Properties

Label 432.2.y.e.37.7
Level $432$
Weight $2$
Character 432.37
Analytic conductor $3.450$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [432,2,Mod(37,432)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(432, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 3, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("432.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 432 = 2^{4} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 432.y (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.44953736732\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(18\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 144)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.7
Character \(\chi\) \(=\) 432.37
Dual form 432.2.y.e.397.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.297230 - 1.38263i) q^{2} +(-1.82331 + 0.821916i) q^{4} +(0.0112878 - 0.00302457i) q^{5} +(1.05753 - 0.610563i) q^{7} +(1.67835 + 2.27665i) q^{8} +O(q^{10})\) \(q+(-0.297230 - 1.38263i) q^{2} +(-1.82331 + 0.821916i) q^{4} +(0.0112878 - 0.00302457i) q^{5} +(1.05753 - 0.610563i) q^{7} +(1.67835 + 2.27665i) q^{8} +(-0.00753693 - 0.0147079i) q^{10} +(0.490535 - 1.83070i) q^{11} +(-1.35786 - 5.06759i) q^{13} +(-1.15851 - 1.28069i) q^{14} +(2.64891 - 2.99721i) q^{16} +1.54238 q^{17} +(4.06823 - 4.06823i) q^{19} +(-0.0180953 + 0.0147924i) q^{20} +(-2.67698 - 0.134086i) q^{22} +(-5.20660 - 3.00603i) q^{23} +(-4.33001 + 2.49993i) q^{25} +(-6.60298 + 3.38365i) q^{26} +(-1.42637 + 1.98244i) q^{28} +(2.98082 + 0.798708i) q^{29} +(2.92831 - 5.07198i) q^{31} +(-4.93136 - 2.77158i) q^{32} +(-0.458442 - 2.13254i) q^{34} +(0.0100905 - 0.0100905i) q^{35} +(0.923082 + 0.923082i) q^{37} +(-6.83404 - 4.41564i) q^{38} +(0.0258308 + 0.0206222i) q^{40} +(-3.20829 - 1.85231i) q^{41} +(1.29691 - 4.84015i) q^{43} +(0.610287 + 3.74111i) q^{44} +(-2.60866 + 8.09227i) q^{46} +(1.31218 + 2.27277i) q^{47} +(-2.75442 + 4.77080i) q^{49} +(4.74348 + 5.24373i) q^{50} +(6.64092 + 8.12373i) q^{52} +(8.88508 + 8.88508i) q^{53} -0.0221483i q^{55} +(3.16494 + 1.38289i) q^{56} +(0.218325 - 4.35876i) q^{58} +(8.78724 - 2.35453i) q^{59} +(-12.1194 - 3.24737i) q^{61} +(-7.88303 - 2.54121i) q^{62} +(-2.36631 + 7.64203i) q^{64} +(-0.0306545 - 0.0530952i) q^{65} +(3.18324 + 11.8800i) q^{67} +(-2.81224 + 1.26771i) q^{68} +(-0.0169506 - 0.0109522i) q^{70} -14.2363i q^{71} -4.32091i q^{73} +(1.00191 - 1.55065i) q^{74} +(-4.07389 + 10.7614i) q^{76} +(-0.599006 - 2.23552i) q^{77} +(-0.261880 - 0.453589i) q^{79} +(0.0208352 - 0.0418439i) q^{80} +(-1.60745 + 4.98643i) q^{82} +(10.8824 + 2.91592i) q^{83} +(0.0174101 - 0.00466503i) q^{85} +(-7.07759 - 0.354508i) q^{86} +(4.99116 - 1.95577i) q^{88} +10.7103i q^{89} +(-4.53005 - 4.53005i) q^{91} +(11.9640 + 1.20153i) q^{92} +(2.75237 - 2.48980i) q^{94} +(0.0336169 - 0.0582262i) q^{95} +(8.78820 + 15.2216i) q^{97} +(7.41493 + 2.39031i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q - 4 q^{2} - 2 q^{4} - 4 q^{5} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 72 q - 4 q^{2} - 2 q^{4} - 4 q^{5} + 8 q^{8} - 20 q^{10} + 2 q^{11} - 16 q^{13} + 4 q^{14} - 10 q^{16} + 16 q^{17} + 28 q^{19} - 12 q^{20} - 8 q^{22} + 4 q^{26} - 16 q^{28} - 4 q^{29} + 28 q^{31} + 46 q^{32} - 14 q^{34} + 16 q^{35} + 16 q^{37} - 2 q^{38} - 10 q^{40} - 10 q^{43} - 60 q^{44} + 20 q^{46} + 56 q^{47} + 4 q^{49} + 36 q^{50} + 6 q^{52} + 8 q^{53} - 52 q^{56} - 14 q^{58} + 14 q^{59} - 32 q^{61} - 16 q^{62} - 44 q^{64} + 64 q^{65} - 18 q^{67} - 16 q^{68} + 14 q^{70} - 38 q^{74} + 10 q^{76} + 36 q^{77} + 44 q^{79} - 144 q^{80} - 88 q^{82} - 20 q^{83} - 8 q^{85} - 76 q^{86} - 42 q^{88} - 80 q^{91} + 68 q^{92} + 20 q^{94} - 48 q^{95} + 40 q^{97} - 88 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/432\mathbb{Z}\right)^\times\).

\(n\) \(271\) \(325\) \(353\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.297230 1.38263i −0.210174 0.977664i
\(3\) 0 0
\(4\) −1.82331 + 0.821916i −0.911654 + 0.410958i
\(5\) 0.0112878 0.00302457i 0.00504807 0.00135263i −0.256294 0.966599i \(-0.582502\pi\)
0.261342 + 0.965246i \(0.415835\pi\)
\(6\) 0 0
\(7\) 1.05753 0.610563i 0.399708 0.230771i −0.286650 0.958035i \(-0.592542\pi\)
0.686358 + 0.727264i \(0.259208\pi\)
\(8\) 1.67835 + 2.27665i 0.593385 + 0.804919i
\(9\) 0 0
\(10\) −0.00753693 0.0147079i −0.00238339 0.00465104i
\(11\) 0.490535 1.83070i 0.147902 0.551977i −0.851707 0.524018i \(-0.824432\pi\)
0.999609 0.0279594i \(-0.00890090\pi\)
\(12\) 0 0
\(13\) −1.35786 5.06759i −0.376602 1.40550i −0.850991 0.525181i \(-0.823998\pi\)
0.474389 0.880315i \(-0.342669\pi\)
\(14\) −1.15851 1.28069i −0.309625 0.342278i
\(15\) 0 0
\(16\) 2.64891 2.99721i 0.662227 0.749304i
\(17\) 1.54238 0.374082 0.187041 0.982352i \(-0.440110\pi\)
0.187041 + 0.982352i \(0.440110\pi\)
\(18\) 0 0
\(19\) 4.06823 4.06823i 0.933317 0.933317i −0.0645950 0.997912i \(-0.520576\pi\)
0.997912 + 0.0645950i \(0.0205756\pi\)
\(20\) −0.0180953 + 0.0147924i −0.00404623 + 0.00330768i
\(21\) 0 0
\(22\) −2.67698 0.134086i −0.570734 0.0285873i
\(23\) −5.20660 3.00603i −1.08565 0.626801i −0.153236 0.988190i \(-0.548970\pi\)
−0.932415 + 0.361388i \(0.882303\pi\)
\(24\) 0 0
\(25\) −4.33001 + 2.49993i −0.866002 + 0.499986i
\(26\) −6.60298 + 3.38365i −1.29495 + 0.663588i
\(27\) 0 0
\(28\) −1.42637 + 1.98244i −0.269558 + 0.374647i
\(29\) 2.98082 + 0.798708i 0.553524 + 0.148316i 0.524730 0.851269i \(-0.324166\pi\)
0.0287946 + 0.999585i \(0.490833\pi\)
\(30\) 0 0
\(31\) 2.92831 5.07198i 0.525939 0.910954i −0.473604 0.880738i \(-0.657047\pi\)
0.999543 0.0302159i \(-0.00961949\pi\)
\(32\) −4.93136 2.77158i −0.871750 0.489951i
\(33\) 0 0
\(34\) −0.458442 2.13254i −0.0786222 0.365727i
\(35\) 0.0100905 0.0100905i 0.00170561 0.00170561i
\(36\) 0 0
\(37\) 0.923082 + 0.923082i 0.151754 + 0.151754i 0.778901 0.627147i \(-0.215777\pi\)
−0.627147 + 0.778901i \(0.715777\pi\)
\(38\) −6.83404 4.41564i −1.10863 0.716312i
\(39\) 0 0
\(40\) 0.0258308 + 0.0206222i 0.00408421 + 0.00326066i
\(41\) −3.20829 1.85231i −0.501051 0.289282i 0.228096 0.973639i \(-0.426750\pi\)
−0.729147 + 0.684357i \(0.760083\pi\)
\(42\) 0 0
\(43\) 1.29691 4.84015i 0.197777 0.738115i −0.793753 0.608240i \(-0.791876\pi\)
0.991530 0.129875i \(-0.0414576\pi\)
\(44\) 0.610287 + 3.74111i 0.0920043 + 0.563994i
\(45\) 0 0
\(46\) −2.60866 + 8.09227i −0.384626 + 1.19314i
\(47\) 1.31218 + 2.27277i 0.191402 + 0.331517i 0.945715 0.324997i \(-0.105363\pi\)
−0.754313 + 0.656515i \(0.772030\pi\)
\(48\) 0 0
\(49\) −2.75442 + 4.77080i −0.393489 + 0.681543i
\(50\) 4.74348 + 5.24373i 0.670829 + 0.741575i
\(51\) 0 0
