\(250\) 0 0
\(251\) 28.2032i 1.78017i −0.455797 0.890084i \(-0.650646\pi\)
0.455797 0.890084i \(-0.349354\pi\)
\(252\) 1.03126 2.48969i 0.0649635 0.156836i
\(253\) 8.47698 8.47698i 0.532943 0.532943i
\(254\) 28.7672 1.80501
\(255\) 0 0
\(256\) −18.2976 −1.14360
\(257\) −2.32880 + 2.32880i −0.145267 + 0.145267i −0.776000 0.630733i \(-0.782754\pi\)
0.630733 + 0.776000i \(0.282754\pi\)
\(258\) 7.03611 16.9867i 0.438049 1.05754i
\(259\) 0.630161i 0.0391563i
\(260\) 0 0
\(261\) −0.196935 0.475443i −0.0121900 0.0294292i
\(262\) −16.5878 + 6.87089i −1.02480 + 0.424485i
\(263\) −19.6841 19.6841i −1.21377 1.21377i −0.969776 0.243997i \(-0.921541\pi\)
−0.243997 0.969776i \(-0.578459\pi\)
\(264\) 18.6130 + 18.6130i 1.14555 + 1.14555i
\(265\) 0 0
\(266\) 9.03349 + 21.8088i 0.553879 + 1.33718i
\(267\) 14.9644 + 6.19847i 0.915808 + 0.379340i
\(268\) 29.3258i 1.79136i
\(269\) 5.61079 13.5456i 0.342096 0.825892i −0.655408 0.755275i \(-0.727503\pi\)
0.997504 0.0706169i \(-0.0224968\pi\)
\(270\) 0 0
\(271\) −2.50962 −0.152449 −0.0762244 0.997091i \(-0.524287\pi\)
−0.0762244 + 0.997091i \(0.524287\pi\)
\(272\) 0.418682 1.45261i 0.0253863 0.0880776i
\(273\) −10.2101 −0.617942
\(274\) −24.8436 + 24.8436i −1.50086 + 1.50086i
\(275\) 0 0
\(276\) 16.1671i 0.973144i
\(277\) −22.1415 9.17130i −1.33035 0.551050i −0.399596 0.916691i \(-0.630850\pi\)
−0.930756 + 0.365641i \(0.880850\pi\)
\(278\) −0.0406769 0.0982028i −0.00243964 0.00588981i
\(279\) 0.594605 0.246293i 0.0355981 0.0147452i
\(280\) 0 0
\(281\) −10.0556 10.0556i −0.599865 0.599865i 0.340411 0.940277i \(-0.389434\pi\)
−0.940277 + 0.340411i \(0.889434\pi\)
\(282\) 15.9810 6.61953i 0.951652 0.394187i
\(283\) 3.83106 + 9.24901i 0.227733 + 0.549796i 0.995901 0.0904523i \(-0.0288313\pi\)
−0.768168 + 0.640249i \(0.778831\pi\)
\(284\) 3.96934 + 1.64416i 0.235537 + 0.0975627i
\(285\) 0 0
\(286\) 14.3340 34.6054i 0.847589 2.04626i
\(287\) 11.1856 11.1856i 0.660265 0.660265i
\(288\) −2.74716 −0.161878
\(289\) −14.3921 9.04804i −0.846595 0.532238i
\(290\) 0 0
\(291\) 7.87171 7.87171i 0.461448 0.461448i
\(292\) −12.4091 + 29.9582i −0.726187 + 1.75317i
\(293\) 11.2943i 0.659821i −0.944012 0.329910i \(-0.892981\pi\)
0.944012 0.329910i \(-0.107019\pi\)
\(294\) 18.4425 + 7.63911i 1.07559 + 0.445522i
\(295\) 0 0
\(296\) 1.14341 0.473617i 0.0664595 0.0275284i
\(297\) −15.1706 15.1706i −0.880289 0.880289i
\(298\) 2.43706 + 2.43706i 0.141175 + 0.141175i
\(299\) −8.43736 + 3.49487i −0.487945 + 0.202114i
\(300\) 0 0
\(301\) −6.06467 2.51207i −0.349562 0.144793i
\(302\) 12.1779i 0.700759i
\(303\) 4.16323 10.0509i 0.239171 0.577411i
\(304\) −1.71713 + 1.71713i −0.0984840 + 0.0984840i
\(305\) 0 0
\(306\) 1.38403 4.80190i 0.0791200 0.274506i
\(307\) 25.1396 1.43479 0.717397 0.696664i \(-0.245333\pi\)
0.717397 + 0.696664i \(0.245333\pi\)
\(308\) 16.7399 16.7399i 0.953844 0.953844i
\(309\) 5.02371 12.1283i 0.285789 0.689955i
\(310\) 0 0
\(311\) −20.6277 8.54428i −1.16969 0.484502i −0.288600 0.957450i \(-0.593190\pi\)
−0.881090 + 0.472948i \(0.843190\pi\)
\(312\) −7.67370 18.5260i −0.434438 1.04883i
\(313\) 27.4658 11.3767i 1.55246 0.643049i 0.568699 0.822546i \(-0.307447\pi\)
0.983759 + 0.179496i \(0.0574469\pi\)
\(314\) −20.7048 20.7048i −1.16844 1.16844i
\(315\) 0 0
\(316\) −33.4500 + 13.8554i −1.88171 + 0.779430i
\(317\) −4.55229 10.9902i −0.255682 0.617271i 0.742962 0.669334i \(-0.233420\pi\)
−0.998644 + 0.0520626i \(0.983420\pi\)
\(318\) −7.03067 2.91220i −0.394261 0.163308i
\(319\) 4.52086i 0.253120i
\(320\) 0 0
\(321\) −1.85549 + 1.85549i −0.103563 + 0.103563i
\(322\) −9.25275 −0.515636
\(323\) 13.2064 + 23.9021i 0.734824 + 1.32995i
\(324\) −34.1632 −1.89795
\(325\) 0 0
\(326\) −3.58307 + 8.65029i −0.198448 + 0.479095i
\(327\) 20.3714i 1.12654i
\(328\) 28.7029 + 11.8891i 1.58485 + 0.656468i
\(329\) −2.36334 5.70561i −0.130295 0.314560i
\(330\) 0 0
\(331\) 6.46861 + 6.46861i 0.355547 + 0.355547i 0.862169 0.506621i \(-0.169106\pi\)
−0.506621 + 0.862169i \(0.669106\pi\)
\(332\) 29.7612 + 29.7612i 1.63336 + 1.63336i
\(333\) 0.197984 0.0820079i 0.0108495 0.00449400i
\(334\) 14.2664 + 34.4421i 0.780623 + 1.88459i
\(335\) 0 0
\(336\) 1.06417i 0.0580551i
\(337\) 8.23886 19.8904i 0.448799 1.08350i −0.523973 0.851735i \(-0.675551\pi\)
0.972772 0.231763i \(-0.0744493\pi\)
\(338\) 1.01895 1.01895i 0.0554235 0.0554235i
\(339\) −7.47482 −0.405977
\(340\) 0 0
\(341\) 5.65394 0.306178
\(342\) −5.67630 + 5.67630i −0.306939 + 0.306939i
\(343\) 6.86805 16.5810i 0.370840 0.895287i
\(344\) 12.8922i 0.695102i
\(345\) 0 0
\(346\) −1.39089 3.35791i −0.0747748 0.180522i
\(347\) 5.04551 2.08992i 0.270857 0.112193i −0.243121 0.969996i \(-0.578171\pi\)
