Properties

Label 7225.2.a.by.1.23
Level 72257225
Weight 22
Character 7225.1
Self dual yes
Analytic conductor 57.69257.692
Analytic rank 11
Dimension 2424
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7225=52172 7225 = 5^{2} \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 57.691915460457.6919154604
Analytic rank: 11
Dimension: 2424
Twist minimal: no (minimal twist has level 85)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.23
Character χ\chi == 7225.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.30578q21.87767q3+3.31660q44.32949q6+1.54574q7+3.03579q8+0.525655q9+4.61783q116.22750q123.51782q13+3.56413q14+0.366652q16+1.21204q186.62312q192.90239q21+10.6477q222.59608q235.70023q248.11130q26+4.64601q27+5.12660q280.979000q29+1.22437q315.22617q328.67078q33+1.74339q36+0.407676q3715.2714q38+6.60531q3910.2338q416.69226q42+4.24674q43+15.3155q445.98598q463.99531q470.688453q484.61069q4911.6672q52+1.75770q53+10.7127q54+4.69254q56+12.4361q572.25736q58+1.56173q5913.9932q61+2.82312q62+0.812524q6312.7837q6419.9929q668.84212q67+4.87459q691.29542q71+1.59578q72+9.77702q73+0.940010q7421.9663q76+7.13796q77+15.2304q78+10.9166q7910.3007q8123.5969q82+12.6903q839.62608q84+9.79203q86+1.83824q87+14.0188q888.62631q895.43762q918.61017q922.29897q939.21229q94+9.81303q96+5.92877q9710.6312q98+2.42739q99+O(q100)q+2.30578 q^{2} -1.87767 q^{3} +3.31660 q^{4} -4.32949 q^{6} +1.54574 q^{7} +3.03579 q^{8} +0.525655 q^{9} +4.61783 q^{11} -6.22750 q^{12} -3.51782 q^{13} +3.56413 q^{14} +0.366652 q^{16} +1.21204 q^{18} -6.62312 q^{19} -2.90239 q^{21} +10.6477 q^{22} -2.59608 q^{23} -5.70023 q^{24} -8.11130 q^{26} +4.64601 q^{27} +5.12660 q^{28} -0.979000 q^{29} +1.22437 q^{31} -5.22617 q^{32} -8.67078 q^{33} +1.74339 q^{36} +0.407676 q^{37} -15.2714 q^{38} +6.60531 q^{39} -10.2338 q^{41} -6.69226 q^{42} +4.24674 q^{43} +15.3155 q^{44} -5.98598 q^{46} -3.99531 q^{47} -0.688453 q^{48} -4.61069 q^{49} -11.6672 q^{52} +1.75770 q^{53} +10.7127 q^{54} +4.69254 q^{56} +12.4361 q^{57} -2.25736 q^{58} +1.56173 q^{59} -13.9932 q^{61} +2.82312 q^{62} +0.812524 q^{63} -12.7837 q^{64} -19.9929 q^{66} -8.84212 q^{67} +4.87459 q^{69} -1.29542 q^{71} +1.59578 q^{72} +9.77702 q^{73} +0.940010 q^{74} -21.9663 q^{76} +7.13796 q^{77} +15.2304 q^{78} +10.9166 q^{79} -10.3007 q^{81} -23.5969 q^{82} +12.6903 q^{83} -9.62608 q^{84} +9.79203 q^{86} +1.83824 q^{87} +14.0188 q^{88} -8.62631 q^{89} -5.43762 q^{91} -8.61017 q^{92} -2.29897 q^{93} -9.21229 q^{94} +9.81303 q^{96} +5.92877 q^{97} -10.6312 q^{98} +2.42739 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 24q+8q48q98q1616q1932q2148q26+8q3656q4964q59104q6416q6632q6948q7688q8196q84112q89128q94+O(q100) 24 q + 8 q^{4} - 8 q^{9} - 8 q^{16} - 16 q^{19} - 32 q^{21} - 48 q^{26} + 8 q^{36} - 56 q^{49} - 64 q^{59} - 104 q^{64} - 16 q^{66} - 32 q^{69} - 48 q^{76} - 88 q^{81} - 96 q^{84} - 112 q^{89} - 128 q^{94}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.30578 1.63043 0.815215 0.579158i 0.196619π-0.196619\pi
0.815215 + 0.579158i 0.196619π0.196619\pi
33 −1.87767 −1.08407 −0.542037 0.840354i 0.682347π-0.682347\pi
−0.542037 + 0.840354i 0.682347π0.682347\pi
44 3.31660 1.65830
55 0 0
66 −4.32949 −1.76751
77 1.54574 0.584234 0.292117 0.956383i 0.405640π-0.405640\pi
0.292117 + 0.956383i 0.405640π0.405640\pi
88 3.03579 1.07331
99 0.525655 0.175218
1010 0 0
1111 4.61783 1.39233 0.696165 0.717882i 0.254888π-0.254888\pi
0.696165 + 0.717882i 0.254888π0.254888\pi
1212 −6.22750 −1.79772
1313 −3.51782 −0.975667 −0.487834 0.872937i 0.662213π-0.662213\pi
−0.487834 + 0.872937i 0.662213π0.662213\pi
1414 3.56413 0.952553
1515 0 0
1616 0.366652 0.0916631
1717 0 0
1818 1.21204 0.285681
1919 −6.62312 −1.51945 −0.759724 0.650245i 0.774666π-0.774666\pi
−0.759724 + 0.650245i 0.774666π0.774666\pi
2020 0 0
2121 −2.90239 −0.633353
2222 10.6477 2.27010
2323 −2.59608 −0.541320 −0.270660 0.962675i 0.587242π-0.587242\pi
−0.270660 + 0.962675i 0.587242π0.587242\pi
2424 −5.70023 −1.16355
2525 0 0
2626 −8.11130 −1.59076
2727 4.64601 0.894125
2828 5.12660 0.968836
2929 −0.979000 −0.181796 −0.0908979 0.995860i 0.528974π-0.528974\pi
−0.0908979 + 0.995860i 0.528974π0.528974\pi
3030 0 0
3131 1.22437 0.219903 0.109952 0.993937i 0.464930π-0.464930\pi
0.109952 + 0.993937i 0.464930π0.464930\pi
3232 −5.22617 −0.923865
3333 −8.67078 −1.50939
3434 0 0
3535 0 0
3636 1.74339 0.290565
3737 0.407676 0.0670216 0.0335108 0.999438i 0.489331π-0.489331\pi
0.0335108 + 0.999438i 0.489331π0.489331\pi
3838 −15.2714 −2.47735
3939 6.60531 1.05770
4040 0 0
4141 −10.2338 −1.59826 −0.799129 0.601160i 0.794705π-0.794705\pi
−0.799129 + 0.601160i 0.794705π0.794705\pi
4242 −6.69226 −1.03264
4343 4.24674 0.647622 0.323811 0.946122i 0.395036π-0.395036\pi
0.323811 + 0.946122i 0.395036π0.395036\pi
4444 15.3155 2.30890
4545 0 0
4646 −5.98598 −0.882584
4747 −3.99531 −0.582776 −0.291388 0.956605i 0.594117π-0.594117\pi
−0.291388 + 0.956605i 0.594117π0.594117\pi
4848 −0.688453 −0.0993696
