Properties

Label 7225.2.a.by.1.23
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $1$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7225,2,Mod(1,7225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(1\)
Dimension: \(24\)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.23
Character \(\chi\) \(=\) 7225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.30578 q^{2} -1.87767 q^{3} +3.31660 q^{4} -4.32949 q^{6} +1.54574 q^{7} +3.03579 q^{8} +0.525655 q^{9} +4.61783 q^{11} -6.22750 q^{12} -3.51782 q^{13} +3.56413 q^{14} +0.366652 q^{16} +1.21204 q^{18} -6.62312 q^{19} -2.90239 q^{21} +10.6477 q^{22} -2.59608 q^{23} -5.70023 q^{24} -8.11130 q^{26} +4.64601 q^{27} +5.12660 q^{28} -0.979000 q^{29} +1.22437 q^{31} -5.22617 q^{32} -8.67078 q^{33} +1.74339 q^{36} +0.407676 q^{37} -15.2714 q^{38} +6.60531 q^{39} -10.2338 q^{41} -6.69226 q^{42} +4.24674 q^{43} +15.3155 q^{44} -5.98598 q^{46} -3.99531 q^{47} -0.688453 q^{48} -4.61069 q^{49} -11.6672 q^{52} +1.75770 q^{53} +10.7127 q^{54} +4.69254 q^{56} +12.4361 q^{57} -2.25736 q^{58} +1.56173 q^{59} -13.9932 q^{61} +2.82312 q^{62} +0.812524 q^{63} -12.7837 q^{64} -19.9929 q^{66} -8.84212 q^{67} +4.87459 q^{69} -1.29542 q^{71} +1.59578 q^{72} +9.77702 q^{73} +0.940010 q^{74} -21.9663 q^{76} +7.13796 q^{77} +15.2304 q^{78} +10.9166 q^{79} -10.3007 q^{81} -23.5969 q^{82} +12.6903 q^{83} -9.62608 q^{84} +9.79203 q^{86} +1.83824 q^{87} +14.0188 q^{88} -8.62631 q^{89} -5.43762 q^{91} -8.61017 q^{92} -2.29897 q^{93} -9.21229 q^{94} +9.81303 q^{96} +5.92877 q^{97} -10.6312 q^{98} +2.42739 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 8 q^{4} - 8 q^{9} - 8 q^{16} - 16 q^{19} - 32 q^{21} - 48 q^{26} + 8 q^{36} - 56 q^{49} - 64 q^{59} - 104 q^{64} - 16 q^{66} - 32 q^{69} - 48 q^{76} - 88 q^{81} - 96 q^{84} - 112 q^{89} - 128 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.30578 1.63043 0.815215 0.579158i \(-0.196619\pi\)
0.815215 + 0.579158i \(0.196619\pi\)
\(3\) −1.87767 −1.08407 −0.542037 0.840354i \(-0.682347\pi\)
−0.542037 + 0.840354i \(0.682347\pi\)
\(4\) 3.31660 1.65830
\(5\) 0 0
\(6\) −4.32949 −1.76751
\(7\) 1.54574 0.584234 0.292117 0.956383i \(-0.405640\pi\)
0.292117 + 0.956383i \(0.405640\pi\)
\(8\) 3.03579 1.07331
\(9\) 0.525655 0.175218
\(10\) 0 0
\(11\) 4.61783 1.39233 0.696165 0.717882i \(-0.254888\pi\)
0.696165 + 0.717882i \(0.254888\pi\)
\(12\) −6.22750 −1.79772
\(13\) −3.51782 −0.975667 −0.487834 0.872937i \(-0.662213\pi\)
−0.487834 + 0.872937i \(0.662213\pi\)
\(14\) 3.56413 0.952553
\(15\) 0 0
\(16\) 0.366652 0.0916631
\(17\) 0 0
\(18\) 1.21204 0.285681
\(19\) −6.62312 −1.51945 −0.759724 0.650245i \(-0.774666\pi\)
−0.759724 + 0.650245i \(0.774666\pi\)
\(20\) 0 0
\(21\) −2.90239 −0.633353
\(22\) 10.6477 2.27010
\(23\) −2.59608 −0.541320 −0.270660 0.962675i \(-0.587242\pi\)
−0.270660 + 0.962675i \(0.587242\pi\)
\(24\) −5.70023 −1.16355
\(25\) 0 0
\(26\) −8.11130 −1.59076
\(27\) 4.64601 0.894125
\(28\) 5.12660 0.968836
\(29\) −0.979000 −0.181796 −0.0908979 0.995860i \(-0.528974\pi\)
−0.0908979 + 0.995860i \(0.528974\pi\)
\(30\) 0 0
\(31\) 1.22437 0.219903 0.109952 0.993937i \(-0.464930\pi\)
0.109952 + 0.993937i \(0.464930\pi\)
\(32\) −5.22617 −0.923865
\(33\) −8.67078 −1.50939
\(34\) 0 0
\(35\) 0 0
\(36\) 1.74339 0.290565
\(37\) 0.407676 0.0670216 0.0335108 0.999438i \(-0.489331\pi\)
0.0335108 + 0.999438i \(0.489331\pi\)
\(38\) −15.2714 −2.47735
\(39\) 6.60531 1.05770
\(40\) 0 0
\(41\) −10.2338 −1.59826 −0.799129 0.601160i \(-0.794705\pi\)
−0.799129 + 0.601160i \(0.794705\pi\)
\(42\) −6.69226 −1.03264
\(43\) 4.24674 0.647622 0.323811 0.946122i \(-0.395036\pi\)
0.323811 + 0.946122i \(0.395036\pi\)
\(44\) 15.3155 2.30890
\(45\) 0 0
\(46\) −5.98598 −0.882584
\(47\) −3.99531 −0.582776 −0.291388 0.956605i \(-0.594117\pi\)
−0.291388 + 0.956605i \(0.594117\pi\)
\(48\) −0.688453 −0.0993696
\(49\) −4.61069 −0.658671
\(50\) 0 0
\(51\) 0 0
\(52\) −11.6672 −1.61795
\(53\) 1.75770 0.241439 0.120719 0.992687i \(-0.461480\pi\)
0.120719 + 0.992687i \(0.461480\pi\)
\(54\) 10.7127 1.45781
\(55\) 0 0
\(56\) 4.69254 0.627067
\(57\) 12.4361 1.64720
\(58\) −2.25736 −0.296405
\(59\) 1.56173 0.203320 0.101660 0.994819i \(-0.467585\pi\)
0.101660 + 0.994819i \(0.467585\pi\)
\(60\) 0 0
\(61\) −13.9932 −1.79165 −0.895824 0.444409i \(-0.853414\pi\)
−0.895824 + 0.444409i \(0.853414\pi\)
\(62\) 2.82312 0.358537
\(63\) 0.812524 0.102368
\(64\) −12.7837 −1.59796
\(65\) 0 0
\(66\) −19.9929 −2.46095
\(67\) −8.84212 −1.08024 −0.540119 0.841589i \(-0.681621\pi\)
−0.540119 + 0.841589i \(0.681621\pi\)
\(68\) 0 0
\(69\) 4.87459 0.586831
\(70\) 0 0
\(71\) −1.29542 −0.153738 −0.0768689 0.997041i \(-0.524492\pi\)
−0.0768689 + 0.997041i \(0.524492\pi\)
\(72\) 1.59578 0.188064
\(73\) 9.77702 1.14431 0.572157 0.820144i \(-0.306107\pi\)
