Properties

Label 63.3.k.a.61.3
Level $63$
Weight $3$
Character 63.61
Analytic conductor $1.717$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(31,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.31");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 61.3
Character \(\chi\) \(=\) 63.61
Dual form 63.3.k.a.31.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32841 - 2.30087i) q^{2} +(0.187748 + 2.99412i) q^{3} +(-1.52933 + 2.64888i) q^{4} +9.20400i q^{5} +(6.63967 - 4.40939i) q^{6} +(6.96620 - 0.687028i) q^{7} -2.50096 q^{8} +(-8.92950 + 1.12428i) q^{9} +O(q^{10})\) \(q+(-1.32841 - 2.30087i) q^{2} +(0.187748 + 2.99412i) q^{3} +(-1.52933 + 2.64888i) q^{4} +9.20400i q^{5} +(6.63967 - 4.40939i) q^{6} +(6.96620 - 0.687028i) q^{7} -2.50096 q^{8} +(-8.92950 + 1.12428i) q^{9} +(21.1772 - 12.2267i) q^{10} +7.05467 q^{11} +(-8.21819 - 4.08168i) q^{12} +(4.15930 - 2.40137i) q^{13} +(-10.8347 - 15.1157i) q^{14} +(-27.5579 + 1.72803i) q^{15} +(9.43962 + 16.3499i) q^{16} +(-2.74329 + 1.58384i) q^{17} +(14.4488 + 19.0521i) q^{18} +(1.70864 + 0.986484i) q^{19} +(-24.3803 - 14.0760i) q^{20} +(3.36493 + 20.7287i) q^{21} +(-9.37147 - 16.2319i) q^{22} -5.02797 q^{23} +(-0.469549 - 7.48818i) q^{24} -59.7137 q^{25} +(-11.0505 - 6.38000i) q^{26} +(-5.04271 - 26.5249i) q^{27} +(-8.83378 + 19.5033i) q^{28} +(22.9425 - 39.7376i) q^{29} +(40.5841 + 61.1116i) q^{30} +(13.2265 + 7.63630i) q^{31} +(20.0774 - 34.7751i) q^{32} +(1.32450 + 21.1225i) q^{33} +(7.28840 + 4.20796i) q^{34} +(6.32341 + 64.1170i) q^{35} +(10.6781 - 25.3726i) q^{36} +(17.6998 - 30.6570i) q^{37} -5.24181i q^{38} +(7.97089 + 12.0026i) q^{39} -23.0189i q^{40} +(48.4509 - 27.9732i) q^{41} +(43.2239 - 35.2784i) q^{42} +(-3.45068 + 5.97676i) q^{43} +(-10.7889 + 18.6870i) q^{44} +(-10.3479 - 82.1872i) q^{45} +(6.67920 + 11.5687i) q^{46} +(-44.4658 + 25.6723i) q^{47} +(-47.1813 + 31.3330i) q^{48} +(48.0560 - 9.57195i) q^{49} +(79.3241 + 137.393i) q^{50} +(-5.25724 - 7.91637i) q^{51} +14.6900i q^{52} +(-10.3556 - 17.9365i) q^{53} +(-54.3316 + 46.8385i) q^{54} +64.9312i q^{55} +(-17.4222 + 1.71823i) q^{56} +(-2.63286 + 5.30108i) q^{57} -121.908 q^{58} +(-42.7391 - 24.6754i) q^{59} +(37.5678 - 75.6402i) q^{60} +(1.99551 - 1.15211i) q^{61} -40.5764i q^{62} +(-61.4323 + 13.9668i) q^{63} -31.1668 q^{64} +(22.1022 + 38.2822i) q^{65} +(46.8406 - 31.1068i) q^{66} +(-15.4139 + 26.6977i) q^{67} -9.68884i q^{68} +(-0.943990 - 15.0544i) q^{69} +(139.125 - 99.7228i) q^{70} +81.2604 q^{71} +(22.3323 - 2.81177i) q^{72} +(-61.7481 + 35.6503i) q^{73} -94.0503 q^{74} +(-11.2111 - 178.790i) q^{75} +(-5.22615 + 3.01732i) q^{76} +(49.1442 - 4.84675i) q^{77} +(17.0278 - 34.2843i) q^{78} +(14.5179 + 25.1458i) q^{79} +(-150.485 + 86.8823i) q^{80} +(78.4720 - 20.0785i) q^{81} +(-128.725 - 74.3195i) q^{82} +(55.9283 + 32.2902i) q^{83} +(-60.0538 - 22.7877i) q^{84} +(-14.5776 - 25.2492i) q^{85} +18.3357 q^{86} +(123.287 + 61.2320i) q^{87} -17.6434 q^{88} +(89.0979 + 51.4407i) q^{89} +(-175.356 + 132.987i) q^{90} +(27.3247 - 19.5860i) q^{91} +(7.68944 - 13.3185i) q^{92} +(-20.3808 + 41.0353i) q^{93} +(118.137 + 68.2067i) q^{94} +(-9.07960 + 15.7263i) q^{95} +(107.890 + 53.5852i) q^{96} +(-48.7891 - 28.1684i) q^{97} +(-85.8617 - 97.8551i) q^{98} +(-62.9946 + 7.93140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q + q^{2} - 3 q^{3} - 23 q^{4} + 12 q^{6} - 16 q^{8} + 9 q^{9} - 6 q^{10} - 14 q^{11} - 3 q^{12} + 15 q^{13} - 11 q^{14} - 18 q^{15} - 27 q^{16} - 33 q^{17} + 33 q^{18} - 6 q^{19} + 108 q^{20} + 12 q^{21} - 10 q^{22} - 68 q^{23} + 42 q^{24} - 62 q^{25} + 54 q^{26} - 81 q^{27} - 16 q^{28} + 70 q^{29} - 6 q^{30} + 45 q^{31} + 153 q^{32} - 114 q^{33} + 12 q^{34} + 18 q^{35} - 174 q^{36} + 9 q^{37} - 120 q^{39} - 234 q^{41} - 51 q^{42} + 30 q^{43} + 51 q^{44} + 276 q^{45} - 22 q^{46} - 111 q^{47} + 147 q^{48} + 34 q^{49} + 241 q^{50} - 6 q^{51} + 148 q^{53} + 378 q^{54} - 412 q^{56} + 189 q^{57} - 34 q^{58} + 42 q^{59} + 456 q^{60} + 120 q^{61} - 222 q^{63} - 48 q^{64} + 114 q^{65} - 447 q^{66} - 34 q^{67} + 78 q^{69} + 264 q^{70} - 350 q^{71} - 339 q^{72} - 6 q^{73} - 718 q^{74} - 123 q^{75} + 72 q^{76} - 32 q^{77} - 375 q^{78} - 82 q^{79} - 609 q^{80} - 3 q^{81} - 18 q^{82} + 738 q^{83} + 609 q^{84} + 3 q^{85} - 34 q^{86} + 3 q^{87} - 50 q^{88} + 21 q^{89} - 543 q^{90} + 39 q^{91} + 288 q^{92} + 252 q^{93} - 3 q^{94} + 507 q^{95} - 582 q^{96} - 57 q^{97} + 811 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32841 2.30087i −0.664204 1.15043i −0.979501 0.201441i \(-0.935437\pi\)
0.315297 0.948993i \(-0.397896\pi\)
\(3\) 0.187748 + 2.99412i 0.0625825 + 0.998040i
\(4\) −1.52933 + 2.64888i −0.382333 + 0.662220i
\(5\) 9.20400i 1.84080i 0.390977 + 0.920400i \(0.372137\pi\)
−0.390977 + 0.920400i \(0.627863\pi\)
\(6\) 6.63967 4.40939i 1.10661 0.734899i
\(7\) 6.96620 0.687028i 0.995172 0.0981468i
\(8\) −2.50096 −0.312620
\(9\) −8.92950 + 1.12428i −0.992167 + 0.124920i
\(10\) 21.1772 12.2267i 2.11772 1.22267i
\(11\) 7.05467 0.641333 0.320667 0.947192i \(-0.396093\pi\)
0.320667 + 0.947192i \(0.396093\pi\)
\(12\) −8.21819 4.08168i −0.684849 0.340140i
\(13\) 4.15930 2.40137i 0.319946 0.184721i −0.331423 0.943482i \(-0.607529\pi\)
0.651368 + 0.758762i \(0.274195\pi\)
\(14\) −10.8347 15.1157i −0.773908 1.07969i
\(15\) −27.5579 + 1.72803i −1.83719 + 0.115202i
\(16\) 9.43962 + 16.3499i 0.589976 + 1.02187i
\(17\) −2.74329 + 1.58384i −0.161370 + 0.0931669i −0.578510 0.815675i \(-0.696366\pi\)
0.417140 + 0.908842i \(0.363032\pi\)
\(18\) 14.4488 + 19.0521i 0.802713 + 1.05845i
\(19\) 1.70864 + 0.986484i 0.0899284 + 0.0519202i 0.544290 0.838897i \(-0.316799\pi\)
−0.454361 + 0.890817i \(0.650133\pi\)
\(20\) −24.3803 14.0760i −1.21901 0.703798i
\(21\) 3.36493 + 20.7287i 0.160235 + 0.987079i
\(22\) −9.37147 16.2319i −0.425976 0.737812i
\(23\) −5.02797 −0.218608 −0.109304 0.994008i \(-0.534862\pi\)
−0.109304 + 0.994008i \(0.534862\pi\)
\(24\) −0.469549 7.48818i −0.0195646 0.312007i
\(25\) −59.7137 −2.38855
\(26\) −11.0505 6.38000i −0.425018 0.245384i
\(27\) −5.04271 26.5249i −0.186767 0.982404i
\(28\) −8.83378 + 19.5033i −0.315492 + 0.696547i
\(29\) 22.9425 39.7376i 0.791121 1.37026i −0.134152 0.990961i \(-0.542831\pi\)
0.925273 0.379301i \(-0.123836\pi\)
\(30\) 40.5841 + 61.1116i 1.35280 + 2.03705i
\(31\) 13.2265 + 7.63630i 0.426660 + 0.246332i 0.697923 0.716173i \(-0.254108\pi\)
−0.271263 + 0.962505i \(0.587441\pi\)
\(32\) 20.0774 34.7751i 0.627418 1.08672i
\(33\) 1.32450 + 21.1225i 0.0401362 + 0.640076i
\(34\) 7.28840 + 4.20796i 0.214365 + 0.123764i
\(35\) 6.32341 + 64.1170i 0.180669 + 1.83191i
\(36\) 10.6781 25.3726i 0.296614 0.704793i
\(37\) 17.6998 30.6570i 0.478373 0.828567i −0.521319 0.853362i \(-0.674560\pi\)
0.999693 + 0.0247946i \(0.00789319\pi\)
\(38\) 5.24181i 0.137942i
\(39\) 7.97089 + 12.0026i 0.204382 + 0.307758i
\(40\) 23.0189i 0.575471i
\(41\) 48.4509 27.9732i 1.18173 0.682272i 0.225316 0.974286i \(-0.427659\pi\)
0.956414 + 0.292014i \(0.0943253\pi\)
\(42\) 43.2239 35.2784i 1.02914 0.839961i
\(43\) −3.45068 + 5.97676i −0.0802485 + 0.138994i −0.903357 0.428890i \(-0.858905\pi\)
0.823108 + 0.567885i \(0.192238\pi\)
\(44\) −10.7889 + 18.6870i −0.245203 + 0.424703i
\(45\) −10.3479 82.1872i −0.229952 1.82638i
\(46\) 6.67920 + 11.5687i 0.145200 + 0.251494i
\(47\) −44.4658 + 25.6723i −0.946081 + 0.546220i −0.891861 0.452309i \(-0.850600\pi\)
−0.0542197 + 0.998529i \(0.517267\pi\)
\(48\) −47.1813 + 31.3330i −0.982943 + 0.652771i
\(49\) 48.0560 9.57195i 0.980734 0.195346i
\(50\) 79.3241 + 137.393i 1.58648 + 2.74787i
\(51\) −5.25724 7.91637i −0.103083 0.155223i
\(52\) 14.6900i 0.282499i
\(53\) −10.3556 17.9365i −0.195390 0.338425i 0.751639 0.659575i \(-0.229264\pi\)
