Properties

Label 63.3.t.a.52.12
Level $63$
Weight $3$
Character 63.52
Analytic conductor $1.717$
Analytic rank $0$
Dimension $28$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [63,3,Mod(40,63)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(63, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("63.40");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 63 = 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 63.t (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.71662566547\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 52.12
Character \(\chi\) \(=\) 63.52
Dual form 63.3.t.a.40.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.65681 q^{2} +(-2.49911 + 1.65965i) q^{3} +3.05866 q^{4} +(7.97090 + 4.60200i) q^{5} +(-6.63967 + 4.40939i) q^{6} +(-2.88812 - 6.37642i) q^{7} -2.50096 q^{8} +(3.49110 - 8.29531i) q^{9} +O(q^{10})\) \(q+2.65681 q^{2} +(-2.49911 + 1.65965i) q^{3} +3.05866 q^{4} +(7.97090 + 4.60200i) q^{5} +(-6.63967 + 4.40939i) q^{6} +(-2.88812 - 6.37642i) q^{7} -2.50096 q^{8} +(3.49110 - 8.29531i) q^{9} +(21.1772 + 12.2267i) q^{10} +(-3.52733 - 6.10952i) q^{11} +(-7.64393 + 5.07632i) q^{12} +(-4.15930 + 2.40137i) q^{13} +(-7.67319 - 16.9410i) q^{14} +(-27.5579 + 1.72803i) q^{15} -18.8792 q^{16} +(-2.74329 - 1.58384i) q^{17} +(9.27520 - 22.0391i) q^{18} +(1.70864 - 0.986484i) q^{19} +(24.3803 + 14.0760i) q^{20} +(17.8004 + 11.1421i) q^{21} +(-9.37147 - 16.2319i) q^{22} +(2.51399 - 4.35435i) q^{23} +(6.25018 - 4.15073i) q^{24} +(29.8569 + 51.7136i) q^{25} +(-11.0505 + 6.38000i) q^{26} +(5.04271 + 26.5249i) q^{27} +(-8.83378 - 19.5033i) q^{28} +(22.9425 - 39.7376i) q^{29} +(-73.2162 + 4.59105i) q^{30} +15.2726i q^{31} -40.1548 q^{32} +(18.9549 + 9.41421i) q^{33} +(-7.28840 - 4.20796i) q^{34} +(6.32341 - 64.1170i) q^{35} +(10.6781 - 25.3726i) q^{36} +(17.6998 + 30.6570i) q^{37} +(4.53954 - 2.62090i) q^{38} +(6.40909 - 12.9043i) q^{39} +(-19.9349 - 11.5094i) q^{40} +(-48.4509 + 27.9732i) q^{41} +(47.2923 + 29.6025i) q^{42} +(-3.45068 + 5.97676i) q^{43} +(-10.7889 - 18.6870i) q^{44} +(66.0023 - 50.0551i) q^{45} +(6.67920 - 11.5687i) q^{46} +51.3447i q^{47} +(47.1813 - 31.3330i) q^{48} +(-32.3175 + 36.8317i) q^{49} +(79.3241 + 137.393i) q^{50} +(9.48440 - 0.594723i) q^{51} +(-12.7219 + 7.34498i) q^{52} +(-10.3556 + 17.9365i) q^{53} +(13.3975 + 70.4718i) q^{54} -64.9312i q^{55} +(7.22307 + 15.9472i) q^{56} +(-2.63286 + 5.30108i) q^{57} +(60.9540 - 105.575i) q^{58} -49.3508i q^{59} +(-84.2903 + 5.28546i) q^{60} -2.30422i q^{61} +40.5764i q^{62} +(-62.9771 + 1.69713i) q^{63} -31.1668 q^{64} -44.2045 q^{65} +(50.3596 + 25.0118i) q^{66} +30.8279 q^{67} +(-8.39079 - 4.84442i) q^{68} +(0.943990 + 15.0544i) q^{69} +(16.8001 - 170.347i) q^{70} +81.2604 q^{71} +(-8.73110 + 20.7463i) q^{72} +(-61.7481 - 35.6503i) q^{73} +(47.0251 + 81.4499i) q^{74} +(-160.442 - 