0.572157 + 0.820144i \(0.306107\pi\)
\(74\) 0.940010 0.109274
\(75\) 0 0
\(76\) −21.9663 −2.51970
\(77\) 7.13796 0.813446
\(78\) 15.2304 1.72450
\(79\) 10.9166 1.22821 0.614107 0.789223i \(-0.289516\pi\)
0.614107 + 0.789223i \(0.289516\pi\)
\(80\) 0 0
\(81\) −10.3007 −1.14452
\(82\) −23.5969 −2.60585
\(83\) 12.6903 1.39294 0.696471 0.717585i \(-0.254752\pi\)
0.696471 + 0.717585i \(0.254752\pi\)
\(84\) −9.62608 −1.05029
\(85\) 0 0
\(86\) 9.79203 1.05590
\(87\) 1.83824 0.197080
\(88\) 14.0188 1.49441
\(89\) −8.62631 −0.914387 −0.457193 0.889367i \(-0.651145\pi\)
−0.457193 + 0.889367i \(0.651145\pi\)
\(90\) 0 0
\(91\) −5.43762 −0.570018
\(92\) −8.61017 −0.897672
\(93\) −2.29897 −0.238392
\(94\) −9.21229 −0.950175
\(95\) 0 0
\(96\) 9.81303 1.00154
\(97\) 5.92877 0.601975 0.300988 0.953628i \(-0.402684\pi\)
0.300988 + 0.953628i \(0.402684\pi\)
\(98\) −10.6312 −1.07392
\(99\) 2.42739 0.243961
\(100\) 0 0
\(101\) −5.79390 −0.576515 −0.288257 0.957553i \(-0.593076\pi\)
−0.288257 + 0.957553i \(0.593076\pi\)
\(102\) 0 0
\(103\) −6.99141 −0.688885 −0.344442 0.938807i \(-0.611932\pi\)
−0.344442 + 0.938807i \(0.611932\pi\)
\(104\) −10.6794 −1.04720
\(105\) 0 0
\(106\) 4.05286 0.393649
\(107\) 1.39751 0.135102 0.0675510 0.997716i \(-0.478481\pi\)
0.0675510 + 0.997716i \(0.478481\pi\)
\(108\) 15.4090 1.48273
\(109\) −10.8493 −1.03917 −0.519585 0.854419i \(-0.673914\pi\)
−0.519585 + 0.854419i \(0.673914\pi\)
\(110\) 0 0
\(111\) −0.765482 −0.0726564
\(112\) 0.566748 0.0535527
\(113\) −3.98090 −0.374491 −0.187246 0.982313i \(-0.559956\pi\)
−0.187246 + 0.982313i \(0.559956\pi\)
\(114\) 28.6748 2.68564
\(115\) 0 0
\(116\) −3.24696 −0.301472
\(117\) −1.84916 −0.170955
\(118\) 3.60100 0.331499
\(119\) 0 0
\(120\) 0 0
\(121\) 10.3244 0.938581
\(122\) −32.2652 −2.92116
\(123\) 19.2158 1.73263
\(124\) 4.06075 0.364666
\(125\) 0 0
\(126\) 1.87350 0.166905
\(127\) −12.4761 −1.10708 −0.553539 0.832823i \(-0.686723\pi\)
−0.553539 + 0.832823i \(0.686723\pi\)
\(128\) −19.0240 −1.68150
\(129\) −7.97399 −0.702070
\(130\) 0 0
\(131\) 7.78675 0.680331 0.340166 0.940365i \(-0.389517\pi\)
0.340166 + 0.940365i \(0.389517\pi\)
\(132\) −28.7575 −2.50302
\(133\) −10.2376 −0.887714
\(134\) −20.3880 −1.76125
\(135\) 0 0
\(136\) 0 0
\(137\) 15.2375 1.30182 0.650912 0.759153i \(-0.274387\pi\)
0.650912 + 0.759153i \(0.274387\pi\)
\(138\) 11.2397 0.956787
\(139\) 0.0460990 0.00391006 0.00195503 0.999998i \(-0.499378\pi\)
0.00195503 + 0.999998i \(0.499378\pi\)
\(140\) 0 0
\(141\) 7.50189 0.631773
\(142\) −2.98694 −0.250659
\(143\) −16.2447 −1.35845
\(144\) 0.192732 0.0160610
\(145\) 0 0
\(146\) 22.5436 1.86572
\(147\) 8.65737 0.714048
\(148\) 1.35210 0.111142
\(149\) 1.49474 0.122454 0.0612268 0.998124i \(-0.480499\pi\)
0.0612268 + 0.998124i \(0.480499\pi\)
\(150\) 0 0
\(151\) 5.28147 0.429800 0.214900 0.976636i \(-0.431057\pi\)
0.214900 + 0.976636i \(0.431057\pi\)
\(152\) −20.1064 −1.63085
\(153\) 0 0
\(154\) 16.4585 1.32627
\(155\) 0 0
\(156\) 21.9072 1.75398
\(157\) −12.6990 −1.01349 −0.506745 0.862096i \(-0.669152\pi\)
−0.506745 + 0.862096i \(0.669152\pi\)
\(158\) 25.1712 2.00252
\(159\) −3.30038 −0.261737
\(160\) 0 0
\(161\) −4.01286 −0.316258
\(162\) −23.7510 −1.86605
\(163\) −4.06067 −0.318056 −0.159028 0.987274i \(-0.550836\pi\)
−0.159028 + 0.987274i \(0.550836\pi\)
\(164\) −33.9416 −2.65039
\(165\) 0 0
\(166\) 29.2610 2.27110
\(167\) −16.1680 −1.25112 −0.625561 0.780176i \(-0.715130\pi\)
−0.625561 + 0.780176i \(0.715130\pi\)
\(168\) −8.81106 −0.679788
\(169\) −0.624957 −0.0480736
\(170\) 0 0
\(171\) −3.48148 −0.266235
\(172\) 14.0848 1.07395
\(173\) −1.57629 −0.119843 −0.0599216 0.998203i \(-0.519085\pi\)
−0.0599216 + 0.998203i \(0.519085\pi\)
\(174\) 4.23857 0.321326
\(175\) 0 0
\(176\) 1.69314 0.127625
\(177\) −2.93242 −0.220414
\(178\) −19.8903 −1.49084
\(179\) 3.44789 0.257708 0.128854 0.991664i \(-0.458870\pi\)
0.128854 + 0.991664i \(0.458870\pi\)
\(180\) 0 0
\(181\) −14.7265 −1.09461 −0.547306 0.836933i \(-0.684347\pi\)
−0.547306 + 0.836933i \(0.684347\pi\)
\(182\) −12.5379 −0.929374
\(183\) 26.2747 1.94228
\(184\) −7.88116 −0.581007
\(185\) 0 0
\(186\) −5.30090 −0.388681
\(187\) 0 0
\(188\) −13.2509 −0.966418
\(189\) 7.18152 0.522378
\(190\) 0 0
\(191\) −15.5715 −1.12671 −0.563356 0.826214i \(-0.690490\pi\)
−0.563356 + 0.826214i \(0.690490\pi\)
\(192\) 24.0036 1.73231
\(193\) −0.106013 −0.00763099 −0.00381549 0.999993i \(-0.501215\pi\)
−0.00381549 + 0.999993i \(0.501215\pi\)
\(194\) 13.6704 0.981478
\(195\) 0 0
\(196\) −15.2918 −1.09227
\(197\) −10.5446 −0.751272 −0.375636 0.926767i \(-0.622576\pi\)
−0.375636 + 0.926767i \(0.622576\pi\)
\(198\) 5.59701 0.397762
\(199\) 1.15122 0.0816077 0.0408038 0.999167i \(-0.487008\pi\)
0.0408038 + 0.999167i \(0.487008\pi\)