0.513978 + 0.857803i \(0.328171\pi\)
\(348\) −4.31103 4.31103i −0.231096 0.231096i
\(349\) 23.3519 + 23.3519i 1.25000 + 1.25000i 0.955719 + 0.294280i \(0.0950800\pi\)
0.294280 + 0.955719i \(0.404920\pi\)
\(350\) 0 0
\(351\) 6.25451 + 15.0997i 0.333841 + 0.805963i
\(352\) −22.2965 9.23552i −1.18841 0.492255i
\(353\) 12.4962i 0.665103i −0.943085 0.332552i \(-0.892090\pi\)
0.943085 0.332552i \(-0.107910\pi\)
\(354\) 2.58752 6.24682i 0.137525 0.332015i
\(355\) 0 0
\(356\) 28.6100 1.51633
\(357\) −11.4988 3.31425i −0.608579 0.175409i
\(358\) −7.95007 −0.420174
\(359\) 12.8609 12.8609i 0.678775 0.678775i −0.280948 0.959723i \(-0.590649\pi\)
0.959723 + 0.280948i \(0.0906489\pi\)
\(360\) 0 0
\(361\) 24.8658i 1.30872i
\(362\) 31.3713 + 12.9944i 1.64884 + 0.682971i
\(363\) 7.41863 + 17.9102i 0.389377 + 0.940040i
\(364\) −16.6617 + 6.90148i −0.873308 + 0.361736i
\(365\) 0 0
\(366\) −42.8390 42.8390i −2.23923 2.23923i
\(367\) 21.0350 8.71298i 1.09802 0.454814i 0.241222 0.970470i \(-0.422452\pi\)
0.856796 + 0.515656i \(0.172452\pi\)
\(368\) −0.364260 0.879403i −0.0189884 0.0458420i
\(369\) 4.96998 + 2.05863i 0.258727 + 0.107168i
\(370\) 0 0
\(371\) −1.03973 + 2.51013i −0.0539800 + 0.130319i
\(372\) 5.39152 5.39152i 0.279537 0.279537i
\(373\) −24.5550 −1.27141 −0.635705 0.771932i \(-0.719291\pi\)
−0.635705 + 0.771932i \(0.719291\pi\)
\(374\) 27.3763 34.3203i 1.41560 1.77466i
\(375\) 0 0
\(376\) 8.57645 8.57645i 0.442297 0.442297i
\(377\) −1.31794 + 3.18179i −0.0678774 + 0.163871i
\(378\) 16.5590i 0.851701i
\(379\) 17.2403 + 7.14115i 0.885573 + 0.366816i 0.778656 0.627451i \(-0.215902\pi\)
0.106918 + 0.994268i \(0.465902\pi\)
\(380\) 0 0
\(381\) 21.6429 8.96478i 1.10880 0.459280i
\(382\) 25.3882 + 25.3882i 1.29897 + 1.29897i
\(383\) 18.1834 + 18.1834i 0.929126 + 0.929126i 0.997650 0.0685233i \(-0.0218288\pi\)
−0.0685233 + 0.997650i \(0.521829\pi\)
\(384\) −33.0017 + 13.6698i −1.68411 + 0.697582i
\(385\) 0 0
\(386\) 0.225835 + 0.0935440i 0.0114947 + 0.00476127i
\(387\) 2.23232i 0.113475i
\(388\) 7.52485 18.1666i 0.382016 0.922269i
\(389\) 16.9576 16.9576i 0.859782 0.859782i −0.131530 0.991312i \(-0.541989\pi\)
0.991312 + 0.131530i \(0.0419890\pi\)
\(390\) 0 0
\(391\) −10.6368 + 1.19716i −0.537924 + 0.0605432i
\(392\) 13.9971 0.706961
\(393\) −10.3386 + 10.3386i −0.521513 + 0.521513i
\(394\) −9.30437 + 22.4627i −0.468747 + 1.13166i
\(395\) 0 0
\(396\) 7.43785 + 3.08086i 0.373766 + 0.154819i
\(397\) 5.47839 + 13.2260i 0.274953 + 0.663794i 0.999681 0.0252400i \(-0.00803499\pi\)
−0.724729 + 0.689034i \(0.758035\pi\)
\(398\) −2.45239 + 1.01581i −0.122927 + 0.0509182i
\(399\) 13.5926 + 13.5926i 0.680483 + 0.680483i
\(400\) 0 0
\(401\) −2.72816 + 1.13004i −0.136238 + 0.0564316i −0.449761 0.893149i \(-0.648491\pi\)
0.313523 + 0.949581i \(0.398491\pi\)
\(402\) 14.6499 + 35.3679i 0.730668 + 1.76399i
\(403\) −3.97925 1.64826i −0.198221 0.0821057i
\(404\) 19.2161i 0.956036i
\(405\) 0 0
\(406\) −2.46729 + 2.46729i −0.122450 + 0.122450i
\(407\) 1.88258 0.0933161
\(408\) −2.62862 23.3552i −0.130136 1.15625i
\(409\) −2.54353 −0.125769 −0.0628846 0.998021i \(-0.520030\pi\)
−0.0628846 + 0.998021i \(0.520030\pi\)
\(410\) 0 0
\(411\) −10.9489 + 26.4331i −0.540072 + 1.30385i
\(412\) 23.1878i 1.14238i
\(413\) −2.23027 0.923809i −0.109744 0.0454576i
\(414\) −1.20414 2.90704i −0.0591800 0.142873i
\(415\) 0 0
\(416\) 13.0000 + 13.0000i 0.637375 + 0.637375i
\(417\) −0.0612063 0.0612063i −0.00299729 0.00299729i
\(418\) −65.1529 + 26.9872i −3.18673 + 1.31999i
\(419\) −2.20082 5.31324i −0.107517 0.259569i 0.860960 0.508673i \(-0.169864\pi\)
−0.968477 + 0.249104i \(0.919864\pi\)
\(420\) 0 0
\(421\) 19.5960i 0.955050i −0.878618 0.477525i \(-0.841534\pi\)
0.878618 0.477525i \(-0.158466\pi\)
\(422\) −3.69506 + 8.92065i −0.179873 + 0.434251i
\(423\) 1.48503 1.48503i 0.0722048 0.0722048i
\(424\) −5.33601 −0.259140
\(425\) 0 0
\(426\) 5.60850 0.271733
\(427\) −15.2946 + 15.2946i −0.740158 + 0.740158i
\(428\) −1.77373 + 4.28216i −0.0857364 + 0.206986i
\(429\) 30.5022i 1.47266i
\(430\) 0 0
\(431\) 9.87988 + 23.8521i 0.475897 + 1.14892i 0.961517 + 0.274747i \(0.0885940\pi\)
−0.485620 + 0.874170i \(0.661406\pi\)
\(432\) −1.57380 + 0.651890i −0.0757196 + 0.0313641i
\(433\) 27.4660 + 27.4660i 1.31993 + 1.31993i 0.913826 + 0.406105i \(0.133113\pi\)
0.406105 + 0.913826i \(0.366887\pi\)
\(434\) −3.08568 3.08568i −0.148117 0.148117i
\(435\) 0 0
\(436\) 13.7700 + 33.2437i 0.659462 + 1.59208i
\(437\) 15.8853 + 6.57992i 0.759898 + 0.314760i
\(438\) 42.3295i 2.02258i
\(439\) 1.30810 3.15802i 0.0624320 0.150724i −0.889585 0.456770i \(-0.849006\pi\)
0.952017 + 0.306046i \(0.0990061\pi\)
\(440\) 0 0
\(441\) 2.42363 0.115411