79.6859i) q^{75} +(5.22615 - 3.01732i) q^{76} +(-28.7695 + 40.1368i) q^{77} +(17.0278 - 34.2843i) q^{78} -29.0358 q^{79} +(-150.485 - 86.8823i) q^{80} +(-56.6245 - 57.9195i) q^{81} +(-128.725 + 74.3195i) q^{82} +(-55.9283 - 32.2902i) q^{83} +(54.4453 + 34.0799i) q^{84} +(-14.5776 - 25.2492i) q^{85} +(-9.16783 + 15.8791i) q^{86} +(8.61480 + 137.385i) q^{87} +(8.82172 + 15.2797i) q^{88} +(89.0979 - 51.4407i) q^{89} +(175.356 - 132.987i) q^{90} +(27.3247 + 19.5860i) q^{91} +(7.68944 - 13.3185i) q^{92} +(-25.3472 - 38.1679i) q^{93} +136.413i q^{94} +18.1592 q^{95} +(100.351 - 66.6430i) q^{96} +(48.7891 + 28.1684i) q^{97} +(-85.8617 + 97.8551i) q^{98} +(-62.9946 + 7.93140i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q - 2 q^{2} - 3 q^{3} + 46 q^{4} - 3 q^{5} - 12 q^{6} - 16 q^{8} - 15 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 28 q - 2 q^{2} - 3 q^{3} + 46 q^{4} - 3 q^{5} - 12 q^{6} - 16 q^{8} - 15 q^{9} - 6 q^{10} + 7 q^{11} - 30 q^{12} - 15 q^{13} + 10 q^{14} - 18 q^{15} + 54 q^{16} - 33 q^{17} - 42 q^{18} - 6 q^{19} - 108 q^{20} + 21 q^{21} - 10 q^{22} + 34 q^{23} - 78 q^{24} + 31 q^{25} + 54 q^{26} + 81 q^{27} - 16 q^{28} + 70 q^{29} - 27 q^{30} - 306 q^{32} - 3 q^{33} - 12 q^{34} + 18 q^{35} - 174 q^{36} + 9 q^{37} + 87 q^{38} + 129 q^{39} - 102 q^{40} + 234 q^{41} + 306 q^{42} + 30 q^{43} + 51 q^{44} + 273 q^{45} - 22 q^{46} - 147 q^{48} - 38 q^{49} + 241 q^{50} + 12 q^{51} - 219 q^{52} + 148 q^{53} + 171 q^{54} + 110 q^{56} + 189 q^{57} + 17 q^{58} + 33 q^{60} - 471 q^{63} - 48 q^{64} - 228 q^{65} + 258 q^{66} + 68 q^{67} - 18 q^{68} - 78 q^{69} - 225 q^{70} - 350 q^{71} + 162 q^{72} - 6 q^{73} + 359 q^{74} - 510 q^{75} - 72 q^{76} - 224 q^{77} - 375 q^{78} + 164 q^{79} - 609 q^{80} - 435 q^{81} - 18 q^{82} - 738 q^{83} - 21 q^{84} + 3 q^{85} + 17 q^{86} - 561 q^{87} + 25 q^{88} + 21 q^{89} + 543 q^{90} + 39 q^{91} + 288 q^{92} - 222 q^{93} - 1014 q^{95} + 231 q^{96} + 57 q^{97} + 811 q^{98} - 162 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/63\mathbb{Z}\right)^\times\).

\(n\) \(10\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.65681 1.32841 0.664204 0.747552i \(-0.268771\pi\)
0.664204 + 0.747552i \(0.268771\pi\)
\(3\) −2.49911 + 1.65965i −0.833037 + 0.553218i
\(4\) 3.05866 0.764665
\(5\) 7.97090 + 4.60200i 1.59418 + 0.920400i 0.992579 + 0.121604i \(0.0388039\pi\)
0.601602 + 0.798796i \(0.294529\pi\)
\(6\) −6.63967 + 4.40939i −1.10661 + 0.734899i
\(7\) −2.88812 6.37642i −0.412588 0.910918i
\(8\) −2.50096 −0.312620
\(9\) 3.49110 8.29531i 0.387900 0.921702i
\(10\) 21.1772 + 12.2267i 2.11772 + 1.22267i
\(11\) −3.52733 6.10952i −0.320667 0.555411i 0.659959 0.751301i \(-0.270574\pi\)
−0.980626 + 0.195891i \(0.937240\pi\)
\(12\) −7.64393 + 5.07632i −0.636994 + 0.423027i
\(13\) −4.15930 + 2.40137i −0.319946 + 0.184721i −0.651368 0.758762i \(-0.725805\pi\)