\(200\) 0 0
\(201\) 16.6026 1.17106
\(202\) −13.3594 −0.939967
\(203\) −1.51328 −0.106211
\(204\) 0 0
\(205\) 0 0
\(206\) −16.1206 −1.12318
\(207\) −1.36464 −0.0948491
\(208\) −1.28982 −0.0894327
\(209\) −30.5845 −2.11557
\(210\) 0 0
\(211\) −4.18759 −0.288286 −0.144143 0.989557i \(-0.546042\pi\)
−0.144143 + 0.989557i \(0.546042\pi\)
\(212\) 5.82959 0.400378
\(213\) 2.43237 0.166663
\(214\) 3.22234 0.220274
\(215\) 0 0
\(216\) 14.1043 0.959678
\(217\) 1.89256 0.128475
\(218\) −25.0160 −1.69429
\(219\) −18.3580 −1.24052
\(220\) 0 0
\(221\) 0 0
\(222\) −1.76503 −0.118461
\(223\) −7.64436 −0.511904 −0.255952 0.966689i \(-0.582389\pi\)
−0.255952 + 0.966689i \(0.582389\pi\)
\(224\) −8.07829 −0.539753
\(225\) 0 0
\(226\) −9.17906 −0.610582
\(227\) 23.8653 1.58400 0.791998 0.610524i \(-0.209041\pi\)
0.791998 + 0.610524i \(0.209041\pi\)
\(228\) 41.2455 2.73155
\(229\) 13.7741 0.910216 0.455108 0.890436i \(-0.349601\pi\)
0.455108 + 0.890436i \(0.349601\pi\)
\(230\) 0 0
\(231\) −13.4028 −0.881837
\(232\) −2.97204 −0.195124
\(233\) 5.81269 0.380802 0.190401 0.981706i \(-0.439021\pi\)
0.190401 + 0.981706i \(0.439021\pi\)
\(234\) −4.26374 −0.278730
\(235\) 0 0
\(236\) 5.17965 0.337166
\(237\) −20.4978 −1.33147
\(238\) 0 0
\(239\) −5.09183 −0.329363 −0.164682 0.986347i \(-0.552660\pi\)
−0.164682 + 0.986347i \(0.552660\pi\)
\(240\) 0 0
\(241\) −5.31230 −0.342195 −0.171098 0.985254i \(-0.554731\pi\)
−0.171098 + 0.985254i \(0.554731\pi\)
\(242\) 23.8057 1.53029
\(243\) 5.40322 0.346617
\(244\) −46.4100 −2.97109
\(245\) 0 0
\(246\) 44.3073 2.82493
\(247\) 23.2989 1.48248
\(248\) 3.71693 0.236026
\(249\) −23.8283 −1.51005
\(250\) 0 0
\(251\) −28.2032 −1.78017 −0.890084 0.455797i \(-0.849354\pi\)
−0.890084 + 0.455797i \(0.849354\pi\)
\(252\) 2.69482 0.169758
\(253\) −11.9883 −0.753696
\(254\) −28.7672 −1.80501
\(255\) 0 0
\(256\) −18.2976 −1.14360
\(257\) −3.29342 −0.205438 −0.102719 0.994710i \(-0.532754\pi\)
−0.102719 + 0.994710i \(0.532754\pi\)
\(258\) −18.3862 −1.14468
\(259\) 0.630161 0.0391563
\(260\) 0 0
\(261\) −0.514616 −0.0318539
\(262\) 17.9545 1.10923
\(263\) 27.8375 1.71653 0.858267 0.513203i \(-0.171541\pi\)
0.858267 + 0.513203i \(0.171541\pi\)
\(264\) −26.3227 −1.62005
\(265\) 0 0
\(266\) −23.6056 −1.44736
\(267\) 16.1974 0.991264
\(268\) −29.3258 −1.79136
\(269\) −14.6617 −0.893939 −0.446970 0.894549i \(-0.647497\pi\)
−0.446970 + 0.894549i \(0.647497\pi\)
\(270\) 0 0
\(271\) 2.50962 0.152449 0.0762244 0.997091i \(-0.475713\pi\)
0.0762244 + 0.997091i \(0.475713\pi\)
\(272\) 0 0
\(273\) 10.2101 0.617942
\(274\) 35.1342 2.12253
\(275\) 0 0
\(276\) 16.1671 0.973144
\(277\) 23.9658 1.43996 0.719982 0.693993i \(-0.244150\pi\)
0.719982 + 0.693993i \(0.244150\pi\)
\(278\) 0.106294 0.00637508
\(279\) 0.643596 0.0385311
\(280\) 0 0
\(281\) 14.2207 0.848338 0.424169 0.905583i \(-0.360566\pi\)
0.424169 + 0.905583i \(0.360566\pi\)
\(282\) 17.2977 1.03006
\(283\) 10.0111 0.595095 0.297548 0.954707i \(-0.403831\pi\)
0.297548 + 0.954707i \(0.403831\pi\)
\(284\) −4.29638 −0.254944
\(285\) 0 0
\(286\) −37.4566 −2.21486
\(287\) −15.8188 −0.933756
\(288\) −2.74716 −0.161878
\(289\) 0 0
\(290\) 0 0
\(291\) −11.1323 −0.652586
\(292\) 32.4265 1.89762
\(293\) −11.2943 −0.659821 −0.329910 0.944012i \(-0.607019\pi\)
−0.329910 + 0.944012i \(0.607019\pi\)
\(294\) 19.9620 1.16421
\(295\) 0 0
\(296\) 1.23762 0.0719352
\(297\) 21.4545 1.24492
\(298\) 3.44653 0.199652
\(299\) 9.13253 0.528148
\(300\) 0 0
\(301\) 6.56435 0.378363
\(302\) 12.1779 0.700759
\(303\) 10.8791 0.624985
\(304\) −2.42838 −0.139277
\(305\) 0 0
\(306\) 0 0
\(307\) −25.1396 −1.43479 −0.717397 0.696664i \(-0.754667\pi\)
−0.717397 + 0.696664i \(0.754667\pi\)
\(308\) 23.6738 1.34894
\(309\) 13.1276 0.746802
\(310\) 0 0
\(311\) −22.3273 −1.26606 −0.633032 0.774126i \(-0.718190\pi\)
−0.633032 + 0.774126i \(0.718190\pi\)
\(312\) 20.0524 1.13524
\(313\) −29.7287 −1.68037 −0.840184 0.542301i \(-0.817553\pi\)
−0.840184 + 0.542301i \(0.817553\pi\)
\(314\) −29.2811 −1.65243
\(315\) 0 0
\(316\) 36.2060 2.03675
\(317\) −11.8957 −0.668130 −0.334065 0.942550i \(-0.608420\pi\)
−0.334065 + 0.942550i \(0.608420\pi\)
\(318\) −7.60995 −0.426745
\(319\) −4.52086 −0.253120
\(320\) 0 0
\(321\) −2.62406 −0.146461
\(322\) −9.25275 −0.515636
\(323\) 0 0
\(324\) −34.1632 −1.89795
\(325\) 0 0
\(326\) −9.36300 −0.518569
\(327\) 20.3714 1.12654
\(328\) −31.0678 −1.71543
\(329\) −6.17570 −0.340478
\(330\) 0 0
\(331\) 9.14800 0.502820 0.251410 0.967881i \(-0.419106\pi\)
0.251410 + 0.967881i \(0.419106\pi\)
\(332\) 42.0887 2.30992
\(333\) 0.214297 0.0117434
\(334\) −37.2799 −2.03987
\(335\) 0 0
\(336\) −1.06417 −0.0580551
\(337\) 21.5292 1.17277 0.586385 0.810033i \(-0.300551\pi\)
0.586385 + 0.810033i \(0.300551\pi\)
\(338\) −1.44101 −0.0783807