\(52\) 6.64092 + 8.12373i 0.920931 + 1.12656i
\(53\) 8.88508 + 8.88508i 1.22046 + 1.22046i 0.967469 + 0.252991i \(0.0814144\pi\)
0.252991 + 0.967469i \(0.418586\pi\)
\(54\) 0 0
\(55\) 0.0221483i 0.00298648i
\(56\) 3.16494 + 1.38289i 0.422932 + 0.184796i
\(57\) 0 0
\(58\) 0.218325 4.35876i 0.0286674 0.572333i
\(59\) 8.78724 2.35453i 1.14400 0.306534i 0.363443 0.931617i \(-0.381601\pi\)
0.780559 + 0.625082i \(0.214935\pi\)
\(60\) 0 0
\(61\) −12.1194 3.24737i −1.55172 0.415783i −0.621692 0.783262i \(-0.713555\pi\)
−0.930032 + 0.367478i \(0.880221\pi\)
\(62\) −7.88303 2.54121i −1.00115 0.322734i
\(63\) 0 0
\(64\) −2.36631 + 7.64203i −0.295789 + 0.955253i
\(65\) −0.0306545 0.0530952i −0.00380223 0.00658565i
\(66\) 0 0
\(67\) 3.18324 + 11.8800i 0.388895 + 1.45137i 0.831935 + 0.554873i \(0.187233\pi\)
−0.443041 + 0.896501i \(0.646100\pi\)
\(68\) −2.81224 + 1.26771i −0.341034 + 0.153732i
\(69\) 0 0
\(70\) −0.0169506 0.0109522i −0.00202598 0.00130904i
\(71\) 14.2363i 1.68954i −0.535129 0.844771i \(-0.679737\pi\)
0.535129 0.844771i \(-0.320263\pi\)
\(72\) 0 0
\(73\) 4.32091i 0.505724i −0.967502 0.252862i \(-0.918628\pi\)
0.967502 0.252862i \(-0.0813718\pi\)
\(74\) 1.00191 1.55065i 0.116470 0.180259i
\(75\) 0 0
\(76\) −4.07389 + 10.7614i −0.467308 + 1.23442i
\(77\) −0.599006 2.23552i −0.0682630 0.254761i
\(78\) 0 0
\(79\) −0.261880 0.453589i −0.0294638 0.0510328i 0.850918 0.525299i \(-0.176047\pi\)
−0.880381 + 0.474267i \(0.842713\pi\)
\(80\) 0.0208352 0.0418439i 0.00232944 0.00467829i
\(81\) 0 0
\(82\) −1.60745 + 4.98643i −0.177513 + 0.550659i
\(83\) 10.8824 + 2.91592i 1.19450 + 0.320064i 0.800661 0.599117i \(-0.204482\pi\)
0.393834 + 0.919181i \(0.371148\pi\)
\(84\) 0 0
\(85\) 0.0174101 0.00466503i 0.00188839 0.000505994i
\(86\) −7.07759 0.354508i −0.763196 0.0382276i
\(87\) 0 0
\(88\) 4.99116 1.95577i 0.532060 0.208486i
\(89\) 10.7103i 1.13529i 0.823274 + 0.567644i \(0.192145\pi\)
−0.823274 + 0.567644i \(0.807855\pi\)
\(90\) 0 0
\(91\) −4.53005 4.53005i −0.474879 0.474879i
\(92\) 11.9640 + 1.20153i 1.24733 + 0.125269i
\(93\) 0 0
\(94\) 2.75237 2.48980i 0.283885 0.256803i
\(95\) 0.0336169 0.0582262i 0.00344902 0.00597388i
\(96\) 0 0
\(97\) 8.78820 + 15.2216i 0.892306 + 1.54552i 0.837104 + 0.547044i \(0.184247\pi\)
0.0552025 + 0.998475i \(0.482420\pi\)
\(98\) 7.41493 + 2.39031i 0.749022 + 0.241458i
\(99\) 0 0
\(100\) 5.84021 8.11705i 0.584021 0.811705i
\(101\) 1.80361 6.73117i 0.179466 0.669776i −0.816282 0.577654i \(-0.803968\pi\)
0.995748 0.0921222i \(-0.0293650\pi\)
\(102\) 0 0
\(103\) 2.20609 + 1.27369i 0.217373 + 0.125500i 0.604733 0.796428i \(-0.293280\pi\)
−0.387360 + 0.921928i \(0.626613\pi\)
\(104\) 9.25820 11.5965i 0.907841 1.13713i
\(105\) 0 0
\(106\) 9.64383 14.9257i 0.936691 1.44971i
\(107\) −3.52175 3.52175i −0.340460 0.340460i 0.516080 0.856540i \(-0.327391\pi\)
−0.856540 + 0.516080i \(0.827391\pi\)
\(108\) 0 0
\(109\) 3.14334 3.14334i 0.301077 0.301077i −0.540358 0.841435i \(-0.681711\pi\)
0.841435 + 0.540358i \(0.181711\pi\)
\(110\) −0.0306228 + 0.00658315i −0.00291977 + 0.000627679i
\(111\) 0 0
\(112\) 0.971300 4.78696i 0.0917793 0.452325i
\(113\) −7.90904 + 13.6989i −0.744020 + 1.28868i 0.206631 + 0.978419i \(0.433750\pi\)
−0.950651 + 0.310262i \(0.899583\pi\)
\(114\) 0 0
\(115\) −0.0678632 0.0181839i −0.00632828 0.00169566i
\(116\) −6.09142 + 0.993693i −0.565574 + 0.0922621i
\(117\) 0 0
\(118\) −5.86727 11.4496i −0.540126 1.05402i
\(119\) 1.63111 0.941721i 0.149523 0.0863274i
\(120\) 0 0
\(121\) 6.41543 + 3.70395i 0.583221 + 0.336723i
\(122\) −0.887661 + 17.7218i −0.0803650 + 1.60445i
\(123\) 0 0
\(124\) −1.17047 + 11.6546i −0.105111 + 1.04661i
\(125\) −0.0826316 + 0.0826316i −0.00739079 + 0.00739079i
\(126\) 0 0
\(127\) −5.72603 −0.508103 −0.254052 0.967191i \(-0.581763\pi\)
−0.254052 + 0.967191i \(0.581763\pi\)
\(128\) 11.2694 + 1.00029i 0.996084 + 0.0884136i
\(129\) 0 0
\(130\) −0.0642993 + 0.0581652i −0.00563942 + 0.00510143i
\(131\) 1.75835 + 6.56224i 0.153628 + 0.573346i 0.999219 + 0.0395151i \(0.0125813\pi\)
−0.845591 + 0.533831i \(0.820752\pi\)
\(132\) 0 0
\(133\) 1.81835 6.78618i 0.157671 0.588436i
\(134\) 15.4795 7.93233i 1.33722 0.685249i
\(135\) 0 0
\(136\) 2.58865 + 3.51147i 0.221975 + 0.301106i
\(137\) −3.64923 + 2.10688i −0.311775 + 0.180003i −0.647720 0.761878i \(-0.724278\pi\)
0.335946 + 0.941881i \(0.390944\pi\)
\(138\) 0 0
\(139\) 15.6519 4.19392i 1.32758 0.355724i 0.475767 0.879571i \(-0.342170\pi\)
0.851812 + 0.523847i \(0.175504\pi\)
\(140\) −0.0101045 + 0.0266916i −0.000853990 + 0.00225586i
\(141\) 0 0
\(142\) −19.6835 + 4.23147i −1.65180 + 0.355097i
\(143\) −9.94332 −0.831502
\(144\) 0 0
\(145\) 0.0360627 0.00299485
\(146\) −5.97420 + 1.28430i −0.494428 + 0.106290i
\(147\) 0 0
\(148\) −2.44176 0.924367i −0.200711 0.0759825i
\(149\) 3.76477 1.00877i 0.308422 0.0826415i −0.101288 0.994857i \(-0.532296\pi\)
0.409710 + 0.912216i \(0.365630\pi\)
\(150\) 0 0
\(151\) −13.0073 + 7.50979i −1.05852 + 0.611138i −0.925023 0.379911i \(-0.875955\pi\)
−0.133499 + 0.991049i \(0.542621\pi\)
\(152\) 16.0899 + 2.43406i 1.30506 + 0.197428i
\(153\) 0 0
\(154\) −2.91284 + 1.49266i −0.234724 + 0.120282i
\(155\) 0.0177137 0.0661085i 0.00142280 0.00530996i
\(156\) 0 0
\(157\) 2.53825 + 9.47288i 0.202574 + 0.756018i 0.990175 + 0.139832i \(0.0446564\pi\)
−0.787601 + 0.616186i \(0.788677\pi\)
\(158\) −0.549305 + 0.496902i −0.0437004 + 0.0395314i
\(159\) 0 0
\(160\) −0.0640473 0.0163700i −0.00506338 0.00129416i
\(161\) −7.34150 −0.578591
\(162\) 0 0
\(163\) 5.22606 5.22606i 0.409336 0.409336i −0.472171 0.881507i \(-0.656529\pi\)
0.881507 + 0.472171i \(0.156529\pi\)
\(164\) 7.37215 + 0.740381i 0.575668 + 0.0578140i
\(165\) 0 0
\(166\) 0.797060 15.9129i 0.0618638 1.23508i
\(167\) −6.31476 3.64583i −0.488651 0.282123i 0.235364 0.971907i \(-0.424372\pi\)
−0.724015 + 0.689785i \(0.757705\pi\)
\(168\) 0 0
\(169\) −12.5783 + 7.26211i −0.967565 + 0.558624i
\(170\) −0.0116248 0.0226851i −0.000891583 0.00173987i
\(171\) 0 0
\(172\) 1.61352 + 9.89103i 0.123030 + 0.754184i
\(173\) −22.9394 6.14659i −1.74405 0.467317i −0.760710 0.649092i \(-0.775149\pi\)
−0.983340 + 0.181775i \(0.941816\pi\)
\(174\) 0 0
\(175\) −3.05273 + 5.28749i −0.230765 + 0.399697i
\(176\) −4.18762 6.31960i −0.315654 0.476358i
\(177\) 0 0
\(178\) 14.8083 3.18342i 1.10993 0.238608i
\(179\) −11.4489 + 11.4489i −0.855732 + 0.855732i −0.990832 0.135100i \(-0.956864\pi\)
0.135100 + 0.990832i \(0.456864\pi\)
\(180\) 0 0
\(181\) −3.01327 3.01327i −0.223974 0.223974i 0.586195 0.810170i \(-0.300625\pi\)
−0.810170 + 0.586195i \(0.800625\pi\)
\(182\) −4.91690 + 7.60984i −0.364465 + 0.564079i