−0.947028 + 0.321151i \(0.895930\pi\)
\(54\) −54.3316 + 46.8385i −1.00614 + 0.867380i
\(55\) 64.9312i 1.18057i
\(56\) −17.4222 + 1.71823i −0.311111 + 0.0306827i
\(57\) −2.63286 + 5.30108i −0.0461905 + 0.0930014i
\(58\) −121.908 −2.10186
\(59\) −42.7391 24.6754i −0.724391 0.418227i 0.0919759 0.995761i \(-0.470682\pi\)
−0.816367 + 0.577534i \(0.804015\pi\)
\(60\) 37.5678 75.6402i 0.626130 1.26067i
\(61\) 1.99551 1.15211i 0.0327133 0.0188871i −0.483554 0.875314i \(-0.660654\pi\)
0.516267 + 0.856427i \(0.327321\pi\)
\(62\) 40.5764i 0.654459i
\(63\) −61.4323 + 13.9668i −0.975116 + 0.221695i
\(64\) −31.1668 −0.486982
\(65\) 22.1022 + 38.2822i 0.340034 + 0.588957i
\(66\) 46.8406 31.1068i 0.709707 0.471315i
\(67\) −15.4139 + 26.6977i −0.230059 + 0.398473i −0.957825 0.287352i \(-0.907225\pi\)
0.727766 + 0.685825i \(0.240558\pi\)
\(68\) 9.68884i 0.142483i
\(69\) −0.943990 15.0544i −0.0136810 0.218179i
\(70\) 139.125 99.7228i 1.98750 1.42461i
\(71\) 81.2604 1.14451 0.572256 0.820075i \(-0.306068\pi\)
0.572256 + 0.820075i \(0.306068\pi\)
\(72\) 22.3323 2.81177i 0.310171 0.0390524i
\(73\) −61.7481 + 35.6503i −0.845864 + 0.488360i −0.859253 0.511551i \(-0.829071\pi\)
0.0133893 + 0.999910i \(0.495738\pi\)
\(74\) −94.0503 −1.27095
\(75\) −11.2111 178.790i −0.149481 2.38387i
\(76\) −5.22615 + 3.01732i −0.0687651 + 0.0397016i
\(77\) 49.1442 4.84675i 0.638237 0.0629448i
\(78\) 17.0278 34.2843i 0.218305 0.439542i
\(79\) 14.5179 + 25.1458i 0.183771 + 0.318301i 0.943162 0.332334i \(-0.107836\pi\)
−0.759391 + 0.650635i \(0.774503\pi\)
\(80\) −150.485 + 86.8823i −1.88106 + 1.08603i
\(81\) 78.4720 20.0785i 0.968790 0.247882i
\(82\) −128.725 74.3195i −1.56982 0.906335i
\(83\) 55.9283 + 32.2902i 0.673835 + 0.389039i 0.797528 0.603282i \(-0.206140\pi\)
−0.123693 + 0.992321i \(0.539474\pi\)
\(84\) −60.0538 22.7877i −0.714926 0.271282i
\(85\) −14.5776 25.2492i −0.171502 0.297050i
\(86\) 18.3357 0.213205
\(87\) 123.287 + 61.2320i 1.41709 + 0.703816i
\(88\) −17.6434 −0.200494
\(89\) 89.0979 + 51.4407i 1.00110 + 0.577985i 0.908574 0.417725i \(-0.137172\pi\)
0.0925265 + 0.995710i \(0.470506\pi\)
\(90\) −175.356 + 132.987i −1.94840 + 1.47763i
\(91\) 27.3247 19.5860i 0.300271 0.215231i
\(92\) 7.68944 13.3185i 0.0835808 0.144766i
\(93\) −20.3808 + 41.0353i −0.219148 + 0.441240i
\(94\) 118.137 + 68.2067i 1.25678 + 0.725603i
\(95\) −9.07960 + 15.7263i −0.0955747 + 0.165540i
\(96\) 107.890 + 53.5852i 1.12386 + 0.558179i
\(97\) −48.7891 28.1684i −0.502981 0.290396i 0.226963 0.973903i \(-0.427120\pi\)
−0.729944 + 0.683507i \(0.760454\pi\)
\(98\) −85.8617 97.8551i −0.876140 0.998521i
\(99\) −62.9946 + 7.93140i −0.636310 + 0.0801151i
\(100\) 91.3220 158.174i 0.913220 1.58174i
\(101\) 111.997i 1.10888i −0.832223 0.554442i \(-0.812932\pi\)
0.832223 0.554442i \(-0.187068\pi\)
\(102\) −11.2308 + 22.6124i −0.110105 + 0.221690i
\(103\) 86.5479i 0.840271i 0.907461 + 0.420136i \(0.138018\pi\)
−0.907461 + 0.420136i \(0.861982\pi\)
\(104\) −10.4022 + 6.00573i −0.100022 + 0.0577474i
\(105\) −190.787 + 30.9708i −1.81702 + 0.294960i
\(106\) −27.5130 + 47.6540i −0.259557 + 0.449566i
\(107\) −25.4526 + 44.0852i −0.237875 + 0.412012i −0.960104 0.279642i \(-0.909784\pi\)
0.722229 + 0.691654i \(0.243118\pi\)
\(108\) 77.9733 + 27.2078i 0.721975 + 0.251924i
\(109\) 21.9214 + 37.9690i 0.201114 + 0.348340i 0.948888 0.315614i \(-0.102211\pi\)
−0.747774 + 0.663954i \(0.768877\pi\)
\(110\) 149.398 86.2550i 1.35816 0.784137i
\(111\) 95.1138 + 47.2396i 0.856881 + 0.425582i
\(112\) 76.9911 + 107.411i 0.687421 + 0.959031i
\(113\) −53.2988 92.3163i −0.471671 0.816959i 0.527803 0.849367i \(-0.323016\pi\)
−0.999475 + 0.0324080i \(0.989682\pi\)
\(114\) 15.6946 0.984136i 0.137672 0.00863278i
\(115\) 46.2775i 0.402413i
\(116\) 70.1734 + 121.544i 0.604943 + 1.04779i
\(117\) −34.4406 + 26.1192i −0.294364 + 0.223241i
\(118\) 131.116i 1.11115i
\(119\) −18.0222 + 12.9180i −0.151447 + 0.108555i
\(120\) 68.9212 4.32173i 0.574343 0.0360144i
\(121\) −71.2317 −0.588692
\(122\) −5.30171 3.06094i −0.0434566 0.0250897i
\(123\) 92.8515 + 139.816i 0.754890 + 1.13672i
\(124\) −40.4553 + 23.3568i −0.326252 + 0.188362i
\(125\) 319.505i 2.55604i
\(126\) 113.743 + 122.794i 0.902721 + 0.974557i
\(127\) −184.052 −1.44923 −0.724614 0.689155i \(-0.757982\pi\)
−0.724614 + 0.689155i \(0.757982\pi\)
\(128\) −38.9073 67.3894i −0.303963 0.526480i
\(129\) −18.5430 9.20964i −0.143744 0.0713925i
\(130\) 58.7215 101.709i 0.451704 0.782374i
\(131\) 7.27407i 0.0555272i −0.999615 0.0277636i \(-0.991161\pi\)
0.999615 0.0277636i \(-0.00883857\pi\)
\(132\) −57.9766 28.7949i −0.439216 0.218143i
\(133\) 12.5805 + 5.69816i 0.0945900 + 0.0428433i
\(134\) 81.9039 0.611223
\(135\) 244.135 46.4131i 1.80841 0.343801i
\(136\) 6.86085 3.96111i 0.0504474 0.0291258i
\(137\) −47.2720 −0.345051 −0.172526 0.985005i \(-0.555193\pi\)
−0.172526 + 0.985005i \(0.555193\pi\)
\(138\) −33.3841 + 22.1703i −0.241914 + 0.160654i
\(139\) 219.353 126.643i 1.57808 0.911103i 0.582948 0.812509i \(-0.301899\pi\)
0.995128 0.0985934i \(-0.0314343\pi\)
\(140\) −179.509 81.3061i −1.28220 0.580758i
\(141\) −85.2144 128.316i −0.604358 0.910043i
\(142\) −107.947 186.970i −0.760190 1.31669i
\(143\) 29.3424 16.9409i 0.205192 0.118468i
\(144\) −102.673 135.384i −0.713006 0.940165i
\(145\) 365.745 + 211.163i 2.52238 + 1.45630i
\(146\) 164.053 + 94.7161i 1.12365 + 0.648741i
\(147\) 37.6819 + 142.088i 0.256340 + 0.966587i
\(148\) 54.1378 + 93.7693i 0.365796 + 0.633577i
\(149\) −256.844 −1.72378 −0.861892 0.507092i \(-0.830720\pi\)
−0.861892 + 0.507092i \(0.830720\pi\)
\(150\) −396.479 + 263.301i −2.64320 + 1.75534i
\(151\) −118.386 −0.784016 −0.392008 0.919962i \(-0.628220\pi\)
−0.392008 + 0.919962i \(0.628220\pi\)
\(152\) −4.27324 2.46716i −0.0281134 0.0162313i
\(153\) 22.7155 17.2271i 0.148467 0.112595i
\(154\) −76.4353 106.636i −0.496333 0.692441i
\(155\) −70.2845 + 121.736i −0.453448 + 0.785396i
\(156\) −43.9835 + 2.75800i −0.281945 + 0.0176795i
\(157\) −44.1884 25.5122i −0.281455 0.162498i 0.352627 0.935764i \(-0.385288\pi\)
−0.634082 + 0.773266i \(0.718622\pi\)
\(158\) 38.5714 66.8077i 0.244123 0.422833i
\(159\) 51.7598 34.3736i 0.325533 0.216186i
\(160\) 320.070 + 184.792i 2.00044 + 1.15495i
\(161\) −35.0259 + 3.45436i −0.217552 + 0.0214556i
\(162\) −150.441 153.881i −0.928646 0.949885i
\(163\) 143.157 247.955i 0.878263 1.52120i 0.0250163 0.999687i \(-0.492036\pi\)
0.853246 0.521508i \(-0.174630\pi\)
\(164\) 171.121i 1.04342i
\(165\) −194.412 + 12.1907i −1.17825 + 0.0738828i
\(166\) 171.578i 1.03360i
\(167\) −162.132 + 93.6068i −0.970848 + 0.560519i −0.899495 0.436932i \(-0.856065\pi\)
−0.0713535 + 0.997451i \(0.522732\pi\)
\(168\) −8.41556 51.8416i −0.0500926 0.308581i
\(169\) −72.9668 + 126.382i −0.431756 + 0.747824i
\(170\) −38.7301 + 67.0825i −0.227824 + 0.394603i
\(171\) −16.3664 6.88782i −0.0957098 0.0402797i
\(172\) −10.5545 18.2809i −0.0613632 0.106284i
\(173\) −128.939 + 74.4430i −0.745313 + 0.430306i −0.823998 0.566593i \(-0.808261\pi\)
0.0786851 + 0.996900i \(0.474928\pi\)
\(174\) −22.8879 365.007i −0.131540 2.09774i
\(175\) −415.978 + 41.0250i −2.37702 + 0.234428i
\(176\) 66.5933 + 115.343i 0.378371 + 0.655358i
\(177\) 65.8570 132.599i 0.372073 0.749144i
\(178\) 273.337i 1.53560i
\(179\) 98.1713 + 170.038i 0.548443 + 0.949931i 0.998381 + 0.0568718i \(0.0181126\pi\)
−0.449938 + 0.893060i \(0.648554\pi\)
\(180\) 233.529 + 98.2812i 1.29738 + 0.546007i
\(181\) 80.6783i 0.445736i 0.974849 + 0.222868i \(0.0715419\pi\)
−0.974849 + 0.222868i \(0.928458\pi\)
\(182\) −81.3631 36.8524i −0.447050 0.202486i
\(183\) 3.82421 + 5.75850i 0.0208973 + 0.0314672i