\(339\) 7.47482 0.405977
\(340\) 0 0
\(341\) 5.65394 0.306178
\(342\) −8.02750 −0.434078
\(343\) −17.9471 −0.969052
\(344\) 12.8922 0.695102
\(345\) 0 0
\(346\) −3.63457 −0.195396
\(347\) −5.46122 −0.293174 −0.146587 0.989198i \(-0.546829\pi\)
−0.146587 + 0.989198i \(0.546829\pi\)
\(348\) 6.09672 0.326819
\(349\) −33.0246 −1.76777 −0.883883 0.467708i \(-0.845080\pi\)
−0.883883 + 0.467708i \(0.845080\pi\)
\(350\) 0 0
\(351\) −16.3438 −0.872369
\(352\) −24.1336 −1.28632
\(353\) 12.4962 0.665103 0.332552 0.943085i \(-0.392090\pi\)
0.332552 + 0.943085i \(0.392090\pi\)
\(354\) −6.76151 −0.359370
\(355\) 0 0
\(356\) −28.6100 −1.51633
\(357\) 0 0
\(358\) 7.95007 0.420174
\(359\) −18.1881 −0.959932 −0.479966 0.877287i \(-0.659351\pi\)
−0.479966 + 0.877287i \(0.659351\pi\)
\(360\) 0 0
\(361\) 24.8658 1.30872
\(362\) −33.9560 −1.78469
\(363\) −19.3858 −1.01749
\(364\) −18.0344 −0.945262
\(365\) 0 0
\(366\) 60.5835 3.16675
\(367\) 22.7681 1.18849 0.594243 0.804285i \(-0.297452\pi\)
0.594243 + 0.804285i \(0.297452\pi\)
\(368\) −0.951859 −0.0496191
\(369\) −5.37946 −0.280044
\(370\) 0 0
\(371\) 2.71694 0.141057
\(372\) −7.62476 −0.395325
\(373\) −24.5550 −1.27141 −0.635705 0.771932i \(-0.719291\pi\)
−0.635705 + 0.771932i \(0.719291\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −12.1289 −0.625502
\(377\) 3.44394 0.177372
\(378\) 16.5590 0.851701
\(379\) 18.6607 0.958538 0.479269 0.877668i \(-0.340902\pi\)
0.479269 + 0.877668i \(0.340902\pi\)
\(380\) 0 0
\(381\) 23.4261 1.20016
\(382\) −35.9043 −1.83703
\(383\) 25.7152 1.31398 0.656991 0.753898i \(-0.271829\pi\)
0.656991 + 0.753898i \(0.271829\pi\)
\(384\) 35.7208 1.82287
\(385\) 0 0
\(386\) −0.244442 −0.0124418
\(387\) 2.23232 0.113475
\(388\) 19.6634 0.998256
\(389\) 23.9816 1.21592 0.607958 0.793969i \(-0.291989\pi\)
0.607958 + 0.793969i \(0.291989\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −13.9971 −0.706961
\(393\) −14.6210 −0.737530
\(394\) −24.3135 −1.22490
\(395\) 0 0
\(396\) 8.05067 0.404562
\(397\) −14.3157 −0.718486 −0.359243 0.933244i \(-0.616965\pi\)
−0.359243 + 0.933244i \(0.616965\pi\)
\(398\) 2.65445 0.133056
\(399\) 19.2229 0.962348
\(400\) 0 0
\(401\) 2.95294 0.147463 0.0737315 0.997278i \(-0.476509\pi\)
0.0737315 + 0.997278i \(0.476509\pi\)
\(402\) 38.2819 1.90933
\(403\) −4.30711 −0.214553
\(404\) −19.2161 −0.956036
\(405\) 0 0
\(406\) −3.48928 −0.173170
\(407\) 1.88258 0.0933161
\(408\) 0 0
\(409\) −2.54353 −0.125769 −0.0628846 0.998021i \(-0.520030\pi\)
−0.0628846 + 0.998021i \(0.520030\pi\)
\(410\) 0 0
\(411\) −28.6110 −1.41128
\(412\) −23.1878 −1.14238
\(413\) 2.41403 0.118787
\(414\) −3.14656 −0.154645
\(415\) 0 0
\(416\) 18.3847 0.901384
\(417\) −0.0865588 −0.00423880
\(418\) −70.5210 −3.44929
\(419\) 5.75101 0.280955 0.140478 0.990084i \(-0.455136\pi\)
0.140478 + 0.990084i \(0.455136\pi\)
\(420\) 0 0
\(421\) −19.5960 −0.955050 −0.477525 0.878618i \(-0.658466\pi\)
−0.477525 + 0.878618i \(0.658466\pi\)
\(422\) −9.65565 −0.470030
\(423\) −2.10015 −0.102113
\(424\) 5.33601 0.259140
\(425\) 0 0
\(426\) 5.60850 0.271733
\(427\) −21.6299 −1.04674
\(428\) 4.63497 0.224040
\(429\) 30.5022 1.47266
\(430\) 0 0
\(431\) 25.8174 1.24358 0.621789 0.783185i \(-0.286406\pi\)
0.621789 + 0.783185i \(0.286406\pi\)
\(432\) 1.70347 0.0819583
\(433\) −38.8428 −1.86666 −0.933332 0.359013i \(-0.883113\pi\)
−0.933332 + 0.359013i \(0.883113\pi\)
\(434\) 4.36381 0.209470
\(435\) 0 0
\(436\) −35.9827 −1.72326
\(437\) 17.1942 0.822508
\(438\) −42.3295 −2.02258
\(439\) −3.41822 −0.163143 −0.0815714 0.996668i \(-0.525994\pi\)
−0.0815714 + 0.996668i \(0.525994\pi\)
\(440\) 0 0
\(441\) −2.42363 −0.115411
\(442\) 0 0
\(443\) 19.8457 0.942899 0.471449 0.881893i \(-0.343731\pi\)
0.471449 + 0.881893i \(0.343731\pi\)
\(444\) −2.53880 −0.120486
\(445\) 0 0
\(446\) −17.6262 −0.834624
\(447\) −2.80663 −0.132749
\(448\) −19.7602 −0.933583
\(449\) 6.01997 0.284100 0.142050 0.989859i \(-0.454631\pi\)
0.142050 + 0.989859i \(0.454631\pi\)
\(450\) 0 0
\(451\) −47.2582 −2.22530
\(452\) −13.2031 −0.621020
\(453\) −9.91688 −0.465936
\(454\) 55.0280 2.58259
\(455\) 0 0
\(456\) 37.7533 1.76796
\(457\) 28.5879 1.33728 0.668642 0.743584i \(-0.266876\pi\)
0.668642 + 0.743584i \(0.266876\pi\)
\(458\) 31.7599 1.48404
\(459\) 0 0
\(460\) 0 0
\(461\) 7.69935 0.358595 0.179297 0.983795i \(-0.442618\pi\)
0.179297 + 0.983795i \(0.442618\pi\)
\(462\) −30.9038 −1.43777
\(463\) −26.7823 −1.24468 −0.622339 0.782748i \(-0.713817\pi\)
−0.622339 + 0.782748i \(0.713817\pi\)
\(464\) −0.358953 −0.0166640
\(465\) 0 0
\(466\) 13.4028 0.620871
\(467\) −10.3379 −0.478380 −0.239190 0.970973i \(-0.576882\pi\)
−0.239190 + 0.970973i \(0.576882\pi\)
\(468\) −6.13292 −0.283494
\(469\) −13.6676 −0.631112
\(470\) 0 0
\(471\) 23.8446 1.09870
\(472\) 4.74109 0.218227