\(442\) −29.2727 + 16.1738i −1.39236 + 0.769310i
\(443\) −19.8457 −0.942899 −0.471449 0.881893i \(-0.656269\pi\)
−0.471449 + 0.881893i \(0.656269\pi\)
\(444\) 1.79520 1.79520i 0.0851966 0.0851966i
\(445\) 0 0
\(446\) 17.6262i 0.834624i
\(447\) 2.59299 + 1.07405i 0.122644 + 0.0508008i
\(448\) 7.56191 + 18.2561i 0.357267 + 0.862518i
\(449\) 5.56173 2.30374i 0.262474 0.108720i −0.247566 0.968871i \(-0.579631\pi\)
0.510040 + 0.860151i \(0.329631\pi\)
\(450\) 0 0
\(451\) 33.4166 + 33.4166i 1.57352 + 1.57352i
\(452\) −12.1980 + 5.05259i −0.573747 + 0.237654i
\(453\) −3.79502 9.16200i −0.178306 0.430468i
\(454\) −50.8393 21.0583i −2.38600 0.988316i
\(455\) 0 0
\(456\) −14.4476 + 34.8795i −0.676569 + 1.63338i
\(457\) −20.2147 + 20.2147i −0.945603 + 0.945603i −0.998595 0.0529924i \(-0.983124\pi\)
0.0529924 + 0.998595i \(0.483124\pi\)
\(458\) 31.7599 1.48404
\(459\) 2.14248 + 19.0358i 0.100002 + 0.888515i
\(460\) 0 0
\(461\) −5.44426 + 5.44426i −0.253565 + 0.253565i −0.822430 0.568866i \(-0.807382\pi\)
0.568866 + 0.822430i \(0.307382\pi\)
\(462\) 11.8264 28.5513i 0.550212 1.32833i
\(463\) 26.7823i 1.24468i −0.782748 0.622339i \(-0.786183\pi\)
0.782748 0.622339i \(-0.213817\pi\)
\(464\) −0.331629 0.137365i −0.0153955 0.00637702i
\(465\) 0 0
\(466\) 12.3825 5.12901i 0.573610 0.237597i
\(467\) 7.30998 + 7.30998i 0.338266 + 0.338266i 0.855714 0.517449i \(-0.173118\pi\)
−0.517449 + 0.855714i \(0.673118\pi\)
\(468\) −4.33663 4.33663i −0.200461 0.200461i
\(469\) 12.6272 5.23037i 0.583071 0.241516i
\(470\) 0 0
\(471\) −22.0295 9.12492i −1.01507 0.420454i
\(472\) 4.74109i 0.218227i
\(473\) 7.50470 18.1180i 0.345067 0.833065i
\(474\) −33.4202 + 33.4202i −1.53504 + 1.53504i
\(475\) 0 0
\(476\) −21.0049 + 2.36410i −0.962758 + 0.108358i
\(477\) −0.923943 −0.0423044
\(478\) −8.30188 + 8.30188i −0.379719 + 0.379719i
\(479\) −9.90265 + 23.9071i −0.452464 + 1.09234i 0.518919 + 0.854823i \(0.326335\pi\)
−0.971383 + 0.237520i \(0.923665\pi\)
\(480\) 0 0
\(481\) −1.32496 0.548818i −0.0604132 0.0250239i
\(482\) 4.68748 + 11.3166i 0.213509 + 0.515456i
\(483\) −6.96128 + 2.88346i −0.316749 + 0.131202i
\(484\) 24.2127 + 24.2127i 1.10058 + 1.10058i
\(485\) 0 0
\(486\) −11.5103 + 4.76770i −0.522116 + 0.216267i
\(487\) −9.08625 21.9361i −0.411737 0.994021i −0.984671 0.174420i \(-0.944195\pi\)
0.572934 0.819601i \(-0.305805\pi\)
\(488\) −39.2469 16.2566i −1.77662 0.735901i
\(489\) 7.62461i 0.344797i
\(490\) 0 0
\(491\) 28.3186 28.3186i 1.27800 1.27800i 0.336213 0.941786i \(-0.390854\pi\)
0.941786 0.336213i \(-0.109146\pi\)
\(492\) 63.7312 2.87322
\(493\) −2.51711 + 3.15557i −0.113365 + 0.142120i
\(494\) 53.7221 2.41707
\(495\) 0 0
\(496\) 0.171794 0.414746i 0.00771376 0.0186227i
\(497\) 2.00238i 0.0898188i
\(498\) 50.7604 + 21.0256i 2.27463 + 0.942181i
\(499\) −1.39163 3.35969i −0.0622979 0.150400i 0.889665 0.456614i \(-0.150938\pi\)
−0.951963 + 0.306213i \(0.900938\pi\)
\(500\) 0 0
\(501\) 21.4666 + 21.4666i 0.959055 + 0.959055i
\(502\) −45.9833 45.9833i −2.05233 2.05233i
\(503\) 32.6193 13.5113i 1.45442 0.602441i 0.491175 0.871061i \(-0.336568\pi\)
0.963246 + 0.268620i \(0.0865676\pi\)
\(504\) −0.943948 2.27889i −0.0420468 0.101510i
\(505\) 0 0
\(506\) 27.6423i 1.22885i
\(507\) 0.449066 1.08414i 0.0199437 0.0481484i
\(508\) 29.2589 29.2589i 1.29816 1.29816i
\(509\) 8.67454 0.384492 0.192246 0.981347i \(-0.438423\pi\)
0.192246 + 0.981347i \(0.438423\pi\)
\(510\) 0 0
\(511\) 15.1127 0.668547
\(512\) −2.92908 + 2.92908i −0.129448 + 0.129448i
\(513\) 11.7756 28.4288i 0.519905 1.25516i
\(514\) 7.59390i 0.334953i
\(515\) 0 0
\(516\) −10.1207 24.4334i −0.445537 1.07562i
\(517\) 17.0453 7.06039i 0.749651 0.310515i
\(518\) −1.02743 1.02743i −0.0451428 0.0451428i
\(519\) −2.09286 2.09286i −0.0918666 0.0918666i
\(520\) 0 0
\(521\) −5.43328 13.1171i −0.238036 0.574670i 0.759043 0.651040i \(-0.225667\pi\)
−0.997080 + 0.0763698i \(0.975667\pi\)
\(522\) −1.09627 0.454088i −0.0479822 0.0198749i
\(523\) 28.1516i 1.23098i −0.788143 0.615492i \(-0.788957\pi\)
0.788143 0.615492i \(-0.211043\pi\)
\(524\) −9.88301 + 23.8597i −0.431742 + 1.04232i
\(525\) 0 0
\(526\) −64.1871 −2.79869
\(527\) −3.94647 3.14799i −0.171911 0.137128i
\(528\) 3.17916 0.138355
\(529\) 11.4978 11.4978i 0.499905 0.499905i
\(530\) 0 0
\(531\) 0.820931i 0.0356254i
\(532\) 31.3695 + 12.9937i 1.36004 + 0.563347i
\(533\) −13.7769 33.2604i −0.596744 1.44067i
\(534\) 34.5046 14.2923i 1.49316 0.618488i
\(535\) 0 0
\(536\) 18.9808 + 18.9808i 0.819844 + 0.819844i
\(537\) −5.98121 + 2.47750i −0.258108 + 0.106912i
\(538\) −12.9372 31.2332i −0.557763 1.34656i
\(539\) 19.6707 + 8.14787i 0.847277 + 0.350954i
\(540\) 0 0
\(541\) −7.68568 + 18.5549i −0.330433 + 0.797736i 0.668125 + 0.744049i \(0.267097\pi\)