4949 −4.61069 −0.658671
5050 0 0
5151 0 0
5252 −11.6672 −1.61795
5353 1.75770 0.241439 0.120719 0.992687i 0.461480π-0.461480\pi
0.120719 + 0.992687i 0.461480π0.461480\pi
5454 10.7127 1.45781
5555 0 0
5656 4.69254 0.627067
5757 12.4361 1.64720
5858 −2.25736 −0.296405
5959 1.56173 0.203320 0.101660 0.994819i 0.467585π-0.467585\pi
0.101660 + 0.994819i 0.467585π0.467585\pi
6060 0 0
6161 −13.9932 −1.79165 −0.895824 0.444409i 0.853414π-0.853414\pi
−0.895824 + 0.444409i 0.853414π0.853414\pi
6262 2.82312 0.358537
6363 0.812524 0.102368
6464 −12.7837 −1.59796
6565 0 0
6666 −19.9929 −2.46095
6767 −8.84212 −1.08024 −0.540119 0.841589i 0.681621π-0.681621\pi
−0.540119 + 0.841589i 0.681621π0.681621\pi
6868 0 0
6969 4.87459 0.586831
7070 0 0
7171 −1.29542 −0.153738 −0.0768689 0.997041i 0.524492π-0.524492\pi
−0.0768689 + 0.997041i 0.524492π0.524492\pi
7272 1.59578 0.188064
7373 9.77702 1.14431 0.572157 0.820144i 0.306107π-0.306107\pi
0.572157 + 0.820144i 0.306107π0.306107\pi
7474 0.940010 0.109274
7575 0 0
7676 −21.9663 −2.51970
7777 7.13796 0.813446
7878 15.2304 1.72450
7979 10.9166 1.22821 0.614107 0.789223i 0.289516π-0.289516\pi
0.614107 + 0.789223i 0.289516π0.289516\pi
8080 0 0
8181 −10.3007 −1.14452
8282 −23.5969 −2.60585
8383 12.6903 1.39294 0.696471 0.717585i 0.254752π-0.254752\pi
0.696471 + 0.717585i 0.254752π0.254752\pi
8484 −9.62608 −1.05029
8585 0 0
8686 9.79203 1.05590
8787 1.83824 0.197080
8888 14.0188 1.49441
8989 −8.62631 −0.914387 −0.457193 0.889367i 0.651145π-0.651145\pi
−0.457193 + 0.889367i 0.651145π0.651145\pi
9090 0 0
9191 −5.43762 −0.570018
9292 −8.61017 −0.897672
9393 −2.29897 −0.238392
9494 −9.21229 −0.950175
9595 0 0
9696 9.81303 1.00154
9797 5.92877 0.601975 0.300988 0.953628i 0.402684π-0.402684\pi
0.300988 + 0.953628i 0.402684π0.402684\pi
9898 −10.6312 −1.07392
9999 2.42739 0.243961
100100 0 0
101101 −5.79390 −0.576515 −0.288257 0.957553i 0.593076π-0.593076\pi
−0.288257 + 0.957553i 0.593076π0.593076\pi
102102 0 0
103103 −6.99141 −0.688885 −0.344442 0.938807i 0.611932π-0.611932\pi
−0.344442 + 0.938807i 0.611932π0.611932\pi
104104 −10.6794 −1.04720
105105 0 0
106106 4.05286 0.393649
107107 1.39751 0.135102 0.0675510 0.997716i 0.478481π-0.478481\pi
0.0675510 + 0.997716i 0.478481π0.478481\pi
108108 15.4090 1.48273
109109 −10.8493 −1.03917 −0.519585 0.854419i 0.673914π-0.673914\pi
−0.519585 + 0.854419i 0.673914π0.673914\pi
110110 0 0
111111 −0.765482 −0.0726564
112112 0.566748 0.0535527
113113 −3.98090 −0.374491 −0.187246 0.982313i 0.559956π-0.559956\pi
−0.187246 + 0.982313i 0.559956π0.559956\pi
114114 28.6748 2.68564
115115 0 0
116116 −3.24696 −0.301472
117117 −1.84916 −0.170955
118118 3.60100 0.331499
119119 0 0
120120 0 0
121121 10.3244 0.938581
122122 −32.2652 −2.92116
123123 19.2158 1.73263
124124 4.06075 0.364666
125125 0 0
126126 1.87350 0.166905
127127 −12.4761 −1.10708 −0.553539 0.832823i 0.686723π-0.686723\pi
−0.553539 + 0.832823i 0.686723π0.686723\pi
128128 −19.0240 −1.68150
129129 −7.97399 −0.702070
130130 0 0
131131 7.78675 0.680331 0.340166 0.940365i 0.389517π-0.389517\pi
0.340166 + 0.940365i 0.389517π0.389517\pi
132132 −28.7575 −2.50302
133133 −10.2376 −0.887714
134134 −20.3880 −1.76125
135135 0 0
136136 0 0
137137 15.2375 1.30182 0.650912 0.759153i 0.274387π-0.274387\pi
0.650912 + 0.759153i 0.274387π0.274387\pi
138138 11.2397 0.956787
139139 0.0460990 0.00391006 0.00195503 0.999998i 0.499378π-0.499378\pi
0.00195503 + 0.999998i 0.499378π0.499378\pi
140140 0 0
141141 7.50189 0.631773
142142 −2.98694 −0.250659
143143 −16.2447 −1.35845
144144 0.192732 0.0160610
145145 0 0
146146 22.5436 1.86572
147147 8.65737 0.714048
148148 1.35210 0.111142
149149 1.49474 0.122454 0.0612268 0.998124i 0.480499π-0.480499\pi
0.0612268 + 0.998124i 0.480499π0.480499\pi
150150 0 0
151151 5.28147 0.429800 0.214900 0.976636i 0.431057π-0.431057\pi
0.214900 + 0.976636i 0.431057π0.431057\pi
152152 −20.1064 −1.63085
153153 0 0
154154 16.4585 1.32627
155155 0 0
156156 21.9072 1.75398
157157 −12.6990 −1.01349 −0.506745 0.862096i 0.669152π-0.669152\pi
−0.506745 + 0.862096i 0.669152π0.669152\pi
158158 25.1712 2.00252
159159 −3.30038 −0.261737
160160 0 0
161161 −4.01286 −0.316258
162162 −23.7510 −1.86605
163163 −4.06067 −0.318056 −0.159028 0.987274i 0.550836π-0.550836\pi
−0.159028 + 0.987274i 0.550836π0.550836\pi
164164 −33.9416 −2.65039
165165 0 0
166166 29.2610 2.27110
167167 −16.1680 −1.25112 −0.625561 0.780176i 0.715130π-0.715130\pi
−0.625561 + 0.780176i 0.715130π0.715130\pi
168168 −8.81106 −0.679788
169169 −0.624957 −0.0480736
170170 0 0
171171 −3.48148 −0.266235
172172 14.0848 1.07395
173173 −1.57629 −0.119843 −0.0599216 0.998203i 0.519085π-0.519085\pi
−0.0599216 + 0.998203i 0.519085π0.519085\pi
174174 4.23857 0.321326
175175 0 0
176176 1.69314 0.127625
177177 −2.93242 −0.220414
178178 −19.8903 −1.49084
179179 3.44789 0.257708 0.128854 0.991664i 0.458870π-0.458870\pi
0.128854 + 0.991664i 0.458870π0.458870\pi
180180 0 0
181181 −14.7265 −1.09461 −0.547306 0.836933i 0.684347π-0.684347\pi