\(473\) 19.6107 0.901703
\(474\) −47.2633 −2.17088
\(475\) 0 0
\(476\) 0 0
\(477\) 0.923943 0.0423044
\(478\) −11.7406 −0.537004
\(479\) −25.8769 −1.18234 −0.591172 0.806545i \(-0.701335\pi\)
−0.591172 + 0.806545i \(0.701335\pi\)
\(480\) 0 0
\(481\) −1.43413 −0.0653907
\(482\) −12.2490 −0.557925
\(483\) 7.53484 0.342847
\(484\) 34.2419 1.55645
\(485\) 0 0
\(486\) 12.4586 0.565134
\(487\) −23.7435 −1.07592 −0.537960 0.842970i \(-0.680805\pi\)
−0.537960 + 0.842970i \(0.680805\pi\)
\(488\) −42.4805 −1.92300
\(489\) 7.62461 0.344797
\(490\) 0 0
\(491\) 40.0485 1.80736 0.903682 0.428205i \(-0.140854\pi\)
0.903682 + 0.428205i \(0.140854\pi\)
\(492\) 63.7312 2.87322
\(493\) 0 0
\(494\) 53.7221 2.41707
\(495\) 0 0
\(496\) 0.448918 0.0201570
\(497\) −2.00238 −0.0898188
\(498\) −54.9426 −2.46204
\(499\) −3.63650 −0.162792 −0.0813961 0.996682i \(-0.525938\pi\)
−0.0813961 + 0.996682i \(0.525938\pi\)
\(500\) 0 0
\(501\) 30.3583 1.35631
\(502\) −65.0302 −2.90244
\(503\) 35.3068 1.57425 0.787127 0.616791i \(-0.211568\pi\)
0.787127 + 0.616791i \(0.211568\pi\)
\(504\) 2.46666 0.109874
\(505\) 0 0
\(506\) −27.6423 −1.22885
\(507\) 1.17347 0.0521154
\(508\) −41.3784 −1.83587
\(509\) −8.67454 −0.384492 −0.192246 0.981347i \(-0.561577\pi\)
−0.192246 + 0.981347i \(0.561577\pi\)
\(510\) 0 0
\(511\) 15.1127 0.668547
\(512\) −4.14235 −0.183068
\(513\) −30.7711 −1.35858
\(514\) −7.59390 −0.334953
\(515\) 0 0
\(516\) −26.4466 −1.16424
\(517\) −18.4497 −0.811416
\(518\) 1.45301 0.0638416
\(519\) 2.95976 0.129919
\(520\) 0 0
\(521\) 14.1978 0.622019 0.311009 0.950407i \(-0.399333\pi\)
0.311009 + 0.950407i \(0.399333\pi\)
\(522\) −1.18659 −0.0519356
\(523\) 28.1516 1.23098 0.615492 0.788143i \(-0.288957\pi\)
0.615492 + 0.788143i \(0.288957\pi\)
\(524\) 25.8256 1.12819
\(525\) 0 0
\(526\) 64.1871 2.79869
\(527\) 0 0
\(528\) −3.17916 −0.138355
\(529\) −16.2604 −0.706973
\(530\) 0 0
\(531\) 0.820931 0.0356254
\(532\) −33.9541 −1.47210
\(533\) 36.0008 1.55937
\(534\) 37.3475 1.61619
\(535\) 0 0
\(536\) −26.8429 −1.15944
\(537\) −6.47401 −0.279374
\(538\) −33.8066 −1.45751
\(539\) −21.2914 −0.917086
\(540\) 0 0
\(541\) 20.0836 0.863463 0.431732 0.902002i \(-0.357903\pi\)
0.431732 + 0.902002i \(0.357903\pi\)
\(542\) 5.78663 0.248557
\(543\) 27.6515 1.18664
\(544\) 0 0
\(545\) 0 0
\(546\) 23.5422 1.00751
\(547\) 2.00586 0.0857644 0.0428822 0.999080i \(-0.486346\pi\)
0.0428822 + 0.999080i \(0.486346\pi\)
\(548\) 50.5366 2.15882
\(549\) −7.35560 −0.313929
\(550\) 0 0
\(551\) 6.48404 0.276229
\(552\) 14.7982 0.629855
\(553\) 16.8742 0.717564
\(554\) 55.2597 2.34776
\(555\) 0 0
\(556\) 0.152892 0.00648407
\(557\) 16.9217 0.716994 0.358497 0.933531i \(-0.383289\pi\)
0.358497 + 0.933531i \(0.383289\pi\)
\(558\) 1.48399 0.0628222
\(559\) −14.9393 −0.631863
\(560\) 0 0
\(561\) 0 0
\(562\) 32.7898 1.38316
\(563\) −42.3789 −1.78606 −0.893030 0.449997i \(-0.851425\pi\)
−0.893030 + 0.449997i \(0.851425\pi\)
\(564\) 24.8808 1.04767
\(565\) 0 0
\(566\) 23.0832 0.970261
\(567\) −15.9221 −0.668666
\(568\) −3.93262 −0.165009
\(569\) −41.5417 −1.74152 −0.870760 0.491708i \(-0.836373\pi\)
−0.870760 + 0.491708i \(0.836373\pi\)
\(570\) 0 0
\(571\) 19.0990 0.799266 0.399633 0.916675i \(-0.369138\pi\)
0.399633 + 0.916675i \(0.369138\pi\)
\(572\) −53.8772 −2.25272
\(573\) 29.2381 1.22144
\(574\) −36.4747 −1.52242
\(575\) 0 0
\(576\) −6.71980 −0.279992
\(577\) 3.81985 0.159023 0.0795113 0.996834i \(-0.474664\pi\)
0.0795113 + 0.996834i \(0.474664\pi\)
\(578\) 0 0
\(579\) 0.199058 0.00827256
\(580\) 0 0
\(581\) 19.6159 0.813805
\(582\) −25.6686 −1.06400
\(583\) 8.11676 0.336162
\(584\) 29.6810 1.22821
\(585\) 0 0
\(586\) −26.0422 −1.07579
\(587\) −6.93889 −0.286399 −0.143199 0.989694i \(-0.545739\pi\)
−0.143199 + 0.989694i \(0.545739\pi\)
\(588\) 28.7131 1.18411
\(589\) −8.10916 −0.334132
\(590\) 0 0
\(591\) 19.7993 0.814435
\(592\) 0.149475 0.00614340
\(593\) 37.2097 1.52802 0.764010 0.645205i \(-0.223228\pi\)
0.764010 + 0.645205i \(0.223228\pi\)
\(594\) 49.4693 2.02975
\(595\) 0 0
\(596\) 4.95745 0.203065
\(597\) −2.16161 −0.0884688
\(598\) 21.0576 0.861109
\(599\) −20.3199 −0.830249 −0.415124 0.909765i \(-0.636262\pi\)
−0.415124 + 0.909765i \(0.636262\pi\)
\(600\) 0 0
\(601\) 24.1279 0.984196 0.492098 0.870540i \(-0.336230\pi\)
0.492098 + 0.870540i \(0.336230\pi\)
\(602\) 15.1359 0.616894
\(603\) −4.64790 −0.189277
\(604\) 17.5166 0.712738
\(605\) 0 0
\(606\) 25.0847 1.01899
\(607\) 1.59852 0.0648821 0.0324410 0.999474i \(-0.489672\pi\)
0.0324410 + 0.999474i \(0.489672\pi\)
\(608\) 34.6136 1.40377
\(609\) 2.84144 0.115141
\(610\) 0 0
\(611\) 14.0548 0.568595
\(612\) 0 0
\(613\) 29.2631 1.18192 0.590962 0.806699i \(-0.298748\pi\)
0.590962 + 0.806699i \(0.298748\pi\)
\(614\) −57.9664 −2.33933
\(615\) 0 0
