Properties

Label 441.3.t.a.166.12
Level $441$
Weight $3$
Character 441.166
Analytic conductor $12.016$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [441,3,Mod(166,441)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(441, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("441.166");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 441.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0163796583\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 166.12
Character \(\chi\) \(=\) 441.166
Dual form 441.3.t.a.178.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65681 q^{2} +(2.49911 + 1.65965i) q^{3} +3.05866 q^{4} +(-7.97090 + 4.60200i) q^{5} +(6.63967 + 4.40939i) q^{6} -2.50096 q^{8} +(3.49110 + 8.29531i) q^{9} +O(q^{10})\) \(q+2.65681 q^{2} +(2.49911 + 1.65965i) q^{3} +3.05866 q^{4} +(-7.97090 + 4.60200i) q^{5} +(6.63967 + 4.40939i) q^{6} -2.50096 q^{8} +(3.49110 + 8.29531i) q^{9} +(-21.1772 + 12.2267i) q^{10} +(-3.52733 + 6.10952i) q^{11} +(7.64393 + 5.07632i) q^{12} +(4.15930 + 2.40137i) q^{13} +(-27.5579 - 1.72803i) q^{15} -18.8792 q^{16} +(2.74329 - 1.58384i) q^{17} +(9.27520 + 22.0391i) q^{18} +(-1.70864 - 0.986484i) q^{19} +(-24.3803 + 14.0760i) q^{20} +(-9.37147 + 16.2319i) q^{22} +(2.51399 + 4.35435i) q^{23} +(-6.25018 - 4.15073i) q^{24} +(29.8569 - 51.7136i) q^{25} +(11.0505 + 6.38000i) q^{26} +(-5.04271 + 26.5249i) q^{27} +(22.9425 + 39.7376i) q^{29} +(-73.2162 - 4.59105i) q^{30} +15.2726i q^{31} -40.1548 q^{32} +(-18.9549 + 9.41421i) q^{33} +(7.28840 - 4.20796i) q^{34} +(10.6781 + 25.3726i) q^{36} +(17.6998 - 30.6570i) q^{37} +(-4.53954 - 2.62090i) q^{38} +(6.40909 + 12.9043i) q^{39} +(19.9349 - 11.5094i) q^{40} +(48.4509 + 27.9732i) q^{41} +(-3.45068 - 5.97676i) q^{43} +(-10.7889 + 18.6870i) q^{44} +(-66.0023 - 50.0551i) q^{45} +(6.67920 + 11.5687i) q^{46} +51.3447i q^{47} +(-47.1813 - 31.3330i) q^{48} +(79.3241 - 137.393i) q^{50} +(9.48440 + 0.594723i) q^{51} +(12.7219 + 7.34498i) q^{52} +(-10.3556 - 17.9365i) q^{53} +(-13.3975 + 70.4718i) q^{54} -64.9312i q^{55} +(-2.63286 - 5.30108i) q^{57} +(60.9540 + 105.575i) q^{58} -49.3508i q^{59} +(-84.2903 - 5.28546i) q^{60} -2.30422i q^{61} +40.5764i q^{62} -31.1668 q^{64} -44.2045 q^{65} +(-50.3596 + 25.0118i) q^{66} +30.8279 q^{67} +(8.39079 - 4.84442i) q^{68} +(-0.943990 + 15.0544i) q^{69} +81.2604 q^{71} +(-8.73110 - 20.7463i) q^{72} +(61.7481 - 35.6503i) q^{73} +(47.0251 - 81.4499i) q^{74} +(160.442 - 79.6859i) q^{75} +(-5.22615 - 3.01732i) q^{76} +(17.0278 + 34.2843i) q^{78} -29.0358 q^{79} +(150.485 - 86.8823i) q^{80} +(-56.6245 + 57.9195i) q^{81} +(128.725 + 74.3195i) q^{82} +(55.9283 - 32.2902i) q^{83} +(-14.5776 + 25.2492i) q^{85} +(-9.16783 - 15.8791i) q^{86} +(-8.61480 + 137.385i) q^{87} +(8.82172 - 15.2797i) q^{88} +(-89.0979 - 51.4407i) q^{89} +(-175.356 - 132.987i) q^{90} +(7.68944 + 13.3185i) q^{92} +(-25.3472 + 38.1679i) q^{93} +136.413i q^{94} +18.1592 q^{95} +(-100.351 - 66.6430i) q^{96} +(-48.7891 + 28.1684i) q^{97} +(-62.9946 - 7.93140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{2} + 3 q^{3} + 46 q^{4} + 3 q^{5} + 12 q^{6} - 16 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{2} + 3 q^{3} + 46 q^{4} + 3 q^{5} + 12 q^{6} - 16 q^{8} - 15 q^{9} + 6 q^{10} + 7 q^{11} + 30 q^{12} + 15 q^{13} - 18 q^{15} + 54 q^{16} + 33 q^{17} - 42 q^{18} + 6 q^{19} + 108 q^{20} - 10 q^{22} + 34 q^{23} + 78 q^{24} + 31 q^{25} - 54 q^{26} - 81 q^{27} + 70 q^{29} - 27 q^{30} - 306 q^{32} + 3 q^{33} + 12 q^{34} - 174 q^{36} + 9 q^{37} - 87 q^{38} + 129 q^{39} + 102 q^{40} - 234 q^{41} + 30 q^{43} + 51 q^{44} - 273 q^{45} - 22 q^{46} + 147 q^{48} + 241 q^{50} + 12 q^{51} + 219 q^{52} + 148 q^{53} - 171 q^{54} + 189 q^{57} + 17 q^{58} + 33 q^{60} - 48 q^{64} - 228 q^{65} - 258 q^{66} + 68 q^{67} + 18 q^{68} + 78 q^{69} - 350 q^{71} + 162 q^{72} + 6 q^{73} + 359 q^{74} + 510 q^{75} + 72 q^{76} - 375 q^{78} + 164 q^{79} + 609 q^{80} - 435 q^{81} + 18 q^{82} + 738 q^{83} + 3 q^{85} + 17 q^{86} + 561 q^{87} + 25 q^{88} - 21 q^{89} - 543 q^{90} + 288 q^{92} - 222 q^{93} - 1014 q^{95} - 231 q^{96} - 57 q^{97} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65681 1.32841 0.664204 0.747552i \(-0.268771\pi\)
0.664204 + 0.747552i \(0.268771\pi\)
\(3\) 2.49911 + 1.65965i 0.833037 + 0.553218i
\(4\) 3.05866 0.764665
\(5\) −7.97090 + 4.60200i −1.59418 + 0.920400i −0.601602 + 0.798796i \(0.705471\pi\)
−0.992579 + 0.121604i \(0.961196\pi\)
\(6\) 6.63967 + 4.40939i 1.10661 + 0.734899i
\(7\) 0 0
\(8\) −2.50096 −0.312620
\(9\) 3.49110 + 8.29531i 0.387900 + 0.921702i
\(10\) −21.1772 + 12.2267i −2.11772 + 1.22267i
\(11\) −3.52733 + 6.10952i −0.320667 + 0.555411i −0.980626 0.195891i \(-0.937240\pi\)
0.659959 + 0.751301i \(0.270574\pi\)
\(12\) 7.64393 + 5.07632i 0.636994 + 0.423027i
\(13\) 4.15930 + 2.40137i 0.319946 + 0.184721i 0.651368 0.758762i \(-0.274195\pi\)
−0.331423 + 0.943482i \(0.607529\pi\)
\(14\) 0 0
\(15\) −27.5579 1.72803i −1.83719 0.115202i
\(16\) −18.8792 −1.17995
\(17\) 2.74329 1.58384i 0.161370 0.0931669i −0.417140 0.908842i \(-0.636968\pi\)
0.578510 + 0.815675i \(0.303634\pi\)
\(18\) 9.27520 + 22.0391i 0.515289 + 1.22439i
\(19\) −1.70864 0.986484i −0.0899284 0.0519202i 0.454361 0.890817i \(-0.349867\pi\)
−0.544290 + 0.838897i \(0.683201\pi\)
\(20\) −24.3803 + 14.0760i −1.21901 + 0.703798i
\(21\) 0 0
\(22\) −9.37147 + 16.2319i −0.425976 + 0.737812i
\(23\) 2.51399 + 4.35435i 0.109304 + 0.189320i 0.915488 0.402344i \(-0.131805\pi\)
−0.806185 + 0.591664i \(0.798471\pi\)
\(24\) −6.25018 4.15073i −0.260424 0.172947i
\(25\) 29.8569 51.7136i 1.19427 2.06854i
\(26\) 11.0505 + 6.38000i 0.425018 + 0.245384i
\(27\) −5.04271 + 26.5249i −0.186767 + 0.982404i
\(28\) 0 0
\(29\) 22.9425 + 39.7376i 0.791121 + 1.37026i 0.925273 + 0.379301i \(0.123836\pi\)
−0.134152 + 0.990961i \(0.542831\pi\)
\(30\) −73.2162 4.59105i −2.44054 0.153035i
\(31\) 15.2726i 0.492664i 0.969185 + 0.246332i \(0.0792254\pi\)
−0.969185 + 0.246332i \(0.920775\pi\)
\(32\) −40.1548 −1.25484
\(33\) −18.9549 + 9.41421i −0.574390 + 0.285279i
\(34\) 7.28840 4.20796i 0.214365 0.123764i
\(35\) 0 0
\(36\) 10.6781 + 25.3726i 0.296614 + 0.704793i
\(37\) 17.6998 30.6570i 0.478373 0.828567i −0.521319 0.853362i \(-0.674560\pi\)
0.999693 + 0.0247946i \(0.00789319\pi\)
\(38\) −4.53954 2.62090i −0.119462 0.0689711i
\(39\) 6.40909 + 12.9043i 0.164336 + 0.330879i
\(40\) 19.9349 11.5094i 0.498373 0.287736i
\(41\) 48.4509 + 27.9732i 1.18173 + 0.682272i 0.956414 0.292014i \(-0.0943253\pi\)
0.225316 + 0.974286i \(0.427659\pi\)
\(42\) 0 0
\(43\) −3.45068 5.97676i −0.0802485 0.138994i 0.823108 0.567885i \(-0.192238\pi\)
−0.903357 + 0.428890i \(0.858905\pi\)
\(44\) −10.7889 + 18.6870i −0.245203 + 0.424703i
\(45\) −66.0023 50.0551i −1.46672 1.11234i
\(46\) 6.67920 + 11.5687i 0.145200 + 0.251494i
\(47\) 51.3447i 1.09244i 0.837642 + 0.546220i \(0.183934\pi\)
−0.837642 + 0.546220i \(0.816066\pi\)
\(48\) −47.1813 31.3330i −0.982943 0.652771i
\(49\) 0 0
\(50\) 79.3241 137.393i 1.58648 2.74787i