−0.547306 + 0.836933i 0.684347π0.684347\pi
182182 −12.5379 −0.929374
183183 26.2747 1.94228
184184 −7.88116 −0.581007
185185 0 0
186186 −5.30090 −0.388681
187187 0 0
188188 −13.2509 −0.966418
189189 7.18152 0.522378
190190 0 0
191191 −15.5715 −1.12671 −0.563356 0.826214i 0.690490π-0.690490\pi
−0.563356 + 0.826214i 0.690490π0.690490\pi
192192 24.0036 1.73231
193193 −0.106013 −0.00763099 −0.00381549 0.999993i 0.501215π-0.501215\pi
−0.00381549 + 0.999993i 0.501215π0.501215\pi
194194 13.6704 0.981478
195195 0 0
196196 −15.2918 −1.09227
197197 −10.5446 −0.751272 −0.375636 0.926767i 0.622576π-0.622576\pi
−0.375636 + 0.926767i 0.622576π0.622576\pi
198198 5.59701 0.397762
199199 1.15122 0.0816077 0.0408038 0.999167i 0.487008π-0.487008\pi
0.0408038 + 0.999167i 0.487008π0.487008\pi
200200 0 0
201201 16.6026 1.17106
202202 −13.3594 −0.939967
203203 −1.51328 −0.106211
204204 0 0
205205 0 0
206206 −16.1206 −1.12318
207207 −1.36464 −0.0948491
208208 −1.28982 −0.0894327
209209 −30.5845 −2.11557
210210 0 0
211211 −4.18759 −0.288286 −0.144143 0.989557i 0.546042π-0.546042\pi
−0.144143 + 0.989557i 0.546042π0.546042\pi
212212 5.82959 0.400378
213213 2.43237 0.166663
214214 3.22234 0.220274
215215 0 0
216216 14.1043 0.959678
217217 1.89256 0.128475
218218 −25.0160 −1.69429
219219 −18.3580 −1.24052
220220 0 0
221221 0 0
222222 −1.76503 −0.118461
223223 −7.64436 −0.511904 −0.255952 0.966689i 0.582389π-0.582389\pi
−0.255952 + 0.966689i 0.582389π0.582389\pi
224224 −8.07829 −0.539753
225225 0 0
226226 −9.17906 −0.610582
227227 23.8653 1.58400 0.791998 0.610524i 0.209041π-0.209041\pi
0.791998 + 0.610524i 0.209041π0.209041\pi
228228 41.2455 2.73155
229229 13.7741 0.910216 0.455108 0.890436i 0.349601π-0.349601\pi
0.455108 + 0.890436i 0.349601π0.349601\pi
230230 0 0
231231 −13.4028 −0.881837
232232 −2.97204 −0.195124
233233 5.81269 0.380802 0.190401 0.981706i 0.439021π-0.439021\pi
0.190401 + 0.981706i 0.439021π0.439021\pi
234234 −4.26374 −0.278730
235235 0 0
236236 5.17965 0.337166
237237 −20.4978 −1.33147
238238 0 0
239239 −5.09183 −0.329363 −0.164682 0.986347i 0.552660π-0.552660\pi
−0.164682 + 0.986347i 0.552660π0.552660\pi
240240 0 0
241241 −5.31230 −0.342195 −0.171098 0.985254i 0.554731π-0.554731\pi
−0.171098 + 0.985254i 0.554731π0.554731\pi
242242 23.8057 1.53029
243243 5.40322 0.346617
244244 −46.4100 −2.97109
245245 0 0
246246 44.3073 2.82493
247247 23.2989 1.48248
248248 3.71693 0.236026
249249 −23.8283 −1.51005
250250 0 0
251251 −28.2032 −1.78017 −0.890084 0.455797i 0.849354π-0.849354\pi
−0.890084 + 0.455797i 0.849354π0.849354\pi
252252 2.69482 0.169758
253253 −11.9883 −0.753696
254254 −28.7672 −1.80501
255255 0 0
256256 −18.2976 −1.14360
257257 −3.29342 −0.205438 −0.102719 0.994710i 0.532754π-0.532754\pi
−0.102719 + 0.994710i 0.532754π0.532754\pi
258258 −18.3862 −1.14468
259259 0.630161 0.0391563
260260 0 0
261261 −0.514616 −0.0318539
262262 17.9545 1.10923
263263 27.8375 1.71653 0.858267 0.513203i 0.171541π-0.171541\pi
0.858267 + 0.513203i 0.171541π0.171541\pi
264264 −26.3227 −1.62005
265265 0 0
266266 −23.6056 −1.44736
267267 16.1974 0.991264
268268 −29.3258 −1.79136
269269 −14.6617 −0.893939 −0.446970 0.894549i 0.647497π-0.647497\pi
−0.446970 + 0.894549i 0.647497π0.647497\pi
270270 0 0
271271 2.50962 0.152449 0.0762244 0.997091i 0.475713π-0.475713\pi
0.0762244 + 0.997091i 0.475713π0.475713\pi
272272 0 0
273273 10.2101 0.617942
274274 35.1342 2.12253
275275 0 0
276276 16.1671 0.973144
277277 23.9658 1.43996 0.719982 0.693993i 0.244150π-0.244150\pi
0.719982 + 0.693993i 0.244150π0.244150\pi
278278 0.106294 0.00637508
279279 0.643596 0.0385311
280280 0 0
281281 14.2207 0.848338 0.424169 0.905583i 0.360566π-0.360566\pi
0.424169 + 0.905583i 0.360566π0.360566\pi
282282 17.2977 1.03006
283283 10.0111 0.595095 0.297548 0.954707i 0.403831π-0.403831\pi
0.297548 + 0.954707i 0.403831π0.403831\pi
284284 −4.29638 −0.254944
285285 0 0
286286 −37.4566 −2.21486
287287 −15.8188 −0.933756
288288 −2.74716 −0.161878
289289 0 0
290290 0 0
291291 −11.1323 −0.652586
292292 32.4265 1.89762
293293 −11.2943 −0.659821 −0.329910 0.944012i 0.607019π-0.607019\pi
−0.329910 + 0.944012i 0.607019π0.607019\pi
294294 19.9620 1.16421
295295 0 0
296296 1.23762 0.0719352
297297 21.4545 1.24492
298298 3.44653 0.199652
299299 9.13253 0.528148
300300 0 0
301301 6.56435 0.378363
302302 12.1779 0.700759
303303 10.8791 0.624985
304304 −2.42838 −0.139277
305305 0 0
306306 0 0
307307 −25.1396 −1.43479 −0.717397 0.696664i 0.754667π-0.754667\pi
−0.717397 + 0.696664i 0.754667π0.754667\pi
308308 23.6738 1.34894
309309 13.1276 0.746802
310310 0 0
311311 −22.3273 −1.26606 −0.633032 0.774126i 0.718190π-0.718190\pi
−0.633032 + 0.774126i 0.718190π0.718190\pi
312312 20.0524 1.13524
313313 −29.7287 −1.68037 −0.840184 0.542301i 0.817553π-0.817553\pi
−0.840184 + 0.542301i 0.817553π0.817553\pi
314314 −29.2811 −1.65243
315315 0 0
316316 36.2060 2.03675
317317 −11.8957 −0.668130 −0.334065 0.942550i 0.608420π-0.608420\pi