\(184\) 12.5748 0.0683411
\(185\) 282.167 + 162.909i 1.52523 + 0.880590i
\(186\) 121.491 7.61813i 0.653176 0.0409577i
\(187\) −19.3530 + 11.1734i −0.103492 + 0.0597510i
\(188\) 157.046i 0.835351i
\(189\) −53.3519 181.313i −0.282285 0.959331i
\(190\) 48.2456 0.253924
\(191\) −13.7811 23.8695i −0.0721521 0.124971i 0.827692 0.561182i \(-0.189653\pi\)
−0.899844 + 0.436211i \(0.856320\pi\)
\(192\) −5.85150 93.3172i −0.0304765 0.486027i
\(193\) 62.2668 107.849i 0.322626 0.558804i −0.658403 0.752665i \(-0.728768\pi\)
0.981029 + 0.193861i \(0.0621012\pi\)
\(194\) 149.676i 0.771528i
\(195\) −110.472 + 73.3641i −0.566522 + 0.376226i
\(196\) −48.1386 + 141.933i −0.245605 + 0.724149i
\(197\) −115.102 −0.584274 −0.292137 0.956376i \(-0.594366\pi\)
−0.292137 + 0.956376i \(0.594366\pi\)
\(198\) 101.932 + 134.406i 0.514806 + 0.678820i
\(199\) −104.660 + 60.4253i −0.525928 + 0.303645i −0.739357 0.673314i \(-0.764870\pi\)
0.213429 + 0.976959i \(0.431537\pi\)
\(200\) 149.342 0.746708
\(201\) −82.8301 41.1387i −0.412090 0.204670i
\(202\) −257.691 + 148.778i −1.27570 + 0.736524i
\(203\) 132.521 292.582i 0.652815 1.44129i
\(204\) 29.0096 1.81906i 0.142204 0.00891694i
\(205\) 257.465 + 445.943i 1.25593 + 2.17533i
\(206\) 199.135 114.971i 0.966677 0.558111i
\(207\) 44.8973 5.65284i 0.216895 0.0273084i
\(208\) 78.5243 + 45.3360i 0.377521 + 0.217962i
\(209\) 12.0539 + 6.95931i 0.0576741 + 0.0332981i
\(210\) 324.702 + 397.833i 1.54620 + 1.89444i
\(211\) 60.1908 + 104.254i 0.285264 + 0.494092i 0.972673 0.232178i \(-0.0745853\pi\)
−0.687409 + 0.726271i \(0.741252\pi\)
\(212\) 63.3488 0.298815
\(213\) 15.2564 + 243.303i 0.0716265 + 1.14227i
\(214\) 135.246 0.631990
\(215\) −55.0101 31.7601i −0.255861 0.147721i
\(216\) 12.6116 + 66.3378i 0.0583872 + 0.307119i
\(217\) 97.3845 + 44.1091i 0.448777 + 0.203268i
\(218\) 58.2411 100.877i 0.267161 0.462737i
\(219\) −118.334 178.188i −0.540339 0.813643i
\(220\) −171.995 99.3012i −0.781795 0.451369i
\(221\) −7.60676 + 13.1753i −0.0344197 + 0.0596167i
\(222\) −17.6577 281.598i −0.0795392 1.26846i
\(223\) −203.615 117.557i −0.913072 0.527162i −0.0316538 0.999499i \(-0.510077\pi\)
−0.881418 + 0.472336i \(0.843411\pi\)
\(224\) 115.972 256.044i 0.517731 1.14305i
\(225\) 533.214 67.1348i 2.36984 0.298377i
\(226\) −141.605 + 245.267i −0.626571 + 1.08525i
\(227\) 151.239i 0.666249i 0.942883 + 0.333125i \(0.108103\pi\)
−0.942883 + 0.333125i \(0.891897\pi\)
\(228\) −10.0154 15.0812i −0.0439272 0.0661457i
\(229\) 413.986i 1.80780i −0.427745 0.903899i \(-0.640692\pi\)
0.427745 0.903899i \(-0.359308\pi\)
\(230\) −106.478 + 61.4754i −0.462950 + 0.267284i
\(231\) 23.7385 + 146.234i 0.102764 + 0.633046i
\(232\) −57.3783 + 99.3822i −0.247320 + 0.428372i
\(233\) 166.801 288.909i 0.715886 1.23995i −0.246731 0.969084i \(-0.579356\pi\)
0.962617 0.270867i \(-0.0873103\pi\)
\(234\) 105.848 + 44.5464i 0.452342 + 0.190369i
\(235\) −236.288 409.264i −1.00548 1.74155i
\(236\) 130.724 75.4737i 0.553917 0.319804i
\(237\) −72.5637 + 48.1894i −0.306176 + 0.203331i
\(238\) 53.6635 + 24.3062i 0.225477 + 0.102127i
\(239\) −104.819 181.552i −0.438573 0.759631i 0.559007 0.829163i \(-0.311183\pi\)
−0.997580 + 0.0695323i \(0.977849\pi\)
\(240\) −288.389 434.257i −1.20162 1.80940i
\(241\) 227.745i 0.945000i −0.881331 0.472500i \(-0.843352\pi\)
0.881331 0.472500i \(-0.156648\pi\)
\(242\) 94.6247 + 163.895i 0.391011 + 0.677251i
\(243\) 74.8503 + 231.185i 0.308026 + 0.951378i
\(244\) 7.04783i 0.0288846i
\(245\) 88.1003 + 442.308i 0.359593 + 1.80534i
\(246\) 198.354 399.372i 0.806315 1.62346i
\(247\) 9.47565 0.0383630
\(248\) −33.0788 19.0981i −0.133382 0.0770084i
\(249\) −86.1804 + 173.519i −0.346106 + 0.696861i
\(250\) −735.139 + 424.433i −2.94056 + 1.69773i
\(251\) 422.578i 1.68358i 0.539808 + 0.841788i \(0.318497\pi\)
−0.539808 + 0.841788i \(0.681503\pi\)
\(252\) 56.9541 184.087i 0.226008 0.730502i
\(253\) −35.4707 −0.140200
\(254\) 244.496 + 423.479i 0.962582 + 1.66724i
\(255\) 72.8623 48.3877i 0.285734 0.189756i
\(256\) −165.703 + 287.006i −0.647278 + 1.12112i
\(257\) 87.1564i 0.339130i 0.985519 + 0.169565i \(0.0542363\pi\)
−0.985519 + 0.169565i \(0.945764\pi\)
\(258\) 3.44247 + 54.8991i 0.0133429 + 0.212787i
\(259\) 102.238 225.723i 0.394743 0.871518i
\(260\) −135.206 −0.520025
\(261\) −160.189 + 380.631i −0.613752 + 1.45836i
\(262\) −16.7367 + 9.66292i −0.0638804 + 0.0368814i
\(263\) −44.1876 −0.168014 −0.0840069 0.996465i \(-0.526772\pi\)
−0.0840069 + 0.996465i \(0.526772\pi\)
\(264\) −3.31251 52.8266i −0.0125474 0.200101i
\(265\) 165.088 95.3134i 0.622972 0.359673i
\(266\) −3.60127 36.5155i −0.0135386 0.137276i
\(267\) −137.292 + 276.428i −0.514201 + 1.03531i
\(268\) −47.1460 81.6593i −0.175918 0.304699i
\(269\) −169.996 + 98.1474i −0.631957 + 0.364860i −0.781509 0.623893i \(-0.785550\pi\)
0.149553 + 0.988754i \(0.452217\pi\)
\(270\) −431.102 500.068i −1.59667 1.85210i
\(271\) −146.761 84.7324i −0.541553 0.312666i 0.204155 0.978938i \(-0.434555\pi\)
−0.745708 + 0.666273i \(0.767889\pi\)
\(272\) −51.7912 29.9016i −0.190409 0.109932i
\(273\) 63.7729 + 78.1362i 0.233600 + 0.286213i
\(274\) 62.7965 + 108.767i 0.229184 + 0.396959i
\(275\) −421.260 −1.53186
\(276\) 41.3208 + 20.5226i 0.149713 + 0.0743572i
\(277\) 370.101 1.33610 0.668052 0.744114i \(-0.267128\pi\)
0.668052 + 0.744114i \(0.267128\pi\)
\(278\) −582.779 336.468i −2.09633 1.21032i
\(279\) −126.691 53.3181i −0.454089 0.191104i
\(280\) −15.8146 160.354i −0.0564807 0.572693i
\(281\) 61.5023 106.525i 0.218869 0.379093i −0.735593 0.677424i \(-0.763096\pi\)
0.954463 + 0.298331i \(0.0964298\pi\)
\(282\) −182.039 + 366.523i −0.645528 + 1.29973i
\(283\) 130.292 + 75.2239i 0.460394 + 0.265809i 0.712210 0.701967i \(-0.247694\pi\)
−0.251816 + 0.967775i \(0.581028\pi\)
\(284\) −124.274 + 215.249i −0.437585 + 0.757919i
\(285\) −48.7912 24.2328i −0.171197 0.0850275i
\(286\) −77.9574 45.0087i −0.272578 0.157373i
\(287\) 318.301 228.154i 1.10906 0.794961i
\(288\) −140.184 + 333.096i −0.486751 + 1.15658i
\(289\) −139.483 + 241.592i −0.482640 + 0.835957i
\(290\) 1122.04i 3.86911i
\(291\) 75.1795 151.369i 0.258349 0.520168i
\(292\) 218.084i 0.746864i
\(293\) 373.737 215.777i 1.27555 0.736440i 0.299525 0.954088i \(-0.403172\pi\)
0.976027 + 0.217648i \(0.0698385\pi\)
\(294\) 276.869 275.452i 0.941733 0.936912i
\(295\) 227.113 393.370i 0.769873 1.33346i
\(296\) −44.2666 + 76.6719i −0.149549 + 0.259027i
\(297\) −35.5746 187.124i −0.119780 0.630048i
\(298\) 341.193 + 590.964i 1.14494 + 1.98310i
\(299\) −20.9128 + 12.0740i −0.0699426 + 0.0403814i
\(300\) 490.738 + 243.732i 1.63579 + 0.812441i
\(301\) −19.9320 + 44.0060i −0.0662192 + 0.146199i
\(302\) 157.265 + 272.392i 0.520746 + 0.901959i
\(303\) 335.333 21.0272i 1.10671 0.0693967i
\(304\) 37.2481i 0.122527i
\(305\) 10.6040 + 18.3667i 0.0347673 + 0.0602187i
\(306\) −69.8127 29.3808i −0.228146 0.0960157i
\(307\) 157.167i 0.511946i −0.966684 0.255973i \(-0.917604\pi\)
0.966684 0.255973i \(-0.0823958\pi\)
\(308\) −62.3193 + 137.589i −0.202336 + 0.446719i
\(309\) −259.135 + 16.2492i −0.838624 + 0.0525863i
\(310\) 373.466 1.20473
\(311\) 287.358 + 165.906i 0.923982 + 0.533461i 0.884903 0.465775i \(-0.154224\pi\)
0.0390787 + 0.999236i \(0.487558\pi\)
\(312\) −19.9349 30.0180i −0.0638938 0.0962115i
\(313\) 353.763 204.245i 1.13023 0.652541i 0.186241 0.982504i \(-0.440370\pi\)
0.943994 + 0.329963i \(0.107036\pi\)
\(314\) 135.562i 0.431727i
\(315\) −128.550 565.423i −0.408096 1.79499i
\(316\) −88.8108 −0.281047
\(317\) −19.3727 33.5545i −0.0611126 0.105850i 0.833850 0.551991i \(-0.186132\pi\)
−0.894963 + 0.446140i \(0.852798\pi\)
\(318\) −147.847 73.4304i −0.464928 0.230913i
\(319\) 161.852 280.335i 0.507372 0.878795i