0.331423 + 0.943482i \(0.392471\pi\)
\(14\) −7.67319 16.9410i −0.548085 1.21007i
\(15\) −27.5579 + 1.72803i −1.83719 + 0.115202i
\(16\) −18.8792 −1.17995
\(17\) −2.74329 1.58384i −0.161370 0.0931669i 0.417140 0.908842i \(-0.363032\pi\)
−0.578510 + 0.815675i \(0.696366\pi\)
\(18\) 9.27520 22.0391i 0.515289 1.22439i
\(19\) 1.70864 0.986484i 0.0899284 0.0519202i −0.454361 0.890817i \(-0.650133\pi\)
0.544290 + 0.838897i \(0.316799\pi\)
\(20\) 24.3803 + 14.0760i 1.21901 + 0.703798i
\(21\) 17.8004 + 11.1421i 0.847637 + 0.530576i
\(22\) −9.37147 16.2319i −0.425976 0.737812i
\(23\) 2.51399 4.35435i 0.109304 0.189320i −0.806185 0.591664i \(-0.798471\pi\)
0.915488 + 0.402344i \(0.131805\pi\)
\(24\) 6.25018 4.15073i 0.260424 0.172947i
\(25\) 29.8569 + 51.7136i 1.19427 + 2.06854i
\(26\) −11.0505 + 6.38000i −0.425018 + 0.245384i
\(27\) 5.04271 + 26.5249i 0.186767 + 0.982404i
\(28\) −8.83378 19.5033i −0.315492 0.696547i
\(29\) 22.9425 39.7376i 0.791121 1.37026i −0.134152 0.990961i \(-0.542831\pi\)
0.925273 0.379301i \(-0.123836\pi\)
\(30\) −73.2162 + 4.59105i −2.44054 + 0.153035i
\(31\) 15.2726i 0.492664i 0.969185 + 0.246332i \(0.0792254\pi\)
−0.969185 + 0.246332i \(0.920775\pi\)
\(32\) −40.1548 −1.25484
\(33\) 18.9549 + 9.41421i 0.574390 + 0.285279i
\(34\) −7.28840 4.20796i −0.214365 0.123764i
\(35\) 6.32341 64.1170i 0.180669 1.83191i
\(36\) 10.6781 25.3726i 0.296614 0.704793i
\(37\) 17.6998 + 30.6570i 0.478373 + 0.828567i 0.999693 0.0247946i \(-0.00789319\pi\)
−0.521319 + 0.853362i \(0.674560\pi\)
\(38\) 4.53954 2.62090i 0.119462 0.0689711i
\(39\) 6.40909 12.9043i 0.164336 0.330879i
\(40\) −19.9349 11.5094i −0.498373 0.287736i
\(41\) −48.4509 + 27.9732i −1.18173 + 0.682272i −0.956414 0.292014i \(-0.905675\pi\)
−0.225316 + 0.974286i \(0.572341\pi\)
\(42\) 47.2923 + 29.6025i 1.12601 + 0.704821i
\(43\) −3.45068 + 5.97676i −0.0802485 + 0.138994i −0.903357 0.428890i \(-0.858905\pi\)
0.823108 + 0.567885i \(0.192238\pi\)
\(44\) −10.7889 18.6870i −0.245203 0.424703i
\(45\) 66.0023 50.0551i 1.46672 1.11234i
\(46\) 6.67920 11.5687i 0.145200 0.251494i
\(47\) 51.3447i 1.09244i 0.837642 + 0.546220i \(0.183934\pi\)
−0.837642 + 0.546220i \(0.816066\pi\)
\(48\) 47.1813 31.3330i 0.982943 0.652771i
\(49\) −32.3175 + 36.8317i −0.659542 + 0.751668i
\(50\) 79.3241 + 137.393i 1.58648 + 2.74787i
\(51\) 9.48440 0.594723i 0.185969 0.0116612i
\(52\) −12.7219 + 7.34498i −0.244652 + 0.141250i
\(53\) −10.3556 + 17.9365i −0.195390 + 0.338425i −0.947028 0.321151i \(-0.895930\pi\)
0.751639 + 0.659575i \(0.229264\pi\)
\(54\) 13.3975 + 70.4718i 0.248103 + 1.30503i
\(55\) 64.9312i 1.18057i
\(56\) 7.22307 + 15.9472i 0.128983 + 0.284771i
\(57\) −2.63286 + 5.30108i −0.0461905 + 0.0930014i
\(58\) 60.9540 105.575i 1.05093 1.82027i
\(59\) 49.3508i 0.836454i −0.908342 0.418227i \(-0.862652\pi\)
0.908342 0.418227i \(-0.137348\pi\)
\(60\) −84.2903 + 5.28546i −1.40484 + 0.0880909i