\(51\) 9.48440 + 0.594723i 0.185969 + 0.0116612i
\(52\) 12.7219 + 7.34498i 0.244652 + 0.141250i
\(53\) −10.3556 17.9365i −0.195390 0.338425i 0.751639 0.659575i \(-0.229264\pi\)
−0.947028 + 0.321151i \(0.895930\pi\)
\(54\) −13.3975 + 70.4718i −0.248103 + 1.30503i
\(55\) 64.9312i 1.18057i
\(56\) 0 0
\(57\) −2.63286 5.30108i −0.0461905 0.0930014i
\(58\) 60.9540 + 105.575i 1.05093 + 1.82027i
\(59\) 49.3508i 0.836454i −0.908342 0.418227i \(-0.862652\pi\)
0.908342 0.418227i \(-0.137348\pi\)
\(60\) −84.2903 5.28546i −1.40484 0.0880909i
\(61\) 2.30422i 0.0377741i −0.999822 0.0188871i \(-0.993988\pi\)
0.999822 0.0188871i \(-0.00601229\pi\)
\(62\) 40.5764i 0.654459i
\(63\) 0 0
\(64\) −31.1668 −0.486982
\(65\) −44.2045 −0.680069
\(66\) −50.3596 + 25.0118i −0.763024 + 0.378967i
\(67\) 30.8279 0.460117 0.230059 0.973177i \(-0.426108\pi\)
0.230059 + 0.973177i \(0.426108\pi\)
\(68\) 8.39079 4.84442i 0.123394 0.0712415i
\(69\) −0.943990 + 15.0544i −0.0136810 + 0.218179i
\(70\) 0 0
\(71\) 81.2604 1.14451 0.572256 0.820075i \(-0.306068\pi\)
0.572256 + 0.820075i \(0.306068\pi\)
\(72\) −8.73110 20.7463i −0.121265 0.288142i
\(73\) 61.7481 35.6503i 0.845864 0.488360i −0.0133893 0.999910i \(-0.504262\pi\)
0.859253 + 0.511551i \(0.170929\pi\)
\(74\) 47.0251 81.4499i 0.635475 1.10067i
\(75\) 160.442 79.6859i 2.13923 1.06248i
\(76\) −5.22615 3.01732i −0.0687651 0.0397016i
\(77\) 0 0
\(78\) 17.0278 + 34.2843i 0.218305 + 0.439542i
\(79\) −29.0358 −0.367542 −0.183771 0.982969i \(-0.558831\pi\)
−0.183771 + 0.982969i \(0.558831\pi\)
\(80\) 150.485 86.8823i 1.88106 1.08603i
\(81\) −56.6245 + 57.9195i −0.699067 + 0.715056i
\(82\) 128.725 + 74.3195i 1.56982 + 0.906335i
\(83\) 55.9283 32.2902i 0.673835 0.389039i −0.123693 0.992321i \(-0.539474\pi\)
0.797528 + 0.603282i \(0.206140\pi\)
\(84\) 0 0
\(85\) −14.5776 + 25.2492i −0.171502 + 0.297050i
\(86\) −9.16783 15.8791i −0.106603 0.184641i
\(87\) −8.61480 + 137.385i −0.0990207 + 1.57914i
\(88\) 8.82172 15.2797i 0.100247 0.173633i
\(89\) −89.0979 51.4407i −1.00110 0.577985i −0.0925265 0.995710i \(-0.529494\pi\)
−0.908574 + 0.417725i \(0.862828\pi\)
\(90\) −175.356 132.987i −1.94840 1.47763i
\(91\) 0 0
\(92\) 7.68944 + 13.3185i 0.0835808 + 0.144766i
\(93\) −25.3472 + 38.1679i −0.272551 + 0.410407i
\(94\) 136.413i 1.45121i
\(95\) 18.1592 0.191149
\(96\) −100.351 66.6430i −1.04532 0.694198i
\(97\) −48.7891 + 28.1684i −0.502981 + 0.290396i −0.729944 0.683507i \(-0.760454\pi\)
0.226963 + 0.973903i \(0.427120\pi\)
\(98\) 0 0
\(99\) −62.9946 7.93140i −0.636310 0.0801151i
\(100\) 91.3220 158.174i 0.913220 1.58174i
\(101\) −96.9924 55.9986i −0.960321 0.554442i −0.0640493 0.997947i \(-0.520401\pi\)
−0.896272 + 0.443505i \(0.853735\pi\)
\(102\) 25.1983 + 1.58007i 0.247042 + 0.0154909i
\(103\) −74.9527 + 43.2740i −0.727696 + 0.420136i −0.817579 0.575817i \(-0.804684\pi\)
0.0898825 + 0.995952i \(0.471351\pi\)
\(104\) −10.4022 6.00573i −0.100022 0.0577474i
\(105\) 0 0
\(106\) −27.5130 47.6540i −0.259557 0.449566i
\(107\) −25.4526 + 44.0852i −0.237875 + 0.412012i −0.960104 0.279642i \(-0.909784\pi\)
0.722229 + 0.691654i \(0.243118\pi\)
\(108\) −15.4239 + 81.1307i −0.142814 + 0.751211i
\(109\) 21.9214 + 37.9690i 0.201114 + 0.348340i 0.948888 0.315614i \(-0.102211\pi\)
−0.747774 + 0.663954i \(0.768877\pi\)
\(110\) 172.510i 1.56827i
\(111\) 95.1138 47.2396i 0.856881 0.425582i
\(112\) 0 0
\(113\) −53.2988 + 92.3163i −0.471671 + 0.816959i −0.999475 0.0324080i \(-0.989682\pi\)
0.527803 + 0.849367i \(0.323016\pi\)
\(114\) −6.99501 14.0840i −0.0613597 0.123544i
\(115\) −40.0775 23.1387i −0.348500 0.201207i
\(116\) 70.1734 + 121.544i 0.604943 + 1.04779i
\(117\) −5.39961 + 42.8861i −0.0461505 + 0.366548i
\(118\) 131.116i 1.11115i
\(119\) 0 0
\(120\) 68.9212 + 4.32173i 0.574343 + 0.0360144i
\(121\) 35.6159 + 61.6885i 0.294346 + 0.509822i
\(122\) 6.12189i 0.0501794i
\(123\) 74.6584 + 150.320i 0.606979 + 1.22211i
\(124\) 46.7137i 0.376723i
\(125\) 319.505i 2.55604i
\(126\) 0 0
\(127\) −184.052 −1.44923 −0.724614 0.689155i \(-0.757982\pi\)
−0.724614 + 0.689155i \(0.757982\pi\)
\(128\) 77.8146 0.607927
\(129\) 1.29571 20.6635i 0.0100443 0.160182i
\(130\) −117.443 −0.903408
\(131\) 6.29953 3.63703i 0.0480880 0.0277636i −0.475763 0.879573i \(-0.657828\pi\)
0.523851 + 0.851810i \(0.324495\pi\)
\(132\) −57.9766 + 28.7949i −0.439216 + 0.218143i
\(133\) 0 0
\(134\) 81.9039 0.611223
\(135\) −81.8728 234.634i −0.606465 1.73803i
\(136\) −6.86085 + 3.96111i −0.0504474 + 0.0291258i
\(137\) 23.6360 40.9388i 0.172526 0.298823i −0.766777 0.641914i \(-0.778141\pi\)
0.939302 + 0.343091i \(0.111474\pi\)
\(138\) −2.50801 + 39.9966i −0.0181740 + 0.289831i
\(139\) 219.353 + 126.643i 1.57808 + 0.911103i 0.995128 + 0.0985934i \(0.0314343\pi\)
0.582948 + 0.812509i \(0.301899\pi\)
\(140\) 0 0
\(141\) −85.2144 + 128.316i −0.604358 + 0.910043i
\(142\) 215.894 1.52038
\(143\) −29.3424 + 16.9409i −0.205192 + 0.118468i
\(144\) −65.9093 156.609i −0.457703 1.08756i
\(145\) −365.745 211.163i −2.52238 1.45630i
\(146\) 164.053 94.7161i 1.12365 0.648741i
\(147\) 0 0
\(148\) 54.1378 93.7693i 0.365796 0.633577i
\(149\) 128.422 + 222.433i 0.861892 + 1.49284i 0.870100 + 0.492874i \(0.164054\pi\)
−0.00820848 + 0.999966i \(0.502613\pi\)
\(150\) 426.265 211.711i 2.84177 1.41140i
\(151\) 59.1932 102.526i 0.392008 0.678978i −0.600706 0.799470i \(-0.705114\pi\)
0.992714 + 0.120492i \(0.0384471\pi\)
\(152\) 4.27324 + 2.46716i 0.0281134 + 0.0162313i
\(153\) 22.7155 + 17.2271i 0.148467 + 0.112595i
\(154\) 0 0
\(155\) −70.2845 121.736i −0.453448 0.785396i
\(156\) 19.6032 + 39.4698i 0.125662 + 0.253012i
\(157\) 51.0244i 0.324996i −0.986709 0.162498i \(-0.948045\pi\)
0.986709 0.162498i \(-0.0519551\pi\)
\(158\) −77.1428 −0.488246
\(159\) 3.88849 62.0121i 0.0244559 0.390013i
\(160\) 320.070 184.792i 2.00044 1.15495i
\(161\) 0 0
\(162\) −150.441 + 153.881i −0.928646 + 0.949885i
\(163\) 143.157 247.955i 0.878263 1.52120i 0.0250163 0.999687i \(-0.492036\pi\)
0.853246 0.521508i \(-0.174630\pi\)
\(164\) 148.195 + 85.5604i 0.903628 + 0.521710i
\(165\) 107.763 162.270i 0.653111 0.983455i
\(166\) 148.591 85.7892i 0.895128 0.516802i
\(167\) −162.132 93.6068i −0.970848 0.560519i −0.0713535 0.997451i \(-0.522732\pi\)
−0.899495 + 0.436932i \(0.856065\pi\)
\(168\) 0 0
\(169\) −72.9668 126.382i −0.431756 0.747824i
\(170\) −38.7301 + 67.0825i −0.227824 + 0.394603i
\(171\) 2.21816 17.6176i 0.0129717 0.103027i
\(172\) −10.5545 18.2809i −0.0613632 0.106284i
\(173\) 148.886i 0.860613i 0.902683 + 0.430306i \(0.141594\pi\)
−0.902683 + 0.430306i \(0.858406\pi\)
\(174\) −22.8879 + 365.007i −0.131540 + 2.09774i
\(175\) 0 0
\(176\) 66.5933 115.343i 0.378371 0.655358i
\(177\) 81.9053 123.333i 0.462742 0.696797i
\(178\) −236.717 136.668i −1.32987 0.767800i
\(179\) 98.1713 + 170.038i 0.548443 + 0.949931i 0.998381 + 0.0568718i \(0.0181126\pi\)
−0.449938 + 0.893060i \(0.648554\pi\)
\(180\) −201.879 153.102i −1.12155 0.850564i
\(181\) 80.6783i 0.445736i −0.974849 0.222868i \(-0.928458\pi\)
0.974849 0.222868i \(-0.0715419\pi\)