−0.998558 + 0.0536867i \(0.982903\pi\)
\(542\) −4.09177 + 4.09177i −0.175756 + 0.175756i
\(543\) 27.6515 1.18664
\(544\) 10.4209 + 18.8606i 0.446793 + 0.808642i
\(545\) 0 0
\(546\) −16.6468 + 16.6468i −0.712418 + 0.712418i
\(547\) −0.767610 + 1.85317i −0.0328206 + 0.0792360i −0.939440 0.342713i \(-0.888654\pi\)
0.906619 + 0.421949i \(0.138654\pi\)
\(548\) 50.5366i 2.15882i
\(549\) −6.79569 2.81487i −0.290033 0.120136i
\(550\) 0 0
\(551\) 5.99047 2.48133i 0.255203 0.105708i
\(552\) −10.4639 10.4639i −0.445375 0.445375i
\(553\) 11.9319 + 11.9319i 0.507394 + 0.507394i
\(554\) −51.0533 + 21.1470i −2.16905 + 0.898448i
\(555\) 0 0
\(556\) −0.141254 0.0585092i −0.00599050 0.00248134i
\(557\) 16.9217i 0.716994i −0.933531 0.358497i \(-0.883289\pi\)
0.933531 0.358497i \(-0.116711\pi\)
\(558\) 0.567898 1.37103i 0.0240410 0.0580402i
\(559\) −10.5637 + 10.5637i −0.446795 + 0.446795i
\(560\) 0 0
\(561\) 9.90120 34.3521i 0.418029 1.45035i
\(562\) −32.7898 −1.38316
\(563\) −29.9664 + 29.9664i −1.26293 + 1.26293i −0.313271 + 0.949664i \(0.601425\pi\)
−0.949664 + 0.313271i \(0.898575\pi\)
\(564\) 9.52146 22.9868i 0.400926 0.967921i
\(565\) 0 0
\(566\) 21.3261 + 8.83358i 0.896404 + 0.371303i
\(567\) 6.09313 + 14.7101i 0.255887 + 0.617767i
\(568\) 3.63327 1.50495i 0.152448 0.0631462i
\(569\) −29.3744 29.3744i −1.23144 1.23144i −0.963411 0.268030i \(-0.913627\pi\)
−0.268030 0.963411i \(-0.586373\pi\)
\(570\) 0 0
\(571\) −17.6451 + 7.30885i −0.738426 + 0.305866i −0.720009 0.693964i \(-0.755862\pi\)
−0.0184165 + 0.999830i \(0.505862\pi\)
\(572\) −20.6179 49.7761i −0.862079 2.08124i
\(573\) 27.0125 + 11.1889i 1.12846 + 0.467425i
\(574\) 36.4747i 1.52242i
\(575\) 0 0
\(576\) −4.75162 + 4.75162i −0.197984 + 0.197984i
\(577\) 3.81985 0.159023 0.0795113 0.996834i \(-0.474664\pi\)
0.0795113 + 0.996834i \(0.474664\pi\)
\(578\) −38.2175 + 8.71313i −1.58964 + 0.362418i
\(579\) 0.199058 0.00827256
\(580\) 0 0
\(581\) 7.50668 18.1227i 0.311430 0.751857i
\(582\) 25.6686i 1.06400i
\(583\) −7.49891 3.10615i −0.310573 0.128644i
\(584\) 11.3584 + 27.4217i 0.470015 + 1.13472i
\(585\) 0 0
\(586\) −18.4146 18.4146i −0.760700 0.760700i
\(587\) −4.90654 4.90654i −0.202514 0.202514i 0.598562 0.801076i \(-0.295739\pi\)
−0.801076 + 0.598562i \(0.795739\pi\)
\(588\) 26.5274 10.9880i 1.09397 0.453138i
\(589\) 3.10324 + 7.49188i 0.127867 + 0.308698i
\(590\) 0 0
\(591\) 19.7993i 0.814435i
\(592\) 0.0572018 0.138097i 0.00235098 0.00567576i
\(593\) −26.3112 + 26.3112i −1.08047 + 1.08047i −0.0840076 + 0.996465i \(0.526772\pi\)
−0.996465 + 0.0840076i \(0.973228\pi\)
\(594\) −49.4693 −2.02975
\(595\) 0 0
\(596\) 4.95745 0.203065
\(597\) −1.52849 + 1.52849i −0.0625569 + 0.0625569i
\(598\) −8.05839 + 19.4547i −0.329532 + 0.795561i
\(599\) 20.3199i 0.830249i 0.909765 + 0.415124i \(0.136262\pi\)
−0.909765 + 0.415124i \(0.863738\pi\)
\(600\) 0 0
\(601\) 9.23333 + 22.2912i 0.376636 + 0.909279i 0.992592 + 0.121498i \(0.0387699\pi\)
−0.615956 + 0.787780i \(0.711230\pi\)
\(602\) −13.9838 + 5.79226i −0.569936 + 0.236075i
\(603\) 3.28656 + 3.28656i 0.133839 + 0.133839i
\(604\) −12.3861 12.3861i −0.503982 0.503982i
\(605\) 0 0
\(606\) −9.59948 23.1752i −0.389952 0.941428i
\(607\) 1.47684 + 0.611728i 0.0599432 + 0.0248293i 0.412454 0.910979i \(-0.364672\pi\)
−0.352510 + 0.935808i \(0.614672\pi\)
\(608\) 34.6136i 1.40377i
\(609\) −1.08737 + 2.62515i −0.0440625 + 0.106376i
\(610\) 0 0
\(611\) −14.0548 −0.568595
\(612\) −3.47629 6.29168i −0.140521 0.254326i
\(613\) −29.2631 −1.18192 −0.590962 0.806699i \(-0.701252\pi\)
−0.590962 + 0.806699i \(0.701252\pi\)
\(614\) 40.9884 40.9884i 1.65416 1.65416i
\(615\) 0 0
\(616\) 21.6694i 0.873084i
\(617\) 16.5320 + 6.84778i 0.665553 + 0.275681i 0.689773 0.724025i \(-0.257710\pi\)
−0.0242199 + 0.999707i \(0.507710\pi\)
\(618\) −11.5836 27.9652i −0.465959 1.12492i
\(619\) −2.87805 + 1.19213i −0.115678 + 0.0479156i −0.439772 0.898109i \(-0.644941\pi\)
0.324094 + 0.946025i \(0.394941\pi\)
\(620\) 0 0
\(621\) 8.52871 + 8.52871i 0.342245 + 0.342245i
\(622\) −47.5629 + 19.7012i −1.90710 + 0.789946i
\(623\) −5.10271 12.3190i −0.204436 0.493551i
\(624\) −2.23750 0.926803i −0.0895717 0.0371018i
\(625\) 0 0
\(626\) 26.2321 63.3299i 1.04845 2.53117i
\(627\) −40.6075 + 40.6075i −1.62171 + 1.62171i
\(628\) −42.1175 −1.68067
\(629\) −1.31405 1.04818i −0.0523945 0.0417936i
\(630\) 0 0
\(631\) 25.7673 25.7673i 1.02578 1.02578i 0.0261195 0.999659i \(-0.491685\pi\)
0.999659 0.0261195i \(-0.00831503\pi\)
\(632\) −12.6823 + 30.6179i −0.504476 + 1.21791i
\(633\) 7.86292i 0.312523i
\(634\) −25.3410 10.4966i −1.00642 0.416872i
\(635\) 0 0
\(636\) −10.1128 + 4.18888i −0.401000 + 0.166100i