\(320\) 286.860i 0.896437i
\(321\) −136.775 67.9313i −0.426091 0.211624i
\(322\) 54.4767 + 76.0012i 0.169182 + 0.236029i
\(323\) −6.24972 −0.0193490
\(324\) −66.8242 + 238.569i −0.206248 + 0.736325i
\(325\) −248.367 + 143.395i −0.764206 + 0.441215i
\(326\) −760.682 −2.33338
\(327\) −109.568 + 72.7639i −0.335071 + 0.222520i
\(328\) −121.174 + 69.9598i −0.369433 + 0.213292i
\(329\) −292.120 + 209.388i −0.887904 + 0.636438i
\(330\) 286.307 + 431.122i 0.867597 + 1.30643i
\(331\) −142.523 246.857i −0.430583 0.745792i 0.566340 0.824172i \(-0.308359\pi\)
−0.996924 + 0.0783792i \(0.975026\pi\)
\(332\) −171.066 + 98.7649i −0.515259 + 0.297485i
\(333\) −123.584 + 293.651i −0.371122 + 0.881835i
\(334\) 430.754 + 248.696i 1.28968 + 0.744598i
\(335\) −245.726 141.870i −0.733510 0.423492i
\(336\) −307.148 + 250.687i −0.914130 + 0.746092i
\(337\) 298.113 + 516.347i 0.884608 + 1.53219i 0.846163 + 0.532925i \(0.178907\pi\)
0.0384451 + 0.999261i \(0.487760\pi\)
\(338\) 387.719 1.14710
\(339\) 266.399 176.915i 0.785839 0.521874i
\(340\) 89.1762 0.262283
\(341\) 93.3082 + 53.8715i 0.273631 + 0.157981i
\(342\) 5.89324 + 46.8067i 0.0172317 + 0.136862i
\(343\) 328.192 99.6959i 0.956827 0.290659i
\(344\) 8.63003 14.9476i 0.0250873 0.0434525i
\(345\) 138.560 8.68849i 0.401624 0.0251840i
\(346\) 342.567 + 197.781i 0.990079 + 0.571622i
\(347\) 145.285 251.641i 0.418690 0.725192i −0.577118 0.816660i \(-0.695823\pi\)
0.995808 + 0.0914690i \(0.0291562\pi\)
\(348\) −350.742 + 232.927i −1.00788 + 0.669331i
\(349\) −283.473 163.663i −0.812243 0.468949i 0.0354909 0.999370i \(-0.488701\pi\)
−0.847734 + 0.530421i \(0.822034\pi\)
\(350\) 646.981 + 902.612i 1.84852 + 2.57889i
\(351\) −84.6703 98.2155i −0.241226 0.279816i
\(352\) 141.639 245.326i 0.402384 0.696950i
\(353\) 84.1348i 0.238342i 0.992874 + 0.119171i \(0.0380237\pi\)
−0.992874 + 0.119171i \(0.961976\pi\)
\(354\) −392.577 + 24.6167i −1.10897 + 0.0695387i
\(355\) 747.921i 2.10682i
\(356\) −272.520 + 157.340i −0.765507 + 0.441965i
\(357\) −42.0618 51.5351i −0.117820 0.144356i
\(358\) 260.823 451.759i 0.728556 1.26190i
\(359\) −106.191 + 183.928i −0.295796 + 0.512334i −0.975170 0.221459i \(-0.928918\pi\)
0.679374 + 0.733792i \(0.262252\pi\)
\(360\) 25.8796 + 205.547i 0.0718877 + 0.570964i
\(361\) −178.554 309.264i −0.494609 0.856687i
\(362\) 185.630 107.174i 0.512790 0.296060i
\(363\) −13.3736 213.276i −0.0368418 0.587538i
\(364\) 10.0924 + 102.333i 0.0277264 + 0.281135i
\(365\) −328.125 568.329i −0.898973 1.55707i
\(366\) 8.16945 16.4486i 0.0223209 0.0449416i
\(367\) 419.606i 1.14334i 0.820484 + 0.571670i \(0.193704\pi\)
−0.820484 + 0.571670i \(0.806296\pi\)
\(368\) −47.4622 82.2069i −0.128973 0.223388i
\(369\) −401.193 + 304.259i −1.08724 + 0.824549i
\(370\) 865.639i 2.33957i
\(371\) −84.4624 117.835i −0.227661 0.317614i
\(372\) −77.5286 116.743i −0.208410 0.313824i
\(373\) −221.059 −0.592652 −0.296326 0.955087i \(-0.595761\pi\)
−0.296326 + 0.955087i \(0.595761\pi\)
\(374\) 51.4172 + 29.6858i 0.137479 + 0.0793737i
\(375\) 956.637 59.9863i 2.55103 0.159963i
\(376\) 111.207 64.2055i 0.295764 0.170759i
\(377\) 220.374i 0.584546i
\(378\) −346.305 + 363.614i −0.916152 + 0.961941i
\(379\) 317.062 0.836575 0.418287 0.908315i \(-0.362631\pi\)
0.418287 + 0.908315i \(0.362631\pi\)
\(380\) −27.7714 48.1015i −0.0730827 0.126583i
\(381\) −34.5553 551.073i −0.0906963 1.44639i
\(382\) −36.6137 + 63.4168i −0.0958474 + 0.166013i
\(383\) 277.585i 0.724766i 0.932029 + 0.362383i \(0.118037\pi\)
−0.932029 + 0.362383i \(0.881963\pi\)
\(384\) 194.467 129.145i 0.506425 0.336316i
\(385\) 44.6095 + 452.324i 0.115869 + 1.17487i
\(386\) −330.862 −0.857156
\(387\) 24.0934 57.2490i 0.0622567 0.147930i
\(388\) 149.229 86.1576i 0.384612 0.222056i
\(389\) −72.4347 −0.186207 −0.0931037 0.995656i \(-0.529679\pi\)
−0.0931037 + 0.995656i \(0.529679\pi\)
\(390\) 315.553 + 156.724i 0.809109 + 0.401856i
\(391\) 13.7932 7.96349i 0.0352767 0.0203670i
\(392\) −120.186 + 23.9391i −0.306597 + 0.0610691i
\(393\) 21.7794 1.36569i 0.0554184 0.00347503i
\(394\) 152.902 + 264.834i 0.388077 + 0.672169i
\(395\) −231.442 + 133.623i −0.585929 + 0.338286i
\(396\) 75.3303 178.995i 0.190228 0.452007i
\(397\) −590.904 341.158i −1.48842 0.859341i −0.488510 0.872558i \(-0.662459\pi\)
−0.999913 + 0.0132172i \(0.995793\pi\)
\(398\) 278.061 + 160.539i 0.698647 + 0.403364i
\(399\) −14.6990 + 38.7373i −0.0368397 + 0.0970858i
\(400\) −563.675 976.313i −1.40919 2.44078i
\(401\) 449.653 1.12133 0.560665 0.828043i \(-0.310546\pi\)
0.560665 + 0.828043i \(0.310546\pi\)
\(402\) 15.3773 + 245.230i 0.0382519 + 0.610025i
\(403\) 73.3503 0.182011
\(404\) 296.667 + 171.281i 0.734324 + 0.423962i
\(405\) 184.802 + 722.257i 0.456302 + 1.78335i
\(406\) −849.236 + 83.7542i −2.09171 + 0.206291i
\(407\) 124.866 216.275i 0.306797 0.531388i
\(408\) 13.1482 + 19.7985i 0.0322259 + 0.0485258i
\(409\) −128.958 74.4542i −0.315302 0.182040i 0.333995 0.942575i \(-0.391603\pi\)
−0.649296 + 0.760535i \(0.724937\pi\)
\(410\) 684.037 1184.79i 1.66838 2.88972i
\(411\) −8.87521 141.538i −0.0215942 0.344375i
\(412\) −229.255 132.360i −0.556444 0.321263i
\(413\) −314.682 142.531i −0.761941 0.345111i
\(414\) −72.6483 95.7935i −0.175479 0.231385i
\(415\) −297.199 + 514.765i −0.716143 + 1.24040i
\(416\) 192.853i 0.463589i
\(417\) 420.368 + 632.991i 1.00808 + 1.51796i
\(418\) 36.9792i 0.0884670i
\(419\) −399.171 + 230.461i −0.952675 + 0.550027i −0.893911 0.448245i \(-0.852049\pi\)
−0.0587641 + 0.998272i \(0.518716\pi\)
\(420\) 209.738 552.735i 0.499376 1.31604i
\(421\) −63.9001 + 110.678i −0.151782 + 0.262894i −0.931883 0.362760i \(-0.881834\pi\)
0.780101 + 0.625654i \(0.215168\pi\)
\(422\) 159.916 276.982i 0.378947 0.656356i
\(423\) 368.195 279.233i 0.870437 0.660126i
\(424\) 25.8991 + 44.8585i 0.0610827 + 0.105798i
\(425\) 163.812 94.5768i 0.385440 0.222534i
\(426\) 539.542 358.309i 1.26653 0.841101i
\(427\) 13.1096 9.39681i 0.0307017 0.0220066i
\(428\) −77.8510 134.842i −0.181895 0.315051i
\(429\) 56.2319 + 84.6742i 0.131077 + 0.197376i
\(430\) 168.761i 0.392468i
\(431\) −104.431 180.879i −0.242298 0.419673i 0.719070 0.694937i \(-0.244568\pi\)
−0.961369 + 0.275264i \(0.911235\pi\)
\(432\) 386.078 332.833i 0.893700 0.770446i
\(433\) 492.194i 1.13671i 0.822784 + 0.568354i \(0.192419\pi\)
−0.822784 + 0.568354i \(0.807581\pi\)
\(434\) −27.8771 282.664i −0.0642330 0.651299i
\(435\) −563.580 + 1134.73i −1.29559 + 2.60857i
\(436\) −134.100 −0.307570
\(437\) −8.59100 4.96001i −0.0196590 0.0113501i
\(438\) −252.791 + 508.977i −0.577148 + 1.16205i
\(439\) −61.0093 + 35.2237i −0.138973 + 0.0802362i −0.567875 0.823115i \(-0.692234\pi\)
0.428901 + 0.903351i \(0.358901\pi\)
\(440\) 162.390i 0.369069i
\(441\) −418.354 + 139.501i −0.948650 + 0.316329i
\(442\) 40.4195 0.0914468
\(443\) −358.035 620.135i −0.808206 1.39985i −0.914105 0.405477i \(-0.867105\pi\)
0.105899 0.994377i \(-0.466228\pi\)
\(444\) −270.592 + 179.700i −0.609442 + 0.404729i
\(445\) −473.460 + 820.058i −1.06396 + 1.84283i
\(446\) 624.655i 1.40057i
\(447\) −48.2218 769.021i −0.107879 1.72041i
\(448\) −217.115 + 21.4125i −0.484631 + 0.0477957i
\(449\) −130.350 −0.290313 −0.145156 0.989409i \(-0.546369\pi\)
−0.145156 + 0.989409i \(0.546369\pi\)
\(450\) −862.793 1137.67i −1.91732 2.52816i
\(451\) 341.805 197.341i 0.757883 0.437564i
\(452\) 326.046 0.721341
\(453\) −22.2268 354.463i −0.0490657 0.782480i
\(454\) 347.980 200.906i 0.766476 0.442525i
\(455\) 180.270 + 251.497i 0.396197 + 0.552740i
\(456\) 6.58467 13.2578i 0.0144401 0.0290741i
\(457\) 105.765 + 183.190i 0.231433 + 0.400854i 0.958230 0.285998i \(-0.0923252\pi\)
−0.726797 + 0.686852i \(0.758992\pi\)