\(182\) 0 0
\(183\) 3.82421 5.75850i 0.0208973 0.0314672i
\(184\) −6.28738 10.8901i −0.0341706 0.0591852i
\(185\) 325.818i 1.76118i
\(186\) −67.3429 + 101.405i −0.362058 + 0.545188i
\(187\) 22.3469i 0.119502i
\(188\) 157.046i 0.835351i
\(189\) 0 0
\(190\) 48.2456 0.253924
\(191\) 27.5621 0.144304 0.0721521 0.997394i \(-0.477013\pi\)
0.0721521 + 0.997394i \(0.477013\pi\)
\(192\) −77.8893 51.7262i −0.405674 0.269407i
\(193\) −124.534 −0.645251 −0.322626 0.946527i \(-0.604565\pi\)
−0.322626 + 0.946527i \(0.604565\pi\)
\(194\) −129.624 + 74.8382i −0.668163 + 0.385764i
\(195\) −110.472 73.3641i −0.566522 0.376226i
\(196\) 0 0
\(197\) −115.102 −0.584274 −0.292137 0.956376i \(-0.594366\pi\)
−0.292137 + 0.956376i \(0.594366\pi\)
\(198\) −167.365 21.0723i −0.845278 0.106426i
\(199\) 104.660 60.4253i 0.525928 0.303645i −0.213429 0.976959i \(-0.568463\pi\)
0.739357 + 0.673314i \(0.235130\pi\)
\(200\) −74.6708 + 129.334i −0.373354 + 0.646668i
\(201\) 77.0422 + 51.1636i 0.383295 + 0.254545i
\(202\) −257.691 148.778i −1.27570 0.736524i
\(203\) 0 0
\(204\) 29.0096 + 1.81906i 0.142204 + 0.00891694i
\(205\) −514.930 −2.51185
\(206\) −199.135 + 114.971i −0.966677 + 0.558111i
\(207\) −27.3442 + 36.0558i −0.132097 + 0.174183i
\(208\) −78.5243 45.3360i −0.377521 0.217962i
\(209\) 12.0539 6.95931i 0.0576741 0.0332981i
\(210\) 0 0
\(211\) 60.1908 104.254i 0.285264 0.494092i −0.687409 0.726271i \(-0.741252\pi\)
0.972673 + 0.232178i \(0.0745853\pi\)
\(212\) −31.6744 54.8617i −0.149408 0.258782i
\(213\) 203.079 + 134.864i 0.953421 + 0.633165i
\(214\) −67.6229 + 117.126i −0.315995 + 0.547319i
\(215\) 55.0101 + 31.7601i 0.255861 + 0.147721i
\(216\) 12.6116 66.3378i 0.0583872 0.307119i
\(217\) 0 0
\(218\) 58.2411 + 100.877i 0.267161 + 0.462737i
\(219\) 213.482 + 13.3865i 0.974805 + 0.0611256i
\(220\) 198.602i 0.902739i
\(221\) 15.2135 0.0688395
\(222\) 252.700 125.507i 1.13829 0.565346i
\(223\) −203.615 + 117.557i −0.913072 + 0.527162i −0.881418 0.472336i \(-0.843411\pi\)
−0.0316538 + 0.999499i \(0.510077\pi\)
\(224\) 0 0
\(225\) 533.214 + 67.1348i 2.36984 + 0.298377i
\(226\) −141.605 + 245.267i −0.626571 + 1.08525i
\(227\) 130.976 + 75.6193i 0.576989 + 0.333125i 0.759936 0.649998i \(-0.225230\pi\)
−0.182947 + 0.983123i \(0.558564\pi\)
\(228\) −8.05302 16.2142i −0.0353203 0.0711150i
\(229\) 358.522 206.993i 1.56560 0.903899i 0.568927 0.822388i \(-0.307359\pi\)
0.996672 0.0815115i \(-0.0259747\pi\)
\(230\) −106.478 61.4754i −0.462950 0.267284i
\(231\) 0 0
\(232\) −57.3783 99.3822i −0.247320 0.428372i
\(233\) 166.801 288.909i 0.715886 1.23995i −0.246731 0.969084i \(-0.579356\pi\)
0.962617 0.270867i \(-0.0873103\pi\)
\(234\) −14.3458 + 113.940i −0.0613067 + 0.486925i
\(235\) −236.288 409.264i −1.00548 1.74155i
\(236\) 150.947i 0.639608i
\(237\) −72.5637 48.1894i −0.306176 0.203331i
\(238\) 0 0
\(239\) −104.819 + 181.552i −0.438573 + 0.759631i −0.997580 0.0695323i \(-0.977849\pi\)
0.559007 + 0.829163i \(0.311183\pi\)
\(240\) 520.272 + 32.6239i 2.16780 + 0.135933i
\(241\) −197.233 113.873i −0.818394 0.472500i 0.0314682 0.999505i \(-0.489982\pi\)
−0.849862 + 0.527005i \(0.823315\pi\)
\(242\) 94.6247 + 163.895i 0.391011 + 0.677251i
\(243\) −237.637 + 50.7702i −0.977930 + 0.208931i
\(244\) 7.04783i 0.0288846i
\(245\) 0 0
\(246\) 198.354 + 399.372i 0.806315 + 1.62346i
\(247\) −4.73783 8.20615i −0.0191815 0.0332233i
\(248\) 38.1962i 0.154017i
\(249\) 193.362 + 12.1248i 0.776553 + 0.0486941i
\(250\) 848.866i 3.39546i
\(251\) 422.578i 1.68358i −0.539808 0.841788i \(-0.681503\pi\)
0.539808 0.841788i \(-0.318497\pi\)
\(252\) 0 0
\(253\) −35.4707 −0.140200
\(254\) −488.992 −1.92516
\(255\) −78.3361 + 38.9067i −0.307200 + 0.152575i
\(256\) 331.406 1.29456
\(257\) −75.4797 + 43.5782i −0.293695 + 0.169565i −0.639607 0.768702i \(-0.720903\pi\)
0.345912 + 0.938267i \(0.387570\pi\)
\(258\) 3.44247 54.8991i 0.0133429 0.212787i
\(259\) 0 0
\(260\) −135.206 −0.520025
\(261\) −249.541 + 329.043i −0.956097 + 1.26070i
\(262\) 16.7367 9.66292i 0.0638804 0.0368814i
\(263\) 22.0938 38.2676i 0.0840069 0.145504i −0.820961 0.570985i \(-0.806562\pi\)
0.904968 + 0.425481i \(0.139895\pi\)
\(264\) 47.4054 23.5446i 0.179566 0.0891840i
\(265\) 165.088 + 95.3134i 0.622972 + 0.359673i
\(266\) 0 0
\(267\) −137.292 276.428i −0.514201 1.03531i
\(268\) 94.2920 0.351836
\(269\) 169.996 98.1474i 0.631957 0.364860i −0.149553 0.988754i \(-0.547783\pi\)
0.781509 + 0.623893i \(0.214450\pi\)
\(270\) −217.521 623.379i −0.805632 2.30881i
\(271\) 146.761 + 84.7324i 0.541553 + 0.312666i 0.745708 0.666273i \(-0.232111\pi\)
−0.204155 + 0.978938i \(0.565445\pi\)
\(272\) −51.7912 + 29.9016i −0.190409 + 0.109932i
\(273\) 0 0
\(274\) 62.7965 108.767i 0.229184 0.396959i
\(275\) 210.630 + 364.822i 0.765928 + 1.32663i
\(276\) −2.88735 + 46.0462i −0.0104614 + 0.166834i
\(277\) −185.050 + 320.517i −0.668052 + 1.15710i 0.310396 + 0.950607i \(0.399538\pi\)
−0.978448 + 0.206493i \(0.933795\pi\)
\(278\) 582.779 + 336.468i 2.09633 + 1.21032i
\(279\) −126.691 + 53.3181i −0.454089 + 0.191104i
\(280\) 0 0
\(281\) 61.5023 + 106.525i 0.218869 + 0.379093i 0.954463 0.298331i \(-0.0964298\pi\)
−0.735593 + 0.677424i \(0.763096\pi\)
\(282\) −226.399 + 340.912i −0.802833 + 1.20891i
\(283\) 150.448i 0.531617i 0.964026 + 0.265809i \(0.0856389\pi\)
−0.964026 + 0.265809i \(0.914361\pi\)
\(284\) 248.548 0.875169
\(285\) 45.3818 + 30.1380i 0.159234 + 0.105747i
\(286\) −77.9574 + 45.0087i −0.272578 + 0.157373i
\(287\) 0 0
\(288\) −140.184 333.096i −0.486751 1.15658i
\(289\) −139.483 + 241.592i −0.482640 + 0.835957i
\(290\) −971.717 561.021i −3.35075 1.93456i
\(291\) −168.679 10.5771i −0.579653 0.0363474i
\(292\) 188.866 109.042i 0.646803 0.373432i
\(293\) 373.737 + 215.777i 1.27555 + 0.736440i 0.976027 0.217648i \(-0.0698385\pi\)
0.299525 + 0.954088i \(0.403172\pi\)
\(294\) 0 0
\(295\) 227.113 + 393.370i 0.769873 + 1.33346i
\(296\) −44.2666 + 76.6719i −0.149549 + 0.259027i
\(297\) −144.267 124.371i −0.485748 0.418757i
\(298\) 341.193 + 590.964i 1.14494 + 1.98310i
\(299\) 24.1481i 0.0807627i
\(300\) 490.738 243.732i 1.63579 0.812441i
\(301\) 0 0
\(302\) 157.265 272.392i 0.520746 0.901959i
\(303\) −149.456 300.921i −0.493256 0.993137i
\(304\) 32.2578 + 18.6241i 0.106111 + 0.0612633i
\(305\) 10.6040 + 18.3667i 0.0347673 + 0.0602187i
\(306\) 60.3509 + 45.7692i 0.197225 + 0.149572i
\(307\) 157.167i 0.511946i 0.966684 + 0.255973i \(0.0823958\pi\)
−0.966684 + 0.255973i \(0.917604\pi\)
\(308\) 0 0
\(309\) −259.135 16.2492i −0.838624 0.0525863i
\(310\) −186.733 323.431i −0.602364 1.04333i
\(311\) 331.813i 1.06692i 0.845825 + 0.533461i \(0.179109\pi\)
−0.845825 + 0.533461i \(0.820891\pi\)
\(312\) −16.0289 32.2731i −0.0513747 0.103439i
\(313\) 408.491i 1.30508i −0.757753 0.652541i \(-0.773703\pi\)
0.757753 0.652541i \(-0.226297\pi\)
\(314\) 135.562i 0.431727i
\(315\) 0 0
\(316\) −88.8108 −0.281047
\(317\) 38.7454 0.122225 0.0611126 0.998131i \(-0.480535\pi\)
0.0611126 + 0.998131i \(0.480535\pi\)
\(318\) 10.3310 164.755i 0.0324874 0.518096i