\(183\) 0 0
\(184\) −1.89478 16.8988i −0.139685 1.24580i
\(185\) 0.0132115 + 0.00762768i 0.000971331 + 0.000560798i
\(186\) 0 0
\(187\) 0.756592 2.82364i 0.0553275 0.206485i
\(188\) −4.26054 3.06545i −0.310732 0.223571i
\(189\) 0 0
\(190\) −0.0904970 0.0291730i −0.00656534 0.00211643i
\(191\) 2.25702 + 3.90928i 0.163313 + 0.282866i 0.936055 0.351854i \(-0.114449\pi\)
−0.772742 + 0.634720i \(0.781115\pi\)
\(192\) 0 0
\(193\) −1.75793 + 3.04482i −0.126539 + 0.219171i −0.922333 0.386395i \(-0.873720\pi\)
0.795795 + 0.605566i \(0.207053\pi\)
\(194\) 18.4337 16.6751i 1.32346 1.19720i
\(195\) 0 0
\(196\) 1.10096 10.9626i 0.0786403 0.783040i
\(197\) 4.81922 + 4.81922i 0.343355 + 0.343355i 0.857627 0.514272i \(-0.171938\pi\)
−0.514272 + 0.857627i \(0.671938\pi\)
\(198\) 0 0
\(199\) 4.66322i 0.330567i 0.986246 + 0.165284i \(0.0528539\pi\)
−0.986246 + 0.165284i \(0.947146\pi\)
\(200\) −12.9587 5.66219i −0.916321 0.400377i
\(201\) 0 0
\(202\) −9.84277 0.493012i −0.692535 0.0346882i
\(203\) 3.63996 0.975324i 0.255475 0.0684543i
\(204\) 0 0
\(205\) −0.0418171 0.0112049i −0.00292063 0.000782581i
\(206\) 1.10532 3.42878i 0.0770110 0.238894i
\(207\) 0 0
\(208\) −18.7855 9.35378i −1.30254 0.648568i
\(209\) −5.45211 9.44333i −0.377130 0.653209i
\(210\) 0 0
\(211\) 4.67442 + 17.4452i 0.321800 + 1.20097i 0.917490 + 0.397760i \(0.130212\pi\)
−0.595689 + 0.803215i \(0.703121\pi\)
\(212\) −23.5030 8.89745i −1.61420 0.611079i
\(213\) 0 0
\(214\) −3.82249 + 5.91603i −0.261300 + 0.404411i
\(215\) 0.0585574i 0.00399358i
\(216\) 0 0
\(217\) 7.15167i 0.485487i
\(218\) −5.28036 3.41177i −0.357631 0.231074i
\(219\) 0 0
\(220\) 0.0182041 + 0.0403832i 0.00122732 + 0.00272264i
\(221\) −2.09433 7.81615i −0.140880 0.525771i
\(222\) 0 0
\(223\) 2.85769 + 4.94966i 0.191365 + 0.331454i 0.945703 0.325032i \(-0.105375\pi\)
−0.754338 + 0.656486i \(0.772042\pi\)
\(224\) −6.90727 + 0.0798841i −0.461512 + 0.00533748i
\(225\) 0 0
\(226\) 21.2912 + 6.86353i 1.41627 + 0.456555i
\(227\) −19.6766 5.27233i −1.30598 0.349937i −0.462272 0.886738i \(-0.652966\pi\)
−0.843709 + 0.536802i \(0.819632\pi\)
\(228\) 0 0
\(229\) 3.70525 0.992819i 0.244850 0.0656073i −0.134307 0.990940i \(-0.542881\pi\)
0.379157 + 0.925332i \(0.376214\pi\)
\(230\) −0.00497052 + 0.0992343i −0.000327747 + 0.00654332i
\(231\) 0 0
\(232\) 3.18446 + 8.12680i 0.209070 + 0.533551i
\(233\) 5.33043i 0.349208i −0.984639 0.174604i \(-0.944136\pi\)
0.984639 0.174604i \(-0.0558645\pi\)
\(234\) 0 0
\(235\) 0.0216859 + 0.0216859i 0.00141463 + 0.00141463i
\(236\) −14.0866 + 11.5154i −0.916961 + 0.749590i
\(237\) 0 0
\(238\) −1.78686 1.97530i −0.115825 0.128040i
\(239\) 13.8380 23.9681i 0.895104 1.55037i 0.0614282 0.998112i \(-0.480434\pi\)
0.833676 0.552254i \(-0.186232\pi\)
\(240\) 0 0
\(241\) 0.847203 + 1.46740i 0.0545731 + 0.0945234i 0.892021 0.451993i \(-0.149287\pi\)
−0.837448 + 0.546517i \(0.815954\pi\)
\(242\) 3.21432 9.97107i 0.206624 0.640965i
\(243\) 0 0
\(244\) 24.7664 4.04014i 1.58551 0.258643i
\(245\) −0.0166619 + 0.0621830i −0.00106449 + 0.00397273i
\(246\) 0 0
\(247\) −26.1402 15.0921i −1.66326 0.960284i
\(248\) 16.4618 1.84578i 1.04533 0.117207i
\(249\) 0 0
\(250\) 0.138809 + 0.0896880i 0.00877906 + 0.00567236i
\(251\) −0.987980 0.987980i −0.0623607 0.0623607i 0.675239 0.737599i \(-0.264041\pi\)
−0.737599 + 0.675239i \(0.764041\pi\)
\(252\) 0 0
\(253\) −8.05717 + 8.05717i −0.506550 + 0.506550i
\(254\) 1.70195 + 7.91696i 0.106790 + 0.496754i
\(255\) 0 0
\(256\) −1.96659 15.8787i −0.122912 0.992418i
\(257\) −11.8214 + 20.4753i −0.737401 + 1.27722i 0.216260 + 0.976336i \(0.430614\pi\)
−0.953662 + 0.300881i \(0.902719\pi\)
\(258\) 0 0
\(259\) 1.53978 + 0.412584i 0.0956776 + 0.0256367i
\(260\) 0.0995325 + 0.0716134i 0.00617274 + 0.00444128i
\(261\) 0 0
\(262\) 8.55049 4.38163i 0.528251 0.270698i
\(263\) −22.2619 + 12.8529i −1.37273 + 0.792545i −0.991271 0.131841i \(-0.957911\pi\)
−0.381458 + 0.924386i \(0.624578\pi\)
\(264\) 0 0
\(265\) 0.127167 + 0.0734198i 0.00781180 + 0.00451015i
\(266\) −9.92321 0.497042i −0.608431 0.0304756i
\(267\) 0 0
\(268\) −15.5684 19.0446i −0.950991 1.16333i
\(269\) 13.6891 13.6891i 0.834637 0.834637i −0.153510 0.988147i \(-0.549058\pi\)
0.988147 + 0.153510i \(0.0490577\pi\)
\(270\) 0 0
\(271\) −7.11000 −0.431902 −0.215951 0.976404i \(-0.569285\pi\)
−0.215951 + 0.976404i \(0.569285\pi\)
\(272\) 4.08562 4.62284i 0.247727 0.280301i
\(273\) 0 0
\(274\) 3.99770 + 4.41929i 0.241510 + 0.266979i
\(275\) 2.45261 + 9.15326i 0.147898 + 0.551962i
\(276\) 0 0
\(277\) 5.81917 21.7174i 0.349640 1.30487i −0.537457 0.843291i \(-0.680615\pi\)
0.887097 0.461583i \(-0.152718\pi\)
\(278\) −10.4509 20.3942i −0.626801 1.22316i
\(279\) 0 0
\(280\) 0.0399079 + 0.00603724i 0.00238496 + 0.000360794i
\(281\) 19.7952 11.4288i 1.18088 0.681783i 0.224664 0.974436i \(-0.427872\pi\)
0.956218 + 0.292654i \(0.0945383\pi\)
\(282\) 0 0
\(283\) −5.96971 + 1.59958i −0.354862 + 0.0950851i −0.431846 0.901947i \(-0.642138\pi\)
0.0769838 + 0.997032i \(0.475471\pi\)
\(284\) 11.7011 + 25.9572i 0.694331 + 1.54028i
\(285\) 0 0
\(286\) 2.95546 + 13.7479i 0.174760 + 0.812930i
\(287\) −4.52381 −0.267032
\(288\) 0 0
\(289\) −14.6211 −0.860063
\(290\) −0.0107189 0.0498613i −0.000629438 0.00292796i
\(291\) 0 0
\(292\) 3.55142 + 7.87834i 0.207831 + 0.461045i
\(293\) 3.76752 1.00950i 0.220101 0.0589758i −0.147083 0.989124i \(-0.546989\pi\)
0.367184 + 0.930148i \(0.380322\pi\)
\(294\) 0 0
\(295\) 0.0920675 0.0531552i 0.00536038 0.00309482i
\(296\) −0.552289 + 3.65079i −0.0321011 + 0.212198i
\(297\) 0 0
\(298\) −2.51375 4.90543i −0.145618 0.284164i
\(299\) −8.16352 + 30.4667i −0.472109 + 1.76193i
\(300\) 0 0
\(301\) −1.58370 5.91043i −0.0912827 0.340672i
\(302\) 14.2494 + 15.7521i 0.819961 + 0.906434i
\(303\) 0 0
\(304\) −1.41700 22.9697i −0.0812703 1.31740i
\(305\) −0.146623 −0.00839562
\(306\) 0 0
\(307\) 10.8111 10.8111i 0.617023 0.617023i −0.327743 0.944767i \(-0.606288\pi\)
0.944767 + 0.327743i \(0.106288\pi\)
\(308\) 2.92958 + 3.58371i 0.166928 + 0.204201i
\(309\) 0 0
\(310\) −0.0966684 0.00484200i −0.00549040 0.000275007i
\(311\) 19.5372 + 11.2798i 1.10785 + 0.639619i 0.938273 0.345897i \(-0.112425\pi\)
0.169581 + 0.985516i \(0.445759\pi\)
\(312\) 0 0
\(313\) 5.17232 2.98624i 0.292357 0.168792i −0.346647 0.937996i \(-0.612680\pi\)
0.639004 + 0.769203i \(0.279347\pi\)
\(314\) 12.3430 6.32508i 0.696556 0.356945i
\(315\) 0 0
\(316\) 0.850300 + 0.611789i 0.0478331 + 0.0344158i
\(317\) 17.9792 + 4.81751i 1.00981 + 0.270579i 0.725551 0.688168i \(-0.241585\pi\)
0.284262 + 0.958747i \(0.408252\pi\)
\(318\) 0 0