\(458\) −952.527 + 549.942i −2.07975 + 1.20075i
\(459\) 55.8447 + 64.7786i 0.121666 + 0.141130i
\(460\) 122.583 + 70.7736i 0.266486 + 0.153856i
\(461\) 457.027 + 263.865i 0.991381 + 0.572374i 0.905687 0.423947i \(-0.139356\pi\)
0.0856943 + 0.996321i \(0.472689\pi\)
\(462\) 304.930 248.877i 0.660022 0.538695i
\(463\) −367.066 635.777i −0.792800 1.37317i −0.924227 0.381843i \(-0.875289\pi\)
0.131428 0.991326i \(-0.458044\pi\)
\(464\) 866.274 1.86697
\(465\) −377.689 187.585i −0.812234 0.403408i
\(466\) −886.321 −1.90198
\(467\) 280.938 + 162.200i 0.601581 + 0.347323i 0.769663 0.638450i \(-0.220424\pi\)
−0.168082 + 0.985773i \(0.553757\pi\)
\(468\) −16.5156 131.174i −0.0352897 0.280286i
\(469\) −89.0345 + 196.571i −0.189839 + 0.419129i
\(470\) −627.774 + 1087.34i −1.33569 + 2.31348i
\(471\) 68.0903 137.095i 0.144565 0.291073i
\(472\) 106.889 + 61.7122i 0.226459 + 0.130746i
\(473\) −24.3434 + 42.1640i −0.0514660 + 0.0891417i
\(474\) 207.272 + 102.944i 0.437282 + 0.217182i
\(475\) −102.029 58.9066i −0.214798 0.124014i
\(476\) −6.65650 67.4945i −0.0139843 0.141795i
\(477\) 112.636 + 148.521i 0.236135 + 0.311366i
\(478\) −278.485 + 482.349i −0.582604 + 1.00910i
\(479\) 420.527i 0.877927i 0.898505 + 0.438964i \(0.144654\pi\)
−0.898505 + 0.438964i \(0.855346\pi\)
\(480\) −493.198 + 993.021i −1.02750 + 2.06879i
\(481\) 170.015i 0.353462i
\(482\) −524.011 + 302.538i −1.08716 + 0.627672i
\(483\) −16.9188 104.223i −0.0350285 0.215783i
\(484\) 108.937 188.684i 0.225076 0.389843i
\(485\) 259.262 449.055i 0.534561 0.925887i
\(486\) 432.494 479.328i 0.889906 0.986272i
\(487\) 19.3349 + 33.4890i 0.0397020 + 0.0687658i 0.885194 0.465223i \(-0.154026\pi\)
−0.845492 + 0.533989i \(0.820692\pi\)
\(488\) −4.99070 + 2.88138i −0.0102268 + 0.00590447i
\(489\) 769.284 + 382.076i 1.57318 + 0.781341i
\(490\) 900.659 790.272i 1.83808 1.61280i
\(491\) 435.683 + 754.625i 0.887338 + 1.53691i 0.843011 + 0.537897i \(0.180781\pi\)
0.0443266 + 0.999017i \(0.485886\pi\)
\(492\) −512.356 + 32.1275i −1.04137 + 0.0652998i
\(493\) 145.349i 0.294825i
\(494\) −12.5875 21.8022i −0.0254808 0.0441341i
\(495\) −73.0006 579.803i −0.147476 1.17132i
\(496\) 288.335i 0.581320i
\(497\) 566.077 55.8281i 1.13899 0.112330i
\(498\) 513.726 32.2134i 1.03158 0.0646856i
\(499\) −368.253 −0.737982 −0.368991 0.929433i \(-0.620297\pi\)
−0.368991 + 0.929433i \(0.620297\pi\)
\(500\) 846.330 + 488.629i 1.69266 + 0.977258i
\(501\) −310.710 467.867i −0.620179 0.933866i
\(502\) 972.296 561.355i 1.93684 1.11824i
\(503\) 603.853i 1.20050i 0.799811 + 0.600251i \(0.204933\pi\)
−0.799811 + 0.600251i \(0.795067\pi\)
\(504\) 153.640 34.9303i 0.304841 0.0693062i
\(505\) 1030.82 2.04123
\(506\) 47.1195 + 81.6134i 0.0931215 + 0.161291i
\(507\) −392.103 194.743i −0.773379 0.384109i
\(508\) 281.476 487.531i 0.554087 0.959707i
\(509\) 228.276i 0.448479i −0.974534 0.224240i \(-0.928010\pi\)
0.974534 0.224240i \(-0.0719898\pi\)
\(510\) −208.124 103.368i −0.408087 0.202682i
\(511\) −405.657 + 290.770i −0.793849 + 0.569021i
\(512\) 569.227 1.11177
\(513\) 17.5502 50.2961i 0.0342109 0.0980430i
\(514\) 200.535 115.779i 0.390147 0.225251i
\(515\) −796.588 −1.54677
\(516\) 52.7536 35.0335i 0.102236 0.0678945i
\(517\) −313.691 + 181.110i −0.606753 + 0.350309i
\(518\) −655.173 + 64.6151i −1.26481 + 0.124740i
\(519\) −247.099 372.082i −0.476106 0.716922i
\(520\) −55.2768 95.7422i −0.106302 0.184120i
\(521\) 409.376 236.354i 0.785751 0.453654i −0.0527134 0.998610i \(-0.516787\pi\)
0.838465 + 0.544956i \(0.183454\pi\)
\(522\) 1088.58 137.058i 2.08540 0.262564i
\(523\) 242.231 + 139.852i 0.463156 + 0.267403i 0.713370 0.700787i \(-0.247168\pi\)
−0.250214 + 0.968190i \(0.580501\pi\)
\(524\) 19.2681 + 11.1245i 0.0367712 + 0.0212299i
\(525\) −200.932 1237.78i −0.382728 2.35769i
\(526\) 58.6991 + 101.670i 0.111595 + 0.193289i
\(527\) −48.3786 −0.0918000
\(528\) −332.848 + 221.044i −0.630394 + 0.418644i
\(529\) −503.719 −0.952211
\(530\) −438.607 253.230i −0.827561 0.477792i
\(531\) 409.380 + 172.289i 0.770961 + 0.324460i
\(532\) −34.3334 + 24.6098i −0.0645366 + 0.0462590i
\(533\) 134.348 232.697i 0.252060 0.436580i
\(534\) 818.403 51.3183i 1.53259 0.0961017i
\(535\) −405.761 234.266i −0.758431 0.437881i
\(536\) 38.5496 66.7699i 0.0719210 0.124571i
\(537\) −490.682 + 325.861i −0.913746 + 0.606817i
\(538\) 451.649 + 260.759i 0.839496 + 0.484683i
\(539\) 339.019 67.5269i 0.628978 0.125282i
\(540\) −250.421 + 717.666i −0.463743 + 1.32901i
\(541\) 508.919 881.473i 0.940700 1.62934i 0.176561 0.984290i \(-0.443503\pi\)
0.764139 0.645051i \(-0.223164\pi\)
\(542\) 450.236i 0.830694i
\(543\) −241.560 + 15.1471i −0.444863 + 0.0278953i
\(544\) 127.197i 0.233818i
\(545\) −349.467 + 201.765i −0.641224 + 0.370211i
\(546\) 95.0647 250.530i 0.174111 0.458846i
\(547\) −195.785 + 339.109i −0.357924 + 0.619943i −0.987614 0.156904i \(-0.949849\pi\)
0.629690 + 0.776847i \(0.283182\pi\)
\(548\) 72.2946 125.218i 0.131924 0.228500i
\(549\) −16.5237 + 12.5313i −0.0300977 + 0.0228256i
\(550\) 559.605 + 969.264i 1.01746 + 1.76230i
\(551\) 78.4010 45.2648i 0.142289 0.0821503i
\(552\) 2.36088 + 37.6504i 0.00427696 + 0.0682072i
\(553\) 118.411 + 165.196i 0.214124 + 0.298728i
\(554\) −491.645 851.554i −0.887445 1.53710i
\(555\) −434.793 + 875.428i −0.783412 + 1.57735i
\(556\) 774.718i 1.39338i
\(557\) 249.913 + 432.862i 0.448677 + 0.777131i 0.998300 0.0582814i \(-0.0185621\pi\)
−0.549623 + 0.835413i \(0.685229\pi\)
\(558\) 45.6192 + 362.327i 0.0817548 + 0.649332i
\(559\) 33.1455i 0.0592942i
\(560\) −988.615 + 708.627i −1.76538 + 1.26540i
\(561\) −37.0881 55.8473i −0.0661107 0.0995496i
\(562\) −326.800 −0.581495
\(563\) −279.885 161.592i −0.497132 0.287019i 0.230397 0.973097i \(-0.425998\pi\)
−0.727528 + 0.686078i \(0.759331\pi\)
\(564\) 470.215 29.4850i 0.833714 0.0522784i
\(565\) 849.680 490.563i 1.50386 0.868253i
\(566\) 399.712i 0.706204i
\(567\) 532.857 193.783i 0.939784 0.341769i
\(568\) −203.229 −0.357798
\(569\) −88.4404 153.183i −0.155431 0.269215i 0.777785 0.628531i \(-0.216343\pi\)
−0.933216 + 0.359316i \(0.883010\pi\)
\(570\) 9.05800 + 144.453i 0.0158912 + 0.253427i
\(571\) 278.796 482.889i 0.488260 0.845691i −0.511649 0.859194i \(-0.670965\pi\)
0.999909 + 0.0135039i \(0.00429856\pi\)
\(572\) 103.633i 0.181176i
\(573\) 68.8807 45.7436i 0.120211 0.0798317i
\(574\) −947.785 429.287i −1.65119 0.747887i
\(575\) 300.239 0.522155
\(576\) 278.304 35.0402i 0.483167 0.0608336i
\(577\) −640.283 + 369.668i −1.10968 + 0.640672i −0.938745 0.344611i \(-0.888011\pi\)
−0.170931 + 0.985283i \(0.554677\pi\)
\(578\) 741.160 1.28228
\(579\) 334.604 + 166.186i 0.577899 + 0.287022i
\(580\) −1118.69 + 645.876i −1.92878 + 1.11358i
\(581\) 411.792 + 186.516i 0.708765 + 0.321026i
\(582\) −448.149 + 28.1014i −0.770016 + 0.0482842i
\(583\) −73.0556 126.536i −0.125310 0.217043i
\(584\) 154.430 89.1599i 0.264434 0.152671i
\(585\) −240.402 316.992i −0.410943 0.541866i
\(586\) −992.949 573.280i −1.69445 0.978293i
\(587\) −47.8551 27.6292i −0.0815249 0.0470684i 0.458683 0.888600i \(-0.348321\pi\)
−0.540208 + 0.841531i \(0.681655\pi\)
\(588\) −434.003 117.485i −0.738100 0.199804i
\(589\) 15.0662 + 26.0954i 0.0255792 + 0.0443045i
\(590\) −1206.79 −2.04541
\(591\) −21.6101 344.629i −0.0365653 0.583129i
\(592\) 668.318 1.12892
\(593\) −663.928 383.319i −1.11961 0.646406i −0.178307 0.983975i \(-0.557062\pi\)
−0.941301 + 0.337569i \(0.890395\pi\)
\(594\) −383.291 + 330.430i −0.645271 + 0.556279i
\(595\) −118.898 165.876i −0.199828 0.278783i
\(596\) 392.799 680.348i 0.659059 1.14152i
\(597\) −200.570 302.019i −0.335963 0.505894i
\(598\) 55.5615 + 32.0785i 0.0929122 + 0.0536429i
\(599\) 453.133 784.849i 0.756482 1.31027i −0.188152 0.982140i \(-0.560250\pi\)