\(319\) −323.704 −1.01474
\(320\) 248.428 143.430i 0.776337 0.448218i
\(321\) −136.775 + 67.9313i −0.426091 + 0.211624i
\(322\) 0 0
\(323\) −6.24972 −0.0193490
\(324\) −173.195 + 177.156i −0.534553 + 0.546778i
\(325\) 248.367 143.395i 0.764206 0.441215i
\(326\) 380.341 658.770i 1.16669 2.02077i
\(327\) −8.23139 + 131.271i −0.0251724 + 0.401439i
\(328\) −121.174 69.9598i −0.369433 0.213292i
\(329\) 0 0
\(330\) 286.307 431.122i 0.867597 1.30643i
\(331\) 285.046 0.861167 0.430583 0.902551i \(-0.358308\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(332\) 171.066 98.7649i 0.515259 0.297485i
\(333\) 316.101 + 39.7990i 0.949253 + 0.119517i
\(334\) −430.754 248.696i −1.28968 0.744598i
\(335\) −245.726 + 141.870i −0.733510 + 0.423492i
\(336\) 0 0
\(337\) 298.113 516.347i 0.884608 1.53219i 0.0384451 0.999261i \(-0.487760\pi\)
0.846163 0.532925i \(-0.178907\pi\)
\(338\) −193.859 335.774i −0.573548 0.993415i
\(339\) −286.413 + 142.251i −0.844875 + 0.419619i
\(340\) −44.5881 + 77.2288i −0.131141 + 0.227144i
\(341\) −93.3082 53.8715i −0.273631 0.157981i
\(342\) 5.89324 46.8067i 0.0172317 0.136862i
\(343\) 0 0
\(344\) 8.63003 + 14.9476i 0.0250873 + 0.0434525i
\(345\) −61.7557 124.341i −0.179002 0.360409i
\(346\) 395.562i 1.14324i
\(347\) −290.571 −0.837379 −0.418690 0.908129i \(-0.637510\pi\)
−0.418690 + 0.908129i \(0.637510\pi\)
\(348\) −26.3498 + 420.215i −0.0757177 + 1.20751i
\(349\) −283.473 + 163.663i −0.812243 + 0.468949i −0.847734 0.530421i \(-0.822034\pi\)
0.0354909 + 0.999370i \(0.488701\pi\)
\(350\) 0 0
\(351\) −84.6703 + 98.2155i −0.241226 + 0.279816i
\(352\) 141.639 245.326i 0.402384 0.696950i
\(353\) 72.8629 + 42.0674i 0.206411 + 0.119171i 0.599642 0.800268i \(-0.295310\pi\)
−0.393232 + 0.919439i \(0.628643\pi\)
\(354\) 217.607 327.673i 0.614709 0.925630i
\(355\) −647.719 + 373.961i −1.82456 + 1.05341i
\(356\) −272.520 157.340i −0.765507 0.441965i
\(357\) 0 0
\(358\) 260.823 + 451.759i 0.728556 + 1.26190i
\(359\) −106.191 + 183.928i −0.295796 + 0.512334i −0.975170 0.221459i \(-0.928918\pi\)
0.679374 + 0.733792i \(0.262252\pi\)
\(360\) 165.069 + 125.186i 0.458525 + 0.347738i
\(361\) −178.554 309.264i −0.494609 0.856687i
\(362\) 214.347i 0.592119i
\(363\) −13.3736 + 213.276i −0.0368418 + 0.587538i
\(364\) 0 0
\(365\) −328.125 + 568.329i −0.898973 + 1.55707i
\(366\) 10.1602 15.2993i 0.0277601 0.0418013i
\(367\) 363.389 + 209.803i 0.990162 + 0.571670i 0.905323 0.424724i \(-0.139629\pi\)
0.0848392 + 0.996395i \(0.472962\pi\)
\(368\) −47.4622 82.2069i −0.128973 0.223388i
\(369\) −62.8992 + 499.573i −0.170458 + 1.35386i
\(370\) 865.639i 2.33957i
\(371\) 0 0
\(372\) −77.5286 + 116.743i −0.208410 + 0.313824i
\(373\) 110.530 + 191.443i 0.296326 + 0.513252i 0.975292 0.220918i \(-0.0709052\pi\)
−0.678966 + 0.734169i \(0.737572\pi\)
\(374\) 59.3715i 0.158747i
\(375\) −530.268 + 798.478i −1.41405 + 2.12928i
\(376\) 128.411i 0.341519i
\(377\) 220.374i 0.584546i
\(378\) 0 0
\(379\) 317.062 0.836575 0.418287 0.908315i \(-0.362631\pi\)
0.418287 + 0.908315i \(0.362631\pi\)
\(380\) 55.5428 0.146165
\(381\) −459.966 305.462i −1.20726 0.801739i
\(382\) 73.2274 0.191695
\(383\) −240.396 + 138.793i −0.627666 + 0.362383i −0.779847 0.625970i \(-0.784703\pi\)
0.152182 + 0.988353i \(0.451370\pi\)
\(384\) 194.467 + 129.145i 0.506425 + 0.336316i
\(385\) 0 0
\(386\) −330.862 −0.857156
\(387\) 37.5324 49.4900i 0.0969830 0.127881i
\(388\) −149.229 + 86.1576i −0.384612 + 0.222056i
\(389\) 36.2173 62.7303i 0.0931037 0.161260i −0.815712 0.578458i \(-0.803655\pi\)
0.908816 + 0.417198i \(0.136988\pi\)
\(390\) −293.503 194.915i −0.752572 0.499781i
\(391\) 13.7932 + 7.96349i 0.0352767 + 0.0203670i
\(392\) 0 0
\(393\) 21.7794 + 1.36569i 0.0554184 + 0.00347503i
\(394\) −305.805 −0.776154
\(395\) 231.442 133.623i 0.585929 0.338286i
\(396\) −192.679 24.2595i −0.486564 0.0612613i
\(397\) 590.904 + 341.158i 1.48842 + 0.859341i 0.999913 0.0132172i \(-0.00420730\pi\)
0.488510 + 0.872558i \(0.337541\pi\)
\(398\) 278.061 160.539i 0.698647 0.403364i
\(399\) 0 0
\(400\) −563.675 + 976.313i −1.40919 + 2.44078i
\(401\) −224.827 389.411i −0.560665 0.971100i −0.997439 0.0715286i \(-0.977212\pi\)
0.436774 0.899571i \(-0.356121\pi\)
\(402\) 204.687 + 135.932i 0.509171 + 0.338140i
\(403\) −36.6752 + 63.5232i −0.0910054 + 0.157626i
\(404\) −296.667 171.281i −0.734324 0.423962i
\(405\) 184.802 722.257i 0.456302 1.78335i
\(406\) 0 0
\(407\) 124.866 + 216.275i 0.306797 + 0.531388i
\(408\) −23.7201 1.48738i −0.0581375 0.00364554i
\(409\) 148.908i 0.364079i −0.983291 0.182040i \(-0.941730\pi\)
0.983291 0.182040i \(-0.0582699\pi\)
\(410\) −1368.07 −3.33676
\(411\) 127.013 63.0829i 0.309035 0.153486i
\(412\) −229.255 + 132.360i −0.556444 + 0.321263i
\(413\) 0 0
\(414\) −72.6483 + 95.7935i −0.175479 + 0.231385i
\(415\) −297.199 + 514.765i −0.716143 + 1.24040i
\(416\) −167.016 96.4265i −0.401480 0.231794i
\(417\) 338.002 + 680.545i 0.810557 + 1.63200i
\(418\) 32.0249 18.4896i 0.0766146 0.0442335i
\(419\) −399.171 230.461i −0.952675 0.550027i −0.0587641 0.998272i \(-0.518716\pi\)
−0.893911 + 0.448245i \(0.852049\pi\)
\(420\) 0 0
\(421\) −63.9001 110.678i −0.151782 0.262894i 0.780101 0.625654i \(-0.215168\pi\)
−0.931883 + 0.362760i \(0.881834\pi\)
\(422\) 159.916 276.982i 0.378947 0.656356i
\(423\) −425.920 + 179.249i −1.00690 + 0.423757i
\(424\) 25.8991 + 44.8585i 0.0610827 + 0.105798i
\(425\) 189.154i 0.445067i
\(426\) 539.542 + 358.309i 1.26653 + 0.841101i
\(427\) 0 0
\(428\) −77.8510 + 134.842i −0.181895 + 0.315051i
\(429\) −101.446 6.36121i −0.236471 0.0148280i
\(430\) 146.152 + 84.3807i 0.339888 + 0.196234i
\(431\) −104.431 180.879i −0.242298 0.419673i 0.719070 0.694937i \(-0.244568\pi\)
−0.961369 + 0.275264i \(0.911235\pi\)
\(432\) 95.2025 500.770i 0.220376 1.15919i
\(433\) 492.194i 1.13671i −0.822784 0.568354i \(-0.807581\pi\)
0.822784 0.568354i \(-0.192419\pi\)
\(434\) 0 0
\(435\) −563.580 1134.73i −1.29559 2.60857i
\(436\) 67.0502 + 116.134i 0.153785 + 0.266363i
\(437\) 9.92003i 0.0227003i
\(438\) 567.183 + 35.5654i 1.29494 + 0.0811996i
\(439\) 70.4474i 0.160472i 0.996776 + 0.0802362i \(0.0255675\pi\)
−0.996776 + 0.0802362i \(0.974433\pi\)
\(440\) 162.390i 0.369069i
\(441\) 0 0
\(442\) 40.4195 0.0914468
\(443\) 716.071 1.61641 0.808206 0.588900i \(-0.200439\pi\)
0.808206 + 0.588900i \(0.200439\pi\)
\(444\) 290.921 144.490i 0.655227 0.325428i
\(445\) 946.921 2.12791
\(446\) −540.967 + 312.328i −1.21293 + 0.700286i
\(447\) −48.2218 + 769.021i −0.107879 + 1.72041i
\(448\) 0 0
\(449\) −130.350 −0.290313 −0.145156 0.989409i \(-0.546369\pi\)
−0.145156 + 0.989409i \(0.546369\pi\)
\(450\) 1416.65 + 178.365i 3.14811 + 0.396366i
\(451\) −341.805 + 197.341i −0.757883 + 0.437564i
\(452\) −163.023 + 282.364i −0.360671 + 0.624700i
\(453\) 318.088 157.983i 0.702180 0.348748i
\(454\) 347.980 + 200.906i 0.766476 + 0.442525i
\(455\) 0 0
\(456\) 6.58467 + 13.2578i 0.0144401 + 0.0290741i
\(457\) −211.530 −0.462866 −0.231433 0.972851i \(-0.574341\pi\)