\(637\) −11.4690 11.4690i −0.454417 0.454417i
\(638\) −7.37095 7.37095i −0.291819 0.291819i
\(639\) 0.629108 0.260585i 0.0248871 0.0103086i
\(640\) 0 0
\(641\) 3.63772 + 1.50679i 0.143681 + 0.0595147i 0.453365 0.891325i \(-0.350223\pi\)
−0.309684 + 0.950840i \(0.600223\pi\)
\(642\) 6.05049i 0.238794i
\(643\) 5.70294 13.7681i 0.224902 0.542962i −0.770641 0.637270i \(-0.780064\pi\)
0.995543 + 0.0943078i \(0.0300638\pi\)
\(644\) −9.41093 + 9.41093i −0.370843 + 0.370843i
\(645\) 0 0
\(646\) 60.5028 + 17.4385i 2.38045 + 0.686109i
\(647\) −28.8503 −1.13422 −0.567110 0.823642i \(-0.691939\pi\)
−0.567110 + 0.823642i \(0.691939\pi\)
\(648\) −22.1117 + 22.1117i −0.868629 + 0.868629i
\(649\) 2.75984 6.66285i 0.108333 0.261540i
\(650\) 0 0
\(651\) −3.28310 1.35990i −0.128675 0.0532988i
\(652\) 5.15384 + 12.4425i 0.201840 + 0.487285i
\(653\) −13.0606 + 5.40988i −0.511101 + 0.211705i −0.623303 0.781980i \(-0.714210\pi\)
0.112202 + 0.993685i \(0.464210\pi\)
\(654\) 33.2141 + 33.2141i 1.29877 + 1.29877i
\(655\) 0 0
\(656\) 3.46664 1.43593i 0.135349 0.0560636i
\(657\) 1.96674 + 4.74813i 0.0767298 + 0.185242i
\(658\) −13.1559 5.44933i −0.512868 0.212437i
\(659\) 38.8064i 1.51168i −0.654756 0.755840i \(-0.727229\pi\)
0.654756 0.755840i \(-0.272771\pi\)
\(660\) 0 0
\(661\) −12.4897 + 12.4897i −0.485794 + 0.485794i −0.906976 0.421182i \(-0.861615\pi\)
0.421182 + 0.906976i \(0.361615\pi\)
\(662\) 21.0932 0.819812
\(663\) −16.9830 + 21.2906i −0.659563 + 0.826860i
\(664\) 38.5252 1.49507
\(665\) 0 0
\(666\) 0.189092 0.456508i 0.00732716 0.0176893i
\(667\) 2.54156i 0.0984097i
\(668\) 49.5412 + 20.5206i 1.91681 + 0.793967i
\(669\) 5.49289 + 13.2610i 0.212367 + 0.512700i
\(670\) 0 0
\(671\) −45.6921 45.6921i −1.76392 1.76392i
\(672\) 10.7257 + 10.7257i 0.413751 + 0.413751i
\(673\) −36.0132 + 14.9171i −1.38821 + 0.575014i −0.946663 0.322227i \(-0.895569\pi\)
−0.441543 + 0.897240i \(0.645569\pi\)
\(674\) −18.9970 45.8627i −0.731736 1.76657i
\(675\) 0 0
\(676\) 2.07274i 0.0797206i
\(677\) 17.7215 42.7835i 0.681094 1.64431i −0.0809013 0.996722i \(-0.525780\pi\)
0.761995 0.647583i \(-0.224220\pi\)
\(678\) −12.1872 + 12.1872i −0.468046 + 0.468046i
\(679\) −9.16432 −0.351694
\(680\) 0 0
\(681\) −44.8112 −1.71717
\(682\) 9.21835 9.21835i 0.352989 0.352989i
\(683\) −11.1344 + 26.8809i −0.426048 + 1.02857i 0.554482 + 0.832196i \(0.312917\pi\)
−0.980529 + 0.196374i \(0.937083\pi\)
\(684\) 11.5467i 0.441498i
\(685\) 0 0
\(686\) −15.8362 38.2320i −0.604629 1.45970i
\(687\) 23.8945 9.89741i 0.911631 0.377610i
\(688\) −1.10102 1.10102i −0.0419760 0.0419760i
\(689\) 4.37223 + 4.37223i 0.166569 + 0.166569i
\(690\) 0 0
\(691\) −2.96838 7.16631i −0.112923 0.272619i 0.857307 0.514805i \(-0.172136\pi\)
−0.970230 + 0.242186i \(0.922136\pi\)
\(692\) −4.82998 2.00064i −0.183608 0.0760530i
\(693\) 3.75210i 0.142531i
\(694\) 4.81889 11.6338i 0.182922 0.441614i
\(695\) 0 0
\(696\) −5.58052 −0.211529
\(697\) −4.71927 41.9305i −0.178755 1.58823i
\(698\) 76.1473 2.88222
\(699\) 7.71759 7.71759i 0.291906 0.291906i
\(700\) 0 0
\(701\) 4.74948i 0.179386i 0.995969 + 0.0896928i \(0.0285885\pi\)
−0.995969 + 0.0896928i \(0.971411\pi\)
\(702\) 34.8166 + 14.4215i 1.31407 + 0.544304i
\(703\) 1.03328 + 2.49456i 0.0389709 + 0.0940840i
\(704\) −54.5393 + 22.5909i −2.05553 + 0.851427i
\(705\) 0 0
\(706\) −20.3741 20.3741i −0.766790 0.766790i
\(707\) −8.27413 + 3.42726i −0.311181 + 0.128895i
\(708\) −3.72186 8.98535i −0.139876 0.337690i
\(709\) −40.1605 16.6350i −1.50826 0.624741i −0.533061 0.846077i \(-0.678958\pi\)
−0.975198 + 0.221336i \(0.928958\pi\)
\(710\) 0 0
\(711\) −2.19597 + 5.30155i −0.0823555 + 0.198824i
\(712\) 18.5175 18.5175i 0.693972 0.693972i
\(713\) −3.17856 −0.119038
\(714\) −24.1516 + 13.3443i −0.903850 + 0.499397i
\(715\) 0 0
\(716\) −8.08597 + 8.08597i −0.302187 + 0.302187i
\(717\) −3.65876 + 8.83302i −0.136639 + 0.329875i
\(718\) 41.9377i 1.56510i
\(719\) 35.1404 + 14.5556i 1.31052 + 0.542833i 0.925035 0.379883i \(-0.124036\pi\)
0.385481 + 0.922716i \(0.374036\pi\)
\(720\) 0 0
\(721\) −9.98427 + 4.13562i −0.371834 + 0.154019i
\(722\) −40.5419 40.5419i −1.50881 1.50881i
\(723\) 7.05322 + 7.05322i 0.262312 + 0.262312i
\(724\) 45.1241 18.6910i 1.67702 0.694646i
\(725\) 0 0
\(726\) 41.2968 + 17.1057i 1.53267 + 0.634852i
\(727\) 32.4604i 1.20389i −0.798538 0.601944i \(-0.794393\pi\)
0.798538 0.601944i \(-0.205607\pi\)
\(728\) −6.31715 + 15.2509i −0.234129 + 0.565238i
\(729\) 14.6770 14.6770i 0.543594 0.543594i
\(730\) 0 0
\(731\) −15.3260 + 8.46794i −0.566852 + 0.313198i
\(732\) −87.1427 −3.22089
\(733\) 27.9059 27.9059i 1.03073 1.03073i 0.0312144 0.999513i \(-0.490063\pi\)
0.999513 0.0312144i \(-0.00993745\pi\)