\(319\) 2.92439 5.06520i 0.163735 0.283597i
\(320\) −0.00359675 + 0.0934190i −0.000201064 + 0.00522228i
\(321\) 0 0
\(322\) 2.18211 + 10.1505i 0.121605 + 0.565668i
\(323\) 6.27476 6.27476i 0.349137 0.349137i
\(324\) 0 0
\(325\) 18.5482 + 18.5482i 1.02887 + 1.02887i
\(326\) −8.77903 5.67234i −0.486225 0.314162i
\(327\) 0 0
\(328\) −1.16756 10.4130i −0.0644675 0.574961i
\(329\) 2.77534 + 1.60234i 0.153009 + 0.0883400i
\(330\) 0 0
\(331\) 2.72957 10.1869i 0.150031 0.559923i −0.849449 0.527671i \(-0.823065\pi\)
0.999480 0.0322521i \(-0.0102679\pi\)
\(332\) −22.2386 + 3.62777i −1.22050 + 0.199100i
\(333\) 0 0
\(334\) −3.16388 + 9.81461i −0.173120 + 0.537031i
\(335\) 0.0718638 + 0.124472i 0.00392634 + 0.00680062i
\(336\) 0 0
\(337\) 12.1222 20.9962i 0.660336 1.14374i −0.320192 0.947353i \(-0.603747\pi\)
0.980527 0.196382i \(-0.0629194\pi\)
\(338\) 13.7794 + 15.2326i 0.749503 + 0.828546i
\(339\) 0 0
\(340\) −0.0279098 + 0.0228155i −0.00151362 + 0.00123734i
\(341\) −7.84884 7.84884i −0.425038 0.425038i
\(342\) 0 0
\(343\) 15.2749i 0.824767i
\(344\) 13.1960 5.17081i 0.711481 0.278792i
\(345\) 0 0
\(346\) −1.68016 + 33.5436i −0.0903257 + 1.80331i
\(347\) 18.5696 4.97570i 0.996867 0.267110i 0.276735 0.960946i \(-0.410748\pi\)
0.720132 + 0.693837i \(0.244081\pi\)
\(348\) 0 0
\(349\) 15.6423 + 4.19134i 0.837313 + 0.224357i 0.651901 0.758304i \(-0.273972\pi\)
0.185411 + 0.982661i \(0.440638\pi\)
\(350\) 8.21798 + 2.64919i 0.439270 + 0.141605i
\(351\) 0 0
\(352\) −7.49295 + 7.66829i −0.399376 + 0.408721i
\(353\) 7.69391 + 13.3262i 0.409505 + 0.709284i 0.994834 0.101512i \(-0.0323680\pi\)
−0.585329 + 0.810796i \(0.699035\pi\)
\(354\) 0 0
\(355\) −0.0430587 0.160697i −0.00228532 0.00852893i
\(356\) −8.80297 19.5282i −0.466556 1.03499i
\(357\) 0 0
\(358\) 19.2325 + 12.4266i 1.01647 + 0.656766i
\(359\) 2.97883i 0.157217i 0.996906 + 0.0786083i \(0.0250476\pi\)
−0.996906 + 0.0786083i \(0.974952\pi\)
\(360\) 0 0
\(361\) 14.1010i 0.742159i
\(362\) −3.27059 + 5.06185i −0.171898 + 0.266045i
\(363\) 0 0
\(364\) 11.9830 + 4.53636i 0.628080 + 0.237770i
\(365\) −0.0130689 0.0487737i −0.000684056 0.00255293i
\(366\) 0 0
\(367\) 12.5585 + 21.7519i 0.655547 + 1.13544i 0.981756 + 0.190143i \(0.0608952\pi\)
−0.326210 + 0.945297i \(0.605772\pi\)
\(368\) −22.8015 + 7.64260i −1.18861 + 0.398398i
\(369\) 0 0
\(370\) 0.00661936 0.0205338i 0.000344124 0.00106750i
\(371\) 14.8211 + 3.97131i 0.769474 + 0.206180i
\(372\) 0 0
\(373\) −28.8046 + 7.71816i −1.49144 + 0.399631i −0.910224 0.414116i \(-0.864091\pi\)
−0.581220 + 0.813747i \(0.697424\pi\)
\(374\) −4.12892 0.206812i −0.213501 0.0106940i
\(375\) 0 0
\(376\) −2.97201 + 6.80188i −0.153270 + 0.350780i
\(377\) 16.1901i 0.833832i
\(378\) 0 0
\(379\) 10.1985 + 10.1985i 0.523864 + 0.523864i 0.918736 0.394872i \(-0.129211\pi\)
−0.394872 + 0.918736i \(0.629211\pi\)
\(380\) −0.0134369 + 0.133795i −0.000689300 + 0.00686352i
\(381\) 0 0
\(382\) 4.73422 4.28258i 0.242224 0.219116i
\(383\) −10.5750 + 18.3164i −0.540356 + 0.935924i 0.458528 + 0.888680i \(0.348377\pi\)
−0.998883 + 0.0472436i \(0.984956\pi\)
\(384\) 0 0
\(385\) −0.0135230 0.0234224i −0.000689194 0.00119372i
\(386\) 4.73236 + 1.52555i 0.240871 + 0.0776482i
\(387\) 0 0
\(388\) −28.5345 20.5305i −1.44862 1.04228i
\(389\) 8.13193 30.3488i 0.412305 1.53874i −0.377867 0.925860i \(-0.623342\pi\)
0.790173 0.612884i \(-0.209991\pi\)
\(390\) 0 0
\(391\) −8.03056 4.63645i −0.406123 0.234475i
\(392\) −15.4843 + 1.73618i −0.782078 + 0.0876904i
\(393\) 0 0
\(394\) 5.23076 8.09560i 0.263522 0.407850i
\(395\) −0.00432797 0.00432797i −0.000217764 0.000217764i
\(396\) 0 0
\(397\) −3.24113 + 3.24113i −0.162668 + 0.162668i −0.783747 0.621080i \(-0.786694\pi\)
0.621080 + 0.783747i \(0.286694\pi\)
\(398\) 6.44749 1.38605i 0.323184 0.0694765i
\(399\) 0 0
\(400\) −3.97696 + 19.6000i −0.198848 + 0.980002i
\(401\) 10.7429 18.6073i 0.536476 0.929203i −0.462614 0.886560i \(-0.653089\pi\)
0.999090 0.0426439i \(-0.0135781\pi\)
\(402\) 0 0
\(403\) −29.6789 7.95244i −1.47841 0.396139i
\(404\) 2.24392 + 13.7554i 0.111639 + 0.684357i
\(405\) 0 0
\(406\) −2.43041 4.74280i −0.120619 0.235381i
\(407\) 2.14269 1.23708i 0.106209 0.0613200i
\(408\) 0 0
\(409\) 23.1426 + 13.3614i 1.14433 + 0.660678i 0.947499 0.319760i \(-0.103602\pi\)
0.196829 + 0.980438i \(0.436936\pi\)
\(410\) −0.00306282 + 0.0611478i −0.000151262 + 0.00301988i
\(411\) 0 0
\(412\) −5.06925 0.509102i −0.249744 0.0250817i
\(413\) 7.85515 7.85515i 0.386527 0.386527i
\(414\) 0 0
\(415\) 0.131658 0.00646283
\(416\) −7.34917 + 28.7535i −0.360323 + 1.40976i
\(417\) 0 0
\(418\) −11.4361 + 10.3451i −0.559356 + 0.505994i
\(419\) −2.36864 8.83989i −0.115716 0.431857i 0.883624 0.468198i \(-0.155097\pi\)
−0.999339 + 0.0363407i \(0.988430\pi\)
\(420\) 0 0
\(421\) 7.75295 28.9344i 0.377856 1.41018i −0.471272 0.881988i \(-0.656205\pi\)
0.849127 0.528188i \(-0.177128\pi\)
\(422\) 22.7308 11.6482i 1.10652 0.567026i
\(423\) 0 0
\(424\) −5.31603 + 35.1405i −0.258169 + 1.70657i
\(425\) −6.67852 + 3.85585i −0.323956 + 0.187036i
\(426\) 0 0
\(427\) −14.7993 + 3.96545i −0.716187 + 0.191902i
\(428\) 9.31581 + 3.52665i 0.450297 + 0.170467i
\(429\) 0 0
\(430\) −0.0809629 + 0.0174050i −0.00390438 + 0.000839345i
\(431\) 7.05544 0.339849 0.169924 0.985457i \(-0.445648\pi\)
0.169924 + 0.985457i \(0.445648\pi\)
\(432\) 0 0
\(433\) 13.1552 0.632201 0.316100 0.948726i \(-0.397626\pi\)
0.316100 + 0.948726i \(0.397626\pi\)
\(434\) −9.88808 + 2.12569i −0.474643 + 0.102036i
\(435\) 0 0
\(436\) −3.14771 + 8.31484i −0.150748 + 0.398209i
\(437\) −33.4109 + 8.95243i −1.59826 + 0.428253i
\(438\) 0 0
\(439\) 12.8757 7.43381i 0.614525 0.354796i −0.160209 0.987083i \(-0.551217\pi\)
0.774734 + 0.632287i \(0.217884\pi\)
\(440\) 0.0504241 0.0371725i 0.00240387 0.00177213i
\(441\) 0 0
\(442\) −10.1843 + 5.21887i −0.484418 + 0.248236i
\(443\) −0.797625 + 2.97678i −0.0378963 + 0.141431i −0.982282 0.187409i \(-0.939991\pi\)
0.944386 + 0.328840i \(0.106658\pi\)
\(444\) 0 0
\(445\) 0.0323940 + 0.120896i 0.00153562 + 0.00573102i
\(446\) 5.99414 5.42231i 0.283831 0.256754i
\(447\) 0 0
\(448\) 2.16350 + 9.52643i 0.102216 + 0.450082i
\(449\) 21.8550 1.03140 0.515701 0.856769i \(-0.327532\pi\)
0.515701 + 0.856769i \(0.327532\pi\)
\(450\) 0 0
\(451\) −4.96480 + 4.96480i −0.233783 + 0.233783i
\(452\) 3.16130 31.4778i 0.148695 1.48059i
\(453\) 0 0
\(454\) −1.44118 + 28.7724i −0.0676378 + 1.35036i
\(455\) −0.0648360 0.0374331i −0.00303956 0.00175489i
\(456\) 0 0
\(457\) 2.32261 1.34096i 0.108647 0.0627275i −0.444692 0.895684i \(-0.646687\pi\)
0.553339 + 0.832956i \(0.313353\pi\)