−0.334065 + 0.942550i 0.608420π0.608420\pi
318318 −7.60995 −0.426745
319319 −4.52086 −0.253120
320320 0 0
321321 −2.62406 −0.146461
322322 −9.25275 −0.515636
323323 0 0
324324 −34.1632 −1.89795
325325 0 0
326326 −9.36300 −0.518569
327327 20.3714 1.12654
328328 −31.0678 −1.71543
329329 −6.17570 −0.340478
330330 0 0
331331 9.14800 0.502820 0.251410 0.967881i 0.419106π-0.419106\pi
0.251410 + 0.967881i 0.419106π0.419106\pi
332332 42.0887 2.30992
333333 0.214297 0.0117434
334334 −37.2799 −2.03987
335335 0 0
336336 −1.06417 −0.0580551
337337 21.5292 1.17277 0.586385 0.810033i 0.300551π-0.300551\pi
0.586385 + 0.810033i 0.300551π0.300551\pi
338338 −1.44101 −0.0783807
339339 7.47482 0.405977
340340 0 0
341341 5.65394 0.306178
342342 −8.02750 −0.434078
343343 −17.9471 −0.969052
344344 12.8922 0.695102
345345 0 0
346346 −3.63457 −0.195396
347347 −5.46122 −0.293174 −0.146587 0.989198i 0.546829π-0.546829\pi
−0.146587 + 0.989198i 0.546829π0.546829\pi
348348 6.09672 0.326819
349349 −33.0246 −1.76777 −0.883883 0.467708i 0.845080π-0.845080\pi
−0.883883 + 0.467708i 0.845080π0.845080\pi
350350 0 0
351351 −16.3438 −0.872369
352352 −24.1336 −1.28632
353353 12.4962 0.665103 0.332552 0.943085i 0.392090π-0.392090\pi
0.332552 + 0.943085i 0.392090π0.392090\pi
354354 −6.76151 −0.359370
355355 0 0
356356 −28.6100 −1.51633
357357 0 0
358358 7.95007 0.420174
359359 −18.1881 −0.959932 −0.479966 0.877287i 0.659351π-0.659351\pi
−0.479966 + 0.877287i 0.659351π0.659351\pi
360360 0 0
361361 24.8658 1.30872
362362 −33.9560 −1.78469
363363 −19.3858 −1.01749
364364 −18.0344 −0.945262
365365 0 0
366366 60.5835 3.16675
367367 22.7681 1.18849 0.594243 0.804285i 0.297452π-0.297452\pi
0.594243 + 0.804285i 0.297452π0.297452\pi
368368 −0.951859 −0.0496191
369369 −5.37946 −0.280044
370370 0 0
371371 2.71694 0.141057
372372 −7.62476 −0.395325
373373 −24.5550 −1.27141 −0.635705 0.771932i 0.719291π-0.719291\pi
−0.635705 + 0.771932i 0.719291π0.719291\pi
374374 0 0
375375 0 0
376376 −12.1289 −0.625502
377377 3.44394 0.177372
378378 16.5590 0.851701
379379 18.6607 0.958538 0.479269 0.877668i 0.340902π-0.340902\pi
0.479269 + 0.877668i 0.340902π0.340902\pi
380380 0 0
381381 23.4261 1.20016
382382 −35.9043 −1.83703
383383 25.7152 1.31398 0.656991 0.753898i 0.271829π-0.271829\pi
0.656991 + 0.753898i 0.271829π0.271829\pi
384384 35.7208 1.82287
385385 0 0
386386 −0.244442 −0.0124418
387387 2.23232 0.113475
388388 19.6634 0.998256
389389 23.9816 1.21592 0.607958 0.793969i 0.291989π-0.291989\pi
0.607958 + 0.793969i 0.291989π0.291989\pi
390390 0 0
391391 0 0
392392 −13.9971 −0.706961
393393 −14.6210 −0.737530
394394 −24.3135 −1.22490
395395 0 0
396396 8.05067 0.404562
397397 −14.3157 −0.718486 −0.359243 0.933244i 0.616965π-0.616965\pi
−0.359243 + 0.933244i 0.616965π0.616965\pi
398398 2.65445 0.133056
399399 19.2229 0.962348
400400 0 0
401401 2.95294 0.147463 0.0737315 0.997278i 0.476509π-0.476509\pi
0.0737315 + 0.997278i 0.476509π0.476509\pi
402402 38.2819 1.90933
403403 −4.30711 −0.214553
404404 −19.2161 −0.956036
405405 0 0
406406 −3.48928 −0.173170
407407 1.88258 0.0933161
408408 0 0
409409 −2.54353 −0.125769 −0.0628846 0.998021i 0.520030π-0.520030\pi
−0.0628846 + 0.998021i 0.520030π0.520030\pi
410410 0 0
411411 −28.6110 −1.41128
412412 −23.1878 −1.14238
413413 2.41403 0.118787
414414 −3.14656 −0.154645
415415 0 0
416416 18.3847 0.901384
417417 −0.0865588 −0.00423880
418418 −70.5210 −3.44929
419419 5.75101 0.280955 0.140478 0.990084i 0.455136π-0.455136\pi
0.140478 + 0.990084i 0.455136π0.455136\pi
420420 0 0
421421 −19.5960 −0.955050 −0.477525 0.878618i 0.658466π-0.658466\pi
−0.477525 + 0.878618i 0.658466π0.658466\pi
422422 −9.65565 −0.470030
423423 −2.10015 −0.102113
424424 5.33601 0.259140
425425 0 0
426426 5.60850 0.271733
427427 −21.6299 −1.04674
428428 4.63497 0.224040
429429 30.5022 1.47266
430430 0 0
431431 25.8174 1.24358 0.621789 0.783185i 0.286406π-0.286406\pi
0.621789 + 0.783185i 0.286406π0.286406\pi
432432 1.70347 0.0819583
433433 −38.8428 −1.86666 −0.933332 0.359013i 0.883113π-0.883113\pi
−0.933332 + 0.359013i 0.883113π0.883113\pi
434434 4.36381 0.209470
435435 0 0
436436 −35.9827 −1.72326
437437 17.1942 0.822508
438438 −42.3295 −2.02258
439439 −3.41822 −0.163143 −0.0815714 0.996668i 0.525994π-0.525994\pi
−0.0815714 + 0.996668i 0.525994π0.525994\pi
440440 0 0
441441 −2.42363 −0.115411
442442 0 0
443443 19.8457 0.942899 0.471449 0.881893i 0.343731π-0.343731\pi
0.471449 + 0.881893i 0.343731π0.343731\pi
444444 −2.53880 −0.120486
445445 0 0
446446 −17.6262 −0.834624
447447 −2.80663 −0.132749
448448 −19.7602 −0.933583
449449 6.01997 0.284100 0.142050 0.989859i 0.454631π-0.454631\pi
0.142050 + 0.989859i 0.454631π0.454631\pi
450450 0 0
451451 −47.2582 −2.22530
452452 −13.2031 −0.621020
453453 −9.91688 −0.465936
454454 55.0280 2.58259
455455 0 0
456456 37.7533 1.76796
457457 28.5879 1.33728 0.668642 0.743584i 0.266876π-0.266876\pi
0.668642 + 0.743584i 0.266876π0.266876\pi