−0.231433 + 0.972851i \(0.574341\pi\)
\(458\) 952.527 549.942i 2.07975 1.20075i
\(459\) 28.1775 + 80.7523i 0.0613890 + 0.175931i
\(460\) −122.583 70.7736i −0.266486 0.153856i
\(461\) 457.027 263.865i 0.991381 0.572374i 0.0856943 0.996321i \(-0.472689\pi\)
0.905687 + 0.423947i \(0.139356\pi\)
\(462\) 0 0
\(463\) −367.066 + 635.777i −0.792800 + 1.37317i 0.131428 + 0.991326i \(0.458044\pi\)
−0.924227 + 0.381843i \(0.875289\pi\)
\(464\) −433.137 750.216i −0.933485 1.61684i
\(465\) 26.3915 420.880i 0.0567559 0.905119i
\(466\) 443.160 767.576i 0.950988 1.64716i
\(467\) −280.938 162.200i −0.601581 0.347323i 0.168082 0.985773i \(-0.446243\pi\)
−0.769663 + 0.638450i \(0.779576\pi\)
\(468\) −16.5156 + 131.174i −0.0352897 + 0.280286i
\(469\) 0 0
\(470\) −627.774 1087.34i −1.33569 2.31348i
\(471\) 84.6828 127.516i 0.179794 0.270734i
\(472\) 123.424i 0.261492i
\(473\) 48.6868 0.102932
\(474\) −192.788 128.030i −0.406727 0.270106i
\(475\) −102.029 + 58.9066i −0.214798 + 0.124014i
\(476\) 0 0
\(477\) 112.636 148.521i 0.236135 0.311366i
\(478\) −278.485 + 482.349i −0.582604 + 1.00910i
\(479\) 364.187 + 210.264i 0.760307 + 0.438964i 0.829406 0.558646i \(-0.188679\pi\)
−0.0690988 + 0.997610i \(0.522012\pi\)
\(480\) 1106.58 + 69.3886i 2.30538 + 0.144560i
\(481\) 147.238 85.0077i 0.306107 0.176731i
\(482\) −524.011 302.538i −1.08716 0.627672i
\(483\) 0 0
\(484\) 108.937 + 188.684i 0.225076 + 0.389843i
\(485\) 259.262 449.055i 0.534561 0.925887i
\(486\) −631.358 + 134.887i −1.29909 + 0.277545i
\(487\) 19.3349 + 33.4890i 0.0397020 + 0.0687658i 0.885194 0.465223i \(-0.154026\pi\)
−0.845492 + 0.533989i \(0.820692\pi\)
\(488\) 5.76277i 0.0118089i
\(489\) 769.284 382.076i 1.57318 0.781341i
\(490\) 0 0
\(491\) 435.683 754.625i 0.887338 1.53691i 0.0443266 0.999017i \(-0.485886\pi\)
0.843011 0.537897i \(-0.180781\pi\)
\(492\) 228.355 + 459.777i 0.464136 + 0.934507i
\(493\) 125.876 + 72.6744i 0.255326 + 0.147413i
\(494\) −12.5875 21.8022i −0.0254808 0.0441341i
\(495\) 538.624 226.681i 1.08813 0.457942i
\(496\) 288.335i 0.581320i
\(497\) 0 0
\(498\) 513.726 + 32.2134i 1.03158 + 0.0646856i
\(499\) 184.126 + 318.916i 0.368991 + 0.639111i 0.989408 0.145161i \(-0.0463700\pi\)
−0.620417 + 0.784272i \(0.713037\pi\)
\(500\) 977.258i 1.95452i
\(501\) −249.830 503.016i −0.498663 1.00402i
\(502\) 1122.71i 2.23648i
\(503\) 603.853i 1.20050i −0.799811 0.600251i \(-0.795067\pi\)
0.799811 0.600251i \(-0.204933\pi\)
\(504\) 0 0
\(505\) 1030.82 2.04123
\(506\) −94.2390 −0.186243
\(507\) 27.3987 436.943i 0.0540408 0.861820i
\(508\) −562.953 −1.10817
\(509\) 197.693 114.138i 0.388394 0.224240i −0.293070 0.956091i \(-0.594677\pi\)
0.681464 + 0.731851i \(0.261344\pi\)
\(510\) −208.124 + 103.368i −0.408087 + 0.202682i
\(511\) 0 0
\(512\) 569.227 1.11177
\(513\) 34.7826 40.3470i 0.0678023 0.0786491i
\(514\) −200.535 + 115.779i −0.390147 + 0.225251i
\(515\) 398.294 689.865i 0.773386 1.33954i
\(516\) 3.96315 63.2027i 0.00768053 0.122486i
\(517\) −313.691 181.110i −0.606753 0.350309i
\(518\) 0 0
\(519\) −247.099 + 372.082i −0.476106 + 0.716922i
\(520\) 110.554 0.212603
\(521\) −409.376 + 236.354i −0.785751 + 0.453654i −0.838465 0.544956i \(-0.816546\pi\)
0.0527134 + 0.998610i \(0.483213\pi\)
\(522\) −662.985 + 874.207i −1.27009 + 1.67473i
\(523\) −242.231 139.852i −0.463156 0.267403i 0.250214 0.968190i \(-0.419499\pi\)
−0.713370 + 0.700787i \(0.752832\pi\)
\(524\) 19.2681 11.1245i 0.0367712 0.0212299i
\(525\) 0 0
\(526\) 58.6991 101.670i 0.111595 0.193289i
\(527\) 24.1893 + 41.8971i 0.0459000 + 0.0795011i
\(528\) 357.854 177.733i 0.677753 0.336616i
\(529\) 251.860 436.234i 0.476105 0.824639i
\(530\) 438.607 + 253.230i 0.827561 + 0.477792i
\(531\) 409.380 172.289i 0.770961 0.324460i
\(532\) 0 0
\(533\) 134.348 + 232.697i 0.252060 + 0.436580i
\(534\) −364.759 734.417i −0.683068 1.37531i
\(535\) 468.532i 0.875761i
\(536\) −77.0993 −0.143842
\(537\) −36.8628 + 587.873i −0.0686459 + 1.09474i
\(538\) 451.649 260.759i 0.839496 0.484683i
\(539\) 0 0
\(540\) −250.421 717.666i −0.463743 1.32901i
\(541\) 508.919 881.473i 0.940700 1.62934i 0.176561 0.984290i \(-0.443503\pi\)
0.764139 0.645051i \(-0.223164\pi\)
\(542\) 389.916 + 225.118i 0.719402 + 0.415347i
\(543\) 133.898 201.624i 0.246589 0.371315i
\(544\) −110.156 + 63.5986i −0.202493 + 0.116909i
\(545\) −349.467 201.765i −0.641224 0.370211i
\(546\) 0 0
\(547\) −195.785 339.109i −0.357924 0.619943i 0.629690 0.776847i \(-0.283182\pi\)
−0.987614 + 0.156904i \(0.949849\pi\)
\(548\) 72.2946 125.218i 0.131924 0.228500i
\(549\) 19.1142 8.04426i 0.0348165 0.0146526i
\(550\) 559.605 + 969.264i 1.01746 + 1.76230i
\(551\) 90.5297i 0.164301i
\(552\) 2.36088 37.6504i 0.00427696 0.0682072i
\(553\) 0 0
\(554\) −491.645 + 851.554i −0.887445 + 1.53710i
\(555\) −540.746 + 814.256i −0.974317 + 1.46713i
\(556\) 670.925 + 387.359i 1.20670 + 0.696689i
\(557\) 249.913 + 432.862i 0.448677 + 0.777131i 0.998300 0.0582814i \(-0.0185621\pi\)
−0.549623 + 0.835413i \(0.685229\pi\)
\(558\) −336.594 + 141.656i −0.603216 + 0.253864i
\(559\) 33.1455i 0.0592942i
\(560\) 0 0
\(561\) −37.0881 + 55.8473i −0.0661107 + 0.0995496i
\(562\) 163.400 + 283.018i 0.290748 + 0.503590i
\(563\) 323.183i 0.574038i −0.957925 0.287019i \(-0.907336\pi\)
0.957925 0.287019i \(-0.0926643\pi\)
\(564\) −260.642 + 392.475i −0.462131 + 0.695878i
\(565\) 981.126i 1.73651i
\(566\) 399.712i 0.706204i
\(567\) 0 0
\(568\) −203.229 −0.357798
\(569\) 176.881 0.310863 0.155431 0.987847i \(-0.450323\pi\)
0.155431 + 0.987847i \(0.450323\pi\)
\(570\) 120.571 + 80.0710i 0.211528 + 0.140475i
\(571\) −557.593 −0.976519 −0.488260 0.872698i \(-0.662368\pi\)
−0.488260 + 0.872698i \(0.662368\pi\)
\(572\) −89.7486 + 51.8164i −0.156903 + 0.0905881i
\(573\) 68.8807 + 45.7436i 0.120211 + 0.0798317i
\(574\) 0 0
\(575\) 300.239 0.522155
\(576\) −108.807 258.539i −0.188900 0.448852i
\(577\) 640.283 369.668i 1.10968 0.640672i 0.170931 0.985283i \(-0.445323\pi\)
0.938745 + 0.344611i \(0.111989\pi\)
\(578\) −370.580 + 641.864i −0.641142 + 1.11049i
\(579\) −311.223 206.683i −0.537518 0.356965i
\(580\) −1118.69 645.876i −1.92878 1.11358i
\(581\) 0 0
\(582\) −448.149 28.1014i −0.770016 0.0482842i
\(583\) 146.111 0.250620
\(584\) −154.430 + 89.1599i −0.264434 + 0.152671i
\(585\) −154.322 366.690i −0.263798 0.626820i
\(586\) 992.949 + 573.280i 1.69445 + 0.978293i
\(587\) −47.8551 + 27.6292i −0.0815249 + 0.0470684i −0.540208 0.841531i \(-0.681655\pi\)
0.458683 + 0.888600i \(0.348321\pi\)
\(588\) 0 0
\(589\) 15.0662 26.0954i 0.0255792 0.0443045i
\(590\) 603.396 + 1045.11i 1.02270 + 1.77138i
\(591\) −287.652 191.029i −0.486722 0.323231i
\(592\) −334.159 + 578.780i −0.564458 + 0.977670i
\(593\) 663.928 + 383.319i 1.11961 + 0.646406i 0.941301 0.337569i \(-0.109605\pi\)
0.178307 + 0.983975i \(0.442938\pi\)
\(594\) −383.291 330.430i −0.645271 0.556279i
\(595\) 0 0
\(596\) 392.799 + 680.348i 0.659059 + 1.14152i
\(597\) 361.841 + 22.6894i 0.606099 + 0.0380057i
\(598\) 64.1569i 0.107286i
\(599\) −906.266 −1.51296 −0.756482 0.654014i \(-0.773084\pi\)