\(458\) −2.47401 4.82788i −0.115603 0.225592i
\(459\) 0 0
\(460\) 0.138681 0.0226231i 0.00646605 0.00105481i
\(461\) 10.2573 + 2.74844i 0.477732 + 0.128008i 0.489646 0.871921i \(-0.337126\pi\)
−0.0119146 + 0.999929i \(0.503793\pi\)
\(462\) 0 0
\(463\) 11.8249 20.4814i 0.549550 0.951849i −0.448755 0.893655i \(-0.648132\pi\)
0.998305 0.0581943i \(-0.0185343\pi\)
\(464\) 10.2898 6.81845i 0.477692 0.316539i
\(465\) 0 0
\(466\) −7.36999 + 1.58436i −0.341408 + 0.0733942i
\(467\) −2.22540 + 2.22540i −0.102979 + 0.102979i −0.756719 0.653740i \(-0.773199\pi\)
0.653740 + 0.756719i \(0.273199\pi\)
\(468\) 0 0
\(469\) 10.6199 + 10.6199i 0.490380 + 0.490380i
\(470\) 0.0235377 0.0364291i 0.00108572 0.00168035i
\(471\) 0 0
\(472\) 20.1085 + 16.0538i 0.925568 + 0.738936i
\(473\) −8.22468 4.74852i −0.378171 0.218337i
\(474\) 0 0
\(475\) −7.44518 + 27.7858i −0.341608 + 1.27490i
\(476\) −2.20000 + 3.05768i −0.100837 + 0.140149i
\(477\) 0 0
\(478\) −37.2519 12.0087i −1.70386 0.549265i
\(479\) 6.23896 + 10.8062i 0.285066 + 0.493748i 0.972625 0.232380i \(-0.0746513\pi\)
−0.687559 + 0.726128i \(0.741318\pi\)
\(480\) 0 0
\(481\) 3.42439 5.93121i 0.156139 0.270440i
\(482\) 1.77705 1.60752i 0.0809423 0.0732205i
\(483\) 0 0
\(484\) −14.7417 1.48050i −0.670075 0.0672953i
\(485\) 0.145238 + 0.145238i 0.00659494 + 0.00659494i
\(486\) 0 0
\(487\) 12.5314i 0.567853i 0.958846 + 0.283927i \(0.0916372\pi\)
−0.958846 + 0.283927i \(0.908363\pi\)
\(488\) −12.9473 33.0418i −0.586098 1.49573i
\(489\) 0 0
\(490\) 0.0909282 + 0.00455448i 0.00410772 + 0.000205751i
\(491\) −14.6898 + 3.93613i −0.662942 + 0.177635i −0.574574 0.818453i \(-0.694832\pi\)
−0.0883688 + 0.996088i \(0.528165\pi\)
\(492\) 0 0
\(493\) 4.59756 + 1.23191i 0.207064 + 0.0554825i
\(494\) −13.0970 + 40.6279i −0.589262 + 1.82794i
\(495\) 0 0
\(496\) −7.44499 22.2120i −0.334290 0.997346i
\(497\) −8.69218 15.0553i −0.389898 0.675322i
\(498\) 0 0
\(499\) −7.88570 29.4298i −0.353012 1.31746i −0.882967 0.469434i \(-0.844458\pi\)
0.529955 0.848026i \(-0.322209\pi\)
\(500\) 0.0827466 0.218579i 0.00370054 0.00977516i
\(501\) 0 0
\(502\) −1.07235 + 1.65966i −0.0478613 + 0.0740744i
\(503\) 1.90106i 0.0847639i 0.999101 + 0.0423820i \(0.0134946\pi\)
−0.999101 + 0.0423820i \(0.986505\pi\)
\(504\) 0 0
\(505\) 0.0814355i 0.00362383i
\(506\) 13.5349 + 8.74522i 0.601699 + 0.388772i
\(507\) 0 0
\(508\) 10.4403 4.70632i 0.463214 0.208809i
\(509\) 3.34659 + 12.4896i 0.148335 + 0.553593i 0.999584 + 0.0288320i \(0.00917879\pi\)
−0.851249 + 0.524761i \(0.824155\pi\)
\(510\) 0 0
\(511\) −2.63819 4.56947i −0.116706 0.202142i
\(512\) −21.3697 + 7.43868i −0.944418 + 0.328746i
\(513\) 0 0
\(514\) 31.8234 + 10.2587i 1.40367 + 0.452494i
\(515\) 0.0287544 + 0.00770471i 0.00126707 + 0.000339510i
\(516\) 0 0
\(517\) 4.80444 1.28734i 0.211299 0.0566174i
\(518\) 0.112779 2.25158i 0.00495522 0.0989287i
\(519\) 0 0
\(520\) 0.0694305 0.158902i 0.00304473 0.00696831i
\(521\) 1.24885i 0.0547130i 0.999626 + 0.0273565i \(0.00870893\pi\)
−0.999626 + 0.0273565i \(0.991291\pi\)
\(522\) 0 0
\(523\) 9.58031 + 9.58031i 0.418918 + 0.418918i 0.884831 0.465913i \(-0.154274\pi\)
−0.465913 + 0.884831i \(0.654274\pi\)
\(524\) −8.59962 10.5198i −0.375676 0.459559i
\(525\) 0 0
\(526\) 24.3877 + 26.9596i 1.06335 + 1.17550i
\(527\) 4.51656 7.82292i 0.196745 0.340772i
\(528\) 0 0
\(529\) 6.57248 + 11.3839i 0.285760 + 0.494951i
\(530\) 0.0637143 0.197647i 0.00276757 0.00858523i
\(531\) 0 0
\(532\) 2.26226 + 13.8678i 0.0980813 + 0.601247i
\(533\) −5.03034 + 18.7735i −0.217888 + 0.813169i
\(534\) 0 0
\(535\) −0.0504047 0.0291012i −0.00217918 0.00125815i
\(536\) −21.7041 + 27.1859i −0.937475 + 1.17425i
\(537\) 0 0
\(538\) −22.9957 14.8581i −0.991413 0.640576i
\(539\) 7.38278 + 7.38278i 0.317999 + 0.317999i
\(540\) 0 0
\(541\) 13.0165 13.0165i 0.559622 0.559622i −0.369578 0.929200i \(-0.620498\pi\)
0.929200 + 0.369578i \(0.120498\pi\)
\(542\) 2.11331 + 9.83047i 0.0907743 + 0.422255i
\(543\) 0 0
\(544\) −7.60603 4.27484i −0.326106 0.183282i
\(545\) 0.0259743 0.0449887i 0.00111262 0.00192711i
\(546\) 0 0
\(547\) −9.76080 2.61540i −0.417341 0.111826i 0.0440366 0.999030i \(-0.485978\pi\)
−0.461378 + 0.887204i \(0.652645\pi\)
\(548\) 4.92199 6.84086i 0.210257 0.292227i
\(549\) 0 0
\(550\) 11.9265 6.11167i 0.508550 0.260602i
\(551\) 15.3760 8.87733i 0.655039 0.378187i
\(552\) 0 0
\(553\) −0.553890 0.319788i −0.0235538 0.0135988i
\(554\) −31.7567 1.59066i −1.34921 0.0675805i
\(555\) 0 0
\(556\) −25.0912 + 20.5114i −1.06411 + 0.869877i
\(557\) −26.6259 + 26.6259i −1.12818 + 1.12818i −0.137702 + 0.990474i \(0.543971\pi\)
−0.990474 + 0.137702i \(0.956029\pi\)
\(558\) 0 0
\(559\) −26.2889 −1.11190
\(560\) −0.00351460 0.0569722i −0.000148519 0.00240751i
\(561\) 0 0
\(562\) −21.6854 23.9724i −0.914745 1.01121i
\(563\) −5.67141 21.1660i −0.239021 0.892039i −0.976295 0.216445i \(-0.930554\pi\)
0.737274 0.675594i \(-0.236113\pi\)
\(564\) 0 0
\(565\) −0.0478429 + 0.178552i −0.00201276 + 0.00751174i
\(566\) 3.98600 + 7.77843i 0.167544 + 0.326952i
\(567\) 0 0
\(568\) 32.4112 23.8935i 1.35994 1.00255i
\(569\) 8.15901 4.71061i 0.342044 0.197479i −0.319132 0.947710i \(-0.603391\pi\)
0.661175 + 0.750231i \(0.270058\pi\)
\(570\) 0 0
\(571\) −28.4258 + 7.61666i −1.18958 + 0.318747i −0.798720 0.601702i \(-0.794489\pi\)
−0.390861 + 0.920450i \(0.627823\pi\)
\(572\) 18.1297 8.17258i 0.758042 0.341713i
\(573\) 0 0
\(574\) 1.34461 + 6.25473i 0.0561230 + 0.261067i
\(575\) 30.0595 1.25357
\(576\) 0 0
\(577\) −42.9309 −1.78724 −0.893618 0.448828i \(-0.851842\pi\)
−0.893618 + 0.448828i \(0.851842\pi\)
\(578\) 4.34582 + 20.2155i 0.180762 + 0.840852i
\(579\) 0 0
\(580\) −0.0657535 + 0.0296406i −0.00273027 + 0.00123076i
\(581\) 13.2888 3.56071i 0.551310 0.147723i
\(582\) 0 0
\(583\) 20.6244 11.9075i 0.854175 0.493158i
\(584\) 9.83721 7.25197i 0.407067 0.300089i
\(585\) 0 0
\(586\) −2.51559 4.90901i −0.103918 0.202789i
\(587\) 8.13523 30.3611i 0.335777 1.25314i −0.567247 0.823548i \(-0.691992\pi\)
0.903024 0.429589i \(-0.141342\pi\)
\(588\) 0 0
\(589\) −8.72095 32.5470i −0.359340 1.34108i
\(590\) −0.100859 0.111496i −0.00415230 0.00459020i
\(591\) 0 0
\(592\) 5.21184 0.321517i 0.214205 0.0132143i
\(593\) −0.434128 −0.0178275 −0.00891374 0.999960i \(-0.502837\pi\)
−0.00891374 + 0.999960i \(0.502837\pi\)
\(594\) 0 0
\(595\) 0.0155634 0.0155634i 0.000638037 0.000638037i
\(596\) −6.03522 + 4.93362i −0.247212 + 0.202089i
\(597\) 0 0
\(598\) 44.5505 + 2.23148i 1.82180 + 0.0912519i
\(599\) 3.46143 + 1.99846i 0.141430 + 0.0816547i 0.569045 0.822306i \(-0.307313\pi\)
−0.427615 + 0.903961i \(0.640646\pi\)
\(600\) 0 0