\(734\) 20.0902 48.5020i 0.741543 1.79024i
\(735\) 0 0
\(736\) 12.5348 + 5.19208i 0.462038 + 0.191382i
\(737\) 15.6255 + 37.7234i 0.575574 + 1.38956i
\(738\) 11.4597 4.74674i 0.421836 0.174730i
\(739\) 6.57694 + 6.57694i 0.241937 + 0.241937i 0.817651 0.575714i \(-0.195276\pi\)
−0.575714 + 0.817651i \(0.695276\pi\)
\(740\) 0 0
\(741\) 40.4177 16.7416i 1.48478 0.615016i
\(742\) 2.39738 + 5.78779i 0.0880107 + 0.212477i
\(743\) 38.4742 + 15.9365i 1.41148 + 0.584655i 0.952705 0.303896i \(-0.0982877\pi\)
0.458777 + 0.888551i \(0.348288\pi\)
\(744\) 6.97919i 0.255869i
\(745\) 0 0
\(746\) −40.0352 + 40.0352i −1.46579 + 1.46579i
\(747\) 6.67072 0.244069
\(748\) −7.06265 62.7513i −0.258236 2.29442i
\(749\) 2.16018 0.0789312
\(750\) 0 0
\(751\) 5.95174 14.3688i 0.217182 0.524324i −0.777312 0.629115i \(-0.783417\pi\)
0.994494 + 0.104791i \(0.0334174\pi\)
\(752\) 1.46489i 0.0534190i
\(753\) −48.9252 20.2655i −1.78293 0.738516i
\(754\) 3.03888 + 7.33650i 0.110669 + 0.267179i
\(755\) 0 0
\(756\) 16.8420 + 16.8420i 0.612539 + 0.612539i
\(757\) 29.1872 + 29.1872i 1.06083 + 1.06083i 0.998026 + 0.0627989i \(0.0200027\pi\)
0.0627989 + 0.998026i \(0.479997\pi\)
\(758\) 39.7522 16.4659i 1.44387 0.598069i
\(759\) −8.61422 20.7966i −0.312676 0.754867i
\(760\) 0 0
\(761\) 42.6707i 1.54681i 0.633910 + 0.773407i \(0.281449\pi\)
−0.633910 + 0.773407i \(0.718551\pi\)
\(762\) 20.6708 49.9037i 0.748823 1.80782i
\(763\) 11.8583 11.8583i 0.429298 0.429298i
\(764\) 51.6444 1.86843
\(765\) 0 0
\(766\) 59.2934 2.14236
\(767\) −3.88477 + 3.88477i −0.140271 + 0.140271i
\(768\) −13.1479 + 31.7417i −0.474432 + 1.14538i
\(769\) 8.29133i 0.298993i −0.988762 0.149497i \(-0.952235\pi\)
0.988762 0.149497i \(-0.0477653\pi\)
\(770\) 0 0
\(771\) 2.36650 + 5.71325i 0.0852276 + 0.205758i
\(772\) 0.324839 0.134553i 0.0116912 0.00484266i
\(773\) 0.168240 + 0.168240i 0.00605117 + 0.00605117i 0.710126 0.704075i \(-0.248638\pi\)
−0.704075 + 0.710126i \(0.748638\pi\)
\(774\) −3.63964 3.63964i −0.130824 0.130824i
\(775\) 0 0
\(776\) −6.88773 16.6285i −0.247255 0.596927i
\(777\) −1.09317 0.452805i −0.0392171 0.0162443i
\(778\) 55.2962i 1.98246i
\(779\) −25.9383 + 62.6205i −0.929335 + 2.24361i
\(780\) 0 0
\(781\) 5.98202 0.214054
\(782\) −15.3906 + 19.2944i −0.550366 + 0.689965i
\(783\) 4.54845 0.162548
\(784\) 1.19538 1.19538i 0.0426921 0.0426921i
\(785\) 0 0
\(786\) 33.7127i 1.20249i
\(787\) 1.37415 + 0.569193i 0.0489833 + 0.0202895i 0.407041 0.913410i \(-0.366561\pi\)
−0.358057 + 0.933700i \(0.616561\pi\)
\(788\) 13.3833 + 32.3102i 0.476761 + 1.15100i
\(789\) −48.2909 + 20.0028i −1.71920 + 0.712117i
\(790\) 0 0
\(791\) 4.35113 + 4.35113i 0.154708 + 0.154708i
\(792\) 6.80811 2.82001i 0.241915 0.100205i
\(793\) 18.8378 + 45.4785i 0.668951 + 1.61499i
\(794\) 30.4962 + 12.6319i 1.08227 + 0.448291i
\(795\) 0 0
\(796\) −1.46114 + 3.52750i −0.0517886 + 0.125029i
\(797\) −0.399266 + 0.399266i −0.0141427 + 0.0141427i −0.714143 0.700000i \(-0.753183\pi\)
0.700000 + 0.714143i \(0.253183\pi\)
\(798\) 44.3237 1.56904
\(799\) −15.8287 4.56226i −0.559980 0.161401i
\(800\) 0 0
\(801\) 3.20635 3.20635i 0.113291 0.113291i
\(802\) −2.60563 + 6.29054i −0.0920078 + 0.222127i
\(803\) 45.1486i 1.59326i
\(804\) 50.8728 + 21.0722i 1.79414 + 0.743159i
\(805\) 0 0
\(806\) −9.17526 + 3.80052i −0.323185 + 0.133868i
\(807\) −19.4666 19.4666i −0.685255 0.685255i
\(808\) −12.4374 12.4374i −0.437545 0.437545i
\(809\) −43.3268 + 17.9466i −1.52329 + 0.630967i −0.978247 0.207442i \(-0.933486\pi\)
−0.545042 + 0.838409i \(0.683486\pi\)
\(810\) 0 0
\(811\) 5.97603 + 2.47535i 0.209847 + 0.0869215i 0.485131 0.874441i \(-0.338772\pi\)
−0.275284 + 0.961363i \(0.588772\pi\)
\(812\) 5.01894i 0.176130i
\(813\) −1.80330 + 4.35355i −0.0632445 + 0.152686i
\(814\) 3.06942 3.06942i 0.107583 0.107583i
\(815\) 0 0
\(816\) −2.21906 1.77009i −0.0776828 0.0619654i
\(817\) 28.1267 0.984028
\(818\) −4.14704 + 4.14704i −0.144998 + 0.144998i
\(819\) −1.09383 + 2.64074i −0.0382215 + 0.0922748i
\(820\) 0 0
\(821\) 10.8492 + 4.49387i 0.378638 + 0.156837i 0.563882 0.825856i \(-0.309307\pi\)
−0.185244 + 0.982693i \(0.559307\pi\)
\(822\) 25.2458 + 60.9488i 0.880549 + 2.12583i
\(823\) 22.3851 9.27219i 0.780294 0.323208i 0.0432598 0.999064i \(-0.486226\pi\)
0.737034 + 0.675855i \(0.236226\pi\)
\(824\) −15.0080 15.0080i −0.522828 0.522828i
\(825\) 0 0
\(826\) −5.14251 + 2.13010i −0.178931 + 0.0741155i
\(827\) 3.17168 + 7.65712i 0.110290 + 0.266264i 0.969382 0.245557i \(-0.0789710\pi\)
−0.859092 + 0.511821i \(0.828971\pi\)
\(828\) −4.18145 1.73202i −0.145316 0.0601917i
\(829\) 42.2364i 1.46693i 0.679726 + 0.733466i \(0.262098\pi\)
−0.679726 + 0.733466i \(0.737902\pi\)