\(61\) 2.30422i 0.0377741i −0.999822 0.0188871i \(-0.993988\pi\)
0.999822 0.0188871i \(-0.00601229\pi\)
\(62\) 40.5764i 0.654459i
\(63\) −62.9771 + 1.69713i −0.999637 + 0.0269386i
\(64\) −31.1668 −0.486982
\(65\) −44.2045 −0.680069
\(66\) 50.3596 + 25.0118i 0.763024 + 0.378967i
\(67\) 30.8279 0.460117 0.230059 0.973177i \(-0.426108\pi\)
0.230059 + 0.973177i \(0.426108\pi\)
\(68\) −8.39079 4.84442i −0.123394 0.0712415i
\(69\) 0.943990 + 15.0544i 0.0136810 + 0.218179i
\(70\) 16.8001 170.347i 0.240002 2.43353i
\(71\) 81.2604 1.14451 0.572256 0.820075i \(-0.306068\pi\)
0.572256 + 0.820075i \(0.306068\pi\)
\(72\) −8.73110 + 20.7463i −0.121265 + 0.288142i
\(73\) −61.7481 35.6503i −0.845864 0.488360i 0.0133893 0.999910i \(-0.495738\pi\)
−0.859253 + 0.511551i \(0.829071\pi\)
\(74\) 47.0251 + 81.4499i 0.635475 + 1.10067i
\(75\) −160.442 79.6859i −2.13923 1.06248i
\(76\) 5.22615 3.01732i 0.0687651 0.0397016i
\(77\) −28.7695 + 40.1368i −0.373630 + 0.521257i
\(78\) 17.0278 34.2843i 0.218305 0.439542i
\(79\) −29.0358 −0.367542 −0.183771 0.982969i \(-0.558831\pi\)
−0.183771 + 0.982969i \(0.558831\pi\)
\(80\) −150.485 86.8823i −1.88106 1.08603i
\(81\) −56.6245 57.9195i −0.699067 0.715056i
\(82\) −128.725 + 74.3195i −1.56982 + 0.906335i
\(83\) −55.9283 32.2902i −0.673835 0.389039i 0.123693 0.992321i \(-0.460526\pi\)
−0.797528 + 0.603282i \(0.793860\pi\)
\(84\) 54.4453 + 34.0799i 0.648159 + 0.405713i
\(85\) −14.5776 25.2492i −0.171502 0.297050i
\(86\) −9.16783 + 15.8791i −0.106603 + 0.184641i
\(87\) 8.61480 + 137.385i 0.0990207 + 1.57914i
\(88\) 8.82172 + 15.2797i 0.100247 + 0.173633i
\(89\) 89.0979 51.4407i 1.00110 0.577985i 0.0925265 0.995710i \(-0.470506\pi\)
0.908574 + 0.417725i \(0.137172\pi\)
\(90\) 175.356 132.987i 1.94840 1.47763i
\(91\) 27.3247 + 19.5860i 0.300271 + 0.215231i
\(92\) 7.68944 13.3185i 0.0835808 0.144766i
\(93\) −25.3472 38.1679i −0.272551 0.410407i
\(94\) 136.413i 1.45121i
\(95\) 18.1592 0.191149
\(96\) 100.351 66.6430i 1.04532 0.694198i
\(97\) 48.7891 + 28.1684i 0.502981 + 0.290396i 0.729944 0.683507i \(-0.239546\pi\)
−0.226963 + 0.973903i \(0.572880\pi\)
\(98\) −85.8617 + 97.8551i −0.876140 + 0.998521i
\(99\) −62.9946 + 7.93140i −0.636310 + 0.0801151i
\(100\) 91.3220 + 158.174i 0.913220 + 1.58174i
\(101\) 96.9924 55.9986i 0.960321 0.554442i 0.0640493 0.997947i \(-0.479599\pi\)
0.896272 + 0.443505i \(0.146265\pi\)
\(102\) 25.1983 1.58007i 0.247042 0.0154909i
\(103\) 74.9527 + 43.2740i 0.727696 + 0.420136i 0.817579 0.575817i \(-0.195316\pi\)
−0.0898825 + 0.995952i \(0.528649\pi\)
\(104\) 10.4022 6.00573i 0.100022 0.0577474i
\(105\) 90.6091 + 170.730i 0.862944 + 1.62600i
\(106\) −27.5130 + 47.6540i −0.259557 + 0.449566i
\(107\) −25.4526 44.0852i −0.237875 0.412012i 0.722229 0.691654i \(-0.243118\pi\)
−0.960104 + 0.279642i \(0.909784\pi\)
\(108\) 15.4239 + 81.1307i 0.142814 + 0.751211i