\(616\) 21.6694 0.873084
\(617\) −17.8941 −0.720390 −0.360195 0.932877i \(-0.617290\pi\)
−0.360195 + 0.932877i \(0.617290\pi\)
\(618\) 30.2693 1.21761
\(619\) −3.11518 −0.125210 −0.0626048 0.998038i \(-0.519941\pi\)
−0.0626048 + 0.998038i \(0.519941\pi\)
\(620\) 0 0
\(621\) −12.0614 −0.484008
\(622\) −51.4817 −2.06423
\(623\) −13.3340 −0.534216
\(624\) 2.42185 0.0969517
\(625\) 0 0
\(626\) −68.5478 −2.73972
\(627\) 57.4277 2.29344
\(628\) −42.1175 −1.68067
\(629\) 0 0
\(630\) 0 0
\(631\) −36.4404 −1.45067 −0.725335 0.688396i \(-0.758315\pi\)
−0.725335 + 0.688396i \(0.758315\pi\)
\(632\) 33.1405 1.31826
\(633\) 7.86292 0.312523
\(634\) −27.4289 −1.08934
\(635\) 0 0
\(636\) −10.9461 −0.434040
\(637\) 16.2196 0.642643
\(638\) −10.4241 −0.412694
\(639\) −0.680942 −0.0269376
\(640\) 0 0
\(641\) −3.93744 −0.155520 −0.0777598 0.996972i \(-0.524777\pi\)
−0.0777598 + 0.996972i \(0.524777\pi\)
\(642\) −6.05049 −0.238794
\(643\) 14.9025 0.587698 0.293849 0.955852i \(-0.405064\pi\)
0.293849 + 0.955852i \(0.405064\pi\)
\(644\) −13.3091 −0.524451
\(645\) 0 0
\(646\) 0 0
\(647\) 28.8503 1.13422 0.567110 0.823642i \(-0.308061\pi\)
0.567110 + 0.823642i \(0.308061\pi\)
\(648\) −31.2706 −1.22843
\(649\) 7.21182 0.283089
\(650\) 0 0
\(651\) −3.55360 −0.139277
\(652\) −13.4676 −0.527434
\(653\) 14.1367 0.553212 0.276606 0.960983i \(-0.410790\pi\)
0.276606 + 0.960983i \(0.410790\pi\)
\(654\) 46.9718 1.83674
\(655\) 0 0
\(656\) −3.75226 −0.146501
\(657\) 5.13933 0.200505
\(658\) −14.2398 −0.555125
\(659\) −38.8064 −1.51168 −0.755840 0.654756i \(-0.772771\pi\)
−0.755840 + 0.654756i \(0.772771\pi\)
\(660\) 0 0
\(661\) −17.6631 −0.687016 −0.343508 0.939150i \(-0.611615\pi\)
−0.343508 + 0.939150i \(0.611615\pi\)
\(662\) 21.0932 0.819812
\(663\) 0 0
\(664\) 38.5252 1.49507
\(665\) 0 0
\(666\) 0.494121 0.0191468
\(667\) 2.54156 0.0984097
\(668\) −53.6230 −2.07474
\(669\) 14.3536 0.554943
\(670\) 0 0
\(671\) −64.6184 −2.49456
\(672\) 15.1684 0.585133
\(673\) −38.9804 −1.50258 −0.751291 0.659971i \(-0.770569\pi\)
−0.751291 + 0.659971i \(0.770569\pi\)
\(674\) 49.6415 1.91212
\(675\) 0 0
\(676\) −2.07274 −0.0797206
\(677\) 46.3086 1.77978 0.889892 0.456172i \(-0.150780\pi\)
0.889892 + 0.456172i \(0.150780\pi\)
\(678\) 17.2353 0.661916
\(679\) 9.16432 0.351694
\(680\) 0 0
\(681\) −44.8112 −1.71717
\(682\) 13.0367 0.499202
\(683\) 29.0957 1.11332 0.556658 0.830742i \(-0.312083\pi\)
0.556658 + 0.830742i \(0.312083\pi\)
\(684\) −11.5467 −0.441498
\(685\) 0 0
\(686\) −41.3820 −1.57997
\(687\) −25.8632 −0.986742
\(688\) 1.55708 0.0593630
\(689\) −6.18327 −0.235564
\(690\) 0 0
\(691\) 7.75676 0.295081 0.147541 0.989056i \(-0.452864\pi\)
0.147541 + 0.989056i \(0.452864\pi\)
\(692\) −5.22793 −0.198736
\(693\) 3.75210 0.142531
\(694\) −12.5924 −0.477999
\(695\) 0 0
\(696\) 5.58052 0.211529
\(697\) 0 0
\(698\) −76.1473 −2.88222
\(699\) −10.9143 −0.412818
\(700\) 0 0
\(701\) −4.74948 −0.179386 −0.0896928 0.995969i \(-0.528589\pi\)
−0.0896928 + 0.995969i \(0.528589\pi\)
\(702\) −37.6852 −1.42234
\(703\) −2.70009 −0.101836
\(704\) −59.0329 −2.22489
\(705\) 0 0
\(706\) 28.8133 1.08440
\(707\) −8.95586 −0.336820
\(708\) −9.72568 −0.365513
\(709\) 43.4694 1.63253 0.816264 0.577679i \(-0.196042\pi\)
0.816264 + 0.577679i \(0.196042\pi\)
\(710\) 0 0
\(711\) 5.73836 0.215205
\(712\) −26.1877 −0.981425
\(713\) −3.17856 −0.119038
\(714\) 0 0
\(715\) 0 0
\(716\) 11.4353 0.427357
\(717\) 9.56080 0.357055
\(718\) −41.9377 −1.56510
\(719\) 38.0357 1.41849 0.709246 0.704961i \(-0.249036\pi\)
0.709246 + 0.704961i \(0.249036\pi\)
\(720\) 0 0
\(721\) −10.8069 −0.402470
\(722\) 57.3349 2.13378
\(723\) 9.97476 0.370965
\(724\) −48.8420 −1.81520
\(725\) 0 0
\(726\) −44.6994 −1.65895
\(727\) 32.4604 1.20389 0.601944 0.798538i \(-0.294393\pi\)
0.601944 + 0.798538i \(0.294393\pi\)
\(728\) −16.5075 −0.611809
\(729\) 20.7565 0.768758
\(730\) 0 0
\(731\) 0 0
\(732\) 87.1427 3.22089
\(733\) 39.4649 1.45767 0.728834 0.684690i \(-0.240063\pi\)
0.728834 + 0.684690i \(0.240063\pi\)
\(734\) 52.4982 1.93774
\(735\) 0 0
\(736\) 13.5675 0.500106
\(737\) −40.8315 −1.50405
\(738\) −12.4038 −0.456592
\(739\) 9.30119 0.342150 0.171075 0.985258i \(-0.445276\pi\)
0.171075 + 0.985258i \(0.445276\pi\)
\(740\) 0 0
\(741\) −43.7478 −1.60712
\(742\) 6.26466 0.229983
\(743\) 41.6442 1.52778 0.763889 0.645348i \(-0.223288\pi\)
0.763889 + 0.645348i \(0.223288\pi\)
\(744\) −6.97919 −0.255869
\(745\) 0 0
\(746\) −56.6184 −2.07295
\(747\) 6.67072 0.244069
\(748\) 0 0
\(749\) 2.16018 0.0789312
\(750\) 0 0
\(751\) 15.5526 0.567524 0.283762 0.958895i \(-0.408417\pi\)
0.283762 + 0.958895i \(0.408417\pi\)
\(752\) −1.46489 −0.0534190
\(753\) 52.9563 1.92983
\(754\) 7.94097 0.289193
\(755\) 0 0
\(756\) 23.8182 0.866261