\(830\) 0 0
\(831\) −31.8197 + 31.8197i −1.10381 + 1.10381i
\(832\) 44.9707 1.55908
\(833\) −9.19366 16.6394i −0.318541 0.576523i
\(834\) −0.199585 −0.00691107
\(835\) 0 0
\(836\) −38.8181 + 93.7152i −1.34255 + 3.24121i
\(837\) 5.68844i 0.196621i
\(838\) −12.2511 5.07459i −0.423209 0.175299i
\(839\) −2.83865 6.85310i −0.0980009 0.236595i 0.867274 0.497831i \(-0.165870\pi\)
−0.965275 + 0.261236i \(0.915870\pi\)
\(840\) 0 0
\(841\) −19.8284 19.8284i −0.683737 0.683737i
\(842\) −31.9499 31.9499i −1.10107 1.10107i
\(843\) −24.6693 + 10.2184i −0.849656 + 0.351939i
\(844\) 5.31493 + 12.8314i 0.182947 + 0.441674i
\(845\) 0 0
\(846\) 4.84248i 0.166488i
\(847\) 6.10717 14.7440i 0.209845 0.506610i
\(848\) −0.455705 + 0.455705i −0.0156490 + 0.0156490i
\(849\) 18.7975 0.645128
\(850\) 0 0
\(851\) −1.05836 −0.0362801
\(852\) 5.70437 5.70437i 0.195429 0.195429i
\(853\) −5.50010 + 13.2784i −0.188320 + 0.454644i −0.989636 0.143596i \(-0.954133\pi\)
0.801317 + 0.598241i \(0.204133\pi\)
\(854\) 49.8736i 1.70664i
\(855\) 0 0
\(856\) 1.62355 + 3.91960i 0.0554918 + 0.133969i
\(857\) −40.0122 + 16.5736i −1.36679 + 0.566143i −0.940916 0.338640i \(-0.890033\pi\)
−0.425873 + 0.904783i \(0.640033\pi\)
\(858\) −49.7317 49.7317i −1.69781 1.69781i
\(859\) −9.67814 9.67814i −0.330214 0.330214i 0.522454 0.852668i \(-0.325017\pi\)
−0.852668 + 0.522454i \(0.825017\pi\)
\(860\) 0 0
\(861\) −11.3667 27.4416i −0.387376 0.935208i
\(862\) 54.9977 + 22.7808i 1.87323 + 0.775917i
\(863\) 6.87984i 0.234192i −0.993121 0.117096i \(-0.962641\pi\)
0.993121 0.117096i \(-0.0373586\pi\)
\(864\) 9.29187 22.4326i 0.316116 0.763171i
\(865\) 0 0
\(866\) 89.5628 3.04347
\(867\) −26.0375 + 18.4651i −0.884281 + 0.627108i
\(868\) −6.27686 −0.213050
\(869\) −35.6460 + 35.6460i −1.20921 + 1.20921i
\(870\) 0 0
\(871\) 31.1050i 1.05395i
\(872\) 30.4290 + 12.6041i 1.03046 + 0.426829i
\(873\) −1.19263 2.87925i −0.0403643 0.0974480i
\(874\) 36.6280 15.1718i 1.23896 0.513194i
\(875\) 0 0
\(876\) 43.0531 + 43.0531i 1.45463 + 1.45463i
\(877\) −26.2792 + 10.8852i −0.887385 + 0.367567i −0.779356 0.626581i \(-0.784454\pi\)
−0.108029 + 0.994148i \(0.534454\pi\)
\(878\) −3.01618 7.28169i −0.101791 0.245745i
\(879\) −19.5927 8.11558i −0.660847 0.273732i
\(880\) 0 0
\(881\) −8.01474 + 19.3493i −0.270023 + 0.651894i −0.999484 0.0321289i \(-0.989771\pi\)
0.729460 + 0.684023i \(0.239771\pi\)
\(882\) 3.95156 3.95156i 0.133056 0.133056i
\(883\) 7.88825 0.265461 0.132730 0.991152i \(-0.457626\pi\)
0.132730 + 0.991152i \(0.457626\pi\)
\(884\) −13.3228 + 46.2234i −0.448095 + 1.55466i
\(885\) 0 0
\(886\) −32.3571 + 32.3571i −1.08706 + 1.08706i
\(887\) −2.09077 + 5.04757i −0.0702013 + 0.169481i −0.955086 0.296330i \(-0.904237\pi\)
0.884884 + 0.465811i \(0.154237\pi\)
\(888\) 2.32385i 0.0779832i
\(889\) −17.8169 7.37999i −0.597559 0.247517i
\(890\) 0 0
\(891\) −43.9459 + 18.2030i −1.47224 + 0.609823i
\(892\) 17.9275 + 17.9275i 0.600257 + 0.600257i
\(893\) 18.7111 + 18.7111i 0.626142 + 0.626142i
\(894\) 5.97884 2.47652i 0.199962 0.0828272i
\(895\) 0 0
\(896\) 27.1677 + 11.2532i 0.907608 + 0.375944i
\(897\) 17.1479i 0.572552i
\(898\) 5.31191 12.8241i 0.177261 0.427946i
\(899\) −0.847580 + 0.847580i −0.0282684 + 0.0282684i
\(900\) 0 0
\(901\) 3.50483 + 6.34333i 0.116763 + 0.211327i
\(902\) 108.967 3.62820
\(903\) −8.71558 + 8.71558i −0.290036 + 0.290036i
\(904\) −4.62480 + 11.1653i −0.153819 + 0.371351i
\(905\) 0 0
\(906\) −21.1255 8.75048i −0.701848 0.290715i
\(907\) 5.49369 + 13.2629i 0.182415 + 0.440388i 0.988463 0.151461i \(-0.0483979\pi\)
−0.806048 + 0.591850i \(0.798398\pi\)
\(908\) −73.1267 + 30.2901i −2.42679 + 1.00521i
\(909\) −2.15356 2.15356i −0.0714290 0.0714290i
\(910\) 0 0
\(911\) 21.5527 8.92744i 0.714074 0.295779i 0.00408474 0.999992i \(-0.498700\pi\)
0.709989 + 0.704213i \(0.248700\pi\)
\(912\) 1.74493 + 4.21262i 0.0577803 + 0.139494i
\(913\) 54.1410 + 22.4259i 1.79180 + 0.742190i
\(914\) 65.9172i 2.18035i
\(915\) 0 0
\(916\) 32.3028 32.3028i 1.06732 1.06732i
\(917\) 12.0363 0.397473
\(918\) 34.5297 + 27.5434i 1.13965 + 0.909067i
\(919\) −27.6524 −0.912170 −0.456085 0.889936i \(-0.650749\pi\)
−0.456085 + 0.889936i \(0.650749\pi\)
\(920\) 0 0
\(921\) 18.0642 43.6108i 0.595235 1.43703i
\(922\) 17.7530i 0.584663i
\(923\) −4.21016 1.74390i −0.138579 0.0574013i
\(924\) −17.0109 41.0679i −0.559618 1.35104i
\(925\) 0 0
\(926\) −43.6666 43.6666i −1.43497 1.43497i
\(927\) −2.59867 2.59867i −0.0853514 0.0853514i
\(928\) 4.72696 1.95797i 0.155170 0.0642735i
\(929\) −0.372470 0.899221i −0.0122203 0.0295025i 0.917652 0.397386i \(-0.130083\pi\)
−0.929872 + 0.367883i \(0.880083\pi\)
\(930\) 0 0
\(931\) 30.5372i 1.00082i