\(109\) 21.9214 37.9690i 0.201114 0.348340i −0.747774 0.663954i \(-0.768877\pi\)
0.948888 + 0.315614i \(0.102211\pi\)
\(110\) 172.510i 1.56827i
\(111\) −95.1138 47.2396i −0.856881 0.425582i
\(112\) 54.5255 + 120.382i 0.486835 + 1.07484i
\(113\) −53.2988 92.3163i −0.471671 0.816959i 0.527803 0.849367i \(-0.323016\pi\)
−0.999475 + 0.0324080i \(0.989682\pi\)
\(114\) −6.99501 + 14.0840i −0.0613597 + 0.123544i
\(115\) 40.0775 23.1387i 0.348500 0.201207i
\(116\) 70.1734 121.544i 0.604943 1.04779i
\(117\) 5.39961 + 42.8861i 0.0461505 + 0.366548i
\(118\) 131.116i 1.11115i
\(119\) −2.17628 + 22.0667i −0.0182881 + 0.185434i
\(120\) 68.9212 4.32173i 0.574343 0.0360144i
\(121\) 35.6159 61.6885i 0.294346 0.509822i
\(122\) 6.12189i 0.0501794i
\(123\) 74.6584 150.320i 0.606979 1.22211i
\(124\) 46.7137i 0.376723i
\(125\) 319.505i 2.55604i
\(126\) −167.319 + 4.50896i −1.32793 + 0.0357854i
\(127\) −184.052 −1.44923 −0.724614 0.689155i \(-0.757982\pi\)
−0.724614 + 0.689155i \(0.757982\pi\)
\(128\) 77.8146 0.607927
\(129\) −1.29571 20.6635i −0.0100443 0.160182i
\(130\) −117.443 −0.903408
\(131\) −6.29953 3.63703i −0.0480880 0.0277636i 0.475763 0.879573i \(-0.342172\pi\)
−0.523851 + 0.851810i \(0.675505\pi\)
\(132\) 57.9766 + 28.7949i 0.439216 + 0.218143i
\(133\) −11.2250 8.04593i −0.0843984 0.0604957i
\(134\) 81.9039 0.611223
\(135\) −81.8728 + 234.634i −0.606465 + 1.73803i
\(136\) 6.86085 + 3.96111i 0.0504474 + 0.0291258i
\(137\) 23.6360 + 40.9388i 0.172526 + 0.298823i 0.939302 0.343091i \(-0.111474\pi\)
−0.766777 + 0.641914i \(0.778141\pi\)
\(138\) 2.50801 + 39.9966i 0.0181740 + 0.289831i
\(139\) −219.353 + 126.643i −1.57808 + 0.911103i −0.582948 + 0.812509i \(0.698101\pi\)
−0.995128 + 0.0985934i \(0.968566\pi\)
\(140\) 19.3412 196.112i 0.138151 1.40080i
\(141\) −85.2144 128.316i −0.604358 0.910043i
\(142\) 215.894 1.52038
\(143\) 29.3424 + 16.9409i 0.205192 + 0.118468i
\(144\) −65.9093 + 156.609i −0.457703 + 1.08756i
\(145\) 365.745 211.163i 2.52238 1.45630i
\(146\) −164.053 94.7161i −1.12365 0.648741i
\(147\) 19.6372 145.682i 0.133586 0.991037i
\(148\) 54.1378 + 93.7693i 0.365796 + 0.633577i
\(149\) 128.422 222.433i 0.861892 1.49284i −0.00820848 0.999966i \(-0.502613\pi\)
0.870100 0.492874i \(-0.164054\pi\)
\(150\) −426.265 211.711i −2.84177 1.41140i
\(151\) 59.1932 + 102.526i 0.392008 + 0.678978i 0.992714 0.120492i \(-0.0384471\pi\)
−0.600706 + 0.799470i \(0.705114\pi\)
\(152\) −4.27324 + 2.46716i −0.0281134 + 0.0162313i
\(153\) −22.7155 + 17.2271i −0.148467 + 0.112595i
\(154\) −76.4353 + 106.636i −0.496333 + 0.692441i
\(155\) −70.2845 + 121.736i −0.453448 + 0.785396i
\(156\) 19.6032 39.4698i 0.125662 0.253012i
\(157\) 51.0244i 0.324996i −0.986709 0.162498i \(-0.948045\pi\)
0.986709 0.162498i \(-0.0519551\pi\)
\(158\) −77.1428 −0.488246
\(159\) −3.88849 62.0121i −0.0244559 0.390013i