458458 31.7599 1.48404
459459 0 0
460460 0 0
461461 7.69935 0.358595 0.179297 0.983795i 0.442618π-0.442618\pi
0.179297 + 0.983795i 0.442618π0.442618\pi
462462 −30.9038 −1.43777
463463 −26.7823 −1.24468 −0.622339 0.782748i 0.713817π-0.713817\pi
−0.622339 + 0.782748i 0.713817π0.713817\pi
464464 −0.358953 −0.0166640
465465 0 0
466466 13.4028 0.620871
467467 −10.3379 −0.478380 −0.239190 0.970973i 0.576882π-0.576882\pi
−0.239190 + 0.970973i 0.576882π0.576882\pi
468468 −6.13292 −0.283494
469469 −13.6676 −0.631112
470470 0 0
471471 23.8446 1.09870
472472 4.74109 0.218227
473473 19.6107 0.901703
474474 −47.2633 −2.17088
475475 0 0
476476 0 0
477477 0.923943 0.0423044
478478 −11.7406 −0.537004
479479 −25.8769 −1.18234 −0.591172 0.806545i 0.701335π-0.701335\pi
−0.591172 + 0.806545i 0.701335π0.701335\pi
480480 0 0
481481 −1.43413 −0.0653907
482482 −12.2490 −0.557925
483483 7.53484 0.342847
484484 34.2419 1.55645
485485 0 0
486486 12.4586 0.565134
487487 −23.7435 −1.07592 −0.537960 0.842970i 0.680805π-0.680805\pi
−0.537960 + 0.842970i 0.680805π0.680805\pi
488488 −42.4805 −1.92300
489489 7.62461 0.344797
490490 0 0
491491 40.0485 1.80736 0.903682 0.428205i 0.140854π-0.140854\pi
0.903682 + 0.428205i 0.140854π0.140854\pi
492492 63.7312 2.87322
493493 0 0
494494 53.7221 2.41707
495495 0 0
496496 0.448918 0.0201570
497497 −2.00238 −0.0898188
498498 −54.9426 −2.46204
499499 −3.63650 −0.162792 −0.0813961 0.996682i 0.525938π-0.525938\pi
−0.0813961 + 0.996682i 0.525938π0.525938\pi
500500 0 0
501501 30.3583 1.35631
502502 −65.0302 −2.90244
503503 35.3068 1.57425 0.787127 0.616791i 0.211568π-0.211568\pi
0.787127 + 0.616791i 0.211568π0.211568\pi
504504 2.46666 0.109874
505505 0 0
506506 −27.6423 −1.22885
507507 1.17347 0.0521154
508508 −41.3784 −1.83587
509509 −8.67454 −0.384492 −0.192246 0.981347i 0.561577π-0.561577\pi
−0.192246 + 0.981347i 0.561577π0.561577\pi
510510 0 0
511511 15.1127 0.668547
512512 −4.14235 −0.183068
513513 −30.7711 −1.35858
514514 −7.59390 −0.334953
515515 0 0
516516 −26.4466 −1.16424
517517 −18.4497 −0.811416
518518 1.45301 0.0638416
519519 2.95976 0.129919
520520 0 0
521521 14.1978 0.622019 0.311009 0.950407i 0.399333π-0.399333\pi
0.311009 + 0.950407i 0.399333π0.399333\pi
522522 −1.18659 −0.0519356
523523 28.1516 1.23098 0.615492 0.788143i 0.288957π-0.288957\pi
0.615492 + 0.788143i 0.288957π0.288957\pi
524524 25.8256 1.12819
525525 0 0
526526 64.1871 2.79869
527527 0 0
528528 −3.17916 −0.138355
529529 −16.2604 −0.706973
530530 0 0
531531 0.820931 0.0356254
532532 −33.9541 −1.47210
533533 36.0008 1.55937
534534 37.3475 1.61619
535535 0 0
536536 −26.8429 −1.15944
537537 −6.47401 −0.279374
538538 −33.8066 −1.45751
539539 −21.2914 −0.917086
540540 0 0
541541 20.0836 0.863463 0.431732 0.902002i 0.357903π-0.357903\pi
0.431732 + 0.902002i 0.357903π0.357903\pi
542542 5.78663 0.248557
543543 27.6515 1.18664
544544 0 0
545545 0 0
546546 23.5422 1.00751
547547 2.00586 0.0857644 0.0428822 0.999080i 0.486346π-0.486346\pi
0.0428822 + 0.999080i 0.486346π0.486346\pi
548548 50.5366 2.15882
549549 −7.35560 −0.313929
550550 0 0
551551 6.48404 0.276229
552552 14.7982 0.629855
553553 16.8742 0.717564
554554 55.2597 2.34776
555555 0 0
556556 0.152892 0.00648407
557557 16.9217 0.716994 0.358497 0.933531i 0.383289π-0.383289\pi
0.358497 + 0.933531i 0.383289π0.383289\pi
558558 1.48399 0.0628222
559559 −14.9393 −0.631863
560560 0 0
561561 0 0
562562 32.7898 1.38316
563563 −42.3789 −1.78606 −0.893030 0.449997i 0.851425π-0.851425\pi
−0.893030 + 0.449997i 0.851425π0.851425\pi
564564 24.8808 1.04767
565565 0 0
566566 23.0832 0.970261
567567 −15.9221 −0.668666
568568 −3.93262 −0.165009
569569 −41.5417 −1.74152 −0.870760 0.491708i 0.836373π-0.836373\pi
−0.870760 + 0.491708i 0.836373π0.836373\pi
570570 0 0
571571 19.0990 0.799266 0.399633 0.916675i 0.369138π-0.369138\pi
0.399633 + 0.916675i 0.369138π0.369138\pi
572572 −53.8772 −2.25272
573573 29.2381 1.22144
574574 −36.4747 −1.52242
575575 0 0
576576 −6.71980 −0.279992
577577 3.81985 0.159023 0.0795113 0.996834i 0.474664π-0.474664\pi
0.0795113 + 0.996834i 0.474664π0.474664\pi
578578 0 0
579579 0.199058 0.00827256
580580 0 0
581581 19.6159 0.813805
582582 −25.6686 −1.06400
583583 8.11676 0.336162
584584 29.6810 1.22821
585585 0 0
586586 −26.0422 −1.07579
587587 −6.93889 −0.286399 −0.143199 0.989694i 0.545739π-0.545739\pi
−0.143199 + 0.989694i 0.545739π0.545739\pi
588588 28.7131 1.18411
589589 −8.10916 −0.334132
590590 0 0
591591 19.7993 0.814435
592592 0.149475 0.00614340
593593 37.2097 1.52802 0.764010 0.645205i 0.223228π-0.223228\pi
0.764010 + 0.645205i 0.223228π0.223228\pi
594594 49.4693 2.02975
595595 0 0
596596 4.95745 0.203065
597597 −2.16161 −0.0884688
598598 21.0576 0.861109
599599 −20.3199 −0.830249 −0.415124 0.909765i 0.636262π-0.636262\pi
−0.415124 + 0.909765i 0.636262π0.636262\pi
600600 0 0
601601 24.1279 0.984196 0.492098 0.870540i 0.336230π-0.336230\pi
0.492098 + 0.870540i 0.336230π0.336230\pi
602602 15.1359 0.616894
