Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [441,2,Mod(214,441)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(441, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 4]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("441.214");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 441 = 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 441.h (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.52140272914\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{3})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
214.1 | −2.71513 | −1.16958 | − | 1.27753i | 5.37195 | −0.793197 | + | 1.37386i | 3.17555 | + | 3.46867i | 0 | −9.15528 | −0.264183 | + | 2.98835i | 2.15363 | − | 3.73020i | ||||||||
214.2 | −2.71513 | 1.16958 | + | 1.27753i | 5.37195 | 0.793197 | − | 1.37386i | −3.17555 | − | 3.46867i | 0 | −9.15528 | −0.264183 | + | 2.98835i | −2.15363 | + | 3.73020i | ||||||||
214.3 | −1.72661 | −1.70981 | + | 0.276691i | 0.981184 | −1.75616 | + | 3.04175i | 2.95217 | − | 0.477737i | 0 | 1.75910 | 2.84688 | − | 0.946176i | 3.03220 | − | 5.25192i | ||||||||
214.4 | −1.72661 | 1.70981 | − | 0.276691i | 0.981184 | 1.75616 | − | 3.04175i | −2.95217 | + | 0.477737i | 0 | 1.75910 | 2.84688 | − | 0.946176i | −3.03220 | + | 5.25192i | ||||||||
214.5 | −1.10281 | −1.22001 | + | 1.22947i | −0.783802 | −0.0527330 | + | 0.0913363i | 1.34544 | − | 1.35587i | 0 | 3.07001 | −0.0231690 | − | 2.99991i | 0.0581547 | − | 0.100727i | ||||||||
214.6 | −1.10281 | 1.22001 | − | 1.22947i | −0.783802 | 0.0527330 | − | 0.0913363i | −1.34544 | + | 1.35587i | 0 | 3.07001 | −0.0231690 | − | 2.99991i | −0.0581547 | + | 0.100727i | ||||||||
214.7 | 0.0683740 | −0.539550 | + | 1.64587i | −1.99532 | 1.33190 | − | 2.30691i | −0.0368912 | + | 0.112535i | 0 | −0.273176 | −2.41777 | − | 1.77606i | 0.0910670 | − | 0.157733i | ||||||||
214.8 | 0.0683740 | 0.539550 | − | 1.64587i | −1.99532 | −1.33190 | + | 2.30691i | 0.0368912 | − | 0.112535i | 0 | −0.273176 | −2.41777 | − | 1.77606i | −0.0910670 | + | 0.157733i | ||||||||
214.9 | 1.29987 | −1.47364 | − | 0.910162i | −0.310333 | 1.76292 | − | 3.05347i | −1.91554 | − | 1.18309i | 0 | −3.00314 | 1.34321 | + | 2.68250i | 2.29157 | − | 3.96912i | ||||||||
214.10 | 1.29987 | 1.47364 | + | 0.910162i | −0.310333 | −1.76292 | + | 3.05347i | 1.91554 | + | 1.18309i | 0 | −3.00314 | 1.34321 | + | 2.68250i | −2.29157 | + | 3.96912i | ||||||||
214.11 | 2.17631 | −0.507459 | + | 1.65605i | 2.73633 | −0.634145 | + | 1.09837i | −1.10439 | + | 3.60407i | 0 | 1.60248 | −2.48497 | − | 1.68075i | −1.38010 | + | 2.39040i | ||||||||
214.12 | 2.17631 | 0.507459 | − | 1.65605i | 2.73633 | 0.634145 | − | 1.09837i | 1.10439 | − | 3.60407i | 0 | 1.60248 | −2.48497 | − | 1.68075i | 1.38010 | − | 2.39040i | ||||||||
373.1 | −2.71513 | −1.16958 | + | 1.27753i | 5.37195 | −0.793197 | − | 1.37386i | 3.17555 | − | 3.46867i | 0 | −9.15528 | −0.264183 | − | 2.98835i | 2.15363 | + | 3.73020i | ||||||||
373.2 | −2.71513 | 1.16958 | − | 1.27753i | 5.37195 | 0.793197 | + | 1.37386i | −3.17555 | + | 3.46867i | 0 | −9.15528 | −0.264183 | − | 2.98835i | −2.15363 | − | 3.73020i | ||||||||
373.3 | −1.72661 | −1.70981 | − | 0.276691i | 0.981184 | −1.75616 | − | 3.04175i | 2.95217 | + | 0.477737i | 0 | 1.75910 | 2.84688 | + | 0.946176i | 3.03220 | + | 5.25192i | ||||||||
373.4 | −1.72661 | 1.70981 | + | 0.276691i | 0.981184 | 1.75616 | + | 3.04175i | −2.95217 | − | 0.477737i | 0 | 1.75910 | 2.84688 | + | 0.946176i | −3.03220 | − | 5.25192i | ||||||||