0.944634 0.328126i \(-0.106417\pi\)
\(600\) 28.0385 + 447.147i 0.0467309 + 0.745245i
\(601\) −192.859 111.347i −0.320897 0.185270i 0.330895 0.943668i \(-0.392649\pi\)
−0.651793 + 0.758397i \(0.725983\pi\)
\(602\) 127.730 12.5971i 0.212176 0.0209254i
\(603\) 107.623 255.727i 0.178479 0.424091i
\(604\) 181.052 313.591i 0.299755 0.519191i
\(605\) 655.617i 1.08366i
\(606\) −493.840 743.625i −0.814917 1.22710i
\(607\) 599.115i 0.987010i 0.869743 + 0.493505i \(0.164285\pi\)
−0.869743 + 0.493505i \(0.835715\pi\)
\(608\) 68.6100 39.6120i 0.112845 0.0651514i
\(609\) 900.907 + 341.853i 1.47932 + 0.561335i
\(610\) 28.1729 48.7970i 0.0461851 0.0799950i
\(611\) −123.298 + 213.558i −0.201796 + 0.349522i
\(612\) 10.8929 + 86.5166i 0.0177989 + 0.141367i
\(613\) −270.643 468.768i −0.441506 0.764711i 0.556295 0.830985i \(-0.312222\pi\)
−0.997801 + 0.0662736i \(0.978889\pi\)
\(614\) −361.622 + 208.782i −0.588960 + 0.340036i
\(615\) −1286.87 + 854.606i −2.09247 + 1.38960i
\(616\) −122.908 + 12.1215i −0.199526 + 0.0196778i
\(617\) 331.635 + 574.409i 0.537497 + 0.930972i 0.999038 + 0.0438529i \(0.0139633\pi\)
−0.461541 + 0.887119i \(0.652703\pi\)
\(618\) 381.624 + 574.650i 0.617514 + 0.929854i
\(619\) 978.753i 1.58118i 0.612343 + 0.790592i \(0.290227\pi\)
−0.612343 + 0.790592i \(0.709773\pi\)
\(620\) −214.977 372.350i −0.346736 0.600565i
\(621\) 25.3546 + 133.367i 0.0408287 + 0.214761i
\(622\) 881.565i 1.41731i
\(623\) 656.015 + 297.134i 1.05299 + 0.476940i
\(624\) −120.999 + 243.623i −0.193908 + 0.390421i
\(625\) 1447.88 2.31661
\(626\) −939.884 542.642i −1.50141 0.866840i
\(627\) −18.5739 + 37.3973i −0.0296235 + 0.0596449i
\(628\) 135.157 78.0331i 0.215219 0.124257i
\(629\) 112.135i 0.178274i
\(630\) −1130.20 + 1046.89i −1.79397 + 1.66173i
\(631\) 256.500 0.406498 0.203249 0.979127i \(-0.434850\pi\)
0.203249 + 0.979127i \(0.434850\pi\)
\(632\) −36.3088 62.8886i −0.0574506 0.0995073i
\(633\) −300.847 + 199.792i −0.475271 + 0.315627i
\(634\) −51.4697 + 89.1481i −0.0811824 + 0.140612i
\(635\) 1694.01i 2.66774i
\(636\) 11.8936 + 189.674i 0.0187006 + 0.298229i
\(637\) 176.893 155.213i 0.277697 0.243662i
\(638\) −860.020 −1.34799
\(639\) −725.615 + 91.3592i −1.13555 + 0.142972i
\(640\) 620.253 358.103i 0.969145 0.559536i
\(641\) −336.160 −0.524431 −0.262215 0.965009i \(-0.584453\pi\)
−0.262215 + 0.965009i \(0.584453\pi\)
\(642\) 25.3921 + 404.942i 0.0395515 + 0.630751i
\(643\) 754.603 435.671i 1.17357 0.677559i 0.219049 0.975714i \(-0.429704\pi\)
0.954518 + 0.298155i \(0.0963711\pi\)
\(644\) 44.4160 98.0622i 0.0689690 0.152270i
\(645\) 84.7656 170.670i 0.131419 0.264604i
\(646\) 8.30217 + 14.3798i 0.0128517 + 0.0222597i
\(647\) −707.666 + 408.571i −1.09376 + 0.631485i −0.934576 0.355763i \(-0.884221\pi\)
−0.159189 + 0.987248i \(0.550888\pi\)
\(648\) −196.255 + 50.2155i −0.302863 + 0.0774930i
\(649\) −301.510 174.077i −0.464576 0.268223i
\(650\) 659.865 + 380.973i 1.01518 + 0.586113i
\(651\) −113.784 + 299.862i −0.174784 + 0.460618i
\(652\) 437.868 + 758.410i 0.671577 + 1.16321i
\(653\) −360.836 −0.552582 −0.276291 0.961074i \(-0.589105\pi\)
−0.276291 + 0.961074i \(0.589105\pi\)
\(654\) 312.971 + 155.442i 0.478549 + 0.237678i
\(655\) 66.9506 0.102215
\(656\) 914.716 + 528.112i 1.39438 + 0.805048i
\(657\) 511.299 387.761i 0.778232 0.590199i
\(658\) 869.829 + 393.978i 1.32193 + 0.598750i
\(659\) 515.473 892.826i 0.782205 1.35482i −0.148449 0.988920i \(-0.547428\pi\)
0.930654 0.365899i \(-0.119239\pi\)
\(660\) 265.028 533.617i 0.401558 0.808510i
\(661\) −287.835 166.182i −0.435455 0.251410i 0.266213 0.963914i \(-0.414228\pi\)
−0.701668 + 0.712504i \(0.747561\pi\)
\(662\) −378.657 + 655.854i −0.571990 + 0.990716i
\(663\) −40.8766 20.3019i −0.0616539 0.0306213i
\(664\) −139.875 80.7566i −0.210654 0.121621i
\(665\) −52.4459 + 115.791i −0.0788660 + 0.174121i
\(666\) 839.822 105.739i 1.26099 0.158767i
\(667\) −115.354 + 199.800i −0.172945 + 0.299550i
\(668\) 572.623i 0.857220i
\(669\) 313.752 631.719i 0.468987 0.944273i
\(670\) 753.844i 1.12514i
\(671\) 14.0777 8.12775i 0.0209801 0.0121129i
\(672\) 788.399 + 299.162i 1.17321 + 0.445181i
\(673\) −241.240 + 417.840i −0.358455 + 0.620862i −0.987703 0.156343i \(-0.950030\pi\)
0.629248 + 0.777204i \(0.283363\pi\)
\(674\) 792.030 1371.84i 1.17512 2.03537i
\(675\) 301.119 + 1583.90i 0.446102 + 2.34652i
\(676\) −223.181 386.561i −0.330149 0.571835i
\(677\) 538.899 311.134i 0.796011 0.459577i −0.0460636 0.998939i \(-0.514668\pi\)
0.842074 + 0.539362i \(0.181334\pi\)
\(678\) −760.946 377.934i −1.12234 0.557425i
\(679\) −359.227 162.707i −0.529054 0.239628i
\(680\) 36.4581 + 63.1473i 0.0536149 + 0.0928637i
\(681\) −452.826 + 28.3947i −0.664943 + 0.0416955i
\(682\) 286.253i 0.419726i
\(683\) 235.625 + 408.115i 0.344986 + 0.597533i 0.985351 0.170538i \(-0.0545505\pi\)
−0.640366 + 0.768070i \(0.721217\pi\)
\(684\) 43.2746 32.8188i 0.0632670 0.0479807i
\(685\) 435.092i 0.635171i
\(686\) −665.359 622.689i −0.969911 0.907710i
\(687\) 1239.52 77.7248i 1.80426 0.113137i
\(688\) −130.293 −0.189379
\(689\) −86.1444 49.7355i −0.125028 0.0721850i
\(690\) −204.056 307.267i −0.295733 0.445315i
\(691\) −449.921 + 259.762i −0.651115 + 0.375921i −0.788883 0.614543i \(-0.789340\pi\)
0.137768 + 0.990464i \(0.456007\pi\)
\(692\) 455.392i 0.658081i
\(693\) −433.384 + 98.5308i −0.625374 + 0.142180i
\(694\) −771.992 −1.11238
\(695\) 1165.63 + 2018.92i 1.67716 + 2.90492i
\(696\) −308.335 153.139i −0.443010 0.220027i
\(697\) −88.6098 + 153.477i −0.127130 + 0.220196i
\(698\) 869.645i 1.24591i
\(699\) 896.343 + 445.182i 1.28232 + 0.636883i
\(700\) 527.498 1164.62i 0.753568 1.66374i
\(701\) −985.712 −1.40615 −0.703076 0.711115i \(-0.748191\pi\)
−0.703076 + 0.711115i \(0.748191\pi\)
\(702\) −113.504 + 325.285i −0.161687 + 0.463370i
\(703\) 60.4852 34.9212i 0.0860387 0.0496745i
\(704\) −219.872 −0.312318
\(705\) 1181.02 784.314i 1.67521 1.11250i
\(706\) 193.583 111.765i 0.274197 0.158308i
\(707\) −76.9452 780.195i −0.108833 1.10353i
\(708\) 250.520 + 377.234i 0.353842 + 0.532817i
\(709\) −295.114 511.152i −0.416240 0.720948i 0.579318 0.815102i \(-0.303319\pi\)
−0.995558 + 0.0941533i \(0.969986\pi\)
\(710\) 1720.87 993.544i 2.42376 1.39936i
\(711\) −157.909 208.217i −0.222094 0.292851i
\(712\) −222.830 128.651i −0.312964 0.180690i
\(713\) −66.5023 38.3951i −0.0932711 0.0538501i
\(714\) −62.7004 + 165.238i −0.0878157 + 0.231426i
\(715\) 155.924 + 270.068i 0.218075 + 0.377717i
\(716\) −600.546 −0.838751
\(717\) 523.908 347.926i 0.730695 0.485253i
\(718\) 564.258 0.785875
\(719\) 320.943 + 185.297i 0.446375 + 0.257715i 0.706298 0.707915i \(-0.250364\pi\)
−0.259923 + 0.965629i \(0.583697\pi\)
\(720\) 1246.07 945.002i 1.73066 1.31250i
\(721\) 59.4608 + 602.911i 0.0824699 + 0.836214i
\(722\) −474.384 + 821.657i −0.657042 + 1.13803i
\(723\) 681.896 42.7586i 0.943148 0.0591405i
\(724\) −213.707 123.384i −0.295175 0.170420i
\(725\) −1369.98 + 2372.88i −1.88963 + 3.27294i
\(726\) −472.955 + 314.088i −0.651453 + 0.432629i
\(727\) 98.4688 + 56.8510i 0.135445 + 0.0781995i 0.566192 0.824274i \(-0.308416\pi\)
−0.430746 + 0.902473i \(0.641750\pi\)
\(728\) −68.3380 + 48.9838i −0.0938709 + 0.0672854i
\(729\) −678.142 + 267.515i −0.930236 + 0.366962i
\(730\) −871.768 + 1509.95i −1.19420 + 2.06842i
\(731\) 21.8613i 0.0299060i
\(732\) −21.1020 + 1.32321i −0.0288279 + 0.00180767i
\(733\) 608.247i 0.829805i 0.909866 + 0.414903i \(0.136184\pi\)
−0.909866 + 0.414903i \(0.863816\pi\)
\(734\) 965.458 557.407i 1.31534 0.759411i
\(735\) −1307.78 + 346.825i −1.77929 + 0.471871i
\(736\) −100.949 + 174.848i −0.137158 + 0.237565i
\(737\) −108.740 + 188.343i −0.147544 + 0.255554i