\(160\) −320.070 184.792i −2.00044 1.15495i
\(161\) −35.0259 3.45436i −0.217552 0.0214556i
\(162\) −150.441 153.881i −0.928646 0.949885i
\(163\) 143.157 + 247.955i 0.878263 + 1.52120i 0.853246 + 0.521508i \(0.174630\pi\)
0.0250163 + 0.999687i \(0.492036\pi\)
\(164\) −148.195 + 85.5604i −0.903628 + 0.521710i
\(165\) 107.763 + 162.270i 0.653111 + 0.983455i
\(166\) −148.591 85.7892i −0.895128 0.516802i
\(167\) 162.132 93.6068i 0.970848 0.560519i 0.0713535 0.997451i \(-0.477268\pi\)
0.899495 + 0.436932i \(0.143935\pi\)
\(168\) −44.5181 27.8660i −0.264988 0.165869i
\(169\) −72.9668 + 126.382i −0.431756 + 0.747824i
\(170\) −38.7301 67.0825i −0.227824 0.394603i
\(171\) −2.21816 17.6176i −0.0129717 0.103027i
\(172\) −10.5545 + 18.2809i −0.0613632 + 0.106284i
\(173\) 148.886i 0.860613i 0.902683 + 0.430306i \(0.141594\pi\)
−0.902683 + 0.430306i \(0.858406\pi\)
\(174\) 22.8879 + 365.007i 0.131540 + 2.09774i
\(175\) 243.518 339.735i 1.39153 1.94134i
\(176\) 66.5933 + 115.343i 0.378371 + 0.655358i
\(177\) 81.9053 + 123.333i 0.462742 + 0.696797i
\(178\) 236.717 136.668i 1.32987 0.767800i
\(179\) 98.1713 170.038i 0.548443 0.949931i −0.449938 0.893060i \(-0.648554\pi\)
0.998381 0.0568718i \(-0.0181126\pi\)
\(180\) 201.879 153.102i 1.12155 0.850564i
\(181\) 80.6783i 0.445736i −0.974849 0.222868i \(-0.928458\pi\)
0.974849 0.222868i \(-0.0715419\pi\)
\(182\) 72.5966 + 52.0363i 0.398883 + 0.285914i
\(183\) 3.82421 + 5.75850i 0.0208973 + 0.0314672i
\(184\) −6.28738 + 10.8901i −0.0341706 + 0.0591852i
\(185\) 325.818i 1.76118i
\(186\) −67.3429 101.405i −0.362058 0.545188i
\(187\) 22.3469i 0.119502i
\(188\) 157.046i 0.835351i
\(189\) 154.570 108.762i 0.817831 0.575458i
\(190\) 48.2456 0.253924
\(191\) 27.5621 0.144304 0.0721521 0.997394i \(-0.477013\pi\)
0.0721521 + 0.997394i \(0.477013\pi\)
\(192\) 77.8893 51.7262i 0.405674 0.269407i
\(193\) −124.534 −0.645251 −0.322626 0.946527i \(-0.604565\pi\)
−0.322626 + 0.946527i \(0.604565\pi\)
\(194\) 129.624 + 74.8382i 0.668163 + 0.385764i
\(195\) 110.472 73.3641i 0.566522 0.376226i
\(196\) −98.8484 + 112.656i −0.504329 + 0.574775i
\(197\) −115.102 −0.584274 −0.292137 0.956376i \(-0.594366\pi\)
−0.292137 + 0.956376i \(0.594366\pi\)
\(198\) −167.365 + 21.0723i −0.845278 + 0.106426i
\(199\) −104.660 60.4253i −0.525928 0.303645i 0.213429 0.976959i \(-0.431537\pi\)
−0.739357 + 0.673314i \(0.764870\pi\)
\(200\) −74.6708 129.334i −0.373354 0.646668i
\(201\) −77.0422 + 51.1636i −0.383295 + 0.254545i
\(202\) 257.691 148.778i 1.27570 0.736524i
\(203\) −319.644 31.5243i −1.57460 0.155292i
\(204\) 29.0096 1.81906i 0.142204 0.00891694i
\(205\) −514.930 −2.51185
\(206\) 199.135 + 114.971i 0.966677 + 0.558111i
\(207\) −27.3442 36.0558i −0.132097 0.174183i
\(208\) 78.5243 45.3360i 0.377521 0.217962i
\(209\) −12.0539 6.95931i −0.0576741 0.0332981i
\(210\) 240.732 + 453.598i 1.14634 + 2.15999i