373.5 | −1.10281 | −1.22001 | − | 1.22947i | −0.783802 | −0.0527330 | − | 0.0913363i | 1.34544 | + | 1.35587i | 0 | 3.07001 | −0.0231690 | + | 2.99991i | 0.0581547 | + | 0.100727i | ||||||||
373.6 | −1.10281 | 1.22001 | + | 1.22947i | −0.783802 | 0.0527330 | + | 0.0913363i | −1.34544 | − | 1.35587i | 0 | 3.07001 | −0.0231690 | + | 2.99991i | −0.0581547 | − | 0.100727i | ||||||||
373.7 | 0.0683740 | −0.539550 | − | 1.64587i | −1.99532 | 1.33190 | + | 2.30691i | −0.0368912 | − | 0.112535i | 0 | −0.273176 | −2.41777 | + | 1.77606i | 0.0910670 | + | 0.157733i | ||||||||
373.8 | 0.0683740 | 0.539550 | + | 1.64587i | −1.99532 | −1.33190 | − | 2.30691i | 0.0368912 | + | 0.112535i | 0 | −0.273176 | −2.41777 | + | 1.77606i | −0.0910670 | − | 0.157733i | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
63.h | even | 3 | 1 | inner |
63.t | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 441.2.h.h | 24 | |
3.b | odd | 2 | 1 | 1323.2.h.h | 24 | ||
7.b | odd | 2 | 1 | inner | 441.2.h.h | 24 | |
7.c | even | 3 | 1 | 441.2.f.h | ✓ | 24 | |
7.c | even | 3 | 1 | 441.2.g.h | 24 | ||
7.d | odd | 6 | 1 | 441.2.f.h | ✓ | 24 | |
7.d | odd | 6 | 1 | 441.2.g.h | 24 | ||
9.c | even | 3 | 1 | 441.2.g.h | 24 | ||
9.d | odd | 6 | 1 | 1323.2.g.h | 24 | ||
21.c | even | 2 | 1 | 1323.2.h.h | 24 | ||
21.g | even | 6 | 1 | 1323.2.f.h | 24 | ||
21.g | even | 6 | 1 | 1323.2.g.h | 24 | ||
21.h | odd | 6 | 1 | 1323.2.f.h | 24 | ||
21.h | odd | 6 | 1 | 1323.2.g.h | 24 | ||
63.g | even | 3 | 1 | 441.2.f.h | ✓ | 24 | |
63.h | even | 3 | 1 | inner | 441.2.h.h | 24 | |
63.h | even | 3 | 1 | 3969.2.a.bh | 12 | ||
63.i | even | 6 | 1 | 1323.2.h.h | 24 | ||
63.i | even | 6 | 1 | 3969.2.a.bi | 12 | ||
63.j | odd | 6 | 1 | 1323.2.h.h | 24 | ||
63.j | odd | 6 | 1 | 3969.2.a.bi | 12 | ||
63.k | odd | 6 | 1 | 441.2.f.h | ✓ | 24 | |
63.l | odd | 6 | 1 | 441.2.g.h | 24 | ||
63.n | odd | 6 | 1 | 1323.2.f.h | 24 | ||
63.o | even | 6 | 1 | 1323.2.g.h | 24 | ||
63.s | even | 6 | 1 | 1323.2.f.h | 24 | ||
63.t | odd | 6 | 1 | inner | 441.2.h.h | 24 | |
63.t | odd | 6 | 1 | 3969.2.a.bh | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
441.2.f.h | ✓ | 24 | 7.c | even | 3 | 1 | |
441.2.f.h | ✓ | 24 | 7.d | odd | 6 | 1 | |
441.2.f.h | ✓ | 24 | 63.g | even | 3 | 1 | |
441.2.f.h | ✓ | 24 | 63.k | odd | 6 | 1 | |
441.2.g.h | 24 | 7.c | even | 3 | 1 | ||
441.2.g.h | 24 | 7.d | odd | 6 | 1 | ||
441.2.g.h | 24 | 9.c | even | 3 | 1 | ||
441.2.g.h | 24 | 63.l | odd | 6 | 1 | ||
441.2.h.h | 24 | 1.a | even | 1 | 1 | trivial | |
441.2.h.h | 24 | 7.b | odd | 2 | 1 | inner | |
441.2.h.h | 24 | 63.h | even | 3 | 1 | inner | |
441.2.h.h | 24 | 63.t | odd | 6 | 1 | inner | |
1323.2.f.h | 24 | 21.g | even | 6 | 1 | ||
1323.2.f.h | 24 | 21.h | odd | 6 | 1 | ||
1323.2.f.h | 24 | 63.n | odd | 6 | 1 | ||
1323.2.f.h | 24 | 63.s | even | 6 | 1 | ||
1323.2.g.h | 24 | 9.d | odd | 6 | 1 | ||
1323.2.g.h | 24 | 21.g | even | 6 | 1 | ||
1323.2.g.h | 24 | 21.h | odd | 6 | 1 | ||
1323.2.g.h | 24 | 63.o | even | 6 | 1 | ||
1323.2.h.h | 24 | 3.b | odd | 2 | 1 | ||
1323.2.h.h | 24 | 21.c | even | 2 | 1 | ||
1323.2.h.h | 24 | 63.i | even | 6 | 1 | ||
1323.2.h.h | 24 | 63.j | odd | 6 | 1 | ||
3969.2.a.bh | 12 | 63.h | even | 3 | 1 | ||
3969.2.a.bh | 12 | 63.t | odd | 6 | 1 | ||
3969.2.a.bi | 12 | 63.i | even | 6 | 1 | ||
3969.2.a.bi | 12 | 63.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(441, [\chi])\):
\( T_{2}^{6} + 2T_{2}^{5} - 7T_{2}^{4} - 12T_{2}^{3} + 10T_{2}^{2} + 14T_{2} - 1 \) |
\( T_{5}^{24} + 36 T_{5}^{22} + 831 T_{5}^{20} + 11580 T_{5}^{18} + 117495 T_{5}^{16} + 782970 T_{5}^{14} + \cdots + 2401 \) |