\(601\) 3.54563 2.04707i 0.144629 0.0835019i −0.425939 0.904752i \(-0.640056\pi\)
0.570569 + 0.821250i \(0.306723\pi\)
\(602\) −7.70119 + 3.94642i −0.313877 + 0.160844i
\(603\) 0 0
\(604\) 17.5440 24.3836i 0.713854 0.992155i
\(605\) 0.0836192 + 0.0224057i 0.00339961 + 0.000910922i
\(606\) 0 0
\(607\) 16.8996 29.2709i 0.685932 1.18807i −0.287211 0.957867i \(-0.592728\pi\)
0.973143 0.230202i \(-0.0739386\pi\)
\(608\) −31.3374 + 8.78648i −1.27090 + 0.356339i
\(609\) 0 0
\(610\) 0.0435809 + 0.202725i 0.00176454 + 0.00820810i
\(611\) 9.73570 9.73570i 0.393864 0.393864i
\(612\) 0 0
\(613\) 1.73094 + 1.73094i 0.0699119 + 0.0699119i 0.741198 0.671286i \(-0.234258\pi\)
−0.671286 + 0.741198i \(0.734258\pi\)
\(614\) −18.1611 11.7343i −0.732924 0.473560i
\(615\) 0 0
\(616\) 4.08417 5.11570i 0.164556 0.206117i
\(617\) −14.9093 8.60788i −0.600225 0.346540i 0.168905 0.985632i \(-0.445977\pi\)
−0.769130 + 0.639092i \(0.779310\pi\)
\(618\) 0 0
\(619\) −1.70053 + 6.34645i −0.0683499 + 0.255085i −0.991643 0.129010i \(-0.958820\pi\)
0.923293 + 0.384095i \(0.125487\pi\)
\(620\) 0.0220381 + 0.135095i 0.000885071 + 0.00542556i
\(621\) 0 0
\(622\) 9.78871 30.3653i 0.392491 1.21754i
\(623\) 6.53931 + 11.3264i 0.261992 + 0.453783i
\(624\) 0 0
\(625\) 12.4990 21.6489i 0.499959 0.865954i
\(626\) −5.66623 6.26379i −0.226468 0.250351i
\(627\) 0 0
\(628\) −12.4139 15.1858i −0.495370 0.605978i
\(629\) 1.42374 + 1.42374i 0.0567684 + 0.0567684i
\(630\) 0 0
\(631\) 13.3295i 0.530639i −0.964161 0.265319i \(-0.914523\pi\)
0.964161 0.265319i \(-0.0854774\pi\)
\(632\) 0.593141 1.35749i 0.0235939 0.0539980i
\(633\) 0 0
\(634\) 1.31686 26.2904i 0.0522990 1.04413i
\(635\) −0.0646345 + 0.0173188i −0.00256494 + 0.000687274i
\(636\) 0 0
\(637\) 27.9166 + 7.48023i 1.10610 + 0.296377i
\(638\) −7.87249 2.53781i −0.311675 0.100473i
\(639\) 0 0
\(640\) 0.130233 0.0227940i 0.00514790 0.000901012i
\(641\) −8.26044 14.3075i −0.326268 0.565113i 0.655500 0.755195i \(-0.272458\pi\)
−0.981768 + 0.190082i \(0.939124\pi\)
\(642\) 0 0
\(643\) 6.43213 + 24.0050i 0.253659 + 0.946667i 0.968832 + 0.247719i \(0.0796811\pi\)
−0.715173 + 0.698947i \(0.753652\pi\)
\(644\) 13.3858 6.03410i 0.527475 0.237777i
\(645\) 0 0
\(646\) −10.5407 6.81060i −0.414718 0.267959i
\(647\) 26.9660i 1.06014i 0.847954 + 0.530071i \(0.177835\pi\)
−0.847954 + 0.530071i \(0.822165\pi\)
\(648\) 0 0
\(649\) 17.2418i 0.676800i
\(650\) 20.1321 31.1582i 0.789645 1.22213i
\(651\) 0 0
\(652\) −5.23333 + 13.8241i −0.204953 + 0.541393i
\(653\) 1.41419 + 5.27782i 0.0553414 + 0.206537i 0.988060 0.154067i \(-0.0492372\pi\)
−0.932719 + 0.360604i \(0.882571\pi\)
\(654\) 0 0
\(655\) 0.0396959 + 0.0687553i 0.00155105 + 0.00268649i
\(656\) −14.0502 + 4.70935i −0.548569 + 0.183869i
\(657\) 0 0
\(658\) 1.39053 4.31352i 0.0542083 0.168159i
\(659\) −0.689165 0.184661i −0.0268460 0.00719337i 0.245371 0.969429i \(-0.421090\pi\)
−0.272217 + 0.962236i \(0.587757\pi\)
\(660\) 0 0
\(661\) −36.9228 + 9.89344i −1.43613 + 0.384810i −0.891177 0.453656i \(-0.850120\pi\)
−0.544954 + 0.838466i \(0.683453\pi\)
\(662\) −14.8960 0.746122i −0.578949 0.0289989i
\(663\) 0 0
\(664\) 11.6258 + 29.6693i 0.451170 + 1.15139i
\(665\) 0.0821010i 0.00318374i
\(666\) 0 0
\(667\) −13.1190 13.1190i −0.507970 0.507970i
\(668\) 14.5103 + 1.45726i 0.561421 + 0.0563833i
\(669\) 0 0
\(670\) 0.150738 0.136357i 0.00582351 0.00526795i
\(671\) −11.8899 + 20.5940i −0.459006 + 0.795022i
\(672\) 0 0
\(673\) −6.39173 11.0708i −0.246383 0.426748i 0.716137 0.697960i \(-0.245909\pi\)
−0.962520 + 0.271212i \(0.912575\pi\)
\(674\) −32.6329 10.5197i −1.25697 0.405204i
\(675\) 0 0
\(676\) 16.9654 23.5794i 0.652514 0.906901i
\(677\) −6.82184 + 25.4595i −0.262185 + 0.978487i 0.701766 + 0.712407i \(0.252395\pi\)
−0.963951 + 0.266079i \(0.914272\pi\)
\(678\) 0 0
\(679\) 18.5875 + 10.7315i 0.713323 + 0.411837i
\(680\) 0.0398409 + 0.0318073i 0.00152783 + 0.00121976i
\(681\) 0 0
\(682\) −8.51910 + 13.1849i −0.326213 + 0.504877i
\(683\) −9.42670 9.42670i −0.360703 0.360703i 0.503369 0.864072i \(-0.332094\pi\)
−0.864072 + 0.503369i \(0.832094\pi\)
\(684\) 0 0
\(685\) −0.0348195 + 0.0348195i −0.00133039 + 0.00133039i
\(686\) 21.1195 4.54016i 0.806345 0.173344i
\(687\) 0 0
\(688\) −11.0716 16.7082i −0.422099 0.636995i
\(689\) 32.9613 57.0906i 1.25572 2.17498i
\(690\) 0 0
\(691\) −15.1910 4.07041i −0.577891 0.154846i −0.0419780 0.999119i \(-0.513366\pi\)
−0.535913 + 0.844273i \(0.680033\pi\)
\(692\) 46.8776 7.64714i 1.78202 0.290700i
\(693\) 0 0
\(694\) −12.3990 24.1958i −0.470659 0.918462i
\(695\) 0.163992 0.0946807i 0.00622056 0.00359144i
\(696\) 0 0
\(697\) −4.94841 2.85696i −0.187434 0.108215i
\(698\) 1.14569 22.8732i 0.0433651 0.865764i
\(699\) 0 0
\(700\) 1.22020 12.1498i 0.0461192 0.459220i
\(701\) −9.62303 + 9.62303i −0.363457 + 0.363457i −0.865084 0.501627i \(-0.832735\pi\)
0.501627 + 0.865084i \(0.332735\pi\)
\(702\) 0 0
\(703\) 7.51063 0.283269
\(704\) 12.8295 + 8.08070i 0.483530 + 0.304553i
\(705\) 0 0
\(706\) 16.1383 14.5988i 0.607374 0.549431i
\(707\) −2.20244 8.21961i −0.0828312 0.309130i
\(708\) 0 0
\(709\) −10.8223 + 40.3893i −0.406439 + 1.51685i 0.394947 + 0.918704i \(0.370763\pi\)
−0.801386 + 0.598148i \(0.795904\pi\)
\(710\) −0.209386 + 0.107298i −0.00785812 + 0.00402683i
\(711\) 0 0
\(712\) −24.3836 + 17.9756i −0.913816 + 0.673663i
\(713\) −30.4931 + 17.6052i −1.14197 + 0.659319i
\(714\) 0 0
\(715\) −0.112239 + 0.0300742i −0.00419749 + 0.00112471i
\(716\) 11.4648 30.2850i 0.428462 1.13180i
\(717\) 0 0
\(718\) 4.11861 0.885398i 0.153705 0.0330428i
\(719\) −48.7757 −1.81903 −0.909514 0.415674i \(-0.863546\pi\)
−0.909514 + 0.415674i \(0.863546\pi\)
\(720\) 0 0
\(721\) 3.11067 0.115847
\(722\) −19.4964 + 4.19125i −0.725583 + 0.155982i
\(723\) 0 0
\(724\) 7.97077 + 3.01746i 0.296231 + 0.112143i
\(725\) −14.9037 + 3.99343i −0.553509 + 0.148312i
\(726\) 0 0
\(727\) 34.9918 20.2025i 1.29777 0.749270i 0.317755 0.948173i \(-0.397071\pi\)
0.980019 + 0.198902i \(0.0637377\pi\)
\(728\) 2.71037 17.9164i 0.100453 0.664024i
\(729\) 0 0
\(730\) −0.0635513 + 0.0325664i −0.00235214 + 0.00120534i
\(731\) 2.00033 7.46535i 0.0739850 0.276116i
\(732\) 0 0
\(733\) 7.60991 + 28.4006i 0.281078 + 1.04900i 0.951658 + 0.307161i \(0.0993789\pi\)
−0.670579 + 0.741838i \(0.733954\pi\)
\(734\) 26.3420 23.8290i 0.972301 0.879544i
\(735\) 0 0
\(736\) 17.3442 + 29.2544i 0.639314 + 1.07833i
\(737\) 23.3102 0.858644
\(738\) 0 0
\(739\) 15.4222 15.4222i 0.567316 0.567316i −0.364060 0.931376i \(-0.618610\pi\)
0.931376 + 0.364060i \(0.118610\pi\)
\(740\) −0.0303580 0.00304884i −0.00111598 0.000112078i