\(211\) 60.1908 + 104.254i 0.285264 + 0.494092i 0.972673 0.232178i \(-0.0745853\pi\)
−0.687409 + 0.726271i \(0.741252\pi\)
\(212\) −31.6744 + 54.8617i −0.149408 + 0.258782i
\(213\) −203.079 + 134.864i −0.953421 + 0.633165i
\(214\) −67.6229 117.126i −0.315995 0.547319i
\(215\) −55.0101 + 31.7601i −0.255861 + 0.147721i
\(216\) −12.6116 66.3378i −0.0583872 0.307119i
\(217\) 97.3845 44.1091i 0.448777 0.203268i
\(218\) 58.2411 100.877i 0.267161 0.462737i
\(219\) 213.482 13.3865i 0.974805 0.0611256i
\(220\) 198.602i 0.902739i
\(221\) 15.2135 0.0688395
\(222\) −252.700 125.507i −1.13829 0.565346i
\(223\) 203.615 + 117.557i 0.913072 + 0.527162i 0.881418 0.472336i \(-0.156589\pi\)
0.0316538 + 0.999499i \(0.489923\pi\)
\(224\) 115.972 + 256.044i 0.517731 + 1.14305i
\(225\) 533.214 67.1348i 2.36984 0.298377i
\(226\) −141.605 245.267i −0.626571 1.08525i
\(227\) −130.976 + 75.6193i −0.576989 + 0.333125i −0.759936 0.649998i \(-0.774770\pi\)
0.182947 + 0.983123i \(0.441436\pi\)
\(228\) −8.05302 + 16.2142i −0.0353203 + 0.0711150i
\(229\) −358.522 206.993i −1.56560 0.903899i −0.996672 0.0815115i \(-0.974025\pi\)
−0.568927 0.822388i \(-0.692641\pi\)
\(230\) 106.478 61.4754i 0.462950 0.267284i
\(231\) 5.28504 148.054i 0.0228790 0.640925i
\(232\) −57.3783 + 99.3822i −0.247320 + 0.428372i
\(233\) 166.801 + 288.909i 0.715886 + 1.23995i 0.962617 + 0.270867i \(0.0873103\pi\)
−0.246731 + 0.969084i \(0.579356\pi\)
\(234\) 14.3458 + 113.940i 0.0613067 + 0.486925i
\(235\) −236.288 + 409.264i −1.00548 + 1.74155i
\(236\) 150.947i 0.639608i
\(237\) 72.5637 48.1894i 0.306176 0.203331i
\(238\) −5.78197 + 58.6270i −0.0242940 + 0.246332i
\(239\) −104.819 181.552i −0.438573 0.759631i 0.559007 0.829163i \(-0.311183\pi\)
−0.997580 + 0.0695323i \(0.977849\pi\)
\(240\) 520.272 32.6239i 2.16780 0.135933i
\(241\) 197.233 113.873i 0.818394 0.472500i −0.0314682 0.999505i \(-0.510018\pi\)
0.849862 + 0.527005i \(0.176685\pi\)
\(242\) 94.6247 163.895i 0.391011 0.677251i
\(243\) 237.637 + 50.7702i 0.977930 + 0.208931i
\(244\) 7.04783i 0.0288846i
\(245\) −427.100 + 144.857i −1.74326 + 0.591252i
\(246\) 198.354 399.372i 0.806315 1.62346i
\(247\) −4.73783 + 8.20615i −0.0191815 + 0.0332233i
\(248\) 38.1962i 0.154017i
\(249\) 193.362 12.1248i 0.776553 0.0486941i
\(250\) 848.866i 3.39546i
\(251\) 422.578i 1.68358i −0.539808 0.841788i \(-0.681503\pi\)
0.539808 0.841788i \(-0.318497\pi\)
\(252\) −192.626 + 5.19094i −0.764388 + 0.0205990i
\(253\) −35.4707 −0.140200
\(254\) −488.992 −1.92516
\(255\) 78.3361 + 38.9067i 0.307200 + 0.152575i
\(256\) 331.406 1.29456
\(257\) 75.4797 + 43.5782i 0.293695 + 0.169565i 0.639607 0.768702i \(-0.279097\pi\)
−0.345912 + 0.938267i \(0.612430\pi\)
\(258\) −3.44247 54.8991i −0.0133429 0.212787i
\(259\) 144.363 201.403i 0.557385 0.777616i
\(260\) −135.206 −0.520025
\(261\) −249.541 329.043i −0.956097 1.26070i