−0.756482 + 0.654014i \(0.773084\pi\)
\(600\) −401.260 + 199.291i −0.668766 + 0.332152i
\(601\) −192.859 + 111.347i −0.320897 + 0.185270i −0.651793 0.758397i \(-0.725983\pi\)
0.330895 + 0.943668i \(0.392649\pi\)
\(602\) 0 0
\(603\) 107.623 + 255.727i 0.178479 + 0.424091i
\(604\) 181.052 313.591i 0.299755 0.519191i
\(605\) −567.781 327.808i −0.938481 0.541832i
\(606\) −397.078 799.490i −0.655244 1.31929i
\(607\) −518.849 + 299.558i −0.854776 + 0.493505i −0.862259 0.506467i \(-0.830951\pi\)
0.00748365 + 0.999972i \(0.497618\pi\)
\(608\) 68.6100 + 39.6120i 0.112845 + 0.0651514i
\(609\) 0 0
\(610\) 28.1729 + 48.7970i 0.0461851 + 0.0799950i
\(611\) −123.298 + 213.558i −0.201796 + 0.349522i
\(612\) 69.4791 + 52.6918i 0.113528 + 0.0860978i
\(613\) −270.643 468.768i −0.441506 0.764711i 0.556295 0.830985i \(-0.312222\pi\)
−0.997801 + 0.0662736i \(0.978889\pi\)
\(614\) 417.565i 0.680073i
\(615\) −1286.87 854.606i −2.09247 1.38960i
\(616\) 0 0
\(617\) 331.635 574.409i 0.537497 0.930972i −0.461541 0.887119i \(-0.652703\pi\)
0.999038 0.0438529i \(-0.0139633\pi\)
\(618\) −688.473 43.1710i −1.11403 0.0698560i
\(619\) 847.625 + 489.377i 1.36935 + 0.790592i 0.990844 0.135008i \(-0.0431061\pi\)
0.378502 + 0.925601i \(0.376439\pi\)
\(620\) −214.977 372.350i −0.346736 0.600565i
\(621\) −128.176 + 44.7255i −0.206403 + 0.0720218i
\(622\) 881.565i 1.41731i
\(623\) 0 0
\(624\) −120.999 243.623i −0.193908 0.390421i
\(625\) −723.942 1253.90i −1.15831 2.00625i
\(626\) 1085.28i 1.73368i
\(627\) 41.6740 + 2.61319i 0.0664657 + 0.00416776i
\(628\) 156.066i 0.248513i
\(629\) 112.135i 0.178274i
\(630\) 0 0
\(631\) 256.500 0.406498 0.203249 0.979127i \(-0.434850\pi\)
0.203249 + 0.979127i \(0.434850\pi\)
\(632\) 72.6175 0.114901
\(633\) 323.448 160.645i 0.510977 0.253784i
\(634\) 102.939 0.162365
\(635\) 1467.06 847.007i 2.31033 1.33387i
\(636\) 11.8936 189.674i 0.0187006 0.298229i
\(637\) 0 0
\(638\) −860.020 −1.34799
\(639\) 283.688 + 674.081i 0.443956 + 1.05490i
\(640\) −620.253 + 358.103i −0.969145 + 0.559536i
\(641\) 168.080 291.123i 0.262215 0.454170i −0.704615 0.709590i \(-0.748880\pi\)
0.966830 + 0.255419i \(0.0822136\pi\)
\(642\) −363.386 + 180.481i −0.566022 + 0.281123i
\(643\) 754.603 + 435.671i 1.17357 + 0.677559i 0.954518 0.298155i \(-0.0963711\pi\)
0.219049 + 0.975714i \(0.429704\pi\)
\(644\) 0 0
\(645\) 84.7656 + 170.670i 0.131419 + 0.264604i
\(646\) −16.6043 −0.0257033
\(647\) 707.666 408.571i 1.09376 0.631485i 0.159189 0.987248i \(-0.449112\pi\)
0.934576 + 0.355763i \(0.115779\pi\)
\(648\) 141.616 144.854i 0.218543 0.223541i
\(649\) 301.510 + 174.077i 0.464576 + 0.268223i
\(650\) 659.865 380.973i 1.01518 0.586113i
\(651\) 0 0
\(652\) 437.868 758.410i 0.671577 1.16321i
\(653\) 180.418 + 312.493i 0.276291 + 0.478550i 0.970460 0.241262i \(-0.0775613\pi\)
−0.694169 + 0.719812i \(0.744228\pi\)
\(654\) −21.8693 + 348.762i −0.0334392 + 0.533275i
\(655\) −33.4753 + 57.9809i −0.0511073 + 0.0885204i
\(656\) −914.716 528.112i −1.39438 0.805048i
\(657\) 511.299 + 387.761i 0.778232 + 0.590199i
\(658\) 0 0
\(659\) 515.473 + 892.826i 0.782205 + 1.35482i 0.930654 + 0.365899i \(0.119239\pi\)
−0.148449 + 0.988920i \(0.547428\pi\)
\(660\) 329.611 496.329i 0.499411 0.752014i
\(661\) 332.364i 0.502820i −0.967881 0.251410i \(-0.919106\pi\)
0.967881 0.251410i \(-0.0808942\pi\)
\(662\) 757.315 1.14398
\(663\) 38.0203 + 25.2492i 0.0573458 + 0.0380832i
\(664\) −139.875 + 80.7566i −0.210654 + 0.121621i
\(665\) 0 0
\(666\) 839.822 + 105.739i 1.26099 + 0.158767i
\(667\) −115.354 + 199.800i −0.172945 + 0.299550i
\(668\) −495.906 286.311i −0.742374 0.428610i
\(669\) −703.961 44.1422i −1.05226 0.0659823i
\(670\) −652.848 + 376.922i −0.974400 + 0.562570i
\(671\) 14.0777 + 8.12775i 0.0209801 + 0.0121129i
\(672\) 0 0
\(673\) −241.240 417.840i −0.358455 0.620862i 0.629248 0.777204i \(-0.283363\pi\)
−0.987703 + 0.156343i \(0.950030\pi\)
\(674\) 792.030 1371.84i 1.17512 2.03537i
\(675\) 1221.14 + 1052.73i 1.80909 + 1.55960i
\(676\) −223.181 386.561i −0.330149 0.571835i
\(677\) 622.267i 0.919154i −0.888138 0.459577i \(-0.848001\pi\)
0.888138 0.459577i \(-0.151999\pi\)
\(678\) −760.946 + 377.934i −1.12234 + 0.557425i
\(679\) 0 0
\(680\) 36.4581 63.1473i 0.0536149 0.0928637i
\(681\) 201.823 + 406.356i 0.296362 + 0.596705i
\(682\) −247.903 143.127i −0.363494 0.209863i
\(683\) 235.625 + 408.115i 0.344986 + 0.597533i 0.985351 0.170538i \(-0.0545505\pi\)
−0.640366 + 0.768070i \(0.721217\pi\)
\(684\) 6.78461 53.8863i 0.00991901 0.0787812i
\(685\) 435.092i 0.635171i
\(686\) 0 0
\(687\) 1239.52 + 77.7248i 1.80426 + 0.113137i
\(688\) 65.1463 + 112.837i 0.0946894 + 0.164007i
\(689\) 99.4710i 0.144370i
\(690\) −164.073 330.351i −0.237788 0.478770i
\(691\) 519.523i 0.751843i 0.926652 + 0.375921i \(0.122674\pi\)
−0.926652 + 0.375921i \(0.877326\pi\)
\(692\) 455.392i 0.658081i
\(693\) 0 0
\(694\) −771.992 −1.11238
\(695\) −2331.25 −3.35432
\(696\) 21.5453 343.595i 0.0309559 0.493671i
\(697\) 177.220 0.254261
\(698\) −753.135 + 434.823i −1.07899 + 0.622955i
\(699\) 896.343 445.182i 1.28232 0.636883i
\(700\) 0 0
\(701\) −985.712 −1.40615 −0.703076 0.711115i \(-0.748191\pi\)
−0.703076 + 0.711115i \(0.748191\pi\)
\(702\) −224.953 + 260.940i −0.320446 + 0.371710i
\(703\) −60.4852 + 34.9212i −0.0860387 + 0.0496745i
\(704\) 109.936 190.414i 0.156159 0.270475i
\(705\) 88.7251 1414.95i 0.125851 2.00702i
\(706\) 193.583 + 111.765i 0.274197 + 0.158308i
\(707\) 0 0
\(708\) 250.520 377.234i 0.353842 0.532817i
\(709\) 590.228 0.832479 0.416240 0.909255i \(-0.363348\pi\)
0.416240 + 0.909255i \(0.363348\pi\)
\(710\) −1720.87 + 993.544i −2.42376 + 1.39936i
\(711\) −101.367 240.861i −0.142570 0.338764i
\(712\) 222.830 + 128.651i 0.312964 + 0.180690i
\(713\) −66.5023 + 38.3951i −0.0932711 + 0.0538501i
\(714\) 0 0
\(715\) 155.924 270.068i 0.218075 0.377717i
\(716\) 300.273 + 520.088i 0.419376 + 0.726380i
\(717\) −563.267 + 279.755i −0.785589 + 0.390174i
\(718\) −282.129 + 488.662i −0.392938 + 0.680588i
\(719\) −320.943 185.297i −0.446375 0.257715i 0.259923 0.965629i \(-0.416303\pi\)
−0.706298 + 0.707915i \(0.749636\pi\)
\(720\) 1246.07 + 945.002i 1.73066 + 1.31250i
\(721\) 0 0
\(722\) −474.384 821.657i −0.657042 1.13803i
\(723\) −303.918 611.918i −0.420357 0.846360i
\(724\) 246.768i 0.340839i
\(725\) 2739.97 3.77926
\(726\) −35.5311 + 566.635i −0.0489409 + 0.780489i
\(727\) 98.4688 56.8510i 0.135445 0.0781995i −0.430746 0.902473i \(-0.641750\pi\)
0.566192 + 0.824274i \(0.308416\pi\)
\(728\) 0 0
\(729\) −678.142 267.515i −0.930236 0.366962i
\(730\) −871.768 + 1509.95i −1.19420 + 2.06842i
\(731\) −18.9324 10.9306i −0.0258994 0.0149530i
\(732\) 11.6970 17.6133i 0.0159795 0.0240619i
\(733\) −526.757 + 304.124i −0.718632 + 0.414903i −0.814249 0.580516i \(-0.802851\pi\)
0.0956168 + 0.995418i \(0.469518\pi\)
\(734\) 965.458 + 557.407i 1.31534 + 0.759411i
\(735\) 0 0
\(736\) −100.949 174.848i −0.137158 0.237565i
\(737\) −108.740 + 188.343i −0.147544 + 0.255554i
\(738\) −167.111 + 1327.27i −0.226438 + 1.79847i