603603 −4.64790 −0.189277
604604 17.5166 0.712738
605605 0 0
606606 25.0847 1.01899
607607 1.59852 0.0648821 0.0324410 0.999474i 0.489672π-0.489672\pi
0.0324410 + 0.999474i 0.489672π0.489672\pi
608608 34.6136 1.40377
609609 2.84144 0.115141
610610 0 0
611611 14.0548 0.568595
612612 0 0
613613 29.2631 1.18192 0.590962 0.806699i 0.298748π-0.298748\pi
0.590962 + 0.806699i 0.298748π0.298748\pi
614614 −57.9664 −2.33933
615615 0 0
616616 21.6694 0.873084
617617 −17.8941 −0.720390 −0.360195 0.932877i 0.617290π-0.617290\pi
−0.360195 + 0.932877i 0.617290π0.617290\pi
618618 30.2693 1.21761
619619 −3.11518 −0.125210 −0.0626048 0.998038i 0.519941π-0.519941\pi
−0.0626048 + 0.998038i 0.519941π0.519941\pi
620620 0 0
621621 −12.0614 −0.484008
622622 −51.4817 −2.06423
623623 −13.3340 −0.534216
624624 2.42185 0.0969517
625625 0 0
626626 −68.5478 −2.73972
627627 57.4277 2.29344
628628 −42.1175 −1.68067
629629 0 0
630630 0 0
631631 −36.4404 −1.45067 −0.725335 0.688396i 0.758315π-0.758315\pi
−0.725335 + 0.688396i 0.758315π0.758315\pi
632632 33.1405 1.31826
633633 7.86292 0.312523
634634 −27.4289 −1.08934
635635 0 0
636636 −10.9461 −0.434040
637637 16.2196 0.642643
638638 −10.4241 −0.412694
639639 −0.680942 −0.0269376
640640 0 0
641641 −3.93744 −0.155520 −0.0777598 0.996972i 0.524777π-0.524777\pi
−0.0777598 + 0.996972i 0.524777π0.524777\pi
642642 −6.05049 −0.238794
643643 14.9025 0.587698 0.293849 0.955852i 0.405064π-0.405064\pi
0.293849 + 0.955852i 0.405064π0.405064\pi
644644 −13.3091 −0.524451
645645 0 0
646646 0 0
647647 28.8503 1.13422 0.567110 0.823642i 0.308061π-0.308061\pi
0.567110 + 0.823642i 0.308061π0.308061\pi
648648 −31.2706 −1.22843
649649 7.21182 0.283089
650650 0 0
651651 −3.55360 −0.139277
652652 −13.4676 −0.527434
653653 14.1367 0.553212 0.276606 0.960983i 0.410790π-0.410790\pi
0.276606 + 0.960983i 0.410790π0.410790\pi
654654 46.9718 1.83674
655655 0 0
656656 −3.75226 −0.146501
657657 5.13933 0.200505
658658 −14.2398 −0.555125
659659 −38.8064 −1.51168 −0.755840 0.654756i 0.772771π-0.772771\pi
−0.755840 + 0.654756i 0.772771π0.772771\pi
660660 0 0
661661 −17.6631 −0.687016 −0.343508 0.939150i 0.611615π-0.611615\pi
−0.343508 + 0.939150i 0.611615π0.611615\pi
662662 21.0932 0.819812
663663 0 0
664664 38.5252 1.49507
665665 0 0
666666 0.494121 0.0191468
667667 2.54156 0.0984097
668668 −53.6230 −2.07474
669669 14.3536 0.554943
670670 0 0
671671 −64.6184 −2.49456
672672 15.1684 0.585133
673673 −38.9804 −1.50258 −0.751291 0.659971i 0.770569π-0.770569\pi
−0.751291 + 0.659971i 0.770569π0.770569\pi
674674 49.6415 1.91212
675675 0 0
676676 −2.07274 −0.0797206
677677 46.3086 1.77978 0.889892 0.456172i 0.150780π-0.150780\pi
0.889892 + 0.456172i 0.150780π0.150780\pi
678678 17.2353 0.661916
679679 9.16432 0.351694
680680 0 0
681681 −44.8112 −1.71717
682682 13.0367 0.499202
683683 29.0957 1.11332 0.556658 0.830742i 0.312083π-0.312083\pi
0.556658 + 0.830742i 0.312083π0.312083\pi
684684 −11.5467 −0.441498
685685 0 0
686686 −41.3820 −1.57997
687687 −25.8632 −0.986742
688688 1.55708 0.0593630
689689 −6.18327 −0.235564
690690 0 0
691691 7.75676 0.295081 0.147541 0.989056i 0.452864π-0.452864\pi
0.147541 + 0.989056i 0.452864π0.452864\pi
692692 −5.22793 −0.198736
693693 3.75210 0.142531
694694 −12.5924 −0.477999
695695 0 0
696696 5.58052 0.211529
697697 0 0
698698 −76.1473 −2.88222
699699 −10.9143 −0.412818
700700 0 0
701701 −4.74948 −0.179386 −0.0896928 0.995969i 0.528589π-0.528589\pi
−0.0896928 + 0.995969i 0.528589π0.528589\pi
702702 −37.6852 −1.42234
703703 −2.70009 −0.101836
704704 −59.0329 −2.22489
705705 0 0
706706 28.8133 1.08440
707707 −8.95586 −0.336820
708708 −9.72568 −0.365513
709709 43.4694 1.63253 0.816264 0.577679i 0.196042π-0.196042\pi
0.816264 + 0.577679i 0.196042π0.196042\pi
710710 0 0
711711 5.73836 0.215205
712712 −26.1877 −0.981425
713713 −3.17856 −0.119038
714714 0 0
715715 0 0
716716 11.4353 0.427357
717717 9.56080 0.357055
718718 −41.9377 −1.56510
719719 38.0357 1.41849 0.709246 0.704961i 0.249036π-0.249036\pi
0.709246 + 0.704961i 0.249036π0.249036\pi
720720 0 0
721721 −10.8069 −0.402470
722722 57.3349 2.13378
723723 9.97476 0.370965
724724 −48.8420 −1.81520
725725 0 0
726726 −44.6994 −1.65895
727727 32.4604 1.20389 0.601944 0.798538i 0.294393π-0.294393\pi
0.601944 + 0.798538i 0.294393π0.294393\pi
728728 −16.5075 −0.611809
729729 20.7565 0.768758
730730 0 0
731731 0 0
732732 87.1427 3.22089
733733 39.4649 1.45767 0.728834 0.684690i 0.240063π-0.240063\pi
0.728834 + 0.684690i 0.240063π0.240063\pi
734734 52.4982 1.93774
735735 0 0
736736 13.5675 0.500106
737737 −40.8315 −1.50405
738738 −12.4038 −0.456592
739739 9.30119 0.342150 0.171075 0.985258i 0.445276π-0.445276\pi
0.171075 + 0.985258i 0.445276π0.445276\pi
740740 0 0
741741 −43.7478 −1.60712
742742 6.26466 0.229983
743743 41.6442 1.52778 0.763889 0.645348i 0.223288π-0.223288\pi
0.763889 + 0.645348i 0.223288π0.223288\pi
744744 −6.97919 −0.255869
745745 0 0
746746 −56.6184 −2.07295