\(757\) 41.2769 1.50023 0.750117 0.661306i \(-0.229997\pi\)
0.750117 + 0.661306i \(0.229997\pi\)
\(758\) 43.0275 1.56283
\(759\) 22.5100 0.817062
\(760\) 0 0
\(761\) 42.6707 1.54681 0.773407 0.633910i \(-0.218551\pi\)
0.773407 + 0.633910i \(0.218551\pi\)
\(762\) 54.0153 1.95677
\(763\) −16.7701 −0.607119
\(764\) −51.6444 −1.86843
\(765\) 0 0
\(766\) 59.2934 2.14236
\(767\) −5.49389 −0.198373
\(768\) 34.3570 1.23975
\(769\) 8.29133 0.298993 0.149497 0.988762i \(-0.452235\pi\)
0.149497 + 0.988762i \(0.452235\pi\)
\(770\) 0 0
\(771\) 6.18397 0.222710
\(772\) −0.351603 −0.0126545
\(773\) −0.237927 −0.00855765 −0.00427883 0.999991i \(-0.501362\pi\)
−0.00427883 + 0.999991i \(0.501362\pi\)
\(774\) 5.14723 0.185013
\(775\) 0 0
\(776\) 17.9985 0.646109
\(777\) −1.18324 −0.0424483
\(778\) 55.2962 1.98246
\(779\) 67.7800 2.42847
\(780\) 0 0
\(781\) −5.98202 −0.214054
\(782\) 0 0
\(783\) −4.54845 −0.162548
\(784\) −1.69052 −0.0603758
\(785\) 0 0
\(786\) −33.7127 −1.20249
\(787\) −1.48737 −0.0530191 −0.0265096 0.999649i \(-0.508439\pi\)
−0.0265096 + 0.999649i \(0.508439\pi\)
\(788\) −34.9723 −1.24584
\(789\) −52.2697 −1.86085
\(790\) 0 0
\(791\) −6.15342 −0.218791
\(792\) 7.36904 0.261847
\(793\) 49.2256 1.74805
\(794\) −33.0089 −1.17144
\(795\) 0 0
\(796\) 3.81813 0.135330
\(797\) 0.564647 0.0200008 0.0100004 0.999950i \(-0.496817\pi\)
0.0100004 + 0.999950i \(0.496817\pi\)
\(798\) 44.3237 1.56904
\(799\) 0 0
\(800\) 0 0
\(801\) −4.53446 −0.160217
\(802\) 6.80883 0.240428
\(803\) 45.1486 1.59326
\(804\) 55.0643 1.94197
\(805\) 0 0
\(806\) −9.93123 −0.349813
\(807\) 27.5299 0.969097
\(808\) −17.5891 −0.618782
\(809\) 46.8966 1.64880 0.824398 0.566010i \(-0.191514\pi\)
0.824398 + 0.566010i \(0.191514\pi\)
\(810\) 0 0
\(811\) −6.46841 −0.227137 −0.113568 0.993530i \(-0.536228\pi\)
−0.113568 + 0.993530i \(0.536228\pi\)
\(812\) −5.01894 −0.176130
\(813\) −4.71225 −0.165266
\(814\) 4.34081 0.152145
\(815\) 0 0
\(816\) 0 0
\(817\) −28.1267 −0.984028
\(818\) −5.86480 −0.205058
\(819\) −2.85831 −0.0998775
\(820\) 0 0
\(821\) 11.7430 0.409835 0.204917 0.978779i \(-0.434307\pi\)
0.204917 + 0.978779i \(0.434307\pi\)
\(822\) −65.9705 −2.30099
\(823\) −24.2294 −0.844584 −0.422292 0.906460i \(-0.638774\pi\)
−0.422292 + 0.906460i \(0.638774\pi\)
\(824\) −21.2245 −0.739390
\(825\) 0 0
\(826\) 5.56621 0.193673
\(827\) 8.28800 0.288202 0.144101 0.989563i \(-0.453971\pi\)
0.144101 + 0.989563i \(0.453971\pi\)
\(828\) −4.52597 −0.157288
\(829\) 42.2364 1.46693 0.733466 0.679726i \(-0.237902\pi\)
0.733466 + 0.679726i \(0.237902\pi\)
\(830\) 0 0
\(831\) −44.9999 −1.56103
\(832\) 44.9707 1.55908
\(833\) 0 0
\(834\) −0.199585 −0.00691107
\(835\) 0 0
\(836\) −101.437 −3.50826
\(837\) 5.68844 0.196621
\(838\) 13.2605 0.458078
\(839\) −7.41774 −0.256089 −0.128044 0.991768i \(-0.540870\pi\)
−0.128044 + 0.991768i \(0.540870\pi\)
\(840\) 0 0
\(841\) −28.0416 −0.966950
\(842\) −45.1840 −1.55714
\(843\) −26.7019 −0.919661
\(844\) −13.8886 −0.478065
\(845\) 0 0
\(846\) −4.84248 −0.166488
\(847\) 15.9588 0.548351
\(848\) 0.644465 0.0221310
\(849\) −18.7975 −0.645128
\(850\) 0 0
\(851\) −1.05836 −0.0362801
\(852\) 8.06720 0.276378
\(853\) 14.3725 0.492103 0.246052 0.969257i \(-0.420867\pi\)
0.246052 + 0.969257i \(0.420867\pi\)
\(854\) −49.8736 −1.70664
\(855\) 0 0
\(856\) 4.24254 0.145007
\(857\) 43.3088 1.47940 0.739701 0.672936i \(-0.234967\pi\)
0.739701 + 0.672936i \(0.234967\pi\)
\(858\) 70.3313 2.40107
\(859\) 13.6870 0.466993 0.233497 0.972358i \(-0.424983\pi\)
0.233497 + 0.972358i \(0.424983\pi\)
\(860\) 0 0
\(861\) 29.7026 1.01226
\(862\) 59.5291 2.02757
\(863\) 6.87984 0.234192 0.117096 0.993121i \(-0.462641\pi\)
0.117096 + 0.993121i \(0.462641\pi\)
\(864\) −24.2808 −0.826051
\(865\) 0 0
\(866\) −89.5628 −3.04347
\(867\) 0 0
\(868\) 6.27686 0.213050
\(869\) 50.4110 1.71008
\(870\) 0 0
\(871\) 31.1050 1.05395
\(872\) −32.9361 −1.11536
\(873\) 3.11648 0.105477
\(874\) 39.6459 1.34104
\(875\) 0 0
\(876\) −60.8863 −2.05716
\(877\) −28.4444 −0.960499 −0.480249 0.877132i \(-0.659454\pi\)
−0.480249 + 0.877132i \(0.659454\pi\)
\(878\) −7.88165 −0.265993
\(879\) 21.2070 0.715295
\(880\) 0 0
\(881\) 20.9435 0.705605 0.352803 0.935698i \(-0.385229\pi\)
0.352803 + 0.935698i \(0.385229\pi\)
\(882\) −5.58835 −0.188170
\(883\) 7.88825 0.265461 0.132730 0.991152i \(-0.457626\pi\)
0.132730 + 0.991152i \(0.457626\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 45.7598 1.53733
\(887\) 5.46346 0.183445 0.0917224 0.995785i \(-0.470763\pi\)
0.0917224 + 0.995785i \(0.470763\pi\)
\(888\) −2.32385 −0.0779832
\(889\) −19.2848 −0.646793
\(890\) 0 0
\(891\) −47.5667 −1.59354
\(892\) −25.3533 −0.848892
\(893\) 26.4614 0.885498
\(894\) −6.47145 −0.216438
\(895\) 0 0
\(896\) −29.4061 −0.982388
\(897\) −17.1479 −0.572552
\(898\) 13.8807 0.463205