\(739\) 605.973 + 1049.58i 0.819990 + 1.42026i 0.905689 + 0.423944i \(0.139355\pi\)
−0.0856983 + 0.996321i \(0.527312\pi\)
\(740\) 996.568i 1.34671i
\(741\) 1.77903 28.3712i 0.00240085 0.0382878i
\(742\) 0 0
\(743\) 82.8636 143.524i 0.111526 0.193168i −0.804860 0.593465i \(-0.797760\pi\)
0.916386 + 0.400297i \(0.131093\pi\)
\(744\) 63.3924 95.4564i 0.0852048 0.128302i
\(745\) −2047.28 1182.00i −2.74802 1.58657i
\(746\) 293.657 + 508.628i 0.393642 + 0.681807i
\(747\) 463.109 + 351.215i 0.619958 + 0.470167i
\(748\) 68.3515i 0.0913791i
\(749\) 0 0
\(750\) −1408.82 + 2121.41i −1.87843 + 2.82854i
\(751\) −676.588 1171.89i −0.900916 1.56043i −0.826307 0.563220i \(-0.809562\pi\)
−0.0746094 0.997213i \(-0.523771\pi\)
\(752\) 969.349i 1.28903i
\(753\) 701.333 1056.07i 0.931385 1.40248i
\(754\) 585.493i 0.776515i
\(755\) 1089.63i 1.44322i
\(756\) 0 0
\(757\) 128.108 0.169231 0.0846155 0.996414i \(-0.473034\pi\)
0.0846155 + 0.996414i \(0.473034\pi\)
\(758\) 842.374 1.11131
\(759\) −88.6451 58.8690i −0.116792 0.0775613i
\(760\) −45.4154 −0.0597572
\(761\) −697.444 + 402.669i −0.916483 + 0.529132i −0.882511 0.470291i \(-0.844149\pi\)
−0.0339717 + 0.999423i \(0.510816\pi\)
\(762\) −1222.04 811.557i −1.60373 1.06504i
\(763\) 0 0
\(764\) 84.3032 0.110344
\(765\) −260.342 32.7786i −0.340317 0.0428479i
\(766\) −638.687 + 368.746i −0.833795 + 0.481392i
\(767\) 118.510 205.265i 0.154511 0.267620i
\(768\) 828.221 + 550.020i 1.07841 + 0.716172i
\(769\) 501.209 + 289.373i 0.651767 + 0.376298i 0.789133 0.614222i \(-0.210530\pi\)
−0.137366 + 0.990520i \(0.543864\pi\)
\(770\) 0 0
\(771\) −260.957 16.3634i −0.338465 0.0212236i
\(772\) −380.906 −0.493401
\(773\) −685.032 + 395.504i −0.886200 + 0.511648i −0.872698 0.488261i \(-0.837631\pi\)
−0.0135021 + 0.999909i \(0.504298\pi\)
\(774\) 99.7167 131.486i 0.128833 0.169878i
\(775\) 789.801 + 455.992i 1.01910 + 0.588376i
\(776\) 122.020 70.4481i 0.157242 0.0907836i
\(777\) 0 0
\(778\) 96.2228 166.663i 0.123680 0.214219i
\(779\) −55.1901 95.5921i −0.0708474 0.122711i
\(780\) −337.896 224.396i −0.433200 0.287687i
\(781\) −286.633 + 496.462i −0.367007 + 0.635675i
\(782\) 36.6459 + 21.1575i 0.0468618 + 0.0270557i
\(783\) −1169.73 + 408.163i −1.49391 + 0.521281i
\(784\) 0 0
\(785\) 234.814 + 406.710i 0.299126 + 0.518102i
\(786\) 57.8639 + 3.62838i 0.0736182 + 0.00461626i
\(787\) 989.401i 1.25718i −0.777737 0.628590i \(-0.783632\pi\)
0.777737 0.628590i \(-0.216368\pi\)
\(788\) −352.058 −0.446774
\(789\) 118.726 58.9668i 0.150476 0.0747362i
\(790\) 614.898 355.011i 0.778352 0.449382i
\(791\) 0 0
\(792\) 157.547 + 19.8361i 0.198923 + 0.0250456i
\(793\) 5.53329 9.58394i 0.00697766 0.0120857i
\(794\) 1569.92 + 906.395i 1.97723 + 1.14155i
\(795\) 254.385 + 512.187i 0.319981 + 0.644260i
\(796\) 320.119 184.821i 0.402159 0.232187i
\(797\) −104.384 60.2662i −0.130971 0.0756163i 0.433083 0.901354i \(-0.357426\pi\)
−0.564054 + 0.825738i \(0.690759\pi\)
\(798\) 0 0
\(799\) 81.3216 + 140.853i 0.101779 + 0.176287i
\(800\) −1198.90 + 2076.55i −1.49862 + 2.59568i
\(801\) 115.667 918.680i 0.144404 1.14692i
\(802\) −597.323 1034.59i −0.744791 1.29002i
\(803\) 503.001i 0.626403i
\(804\) 235.646 + 156.492i 0.293092 + 0.194642i
\(805\) 0 0
\(806\) −97.4391 + 168.769i −0.120892 + 0.209391i
\(807\) 587.730 + 36.8539i 0.728290 + 0.0456677i
\(808\) 242.574 + 140.050i 0.300216 + 0.173330i
\(809\) −94.3098 163.349i −0.116576 0.201915i 0.801833 0.597548i \(-0.203858\pi\)
−0.918409 + 0.395633i \(0.870525\pi\)
\(810\) 490.985 1918.90i 0.606155 2.36901i
\(811\) 1191.68i 1.46940i −0.678394 0.734699i \(-0.737324\pi\)
0.678394 0.734699i \(-0.262676\pi\)
\(812\) 0 0
\(813\) 226.145 + 455.327i 0.278161 + 0.560058i
\(814\) 331.747 + 574.602i 0.407551 + 0.705899i
\(815\) 2635.23i 3.23341i
\(816\) −179.058 11.2279i −0.219434 0.0137597i
\(817\) 13.6162i 0.0166661i
\(818\) 395.622i 0.483645i
\(819\) 0 0
\(820\) −1575.00 −1.92073
\(821\) −677.226 −0.824879 −0.412440 0.910985i \(-0.635323\pi\)
−0.412440 + 0.910985i \(0.635323\pi\)
\(822\) 337.450 167.600i 0.410524 0.203892i
\(823\) −1610.79 −1.95722 −0.978608 0.205732i \(-0.934043\pi\)
−0.978608 + 0.205732i \(0.934043\pi\)
\(824\) 187.454 108.227i 0.227493 0.131343i
\(825\) −79.0906 + 1261.30i −0.0958674 + 1.52885i
\(826\) 0 0
\(827\) −626.312 −0.757331 −0.378665 0.925534i \(-0.623617\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(828\) −83.6365 + 110.282i −0.101010 + 0.133191i
\(829\) 469.693 271.178i 0.566578 0.327114i −0.189203 0.981938i \(-0.560591\pi\)
0.755782 + 0.654824i \(0.227257\pi\)
\(830\) −789.604 + 1367.63i −0.951330 + 1.64775i
\(831\) −994.408 + 493.887i −1.19664 + 0.594329i
\(832\) −129.632 74.8431i −0.155808 0.0899557i
\(833\) 0 0
\(834\) 898.009 + 1808.08i 1.07675 + 2.16796i
\(835\) 1723.11 2.06361
\(836\) 36.8687 21.2862i 0.0441014 0.0254619i
\(837\) −405.104 77.0153i −0.483996 0.0920135i
\(838\) −1060.52 612.293i −1.26554 0.730660i
\(839\) −1281.98 + 740.153i −1.52799 + 0.882185i −0.528543 + 0.848906i \(0.677262\pi\)
−0.999446 + 0.0332790i \(0.989405\pi\)
\(840\) 0 0
\(841\) −632.218 + 1095.03i −0.751746 + 1.30206i
\(842\) −169.771 294.051i −0.201628 0.349230i
\(843\) −23.0938 + 368.291i −0.0273948 + 0.436881i
\(844\) 184.103 318.876i 0.218132 0.377815i
\(845\) 1163.22 + 671.587i 1.37660 + 0.794778i
\(846\) −1131.59 + 476.232i −1.33758 + 0.562922i
\(847\) 0 0
\(848\) 195.507 + 338.627i 0.230550 + 0.399325i
\(849\) −249.691 + 375.985i −0.294100 + 0.442857i
\(850\) 502.546i 0.591230i
\(851\) 177.988 0.209152
\(852\) 621.149 + 412.504i 0.729048 + 0.484159i
\(853\) 744.542 429.861i 0.872851 0.503941i 0.00455615 0.999990i \(-0.498550\pi\)
0.868294 + 0.496049i \(0.165216\pi\)
\(854\) 0 0
\(855\) 63.3955 + 150.636i 0.0741468 + 0.176183i
\(856\) 63.6560 110.255i 0.0743645 0.128803i
\(857\) −383.456 221.388i −0.447440 0.258330i 0.259308 0.965795i \(-0.416505\pi\)
−0.706748 + 0.707465i \(0.749839\pi\)
\(858\) −269.523 16.9006i −0.314129 0.0196976i
\(859\) −433.921 + 250.524i −0.505146 + 0.291646i −0.730836 0.682553i \(-0.760870\pi\)
0.225690 + 0.974199i \(0.427536\pi\)
\(860\) 168.257 + 97.1434i 0.195648 + 0.112957i
\(861\) 0 0
\(862\) −277.453 480.562i −0.321871 0.557497i
\(863\) −182.251 + 315.667i −0.211183 + 0.365779i −0.952085 0.305834i \(-0.901065\pi\)
0.740902 + 0.671613i \(0.234398\pi\)
\(864\) 202.489 1065.10i 0.234362 1.23276i
\(865\) −685.174 1186.76i −0.792108 1.37197i
\(866\) 1307.67i 1.51001i
\(867\) −749.541 + 372.270i −0.864523 + 0.429378i
\(868\) 0 0
\(869\) 102.419 177.395i 0.117859 0.204137i
\(870\) −1497.33 3014.77i −1.72106 3.46525i
\(871\) 128.222 + 74.0291i 0.147213 + 0.0849932i
\(872\) −54.8246 94.9590i −0.0628723 0.108898i
\(873\) −403.993 306.382i −0.462764 0.350953i
\(874\) 26.3557i 0.0301552i
\(875\) 0 0
\(876\) 652.970 + 40.9448i 0.745400 + 0.0467406i
\(877\) 391.240 + 677.647i 0.446111 + 0.772688i 0.998129 0.0611449i \(-0.0194752\pi\)
−0.552017 + 0.833833i \(0.686142\pi\)
\(878\) 187.166i 0.213173i
\(879\) 575.894 + 1159.52i 0.655170 + 1.31914i