747747 6.67072 0.244069
748748 0 0
749749 2.16018 0.0789312
750750 0 0
751751 15.5526 0.567524 0.283762 0.958895i 0.408417π-0.408417\pi
0.283762 + 0.958895i 0.408417π0.408417\pi
752752 −1.46489 −0.0534190
753753 52.9563 1.92983
754754 7.94097 0.289193
755755 0 0
756756 23.8182 0.866261
757757 41.2769 1.50023 0.750117 0.661306i 0.229997π-0.229997\pi
0.750117 + 0.661306i 0.229997π0.229997\pi
758758 43.0275 1.56283
759759 22.5100 0.817062
760760 0 0
761761 42.6707 1.54681 0.773407 0.633910i 0.218551π-0.218551\pi
0.773407 + 0.633910i 0.218551π0.218551\pi
762762 54.0153 1.95677
763763 −16.7701 −0.607119
764764 −51.6444 −1.86843
765765 0 0
766766 59.2934 2.14236
767767 −5.49389 −0.198373
768768 34.3570 1.23975
769769 8.29133 0.298993 0.149497 0.988762i 0.452235π-0.452235\pi
0.149497 + 0.988762i 0.452235π0.452235\pi
770770 0 0
771771 6.18397 0.222710
772772 −0.351603 −0.0126545
773773 −0.237927 −0.00855765 −0.00427883 0.999991i 0.501362π-0.501362\pi
−0.00427883 + 0.999991i 0.501362π0.501362\pi
774774 5.14723 0.185013
775775 0 0
776776 17.9985 0.646109
777777 −1.18324 −0.0424483
778778 55.2962 1.98246
779779 67.7800 2.42847
780780 0 0
781781 −5.98202 −0.214054
782782 0 0
783783 −4.54845 −0.162548
784784 −1.69052 −0.0603758
785785 0 0
786786 −33.7127 −1.20249
787787 −1.48737 −0.0530191 −0.0265096 0.999649i 0.508439π-0.508439\pi
−0.0265096 + 0.999649i 0.508439π0.508439\pi
788788 −34.9723 −1.24584
789789 −52.2697 −1.86085
790790 0 0
791791 −6.15342 −0.218791
792792 7.36904 0.261847
793793 49.2256 1.74805
794794 −33.0089 −1.17144
795795 0 0
796796 3.81813 0.135330
797797 0.564647 0.0200008 0.0100004 0.999950i 0.496817π-0.496817\pi
0.0100004 + 0.999950i 0.496817π0.496817\pi
798798 44.3237 1.56904
799799 0 0
800800 0 0
801801 −4.53446 −0.160217
802802 6.80883 0.240428
803803 45.1486 1.59326
804804 55.0643 1.94197
805805 0 0
806806 −9.93123 −0.349813
807807 27.5299 0.969097
808808 −17.5891 −0.618782
809809 46.8966 1.64880 0.824398 0.566010i 0.191514π-0.191514\pi
0.824398 + 0.566010i 0.191514π0.191514\pi
810810 0 0
811811 −6.46841 −0.227137 −0.113568 0.993530i 0.536228π-0.536228\pi
−0.113568 + 0.993530i 0.536228π0.536228\pi
812812 −5.01894 −0.176130
813813 −4.71225 −0.165266
814814 4.34081 0.152145
815815 0 0
816816 0 0
817817 −28.1267 −0.984028
818818 −5.86480 −0.205058
819819 −2.85831 −0.0998775
820820 0 0
821821 11.7430 0.409835 0.204917 0.978779i 0.434307π-0.434307\pi
0.204917 + 0.978779i 0.434307π0.434307\pi
822822 −65.9705 −2.30099
823823 −24.2294 −0.844584 −0.422292 0.906460i 0.638774π-0.638774\pi
−0.422292 + 0.906460i 0.638774π0.638774\pi
824824 −21.2245 −0.739390
825825 0 0
826826 5.56621 0.193673
827827 8.28800 0.288202 0.144101 0.989563i 0.453971π-0.453971\pi
0.144101 + 0.989563i 0.453971π0.453971\pi
828828 −4.52597 −0.157288
829829 42.2364 1.46693 0.733466 0.679726i 0.237902π-0.237902\pi
0.733466 + 0.679726i 0.237902π0.237902\pi
830830 0 0
831831 −44.9999 −1.56103
832832 44.9707 1.55908
833833 0 0
834834 −0.199585 −0.00691107
835835 0 0
836836 −101.437 −3.50826
837837 5.68844 0.196621
838838 13.2605 0.458078
839839 −7.41774 −0.256089 −0.128044 0.991768i 0.540870π-0.540870\pi
−0.128044 + 0.991768i 0.540870π0.540870\pi
840840 0 0
841841 −28.0416 −0.966950
842842 −45.1840 −1.55714
843843 −26.7019 −0.919661
844844 −13.8886 −0.478065
845845 0 0
846846 −4.84248 −0.166488
847847 15.9588 0.548351
848848 0.644465 0.0221310
849849 −18.7975 −0.645128
850850 0 0
851851 −1.05836 −0.0362801
852852 8.06720 0.276378
853853 14.3725 0.492103 0.246052 0.969257i 0.420867π-0.420867\pi
0.246052 + 0.969257i 0.420867π0.420867\pi
854854 −49.8736 −1.70664
855855 0 0
856856 4.24254 0.145007
857857 43.3088 1.47940 0.739701 0.672936i 0.234967π-0.234967\pi
0.739701 + 0.672936i 0.234967π0.234967\pi
858858 70.3313 2.40107
859859 13.6870 0.466993 0.233497 0.972358i 0.424983π-0.424983\pi
0.233497 + 0.972358i 0.424983π0.424983\pi
860860 0 0
861861 29.7026 1.01226
862862 59.5291 2.02757
863863 6.87984 0.234192 0.117096 0.993121i 0.462641π-0.462641\pi
0.117096 + 0.993121i 0.462641π0.462641\pi
864864 −24.2808 −0.826051
865865 0 0
866866 −89.5628 −3.04347
867867 0 0
868868 6.27686 0.213050
869869 50.4110 1.71008
870870 0 0
871871 31.1050 1.05395
872872 −32.9361 −1.11536
873873 3.11648 0.105477
874874 39.6459 1.34104
875875 0 0
876876 −60.8863 −2.05716
877877 −28.4444 −0.960499 −0.480249 0.877132i 0.659454π-0.659454\pi
−0.480249 + 0.877132i 0.659454π0.659454\pi
878878 −7.88165 −0.265993
879879 21.2070 0.715295
880880 0 0
881881 20.9435 0.705605 0.352803 0.935698i 0.385229π-0.385229\pi
0.352803 + 0.935698i 0.385229π0.385229\pi
882882 −5.58835 −0.188170
883883 7.88825 0.265461 0.132730 0.991152i 0.457626π-0.457626\pi
0.132730 + 0.991152i 0.457626π0.457626\pi
884884 0 0
885885 0 0
886886 45.7598 1.53733
887887 5.46346 0.183445 0.0917224 0.995785i 0.470763π-0.470763\pi
0.0917224 + 0.995785i 0.470763π0.470763\pi
888888 −2.32385 −0.0779832
889889 −19.2848 −0.646793
890890 0 0
891891 −47.5667 −1.59354