\(899\) −1.19866 −0.0399775
\(900\) 0 0
\(901\) 0 0
\(902\) −108.967 −3.62820
\(903\) −12.3257 −0.410173
\(904\) −12.0852 −0.401947
\(905\) 0 0
\(906\) −22.8661 −0.759675
\(907\) −14.3557 −0.476673 −0.238337 0.971183i \(-0.576602\pi\)
−0.238337 + 0.971183i \(0.576602\pi\)
\(908\) 79.1517 2.62674
\(909\) −3.04559 −0.101016
\(910\) 0 0
\(911\) −23.3285 −0.772908 −0.386454 0.922309i \(-0.626300\pi\)
−0.386454 + 0.922309i \(0.626300\pi\)
\(912\) 4.55971 0.150987
\(913\) 58.6018 1.93944
\(914\) 65.9172 2.18035
\(915\) 0 0
\(916\) 45.6831 1.50941
\(917\) 12.0363 0.397473
\(918\) 0 0
\(919\) −27.6524 −0.912170 −0.456085 0.889936i \(-0.650749\pi\)
−0.456085 + 0.889936i \(0.650749\pi\)
\(920\) 0 0
\(921\) 47.2040 1.55542
\(922\) 17.7530 0.584663
\(923\) 4.55704 0.149997
\(924\) −44.4516 −1.46235
\(925\) 0 0
\(926\) −61.7539 −2.02936
\(927\) −3.67507 −0.120705
\(928\) 5.11642 0.167955
\(929\) 0.973310 0.0319333 0.0159666 0.999873i \(-0.494917\pi\)
0.0159666 + 0.999873i \(0.494917\pi\)
\(930\) 0 0
\(931\) 30.5372 1.00082
\(932\) 19.2784 0.631484
\(933\) 41.9233 1.37251
\(934\) −23.8368 −0.779965
\(935\) 0 0
\(936\) −5.61366 −0.183488
\(937\) 4.08311 0.133390 0.0666948 0.997773i \(-0.478755\pi\)
0.0666948 + 0.997773i \(0.478755\pi\)
\(938\) −31.5144 −1.02898
\(939\) 55.8209 1.82164
\(940\) 0 0
\(941\) 16.3402 0.532674 0.266337 0.963880i \(-0.414187\pi\)
0.266337 + 0.963880i \(0.414187\pi\)
\(942\) 54.9802 1.79135
\(943\) 26.5679 0.865169
\(944\) 0.572613 0.0186370
\(945\) 0 0
\(946\) 45.2180 1.47016
\(947\) −16.5623 −0.538203 −0.269102 0.963112i \(-0.586727\pi\)
−0.269102 + 0.963112i \(0.586727\pi\)
\(948\) −67.9831 −2.20799
\(949\) −34.3938 −1.11647
\(950\) 0 0
\(951\) 22.3363 0.724303
\(952\) 0 0
\(953\) 57.0108 1.84676 0.923380 0.383887i \(-0.125415\pi\)
0.923380 + 0.383887i \(0.125415\pi\)
\(954\) 2.13041 0.0689744
\(955\) 0 0
\(956\) −16.8876 −0.546184
\(957\) 8.48870 0.274401
\(958\) −59.6663 −1.92773
\(959\) 23.5531 0.760570
\(960\) 0 0
\(961\) −29.5009 −0.951643
\(962\) −3.30678 −0.106615
\(963\) 0.734605 0.0236723
\(964\) −17.6188 −0.567463
\(965\) 0 0
\(966\) 17.3736 0.558988
\(967\) −10.1747 −0.327196 −0.163598 0.986527i \(-0.552310\pi\)
−0.163598 + 0.986527i \(0.552310\pi\)
\(968\) 31.3427 1.00739
\(969\) 0 0
\(970\) 0 0
\(971\) −15.0671 −0.483527 −0.241763 0.970335i \(-0.577726\pi\)
−0.241763 + 0.970335i \(0.577726\pi\)
\(972\) 17.9203 0.574795
\(973\) 0.0712569 0.00228439
\(974\) −54.7472 −1.75421
\(975\) 0 0
\(976\) −5.13065 −0.164228
\(977\) −18.0224 −0.576586 −0.288293 0.957542i \(-0.593088\pi\)
−0.288293 + 0.957542i \(0.593088\pi\)
\(978\) 17.5807 0.562167
\(979\) −39.8349 −1.27313
\(980\) 0 0
\(981\) −5.70296 −0.182082
\(982\) 92.3429 2.94678
\(983\) −23.9812 −0.764881 −0.382440 0.923980i \(-0.624916\pi\)
−0.382440 + 0.923980i \(0.624916\pi\)
\(984\) 58.3352 1.85966
\(985\) 0 0
\(986\) 0 0
\(987\) 11.5960 0.369103
\(988\) 77.2734 2.45839
\(989\) −11.0249 −0.350571
\(990\) 0 0
\(991\) 35.2870 1.12093 0.560465 0.828178i \(-0.310622\pi\)
0.560465 + 0.828178i \(0.310622\pi\)
\(992\) −6.39876 −0.203161
\(993\) −17.1769 −0.545094
\(994\) −4.61703 −0.146443
\(995\) 0 0
\(996\) −79.0289 −2.50413
\(997\) 51.2819 1.62411 0.812057 0.583577i \(-0.198348\pi\)
0.812057 + 0.583577i \(0.198348\pi\)
\(998\) −8.38497 −0.265421
\(999\) 1.89407 0.0599257
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.by.1.23 24
5.2 odd 4 1445.2.b.i.579.24 24
5.3 odd 4 1445.2.b.i.579.1 24
5.4 even 2 inner 7225.2.a.by.1.2 24
17.10 odd 16 425.2.m.e.151.1 24
17.12 odd 16 425.2.m.e.76.1 24
17.16 even 2 inner 7225.2.a.by.1.24 24
85.12 even 16 85.2.m.a.59.1 yes 24
85.27 even 16 85.2.m.a.49.6 yes 24
85.29 odd 16 425.2.m.e.76.6 24
85.33 odd 4 1445.2.b.i.579.2 24
85.44 odd 16 425.2.m.e.151.6 24
85.63 even 16 85.2.m.a.59.6 yes 24
85.67 odd 4 1445.2.b.i.579.23 24
85.78 even 16 85.2.m.a.49.1 24
85.84 even 2 inner 7225.2.a.by.1.1 24
255.182 odd 16 765.2.bh.b.739.6 24
255.197 odd 16 765.2.bh.b.559.1 24
255.233 odd 16 765.2.bh.b.739.1 24
255.248 odd 16 765.2.bh.b.559.6 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.m.a.49.1 24 85.78 even 16
85.2.m.a.49.6 yes 24 85.27 even 16
85.2.m.a.59.1 yes 24 85.12 even 16
85.2.m.a.59.6 yes 24 85.63 even 16
425.2.m.e.76.1 24 17.12 odd 16
425.2.m.e.76.6 24 85.29 odd 16
425.2.m.e.151.1 24 17.10 odd 16
425.2.m.e.151.6 24 85.44 odd 16
765.2.bh.b.559.1 24 255.197 odd 16
765.2.bh.b.559.6 24 255.248 odd 16
765.2.bh.b.739.1 24 255.233 odd 16
765.2.bh.b.739.6 24 255.182 odd 16
1445.2.b.i.579.1 24 5.3 odd 4
1445.2.b.i.579.2 24 85.33 odd 4
1445.2.b.i.579.23 24 85.67 odd 4
1445.2.b.i.579.24 24 5.2 odd 4
7225.2.a.by.1.1 24 85.84 even 2 inner
7225.2.a.by.1.2 24 5.4 even 2 inner
7225.2.a.by.1.23 24 1.1 even 1 trivial
7225.2.a.by.1.24 24 17.16 even 2 inner