\(738\) 1233.01 + 518.913i 1.67074 + 0.703134i
\(739\) 605.973 + 1049.58i 0.819990 + 1.42026i 0.905689 + 0.423944i \(0.139355\pi\)
−0.0856983 + 0.996321i \(0.527312\pi\)
\(740\) −863.054 + 498.284i −1.16629 + 0.673357i
\(741\) 1.77903 + 28.3712i 0.00240085 + 0.0382878i
\(742\) −158.922 + 350.869i −0.214180 + 0.472870i
\(743\) 82.8636 + 143.524i 0.111526 + 0.193168i 0.916386 0.400297i \(-0.131093\pi\)
−0.804860 + 0.593465i \(0.797760\pi\)
\(744\) 50.9715 102.628i 0.0685100 0.137940i
\(745\) 2363.99i 3.17314i
\(746\) 293.657 + 508.628i 0.393642 + 0.681807i
\(747\) −535.715 225.457i −0.717156 0.301816i
\(748\) 68.3515i 0.0913791i
\(749\) −147.020 + 324.593i −0.196289 + 0.433369i
\(750\) −1408.82 2121.41i −1.87843 2.82854i
\(751\) 1353.18 1.80183 0.900916 0.433993i \(-0.142896\pi\)
0.900916 + 0.433993i \(0.142896\pi\)
\(752\) −839.480 484.674i −1.11633 0.644514i
\(753\) −1265.25 + 79.3379i −1.68028 + 0.105362i
\(754\) −507.051 + 292.746i −0.672482 + 0.388258i
\(755\) 1089.63i 1.44322i
\(756\) 561.870 + 135.966i 0.743214 + 0.179849i
\(757\) 128.108 0.169231 0.0846155 0.996414i \(-0.473034\pi\)
0.0846155 + 0.996414i \(0.473034\pi\)
\(758\) −421.187 729.518i −0.555656 0.962424i
\(759\) −6.65953 106.203i −0.00877409 0.139925i
\(760\) 22.7077 39.3309i 0.0298786 0.0517512i
\(761\) 805.339i 1.05826i 0.848540 + 0.529132i \(0.177482\pi\)
−0.848540 + 0.529132i \(0.822518\pi\)
\(762\) −1222.04 + 811.557i −1.60373 + 1.06504i
\(763\) 178.795 + 249.439i 0.234331 + 0.326919i
\(764\) 84.3032 0.110344
\(765\) 158.558 + 209.074i 0.207266 + 0.273299i
\(766\) 638.687 368.746i 0.833795 0.481392i
\(767\) −237.019 −0.309021
\(768\) −890.441 442.250i −1.15943 0.575847i
\(769\) 501.209 289.373i 0.651767 0.376298i −0.137366 0.990520i \(-0.543864\pi\)
0.789133 + 0.614222i \(0.210530\pi\)
\(770\) 981.478 703.511i 1.27465 0.913650i
\(771\) −260.957 + 16.3634i −0.338465 + 0.0212236i
\(772\) 190.453 + 329.874i 0.246701 + 0.427298i
\(773\) 685.032 395.504i 0.886200 0.511648i 0.0135021 0.999909i \(-0.495702\pi\)
0.872698 + 0.488261i \(0.162369\pi\)
\(774\) −163.728 + 20.6144i −0.211535 + 0.0266335i
\(775\) −789.801 455.992i −1.01910 0.588376i
\(776\) 122.020 + 70.4481i 0.157242 + 0.0907836i
\(777\) 695.037 + 263.735i 0.894513 + 0.339427i
\(778\) 96.2228 + 166.663i 0.123680 + 0.214219i
\(779\) 110.380 0.141695
\(780\) −25.3847 404.824i −0.0325445 0.519006i
\(781\) 573.265 0.734014
\(782\) −36.6459 21.1575i −0.0468618 0.0270557i
\(783\) −1169.73 408.163i −1.49391 0.521281i
\(784\) 610.131 + 695.355i 0.778228 + 0.886932i
\(785\) 234.814 406.710i 0.299126 0.518102i
\(786\) −32.0742 48.2974i −0.0408069 0.0614471i
\(787\) −856.846 494.700i −1.08875 0.628590i −0.155506 0.987835i \(-0.549701\pi\)
−0.933243 + 0.359245i \(0.883034\pi\)
\(788\) 176.029 304.891i 0.223387 0.386918i
\(789\) −8.29611 132.303i −0.0105147 0.167684i
\(790\) 614.898 + 355.011i 0.778352 + 0.449382i
\(791\) −434.714 606.476i −0.549576 0.766721i
\(792\) 157.547 19.8361i 0.198923 0.0250456i
\(793\) 5.53329 9.58394i 0.00697766 0.0120857i
\(794\) 1812.79i 2.28311i
\(795\) 316.375 + 476.397i 0.397955 + 0.599242i
\(796\) 369.641i 0.464373i
\(797\) −104.384 + 60.2662i −0.130971 + 0.0756163i −0.564054 0.825738i \(-0.690759\pi\)
0.433083 + 0.901354i \(0.357426\pi\)
\(798\) 108.656 17.6383i 0.136160 0.0221032i
\(799\) 81.3216 140.853i 0.101779 0.176287i
\(800\) −1198.90 + 2076.55i −1.49862 + 2.59568i
\(801\) −853.434 359.169i −1.06546 0.448401i
\(802\) −597.323 1034.59i −0.744791 1.29002i
\(803\) −435.612 + 251.501i −0.542481 + 0.313201i
\(804\) 235.646 156.492i 0.293092 0.194642i
\(805\) −31.7939 322.378i −0.0394956 0.400470i
\(806\) −97.4391 168.769i −0.120892 0.209391i
\(807\) −325.781 490.562i −0.403694 0.607884i
\(808\) 280.101i 0.346659i
\(809\) −94.3098 163.349i −0.116576 0.201915i 0.801833 0.597548i \(-0.203858\pi\)
−0.918409 + 0.395633i \(0.870525\pi\)
\(810\) 1416.33 1384.66i 1.74855 1.70945i
\(811\) 1191.68i 1.46940i 0.678394 + 0.734699i \(0.262676\pi\)
−0.678394 + 0.734699i \(0.737324\pi\)
\(812\) 572.346 + 798.488i 0.704860 + 0.983360i
\(813\) 226.145 455.327i 0.278161 0.560058i
\(814\) −663.493 −0.815102
\(815\) 2282.18 + 1317.62i 2.80022 + 1.61671i
\(816\) 79.8054 160.683i 0.0978007 0.196915i
\(817\) −11.7920 + 6.80809i −0.0144332 + 0.00833303i
\(818\) 395.622i 0.483645i
\(819\) −221.976 + 205.614i −0.271033 + 0.251055i
\(820\) −1575.00 −1.92073
\(821\) 338.613 + 586.495i 0.412440 + 0.714366i 0.995156 0.0983094i \(-0.0313435\pi\)
−0.582716 + 0.812676i \(0.698010\pi\)
\(822\) −313.871 + 208.441i −0.381838 + 0.253578i
\(823\) 805.395 1394.98i 0.978608 1.69500i 0.311135 0.950366i \(-0.399291\pi\)
0.667473 0.744634i \(-0.267376\pi\)
\(824\) 216.453i 0.262686i
\(825\) −79.0906 1261.30i −0.0958674 1.52885i
\(826\) 90.0803 + 913.380i 0.109056 + 1.10579i
\(827\) −626.312 −0.757331 −0.378665 0.925534i \(-0.623617\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(828\) −53.6892 + 127.573i −0.0648420 + 0.154073i
\(829\) −469.693 + 271.178i −0.566578 + 0.327114i −0.755782 0.654824i \(-0.772743\pi\)
0.189203 + 0.981938i \(0.439409\pi\)
\(830\) 1579.21 1.90266
\(831\) 69.4855 + 1108.13i 0.0836168 + 1.33349i
\(832\) −129.632 + 74.8431i −0.155808 + 0.0899557i
\(833\) −116.671 + 102.371i −0.140061 + 0.122895i
\(834\) 898.009 1808.08i 1.07675 2.16796i
\(835\) −861.557 1492.26i −1.03180 1.78714i
\(836\) −36.8687 + 21.2862i −0.0441014 + 0.0254619i
\(837\) 135.855 389.338i 0.162312 0.465159i
\(838\) 1060.52 + 612.293i 1.26554 + 0.730660i
\(839\) −1281.98 740.153i −1.52799 0.882185i −0.999446 0.0332790i \(-0.989405\pi\)
−0.528543 0.848906i \(-0.677262\pi\)
\(840\) 477.150 77.4568i 0.568036 0.0922105i
\(841\) −632.218 1095.03i −0.751746 1.30206i
\(842\) 339.541 0.403256
\(843\) 330.496 + 164.145i 0.392047 + 0.194716i
\(844\) −368.207 −0.436264
\(845\) −1163.22 671.587i −1.37660 0.794778i
\(846\) −1131.59 476.232i −1.33758 0.562922i
\(847\) −496.215 + 48.9381i −0.585850 + 0.0577782i
\(848\) 195.507 338.627i 0.230550 0.399325i
\(849\) −200.767 + 404.232i −0.236475 + 0.476127i
\(850\) −435.218 251.273i −0.512021 0.295615i
\(851\) −88.9942 + 154.143i −0.104576 + 0.181131i
\(852\) −667.813 331.679i −0.783818 0.389294i
\(853\) 744.542 + 429.861i 0.872851 + 0.503941i 0.868294 0.496049i \(-0.165216\pi\)
0.00455615 + 0.999990i \(0.498550\pi\)
\(854\) −39.0357 17.6807i −0.0457093 0.0207034i
\(855\) 63.3955 150.636i 0.0741468 0.176183i
\(856\) 63.6560 110.255i 0.0743645 0.128803i
\(857\) 442.777i 0.516659i −0.966057 0.258330i \(-0.916828\pi\)
0.966057 0.258330i \(-0.0831720\pi\)
\(858\) 120.125 241.864i 0.140006 0.281893i
\(859\) 501.048i 0.583293i 0.956526 + 0.291646i \(0.0942030\pi\)
−0.956526 + 0.291646i \(0.905797\pi\)
\(860\) 168.257 97.1434i 0.195648 0.112957i
\(861\) 742.880 + 910.195i 0.862811 + 1.05714i
\(862\) −277.453 + 480.562i −0.321871 + 0.557497i
\(863\) −182.251 + 315.667i −0.211183 + 0.365779i −0.952085 0.305834i \(-0.901065\pi\)
0.740902 + 0.671613i \(0.234398\pi\)
\(864\) −1023.65 357.190i −1.18478 0.413415i
\(865\) −685.174 1186.76i −0.792108 1.37197i
\(866\) 1132.47 653.834i 1.30771 0.755005i
\(867\) −749.541 372.270i −0.864523 0.429378i
\(868\) −265.773 + 190.502i −0.306190 + 0.219473i
\(869\) 102.419 + 177.395i 0.117859 + 0.204137i
\(870\) 3359.53 210.661i 3.86153 0.242139i
\(871\) 148.058i 0.169986i
\(872\) −54.8246 94.9590i −0.0628723 0.108898i
\(873\) 467.332 + 196.677i 0.535317 + 0.225289i
\(874\) 26.3557i 0.0301552i
\(875\) −219.509 2225.74i −0.250867 2.54370i
\(876\) 652.970 40.9448i 0.745400 0.0467406i
\(877\) −782.479 −0.892223 −0.446111 0.894977i \(-0.647192\pi\)
−0.446111 + 0.894977i \(0.647192\pi\)