\(932\) 7.37752 17.8109i 0.241659 0.583415i
\(933\) −29.6443 + 29.6443i −0.970510 + 0.970510i
\(934\) 23.8368 0.779965
\(935\) 0 0
\(936\) −5.61366 −0.183488
\(937\) 2.88720 2.88720i 0.0943206 0.0943206i −0.658372 0.752693i \(-0.728755\pi\)
0.752693 + 0.658372i \(0.228755\pi\)
\(938\) 12.0601 29.1156i 0.393775 0.950656i
\(939\) 55.8209i 1.82164i
\(940\) 0 0
\(941\) 6.25311 + 15.0963i 0.203846 + 0.492127i 0.992432 0.122798i \(-0.0391866\pi\)
−0.788586 + 0.614924i \(0.789187\pi\)
\(942\) −50.7951 + 21.0400i −1.65499 + 0.685521i
\(943\) −18.7863 18.7863i −0.611767 0.611767i
\(944\) −0.404898 0.404898i −0.0131783 0.0131783i
\(945\) 0 0
\(946\) −17.3042 41.7760i −0.562607 1.35825i
\(947\) −15.3016 6.33813i −0.497235 0.205961i 0.119950 0.992780i \(-0.461727\pi\)
−0.617184 + 0.786819i \(0.711727\pi\)
\(948\) 67.9831i 2.20799i
\(949\) 13.1619 31.7757i 0.427254 1.03148i
\(950\) 0 0
\(951\) −22.3363 −0.724303
\(952\) −12.0650 + 15.1253i −0.391030 + 0.490213i
\(953\) −57.0108 −1.84676 −0.923380 0.383887i \(-0.874585\pi\)
−0.923380 + 0.383887i \(0.874585\pi\)
\(954\) −1.50642 + 1.50642i −0.0487723 + 0.0487723i
\(955\) 0 0
\(956\) 16.8876i 0.546184i
\(957\) −7.84253 3.24848i −0.253513 0.105009i
\(958\) 22.8333 + 55.1244i 0.737710 + 1.78099i
\(959\) 21.7603 9.01339i 0.702675 0.291058i
\(960\) 0 0
\(961\) 20.8603 + 20.8603i 0.672913 + 0.672913i
\(962\) −3.05507 + 1.26545i −0.0984994 + 0.0407998i
\(963\) 0.281121 + 0.678687i 0.00905901 + 0.0218704i
\(964\) 16.2776 + 6.74242i 0.524267 + 0.217159i
\(965\) 0 0
\(966\) −6.64861 + 16.0512i −0.213915 + 0.516437i
\(967\) 7.19460 7.19460i 0.231363 0.231363i −0.581899 0.813261i \(-0.697690\pi\)
0.813261 + 0.581899i \(0.197690\pi\)
\(968\) 31.3427 1.00739
\(969\) 50.9535 5.73480i 1.63686 0.184228i
\(970\) 0 0
\(971\) 10.6541 10.6541i 0.341905 0.341905i −0.515178 0.857083i \(-0.672274\pi\)
0.857083 + 0.515178i \(0.172274\pi\)
\(972\) −6.85781 + 16.5562i −0.219965 + 0.531041i
\(973\) 0.0712569i 0.00228439i
\(974\) −50.5798 20.9508i −1.62068 0.671309i
\(975\) 0 0
\(976\) −4.74010 + 1.96341i −0.151727 + 0.0628473i
\(977\) 12.7437 + 12.7437i 0.407708 + 0.407708i 0.880939 0.473231i \(-0.156912\pi\)
−0.473231 + 0.880939i \(0.656912\pi\)
\(978\) 12.4314 + 12.4314i 0.397512 + 0.397512i
\(979\) 36.8026 15.2441i 1.17622 0.487205i
\(980\) 0 0
\(981\) 5.26885 + 2.18243i 0.168221 + 0.0696796i
\(982\) 92.3429i 2.94678i
\(983\) −9.17720 + 22.1557i −0.292707 + 0.706658i −1.00000 0.000262992i \(-0.999916\pi\)
0.707293 + 0.706921i \(0.249916\pi\)
\(984\) 41.2492 41.2492i 1.31498 1.31498i
\(985\) 0 0
\(986\) 1.04096 + 9.24892i 0.0331511 + 0.294546i
\(987\) −11.5960 −0.369103
\(988\) 54.6405 54.6405i 1.73835 1.73835i
\(989\) −4.21904 + 10.1857i −0.134158 + 0.323885i
\(990\) 0 0
\(991\) 32.6010 + 13.5038i 1.03560 + 0.428961i 0.834732 0.550656i \(-0.185622\pi\)
0.200872 + 0.979617i \(0.435622\pi\)
\(992\) 2.44870 + 5.91169i 0.0777463 + 0.187696i
\(993\) 15.8694 6.57333i 0.503601 0.208598i
\(994\) −3.26473 3.26473i −0.103551 0.103551i
\(995\) 0 0
\(996\) 73.0132 30.2430i 2.31351 0.958287i
\(997\) 19.6247 + 47.3783i 0.621522 + 1.50049i 0.849916 + 0.526918i \(0.176652\pi\)
−0.228394 + 0.973569i \(0.573348\pi\)
\(998\) −7.74670 3.20879i −0.245217 0.101572i
\(999\) 1.89407i 0.0599257i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 425.2.m.e.76.6 24
5.2 odd 4 85.2.m.a.59.6 yes 24
5.3 odd 4 85.2.m.a.59.1 yes 24
5.4 even 2 inner 425.2.m.e.76.1 24
15.2 even 4 765.2.bh.b.739.1 24
15.8 even 4 765.2.bh.b.739.6 24
17.7 odd 16 7225.2.a.by.1.1 24
17.10 odd 16 7225.2.a.by.1.2 24
17.15 even 8 inner 425.2.m.e.151.6 24
85.7 even 16 1445.2.b.i.579.2 24
85.24 odd 16 7225.2.a.by.1.24 24
85.27 even 16 1445.2.b.i.579.1 24
85.32 odd 8 85.2.m.a.49.1 24
85.44 odd 16 7225.2.a.by.1.23 24
85.49 even 8 inner 425.2.m.e.151.1 24
85.58 even 16 1445.2.b.i.579.23 24
85.78 even 16 1445.2.b.i.579.24 24
85.83 odd 8 85.2.m.a.49.6 yes 24
255.32 even 8 765.2.bh.b.559.6 24
255.83 even 8 765.2.bh.b.559.1 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.1 24 85.32 odd 8
85.2.m.a.49.6 yes 24 85.83 odd 8
85.2.m.a.59.1 yes 24 5.3 odd 4
85.2.m.a.59.6 yes 24 5.2 odd 4
425.2.m.e.76.1 24 5.4 even 2 inner
425.2.m.e.76.6 24 1.1 even 1 trivial
425.2.m.e.151.1 24 85.49 even 8 inner
425.2.m.e.151.6 24 17.15 even 8 inner
765.2.bh.b.559.1 24 255.83 even 8
765.2.bh.b.559.6 24 255.32 even 8
765.2.bh.b.739.1 24 15.2 even 4
765.2.bh.b.739.6 24 15.8 even 4
1445.2.b.i.579.1 24 85.27 even 16
1445.2.b.i.579.2 24 85.7 even 16
1445.2.b.i.579.23 24 85.58 even 16
1445.2.b.i.579.24 24 85.78 even 16
7225.2.a.by.1.1 24 17.7 odd 16
7225.2.a.by.1.2 24 17.10 odd 16
7225.2.a.by.1.23 24 85.44 odd 16
7225.2.a.by.1.24 24 85.24 odd 16