\(741\) 0 0
\(742\) 1.08555 21.6725i 0.0398517 0.795621i
\(743\) −21.5896 12.4647i −0.792045 0.457287i 0.0486373 0.998817i \(-0.484512\pi\)
−0.840682 + 0.541529i \(0.817845\pi\)
\(744\) 0 0
\(745\) 0.0394451 0.0227736i 0.00144515 0.000834361i
\(746\) 19.2329 + 37.5319i 0.704167 + 1.37414i
\(747\) 0 0
\(748\) 0.941295 + 5.77022i 0.0344172 + 0.210980i
\(749\) −5.87459 1.57409i −0.214653 0.0575161i
\(750\) 0 0
\(751\) −21.2809 + 36.8596i −0.776551 + 1.34503i 0.157368 + 0.987540i \(0.449699\pi\)
−0.933919 + 0.357486i \(0.883634\pi\)
\(752\) 10.2878 + 2.08746i 0.375159 + 0.0761217i
\(753\) 0 0
\(754\) −22.3848 + 4.81218i −0.815208 + 0.175249i
\(755\) −0.124111 + 0.124111i −0.00451686 + 0.00451686i
\(756\) 0 0
\(757\) 1.80855 + 1.80855i 0.0657328 + 0.0657328i 0.739209 0.673476i \(-0.235200\pi\)
−0.673476 + 0.739209i \(0.735200\pi\)
\(758\) 11.0694 17.1321i 0.402060 0.622265i
\(759\) 0 0
\(760\) 0.188982 0.0211896i 0.00685509 0.000768626i
\(761\) 18.5805 + 10.7275i 0.673543 + 0.388870i 0.797418 0.603428i \(-0.206199\pi\)
−0.123875 + 0.992298i \(0.539532\pi\)
\(762\) 0 0
\(763\) 1.40496 5.24337i 0.0508629 0.189823i
\(764\) −7.32835 5.27274i −0.265130 0.190761i
\(765\) 0 0
\(766\) 28.4679 + 9.17705i 1.02859 + 0.331580i
\(767\) −23.8636 41.3330i −0.861665 1.49245i
\(768\) 0 0
\(769\) −9.98382 + 17.2925i −0.360026 + 0.623583i −0.987965 0.154680i \(-0.950565\pi\)
0.627939 + 0.778263i \(0.283899\pi\)
\(770\) −0.0283650 + 0.0256590i −0.00102221 + 0.000924688i
\(771\) 0 0
\(772\) 0.702657 6.99653i 0.0252892 0.251810i
\(773\) −24.8049 24.8049i −0.892171 0.892171i 0.102557 0.994727i \(-0.467298\pi\)
−0.994727 + 0.102557i \(0.967298\pi\)
\(774\) 0 0
\(775\) 29.2823i 1.05185i
\(776\) −19.9047 + 45.5548i −0.714537 + 1.63532i
\(777\) 0 0
\(778\) −44.3781 2.22284i −1.59103 0.0796927i
\(779\) −20.5877 + 5.51646i −0.737631 + 0.197648i
\(780\) 0 0
\(781\) −26.0625 6.98342i −0.932589 0.249886i
\(782\) −4.02355 + 12.4814i −0.143882 + 0.446332i
\(783\) 0 0
\(784\) 7.00291 + 20.8930i 0.250104 + 0.746179i
\(785\) 0.0573027 + 0.0992512i 0.00204522 + 0.00354243i
\(786\) 0 0
\(787\) −2.76911 10.3344i −0.0987080 0.368383i 0.898848 0.438261i \(-0.144406\pi\)
−0.997556 + 0.0698783i \(0.977739\pi\)
\(788\) −12.7479 4.82593i −0.454126 0.171917i
\(789\) 0 0
\(790\) −0.00469756 + 0.00727036i −0.000167132 + 0.000258668i
\(791\) 19.3159i 0.686794i
\(792\) 0 0
\(793\) 65.8254i 2.33753i
\(794\) 5.44463 + 3.51791i 0.193223 + 0.124846i
\(795\) 0 0
\(796\) −3.83278 8.50250i −0.135849 0.301363i
\(797\) 12.5408 + 46.8027i 0.444216 + 1.65784i 0.717997 + 0.696046i \(0.245059\pi\)
−0.273781 + 0.961792i \(0.588274\pi\)
\(798\) 0 0
\(799\) 2.02389 + 3.50547i 0.0716000 + 0.124015i
\(800\) 28.2816 0.327083i 0.999906 0.0115641i
\(801\) 0 0
\(802\) −28.9200 9.32279i −1.02120 0.329199i
\(803\) −7.91029 2.11956i −0.279148 0.0747975i
\(804\) 0 0
\(805\) −0.0828696 + 0.0222048i −0.00292077 + 0.000782618i
\(806\) −2.17378 + 43.3985i −0.0765681 + 1.52865i
\(807\) 0 0
\(808\) 18.3516 7.19102i 0.645608 0.252979i
\(809\) 51.3577i 1.80564i 0.430019 + 0.902820i \(0.358507\pi\)
−0.430019 + 0.902820i \(0.641493\pi\)
\(810\) 0 0
\(811\) −2.55652 2.55652i −0.0897715 0.0897715i 0.660795 0.750566i \(-0.270219\pi\)
−0.750566 + 0.660795i \(0.770219\pi\)
\(812\) −5.83513 + 4.77006i −0.204773 + 0.167396i
\(813\) 0 0
\(814\) −2.34730 2.59484i −0.0822728 0.0909492i
\(815\) 0.0431843 0.0747975i 0.00151268 0.00262004i
\(816\) 0 0
\(817\) −14.4147 24.9670i −0.504306 0.873484i
\(818\) 11.5951 35.9690i 0.405414 1.25763i
\(819\) 0 0
\(820\) 0.0854549 0.0139403i 0.00298422 0.000486815i
\(821\) 0.0479933 0.179113i 0.00167498 0.00625110i −0.965083 0.261943i \(-0.915637\pi\)
0.966758 + 0.255692i \(0.0823033\pi\)
\(822\) 0 0
\(823\) 16.8590 + 9.73353i 0.587667 + 0.339290i 0.764174 0.645010i \(-0.223147\pi\)
−0.176508 + 0.984299i \(0.556480\pi\)
\(824\) 0.802836 + 7.16019i 0.0279681 + 0.249437i
\(825\) 0 0
\(826\) −13.1955 8.52595i −0.459131 0.296656i
\(827\) −7.70731 7.70731i −0.268009 0.268009i 0.560288 0.828298i \(-0.310690\pi\)
−0.828298 + 0.560288i \(0.810690\pi\)
\(828\) 0 0
\(829\) −23.8166 + 23.8166i −0.827184 + 0.827184i −0.987126 0.159942i \(-0.948869\pi\)
0.159942 + 0.987126i \(0.448869\pi\)
\(830\) −0.0391327 0.182034i −0.00135832 0.00631848i
\(831\) 0 0
\(832\) 41.9398 + 1.61473i 1.45400 + 0.0559808i
\(833\) −4.24837 + 7.35839i −0.147197 + 0.254953i
\(834\) 0 0
\(835\) −0.0823071 0.0220541i −0.00284835 0.000763214i
\(836\) 17.7025 + 12.7369i 0.612254 + 0.440516i
\(837\) 0 0
\(838\) −11.5182 + 5.90243i −0.397891 + 0.203896i
\(839\) 18.6769 10.7831i 0.644799 0.372275i −0.141662 0.989915i \(-0.545245\pi\)
0.786461 + 0.617640i \(0.211911\pi\)
\(840\) 0 0
\(841\) −16.8674 9.73839i −0.581634 0.335807i
\(842\) −42.3099 2.11925i −1.45809 0.0730341i
\(843\) 0 0
\(844\) −22.8614 27.9659i −0.786921 0.962627i
\(845\) −0.120018 + 0.120018i −0.00412873 + 0.00412873i
\(846\) 0 0
\(847\) 9.04599 0.310824
\(848\) 50.1663 3.09474i 1.72272 0.106274i
\(849\) 0 0
\(850\) 7.31625 + 8.08782i 0.250945 + 0.277410i
\(851\) −2.03131 7.58094i −0.0696323 0.259871i
\(852\) 0 0
\(853\) −10.3419 + 38.5967i −0.354102 + 1.32153i 0.527510 + 0.849549i \(0.323126\pi\)
−0.881611 + 0.471976i \(0.843541\pi\)
\(854\) 9.88153 + 19.2832i 0.338139 + 0.659857i
\(855\) 0 0
\(856\) 2.10709 13.9285i 0.0720190 0.476067i
\(857\) 14.5777 8.41643i 0.497964 0.287500i −0.229908 0.973212i \(-0.573843\pi\)
0.727872 + 0.685713i \(0.240509\pi\)
\(858\) 0 0
\(859\) 20.7346 5.55582i 0.707455 0.189562i 0.112888 0.993608i \(-0.463990\pi\)
0.594568 + 0.804046i \(0.297323\pi\)
\(860\) 0.0481293 + 0.106768i 0.00164119 + 0.00364076i
\(861\) 0 0
\(862\) −2.09709 9.75503i −0.0714272 0.332258i
\(863\) −20.3421 −0.692455 −0.346227 0.938151i \(-0.612537\pi\)
−0.346227 + 0.938151i \(0.612537\pi\)
\(864\) 0 0
\(865\) −0.277527 −0.00943620
\(866\) −3.91014 18.1888i −0.132872 0.618080i
\(867\) 0 0
\(868\) 5.87807 + 13.0397i 0.199515 + 0.442596i
\(869\) −0.958848 + 0.256922i −0.0325267 + 0.00871550i
\(870\) 0 0
\(871\) 55.8806 32.2627i 1.89344 1.09318i
\(872\) 12.4319 + 1.88069i 0.420997 + 0.0636882i
\(873\) 0 0
\(874\) 22.3086 + 43.5339i 0.754599 + 1.47255i
\(875\) −0.0369333 + 0.137837i −0.00124857 + 0.00465974i
\(876\) 0 0
\(877\) 4.98805 + 18.6156i 0.168434 + 0.628606i 0.997577 + 0.0695688i \(0.0221624\pi\)
−0.829143 + 0.559037i \(0.811171\pi\)
\(878\) −14.1052 15.5928i −0.476029 0.526230i
\(879\) 0 0
\(880\) −0.0663833 0.0586688i −0.00223778 0.00197773i
\(881\) −37.3378 −1.25794 −0.628972 0.777428i \(-0.716524\pi\)
−0.628972 + 0.777428i \(0.716524\pi\)
\(882\) 0 0