\(878\) 162.090 + 93.5829i 0.184613 + 0.106586i
\(879\) 716.230 + 1078.50i 0.814824 + 1.22696i
\(880\) −1061.62 + 612.925i −1.20638 + 0.696506i
\(881\) 337.263i 0.382818i 0.981510 + 0.191409i \(0.0613058\pi\)
−0.981510 + 0.191409i \(0.938694\pi\)
\(882\) 876.718 + 777.265i 0.994012 + 0.881252i
\(883\) 556.002 0.629674 0.314837 0.949146i \(-0.398050\pi\)
0.314837 + 0.949146i \(0.398050\pi\)
\(884\) −23.2665 40.2988i −0.0263196 0.0455868i
\(885\) 1220.44 + 606.148i 1.37903 + 0.684913i
\(886\) −951.233 + 1647.58i −1.07363 + 1.85958i
\(887\) 722.908i 0.815004i −0.913204 0.407502i \(-0.866400\pi\)
0.913204 0.407502i \(-0.133600\pi\)
\(888\) −237.876 118.144i −0.267878 0.133045i
\(889\) −1282.14 + 126.449i −1.44223 + 0.142237i
\(890\) 2515.79 2.82673
\(891\) 553.594 141.647i 0.621317 0.158975i
\(892\) 622.790 359.568i 0.698195 0.403103i
\(893\) −101.301 −0.113439
\(894\) −1705.36 + 1132.53i −1.90756 + 1.26681i
\(895\) −1565.03 + 903.569i −1.74863 + 1.00957i
\(896\) −317.335 442.718i −0.354168 0.494105i
\(897\) −40.0774 60.3486i −0.0446794 0.0672783i
\(898\) 173.158 + 299.919i 0.192827 + 0.333986i
\(899\) 606.896 350.392i 0.675079 0.389757i
\(900\) −637.628 + 1515.09i −0.708476 + 1.68343i
\(901\) 56.8170 + 32.8033i 0.0630599 + 0.0364077i
\(902\) −908.113 524.299i −1.00678 0.581263i
\(903\) −135.502 51.4167i −0.150057 0.0569398i
\(904\) 133.298 + 230.879i 0.147454 + 0.255398i
\(905\) −742.563 −0.820512
\(906\) −786.047 + 522.012i −0.867602 + 0.576173i
\(907\) 1127.74 1.24338 0.621688 0.783265i \(-0.286447\pi\)
0.621688 + 0.783265i \(0.286447\pi\)
\(908\) −400.613 231.294i −0.441203 0.254729i
\(909\) 125.916 + 1000.08i 0.138521 + 1.10020i
\(910\) 339.189 748.866i 0.372736 0.822930i
\(911\) −890.109 + 1541.71i −0.977068 + 1.69233i −0.304136 + 0.952629i \(0.598368\pi\)
−0.672933 + 0.739703i \(0.734966\pi\)
\(912\) −111.525 + 6.99324i −0.122286 + 0.00766803i
\(913\) 394.556 + 227.797i 0.432153 + 0.249504i
\(914\) 280.998 486.702i 0.307437 0.532497i
\(915\) −53.0013 + 35.1980i −0.0579249 + 0.0384678i
\(916\) 1096.60 + 633.121i 1.19716 + 0.691181i
\(917\) −4.99748 50.6726i −0.00544982 0.0552591i
\(918\) 74.8625 214.544i 0.0815496 0.233708i
\(919\) −350.534 + 607.142i −0.381429 + 0.660655i −0.991267 0.131871i \(-0.957901\pi\)
0.609837 + 0.792527i \(0.291235\pi\)
\(920\) 115.738i 0.125802i
\(921\) 470.578 29.5078i 0.510942 0.0320389i
\(922\) 1402.08i 1.52069i
\(923\) 337.986 195.136i 0.366182 0.211415i
\(924\) −423.659 160.759i −0.458506 0.173982i
\(925\) −1056.92 + 1830.64i −1.14262 + 1.97907i
\(926\) −975.227 + 1689.14i −1.05316 + 1.82413i
\(927\) −97.3039 772.830i −0.104966 0.833689i
\(928\) −921.252 1595.65i −0.992728 1.71946i
\(929\) −849.720 + 490.586i −0.914661 + 0.528080i −0.881928 0.471385i \(-0.843754\pi\)
−0.0327329 + 0.999464i \(0.510421\pi\)
\(930\) 70.1173 + 1118.20i 0.0753949 + 1.20237i
\(931\) 91.5529 + 31.0514i 0.0983383 + 0.0333528i
\(932\) 510.189 + 883.674i 0.547413 + 0.948148i
\(933\) −442.793 + 891.534i −0.474590 + 0.955556i
\(934\) 861.870i 0.922773i
\(935\) −102.840 178.125i −0.109990 0.190508i
\(936\) 86.1347 65.3232i 0.0920242 0.0697898i
\(937\) 949.998i 1.01387i 0.861984 + 0.506936i \(0.169222\pi\)
−0.861984 + 0.506936i \(0.830778\pi\)
\(938\) 570.559 56.2702i 0.608272 0.0599896i
\(939\) 677.953 + 1020.86i 0.721995 + 1.08718i
\(940\) 1445.45 1.53772
\(941\) −329.267 190.102i −0.349912 0.202022i 0.314735 0.949180i \(-0.398084\pi\)
−0.664646 + 0.747158i \(0.731418\pi\)
\(942\) −405.890 + 25.4515i −0.430881 + 0.0270186i
\(943\) −243.610 + 140.648i −0.258335 + 0.149150i
\(944\) 931.705i 0.986976i
\(945\) 1668.81 491.051i 1.76594 0.519631i
\(946\) 129.352 0.136736
\(947\) −163.034 282.383i −0.172159 0.298187i 0.767016 0.641628i \(-0.221741\pi\)
−0.939174 + 0.343441i \(0.888407\pi\)
\(948\) −16.6740 265.910i −0.0175886 0.280496i
\(949\) −171.219 + 296.560i −0.180420 + 0.312497i
\(950\) 313.008i 0.329482i
\(951\) 96.8290 64.3039i 0.101818 0.0676172i
\(952\) 45.0727 32.3075i 0.0473453 0.0339365i
\(953\) 1009.14 1.05891 0.529455 0.848338i \(-0.322397\pi\)
0.529455 + 0.848338i \(0.322397\pi\)
\(954\) 192.101 456.458i 0.201364 0.478468i
\(955\) 219.695 126.841i 0.230047 0.132818i
\(956\) 641.212 0.670723
\(957\) 869.745 + 431.971i 0.908825 + 0.451381i
\(958\) 967.578 558.631i 1.01000 0.583122i
\(959\) −329.307 + 32.4772i −0.343385 + 0.0338657i
\(960\) 858.892 53.8572i 0.894679 0.0561013i
\(961\) −363.874 630.248i −0.378641 0.655825i
\(962\) −391.183 + 225.850i −0.406635 + 0.234771i
\(963\) 177.715 422.275i 0.184543 0.438500i
\(964\) 603.269 + 348.298i 0.625798 + 0.361304i
\(965\) 992.644 + 573.103i 1.02865 + 0.593890i
\(966\) −217.329 + 177.379i −0.224978 + 0.183622i
\(967\) 277.066 + 479.892i 0.286521 + 0.496269i 0.972977 0.230902i \(-0.0741678\pi\)
−0.686456 + 0.727172i \(0.740834\pi\)
\(968\) 178.148 0.184037
\(969\) −1.17337 18.7124i −0.00121091 0.0193110i
\(970\) −1377.62 −1.42023
\(971\) 1334.71 + 770.592i 1.37457 + 0.793607i 0.991499 0.130113i \(-0.0415340\pi\)
0.383069 + 0.923720i \(0.374867\pi\)
\(972\) −726.851 155.289i −0.747790 0.159762i
\(973\) 1441.05 1032.92i 1.48104 1.06159i
\(974\) 51.3691 88.9739i 0.0527404 0.0913490i
\(975\) −475.971 716.718i −0.488176 0.735096i
\(976\) 37.6738 + 21.7510i 0.0386002 + 0.0222858i
\(977\) 812.692 1407.62i 0.831824 1.44076i −0.0647660 0.997900i \(-0.520630\pi\)
0.896590 0.442861i \(-0.146037\pi\)
\(978\) −142.816 2277.57i −0.146029 2.32881i
\(979\) 628.556 + 362.897i 0.642039 + 0.370681i
\(980\) −1306.35 443.068i −1.33301 0.452110i
\(981\) −238.435 314.399i −0.243053 0.320488i
\(982\) 1157.53 2004.90i 1.17875 2.04165i
\(983\) 35.2712i 0.0358812i −0.999839 0.0179406i \(-0.994289\pi\)
0.999839 0.0179406i \(-0.00571098\pi\)
\(984\) −232.218 349.674i −0.235994 0.355360i
\(985\) 1059.40i 1.07553i
\(986\) 334.429 193.082i 0.339177 0.195824i
\(987\) −681.778 835.331i −0.690757 0.846333i
\(988\) −14.4914 + 25.0998i −0.0146674 + 0.0254047i
\(989\) 17.3499 30.0510i 0.0175429 0.0303852i
\(990\) −1237.08 + 938.179i −1.24957 + 0.947656i
\(991\) 567.488 + 982.918i 0.572642 + 0.991845i 0.996293 + 0.0860197i \(0.0274148\pi\)
−0.423652 + 0.905825i \(0.639252\pi\)
\(992\) 531.105 306.634i 0.535388 0.309107i
\(993\) 712.362 473.078i 0.717384 0.476413i
\(994\) −880.433 1228.31i −0.885748 1.23572i
\(995\) −556.155 963.288i −0.558950 0.968129i
\(996\) −327.831 493.649i −0.329148 0.495631i
\(997\) 51.2724i 0.0514267i 0.999669 + 0.0257133i \(0.00818571\pi\)
−0.999669 + 0.0257133i \(0.991814\pi\)
\(998\) 489.190 + 847.301i 0.490170 + 0.848999i
\(999\) −902.429 314.892i −0.903332 0.315207i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.k.a.61.3 yes 28
3.2 odd 2 189.3.k.a.19.12 28
7.2 even 3 441.3.l.a.97.3 28
7.3 odd 6 63.3.t.a.52.12 yes 28
7.4 even 3 441.3.t.a.178.12 28
7.5 odd 6 441.3.l.b.97.3 28
7.6 odd 2 441.3.k.b.313.3 28
9.4 even 3 63.3.t.a.40.12 yes 28
9.5 odd 6 189.3.t.a.145.3 28
21.17 even 6 189.3.t.a.73.3 28
63.4 even 3 441.3.k.b.31.3 28
63.13 odd 6 441.3.t.a.166.12 28
63.31 odd 6 inner 63.3.k.a.31.3 28
63.40 odd 6 441.3.l.a.391.3 28
63.58 even 3 441.3.l.b.391.3 28
63.59 even 6 189.3.k.a.10.12 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.3 28 63.31 odd 6 inner
63.3.k.a.61.3 yes 28 1.1 even 1 trivial
63.3.t.a.40.12 yes 28 9.4 even 3
63.3.t.a.52.12 yes 28 7.3 odd 6
189.3.k.a.10.12 28 63.59 even 6
189.3.k.a.19.12 28 3.2 odd 2
189.3.t.a.73.3 28 21.17 even 6
189.3.t.a.145.3 28 9.5 odd 6
441.3.k.b.31.3 28 63.4 even 3
441.3.k.b.313.3 28 7.6 odd 2
441.3.l.a.97.3 28 7.2 even 3
441.3.l.a.391.3 28 63.40 odd 6
441.3.l.b.97.3 28 7.5 odd 6
441.3.l.b.391.3 28 63.58 even 3
441.3.t.a.166.12 28 63.13 odd 6
441.3.t.a.178.12 28 7.4 even 3