892892 −25.3533 −0.848892
893893 26.4614 0.885498
894894 −6.47145 −0.216438
895895 0 0
896896 −29.4061 −0.982388
897897 −17.1479 −0.572552
898898 13.8807 0.463205
899899 −1.19866 −0.0399775
900900 0 0
901901 0 0
902902 −108.967 −3.62820
903903 −12.3257 −0.410173
904904 −12.0852 −0.401947
905905 0 0
906906 −22.8661 −0.759675
907907 −14.3557 −0.476673 −0.238337 0.971183i 0.576602π-0.576602\pi
−0.238337 + 0.971183i 0.576602π0.576602\pi
908908 79.1517 2.62674
909909 −3.04559 −0.101016
910910 0 0
911911 −23.3285 −0.772908 −0.386454 0.922309i 0.626300π-0.626300\pi
−0.386454 + 0.922309i 0.626300π0.626300\pi
912912 4.55971 0.150987
913913 58.6018 1.93944
914914 65.9172 2.18035
915915 0 0
916916 45.6831 1.50941
917917 12.0363 0.397473
918918 0 0
919919 −27.6524 −0.912170 −0.456085 0.889936i 0.650749π-0.650749\pi
−0.456085 + 0.889936i 0.650749π0.650749\pi
920920 0 0
921921 47.2040 1.55542
922922 17.7530 0.584663
923923 4.55704 0.149997
924924 −44.4516 −1.46235
925925 0 0
926926 −61.7539 −2.02936
927927 −3.67507 −0.120705
928928 5.11642 0.167955
929929 0.973310 0.0319333 0.0159666 0.999873i 0.494917π-0.494917\pi
0.0159666 + 0.999873i 0.494917π0.494917\pi
930930 0 0
931931 30.5372 1.00082
932932 19.2784 0.631484
933933 41.9233 1.37251
934934 −23.8368 −0.779965
935935 0 0
936936 −5.61366 −0.183488
937937 4.08311 0.133390 0.0666948 0.997773i 0.478755π-0.478755\pi
0.0666948 + 0.997773i 0.478755π0.478755\pi
938938 −31.5144 −1.02898
939939 55.8209 1.82164
940940 0 0
941941 16.3402 0.532674 0.266337 0.963880i 0.414187π-0.414187\pi
0.266337 + 0.963880i 0.414187π0.414187\pi
942942 54.9802 1.79135
943943 26.5679 0.865169
944944 0.572613 0.0186370
945945 0 0
946946 45.2180 1.47016
947947 −16.5623 −0.538203 −0.269102 0.963112i 0.586727π-0.586727\pi
−0.269102 + 0.963112i 0.586727π0.586727\pi
948948 −67.9831 −2.20799
949949 −34.3938 −1.11647
950950 0 0
951951 22.3363 0.724303
952952 0 0
953953 57.0108 1.84676 0.923380 0.383887i 0.125415π-0.125415\pi
0.923380 + 0.383887i 0.125415π0.125415\pi
954954 2.13041 0.0689744
955955 0 0
956956 −16.8876 −0.546184
957957 8.48870 0.274401
958958 −59.6663 −1.92773
959959 23.5531 0.760570
960960 0 0
961961 −29.5009 −0.951643
962962 −3.30678 −0.106615
963963 0.734605 0.0236723
964964 −17.6188 −0.567463
965965 0 0
966966 17.3736 0.558988
967967 −10.1747 −0.327196 −0.163598 0.986527i 0.552310π-0.552310\pi
−0.163598 + 0.986527i 0.552310π0.552310\pi
968968 31.3427 1.00739
969969 0 0
970970 0 0
971971 −15.0671 −0.483527 −0.241763 0.970335i 0.577726π-0.577726\pi
−0.241763 + 0.970335i 0.577726π0.577726\pi
972972 17.9203 0.574795
973973 0.0712569 0.00228439
974974 −54.7472 −1.75421
975975 0 0
976976 −5.13065 −0.164228
977977 −18.0224 −0.576586 −0.288293 0.957542i 0.593088π-0.593088\pi
−0.288293 + 0.957542i 0.593088π0.593088\pi
978978 17.5807 0.562167
979979 −39.8349 −1.27313
980980 0 0
981981 −5.70296 −0.182082
982982 92.3429 2.94678
983983 −23.9812 −0.764881 −0.382440 0.923980i 0.624916π-0.624916\pi
−0.382440 + 0.923980i 0.624916π0.624916\pi
984984 58.3352 1.85966
985985 0 0
986986 0 0
987987 11.5960 0.369103
988988 77.2734 2.45839
989989 −11.0249 −0.350571
990990 0 0
991991 35.2870 1.12093 0.560465 0.828178i 0.310622π-0.310622\pi
0.560465 + 0.828178i 0.310622π0.310622\pi
992992 −6.39876 −0.203161
993993 −17.1769 −0.545094
994994 −4.61703 −0.146443
995995 0 0
996996 −79.0289 −2.50413
997997 51.2819 1.62411 0.812057 0.583577i 0.198348π-0.198348\pi
0.812057 + 0.583577i 0.198348π0.198348\pi
998998 −8.38497 −0.265421
999999 1.89407 0.0599257
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.by.1.23 24
5.2 odd 4 1445.2.b.i.579.24 24
5.3 odd 4 1445.2.b.i.579.1 24
5.4 even 2 inner 7225.2.a.by.1.2 24
17.10 odd 16 425.2.m.e.151.1 24
17.12 odd 16 425.2.m.e.76.1 24
17.16 even 2 inner 7225.2.a.by.1.24 24
85.12 even 16 85.2.m.a.59.1 yes 24
85.27 even 16 85.2.m.a.49.6 yes 24
85.29 odd 16 425.2.m.e.76.6 24
85.33 odd 4 1445.2.b.i.579.2 24
85.44 odd 16 425.2.m.e.151.6 24
85.63 even 16 85.2.m.a.59.6 yes 24
85.67 odd 4 1445.2.b.i.579.23 24
85.78 even 16 85.2.m.a.49.1 24
85.84 even 2 inner 7225.2.a.by.1.1 24
255.182 odd 16 765.2.bh.b.739.6 24
255.197 odd 16 765.2.bh.b.559.1 24
255.233 odd 16 765.2.bh.b.739.1 24
255.248 odd 16 765.2.bh.b.559.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.1 24 85.78 even 16
85.2.m.a.49.6 yes 24 85.27 even 16
85.2.m.a.59.1 yes 24 85.12 even 16
85.2.m.a.59.6 yes 24 85.63 even 16
425.2.m.e.76.1 24 17.12 odd 16
425.2.m.e.76.6 24 85.29 odd 16
425.2.m.e.151.1 24 17.10 odd 16
425.2.m.e.151.6 24 85.44 odd 16
765.2.bh.b.559.1 24 255.197 odd 16
765.2.bh.b.559.6 24 255.248 odd 16
765.2.bh.b.739.1 24 255.233 odd 16
765.2.bh.b.739.6 24 255.182 odd 16
1445.2.b.i.579.1 24 5.3 odd 4
1445.2.b.i.579.2 24 85.33 odd 4
1445.2.b.i.579.23 24 85.67 odd 4
1445.2.b.i.579.24 24 5.2 odd 4
7225.2.a.by.1.1 24 85.84 even 2 inner
7225.2.a.by.1.2 24 5.4 even 2 inner
7225.2.a.by.1.23 24 1.1 even 1 trivial
7225.2.a.by.1.24 24 17.16 even 2 inner