\(883\) −16.7468 + 16.7468i −0.563576 + 0.563576i −0.930321 0.366745i \(-0.880472\pi\)
0.366745 + 0.930321i \(0.380472\pi\)
\(884\) 10.2428 + 12.5299i 0.344504 + 0.421426i
\(885\) 0 0
\(886\) 4.35285 + 0.218029i 0.146237 + 0.00732482i
\(887\) 36.4841 + 21.0641i 1.22502 + 0.707263i 0.965983 0.258606i \(-0.0832630\pi\)
0.259033 + 0.965869i \(0.416596\pi\)
\(888\) 0 0
\(889\) −6.05543 + 3.49611i −0.203093 + 0.117256i
\(890\) 0.157526 0.0807228i 0.00528027 0.00270583i
\(891\) 0 0
\(892\) −9.27866 6.67598i −0.310673 0.223528i
\(893\) 14.5844 + 3.90788i 0.488049 + 0.130772i
\(894\) 0 0
\(895\) −0.0946055 + 0.163862i −0.00316231 + 0.00547729i
\(896\) 12.5284 5.82286i 0.418546 0.194528i
\(897\) 0 0
\(898\) −6.49597 30.2173i −0.216773 1.00836i
\(899\) 12.7798 12.7798i 0.426229 0.426229i
\(900\) 0 0
\(901\) 13.7042 + 13.7042i 0.456552 + 0.456552i
\(902\) 8.34016 + 5.38878i 0.277697 + 0.179427i
\(903\) 0 0
\(904\) −44.4617 + 4.98526i −1.47877 + 0.165807i
\(905\) −0.0431271 0.0248994i −0.00143359 0.000827685i
\(906\) 0 0
\(907\) −0.275009 + 1.02635i −0.00913154 + 0.0340794i −0.970341 0.241739i \(-0.922282\pi\)
0.961210 + 0.275818i \(0.0889489\pi\)
\(908\) 40.2099 6.55943i 1.33441 0.217682i
\(909\) 0 0
\(910\) −0.0324847 + 0.100770i −0.00107686 + 0.00334050i
\(911\) −1.91307 3.31354i −0.0633829 0.109782i 0.832593 0.553886i \(-0.186856\pi\)
−0.895976 + 0.444103i \(0.853522\pi\)
\(912\) 0 0
\(913\) 10.6764 18.4920i 0.353336 0.611996i
\(914\) −2.54440 2.81273i −0.0841611 0.0930368i
\(915\) 0 0
\(916\) −5.93980 + 4.85562i −0.196256 + 0.160434i
\(917\) 5.86616 + 5.86616i 0.193718 + 0.193718i
\(918\) 0 0
\(919\) 5.73779i 0.189272i 0.995512 + 0.0946361i \(0.0301688\pi\)
−0.995512 + 0.0946361i \(0.969831\pi\)
\(920\) −0.0724995 0.185020i −0.00239024 0.00609993i
\(921\) 0 0
\(922\) 0.751280 14.9990i 0.0247421 0.493965i
\(923\) −72.1438 + 19.3309i −2.37464 + 0.636284i
\(924\) 0 0
\(925\) −6.30460 1.68931i −0.207294 0.0555442i
\(926\) −31.8328 10.2618i −1.04609 0.337222i
\(927\) 0 0
\(928\) −12.4858 12.2003i −0.409867 0.400495i
\(929\) 20.2911 + 35.1451i 0.665728 + 1.15307i 0.979087 + 0.203440i \(0.0652122\pi\)
−0.313359 + 0.949635i \(0.601454\pi\)
\(930\) 0 0
\(931\) 8.20310 + 30.6144i 0.268846 + 1.00335i
\(932\) 4.38117 + 9.71901i 0.143510 + 0.318357i
\(933\) 0 0
\(934\) 3.73835 + 2.41544i 0.122323 + 0.0790355i
\(935\) 0.0341611i 0.00111719i
\(936\) 0 0
\(937\) 27.9974i 0.914635i −0.889304 0.457317i \(-0.848810\pi\)
0.889304 0.457317i \(-0.151190\pi\)
\(938\) 11.5267 17.8398i 0.376362 0.582491i
\(939\) 0 0
\(940\) −0.0573640 0.0217160i −0.00187101 0.000708299i
\(941\) −9.68215 36.1343i −0.315629 1.17794i −0.923402 0.383833i \(-0.874604\pi\)
0.607773 0.794111i \(-0.292063\pi\)
\(942\) 0 0
\(943\) 11.1362 + 19.2885i 0.362645 + 0.628119i
\(944\) 16.2195 32.5742i 0.527901 1.06020i
\(945\) 0 0
\(946\) −4.12081 + 12.7831i −0.133979 + 0.415613i
\(947\) −18.3948 4.92887i −0.597751 0.160167i −0.0527575 0.998607i \(-0.516801\pi\)
−0.544993 + 0.838441i \(0.683468\pi\)
\(948\) 0 0
\(949\) −21.8966 + 5.86717i −0.710793 + 0.190456i
\(950\) 40.6303 + 2.03512i 1.31822 + 0.0660280i
\(951\) 0 0
\(952\) 4.88154 + 2.13294i 0.158212 + 0.0691289i
\(953\) 2.49861i 0.0809380i −0.999181 0.0404690i \(-0.987115\pi\)
0.999181 0.0404690i \(-0.0128852\pi\)
\(954\) 0 0
\(955\) 0.0373008 + 0.0373008i 0.00120703 + 0.00120703i
\(956\) −5.53114 + 55.0748i −0.178890 + 1.78125i
\(957\) 0 0
\(958\) 13.0865 11.8381i 0.422807 0.382471i
\(959\) −2.57277 + 4.45617i −0.0830792 + 0.143897i
\(960\) 0 0
\(961\) −1.64996 2.85782i −0.0532246 0.0921877i
\(962\) −9.21848 2.97171i −0.297216 0.0958118i
\(963\) 0 0
\(964\) −2.75079 1.97919i −0.0885970 0.0637454i
\(965\) −0.0106340 + 0.0396865i −0.000342319 + 0.00127755i
\(966\) 0 0
\(967\) 3.08638 + 1.78192i 0.0992513 + 0.0573028i 0.548804 0.835951i \(-0.315083\pi\)
−0.449553 + 0.893254i \(0.648417\pi\)
\(968\) 2.33469 + 20.8222i 0.0750399 + 0.669252i
\(969\) 0 0
\(970\) 0.157641 0.243980i 0.00506155 0.00783372i
\(971\) 0.578866 + 0.578866i 0.0185767 + 0.0185767i 0.716334 0.697757i \(-0.245819\pi\)
−0.697757 + 0.716334i \(0.745819\pi\)
\(972\) 0 0
\(973\) 13.9917 13.9917i 0.448553 0.448553i
\(974\) 17.3263 3.72472i 0.555170 0.119348i
\(975\) 0 0
\(976\) −41.8361 + 27.7223i −1.33914 + 0.887370i
\(977\) −10.3841 + 17.9859i −0.332218 + 0.575418i −0.982946 0.183892i \(-0.941130\pi\)
0.650728 + 0.759310i \(0.274464\pi\)
\(978\) 0 0
\(979\) 19.6074 + 5.25377i 0.626654 + 0.167911i
\(980\) −0.0207295 0.127073i −0.000662179 0.00405921i
\(981\) 0 0
\(982\) 9.80845 + 19.1406i 0.313000 + 0.610801i
\(983\) 9.13353 5.27325i 0.291314 0.168190i −0.347220 0.937784i \(-0.612874\pi\)
0.638534 + 0.769593i \(0.279541\pi\)
\(984\) 0 0
\(985\) 0.0689747 + 0.0398225i 0.00219772 + 0.00126885i
\(986\) 0.336740 6.72286i 0.0107240 0.214100i
\(987\) 0 0
\(988\) 60.0661 + 6.03240i 1.91096 + 0.191916i
\(989\) −21.3022 + 21.3022i −0.677369 + 0.677369i
\(990\) 0 0
\(991\) −24.1374 −0.766749 −0.383374 0.923593i \(-0.625238\pi\)
−0.383374 + 0.923593i \(0.625238\pi\)
\(992\) −28.4979 + 16.8957i −0.904811 + 0.536439i
\(993\) 0 0
\(994\) −18.2323 + 16.4929i −0.578292 + 0.523124i
\(995\) 0.0141042 + 0.0526377i 0.000447134 + 0.00166873i
\(996\) 0 0
\(997\) 6.02848 22.4986i 0.190924 0.712538i −0.802361 0.596840i \(-0.796423\pi\)
0.993284 0.115698i \(-0.0369105\pi\)
\(998\) −38.3466 + 19.6504i −1.21384 + 0.622023i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 432.2.y.e.37.7 72
3.2 odd 2 144.2.x.e.85.12 yes 72
4.3 odd 2 1728.2.bc.e.1009.9 72
9.2 odd 6 144.2.x.e.133.13 yes 72
9.7 even 3 inner 432.2.y.e.181.6 72
12.11 even 2 576.2.bb.e.49.4 72
16.3 odd 4 1728.2.bc.e.145.10 72
16.13 even 4 inner 432.2.y.e.253.6 72
36.7 odd 6 1728.2.bc.e.1585.10 72
36.11 even 6 576.2.bb.e.241.14 72
48.29 odd 4 144.2.x.e.13.13 72
48.35 even 4 576.2.bb.e.337.14 72
144.29 odd 12 144.2.x.e.61.12 yes 72
144.61 even 12 inner 432.2.y.e.397.7 72
144.83 even 12 576.2.bb.e.529.4 72
144.115 odd 12 1728.2.bc.e.721.9 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
144.2.x.e.13.13 72 48.29 odd 4
144.2.x.e.61.12 yes 72 144.29 odd 12
144.2.x.e.85.12 yes 72 3.2 odd 2
144.2.x.e.133.13 yes 72 9.2 odd 6
432.2.y.e.37.7 72 1.1 even 1 trivial
432.2.y.e.181.6 72 9.7 even 3 inner
432.2.y.e.253.6 72 16.13 even 4 inner
432.2.y.e.397.7 72 144.61 even 12 inner
576.2.bb.e.49.4 72 12.11 even 2
576.2.bb.e.241.14 72 36.11 even 6
576.2.bb.e.337.14 72 48.35 even 4
576.2.bb.e.529.4 72 144.83 even 12
1728.2.bc.e.145.10 72 16.3 odd 4
1728.2.bc.e.721.9 72 144.115 odd 12
1728.2.bc.e.1009.9 72 4.3 odd 2
1728.2.bc.e.1585.10 72 36.7 odd 6