\(880\) 1225.85i 1.39301i
\(881\) 337.263i 0.382818i −0.981510 0.191409i \(-0.938694\pi\)
0.981510 0.191409i \(-0.0613058\pi\)
\(882\) 0 0
\(883\) 556.002 0.629674 0.314837 0.949146i \(-0.398050\pi\)
0.314837 + 0.949146i \(0.398050\pi\)
\(884\) 46.5330 0.0526392
\(885\) −85.2796 + 1360.00i −0.0963612 + 1.53673i
\(886\) 1902.47 2.14725
\(887\) 626.057 361.454i 0.705814 0.407502i −0.103695 0.994609i \(-0.533067\pi\)
0.809509 + 0.587107i \(0.199733\pi\)
\(888\) −237.876 + 118.144i −0.267878 + 0.133045i
\(889\) 0 0
\(890\) 2515.79 2.82673
\(891\) −154.127 550.250i −0.172982 0.617564i
\(892\) −622.790 + 359.568i −0.698195 + 0.403103i
\(893\) 50.6507 87.7296i 0.0567197 0.0982414i
\(894\) −128.116 + 2043.15i −0.143307 + 2.28540i
\(895\) −1565.03 903.569i −1.74863 1.00957i
\(896\) 0 0
\(897\) −40.0774 + 60.3486i −0.0446794 + 0.0672783i
\(898\) −346.317 −0.385653
\(899\) −606.896 + 350.392i −0.675079 + 0.389757i
\(900\) 1630.92 + 205.342i 1.81213 + 0.228158i
\(901\) −56.8170 32.8033i −0.0630599 0.0364077i
\(902\) −908.113 + 524.299i −1.00678 + 0.581263i
\(903\) 0 0
\(904\) 133.298 230.879i 0.147454 0.255398i
\(905\) 371.282 + 643.079i 0.410256 + 0.710584i
\(906\) 845.100 419.731i 0.932781 0.463279i
\(907\) −563.871 + 976.653i −0.621688 + 1.07679i 0.367484 + 0.930030i \(0.380219\pi\)
−0.989171 + 0.146765i \(0.953114\pi\)
\(908\) 400.613 + 231.294i 0.441203 + 0.254729i
\(909\) 125.916 1000.08i 0.138521 1.10020i
\(910\) 0 0
\(911\) −890.109 1541.71i −0.977068 1.69233i −0.672933 0.739703i \(-0.734966\pi\)
−0.304136 0.952629i \(-0.598368\pi\)
\(912\) 49.7063 + 100.080i 0.0545025 + 0.109737i
\(913\) 455.594i 0.499007i
\(914\) −561.995 −0.614875
\(915\) −3.98176 + 63.4995i −0.00435165 + 0.0693983i
\(916\) 1096.60 633.121i 1.19716 0.691181i
\(917\) 0 0
\(918\) 74.8625 + 214.544i 0.0815496 + 0.233708i
\(919\) −350.534 + 607.142i −0.381429 + 0.660655i −0.991267 0.131871i \(-0.957901\pi\)
0.609837 + 0.792527i \(0.291235\pi\)
\(920\) 100.232 + 57.8691i 0.108948 + 0.0629012i
\(921\) −260.844 + 392.779i −0.283218 + 0.426470i
\(922\) 1214.24 701.039i 1.31696 0.760346i
\(923\) 337.986 + 195.136i 0.366182 + 0.211415i
\(924\) 0 0
\(925\) −1056.92 1830.64i −1.14262 1.97907i
\(926\) −975.227 + 1689.14i −1.05316 + 1.82413i
\(927\) −620.638 470.683i −0.669513 0.507748i
\(928\) −921.252 1595.65i −0.992728 1.71946i
\(929\) 981.172i 1.05616i 0.849195 + 0.528080i \(0.177088\pi\)
−0.849195 + 0.528080i \(0.822912\pi\)
\(930\) 70.1173 1118.20i 0.0753949 1.20237i
\(931\) 0 0
\(932\) 510.189 883.674i 0.547413 0.948148i
\(933\) −550.695 + 829.237i −0.590241 + 0.888785i
\(934\) −746.401 430.935i −0.799145 0.461386i
\(935\) −102.840 178.125i −0.109990 0.190508i
\(936\) 13.5042 107.256i 0.0144276 0.114590i
\(937\) 949.998i 1.01387i −0.861984 0.506936i \(-0.830778\pi\)
0.861984 0.506936i \(-0.169222\pi\)
\(938\) 0 0
\(939\) 677.953 1020.86i 0.721995 1.08718i
\(940\) −722.726 1251.80i −0.768858 1.33170i
\(941\) 380.205i 0.404043i −0.979381 0.202022i \(-0.935249\pi\)
0.979381 0.202022i \(-0.0647512\pi\)
\(942\) 224.986 338.785i 0.238839 0.359644i
\(943\) 281.297i 0.298300i
\(944\) 931.705i 0.986976i
\(945\) 0 0
\(946\) 129.352 0.136736
\(947\) 326.068 0.344317 0.172159 0.985069i \(-0.444926\pi\)
0.172159 + 0.985069i \(0.444926\pi\)
\(948\) −221.948 147.395i −0.234122 0.155480i
\(949\) 342.438 0.360841
\(950\) −271.073 + 156.504i −0.285340 + 0.164741i
\(951\) 96.8290 + 64.3039i 0.101818 + 0.0676172i
\(952\) 0 0
\(953\) 1009.14 1.05891 0.529455 0.848338i \(-0.322397\pi\)
0.529455 + 0.848338i \(0.322397\pi\)
\(954\) 299.254 394.594i 0.313683 0.413620i
\(955\) −219.695 + 126.841i −0.230047 + 0.132818i
\(956\) −320.606 + 555.306i −0.335362 + 0.580864i
\(957\) −808.971 537.236i −0.845319 0.561375i
\(958\) 967.578 + 558.631i 1.01000 + 0.583122i
\(959\) 0 0
\(960\) 858.892 + 53.8572i 0.894679 + 0.0561013i
\(961\) 727.748 0.757282
\(962\) 391.183 225.850i 0.406635 0.234771i
\(963\) −454.559 57.2316i −0.472023 0.0594305i
\(964\) −603.269 348.298i −0.625798 0.361304i
\(965\) 992.644 573.103i 1.02865 0.593890i
\(966\) 0 0
\(967\) 277.066 479.892i 0.286521 0.496269i −0.686456 0.727172i \(-0.740834\pi\)
0.972977 + 0.230902i \(0.0741678\pi\)
\(968\) −89.0739 154.280i −0.0920184 0.159381i
\(969\) −15.6187 10.3724i −0.0161184 0.0107042i
\(970\) 688.811 1193.06i 0.710115 1.22995i
\(971\) −1334.71 770.592i −1.37457 0.793607i −0.383069 0.923720i \(-0.625133\pi\)
−0.991499 + 0.130113i \(0.958466\pi\)
\(972\) −726.851 + 155.289i −0.747790 + 0.159762i
\(973\) 0 0
\(974\) 51.3691 + 88.9739i 0.0527404 + 0.0913490i
\(975\) 858.682 + 53.8440i 0.880699 + 0.0552246i
\(976\) 43.5019i 0.0445716i
\(977\) −1625.38 −1.66365 −0.831824 0.555039i \(-0.812703\pi\)
−0.831824 + 0.555039i \(0.812703\pi\)
\(978\) 2043.84 1015.10i 2.08982 1.03794i
\(979\) 628.556 362.897i 0.642039 0.370681i
\(980\) 0 0
\(981\) −238.435 + 314.399i −0.243053 + 0.320488i
\(982\) 1157.53 2004.90i 1.17875 2.04165i
\(983\) −30.5458 17.6356i −0.0310740 0.0179406i 0.484383 0.874856i \(-0.339044\pi\)
−0.515457 + 0.856916i \(0.672378\pi\)
\(984\) −186.718 375.944i −0.189754 0.382057i
\(985\) 917.466 529.699i 0.931438 0.537766i
\(986\) 334.429 + 193.082i 0.339177 + 0.195824i
\(987\) 0 0
\(988\) −14.4914 25.0998i −0.0146674 0.0254047i
\(989\) 17.3499 30.0510i 0.0175429 0.0303852i
\(990\) 1431.03 602.250i 1.44548 0.608333i
\(991\) 567.488 + 982.918i 0.572642 + 0.991845i 0.996293 + 0.0860197i \(0.0274148\pi\)
−0.423652 + 0.905825i \(0.639252\pi\)
\(992\) 613.268i 0.618213i
\(993\) 712.362 + 473.078i 0.717384 + 0.476413i
\(994\) 0 0
\(995\) −556.155 + 963.288i −0.558950 + 0.968129i
\(996\) 591.428 + 37.0857i 0.593803 + 0.0372347i
\(997\) 44.4032 + 25.6362i 0.0445368 + 0.0257133i 0.522103 0.852882i \(-0.325148\pi\)
−0.477566 + 0.878596i \(0.658481\pi\)
\(998\) 489.190 + 847.301i 0.490170 + 0.848999i
\(999\) 723.919 + 624.081i 0.724643 + 0.624705i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.3.t.a.166.12 28
7.2 even 3 441.3.l.a.391.3 28
7.3 odd 6 441.3.k.b.31.3 28
7.4 even 3 63.3.k.a.31.3 28
7.5 odd 6 441.3.l.b.391.3 28
7.6 odd 2 63.3.t.a.40.12 yes 28
9.7 even 3 441.3.k.b.313.3 28
21.11 odd 6 189.3.k.a.10.12 28
21.20 even 2 189.3.t.a.145.3 28
63.11 odd 6 189.3.t.a.73.3 28
63.16 even 3 441.3.l.b.97.3 28
63.20 even 6 189.3.k.a.19.12 28
63.25 even 3 63.3.t.a.52.12 yes 28
63.34 odd 6 63.3.k.a.61.3 yes 28
63.52 odd 6 inner 441.3.t.a.178.12 28
63.61 odd 6 441.3.l.a.97.3 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.3 28 7.4 even 3
63.3.k.a.61.3 yes 28 63.34 odd 6
63.3.t.a.40.12 yes 28 7.6 odd 2
63.3.t.a.52.12 yes 28 63.25 even 3
189.3.k.a.10.12 28 21.11 odd 6
189.3.k.a.19.12 28 63.20 even 6
189.3.t.a.73.3 28 63.11 odd 6
189.3.t.a.145.3 28 21.20 even 2
441.3.k.b.31.3 28 7.3 odd 6
441.3.k.b.313.3 28 9.7 even 3
441.3.l.a.97.3 28 63.61 odd 6
441.3.l.a.391.3 28 7.2 even 3
441.3.l.b.97.3 28 63.16 even 3
441.3.l.b.391.3 28 7.5 odd 6
441.3.t.a.166.12 28 1.1 even 1 trivial
441.3.t.a.178.12 28 63.52 odd 6 inner