\(262\) −16.7367 9.66292i −0.0638804 0.0368814i
\(263\) 22.0938 + 38.2676i 0.0840069 + 0.145504i 0.904968 0.425481i \(-0.139895\pi\)
−0.820961 + 0.570985i \(0.806562\pi\)
\(264\) −47.4054 23.5446i −0.179566 0.0891840i
\(265\) −165.088 + 95.3134i −0.622972 + 0.359673i
\(266\) −29.8227 21.3765i −0.112115 0.0803629i
\(267\) −137.292 + 276.428i −0.514201 + 1.03531i
\(268\) 94.2920 0.351836
\(269\) −169.996 98.1474i −0.631957 0.364860i 0.149553 0.988754i \(-0.452217\pi\)
−0.781509 + 0.623893i \(0.785550\pi\)
\(270\) −217.521 + 623.379i −0.805632 + 2.30881i
\(271\) −146.761 + 84.7324i −0.541553 + 0.312666i −0.745708 0.666273i \(-0.767889\pi\)
0.204155 + 0.978938i \(0.434555\pi\)
\(272\) 51.7912 + 29.9016i 0.190409 + 0.109932i
\(273\) −100.793 3.59800i −0.369206 0.0131795i
\(274\) 62.7965 + 108.767i 0.229184 + 0.396959i
\(275\) 210.630 364.822i 0.765928 1.32663i
\(276\) 2.88735 + 46.0462i 0.0104614 + 0.166834i
\(277\) −185.050 320.517i −0.668052 1.15710i −0.978448 0.206493i \(-0.933795\pi\)
0.310396 0.950607i \(-0.399538\pi\)
\(278\) −582.779 + 336.468i −2.09633 + 1.21032i
\(279\) 126.691 + 53.3181i 0.454089 + 0.191104i
\(280\) −15.8146 + 160.354i −0.0564807 + 0.572693i
\(281\) 61.5023 106.525i 0.218869 0.379093i −0.735593 0.677424i \(-0.763096\pi\)
0.954463 + 0.298331i \(0.0964298\pi\)
\(282\) −226.399 340.912i −0.802833 1.20891i
\(283\) 150.448i 0.531617i 0.964026 + 0.265809i \(0.0856389\pi\)
−0.964026 + 0.265809i \(0.914361\pi\)
\(284\) 248.548 0.875169
\(285\) −45.3818 + 30.1380i −0.159234 + 0.105747i
\(286\) 77.9574 + 45.0087i 0.272578 + 0.157373i
\(287\) 318.301 + 228.154i 1.10906 + 0.794961i
\(288\) −140.184 + 333.096i −0.486751 + 1.15658i
\(289\) −139.483 241.592i −0.482640 0.835957i
\(290\) 971.717 561.021i 3.35075 1.93456i
\(291\) −168.679 + 10.5771i −0.579653 + 0.0363474i
\(292\) −188.866 109.042i −0.646803 0.373432i
\(293\) −373.737 + 215.777i −1.27555 + 0.736440i −0.976027 0.217648i \(-0.930162\pi\)
−0.299525 + 0.954088i \(0.596828\pi\)
\(294\) 52.1723 387.051i 0.177457 1.31650i
\(295\) 227.113 393.370i 0.769873 1.33346i
\(296\) −44.2666 76.6719i −0.149549 0.259027i
\(297\) 144.267 124.371i 0.485748 0.418757i
\(298\) 341.193 590.964i 1.14494 1.98310i
\(299\) 24.1481i 0.0807627i
\(300\) −490.738 243.732i −1.63579 0.812441i
\(301\) 48.0763 + 4.74143i 0.159722 + 0.0157523i
\(302\) 157.265 + 272.392i 0.520746 + 0.901959i
\(303\) −149.456 + 300.921i −0.493256 + 0.993137i
\(304\) −32.2578 + 18.6241i −0.106111 + 0.0612633i
\(305\) 10.6040 18.3667i 0.0347673 0.0602187i
\(306\) −60.3509 + 45.7692i −0.197225 + 0.149572i
\(307\) 157.167i 0.511946i 0.966684 + 0.255973i \(0.0823958\pi\)
−0.966684 + 0.255973i \(0.917604\pi\)
\(308\) −87.9962 + 122.765i −0.285702 + 0.398587i
\(309\) −259.135 + 16.2492i −0.838624 + 0.0525863i
\(310\) −186.733 + 323.431i −0.602364 + 1.04333i
\(311\) 331.813i 1.06692i 0.845825 + 0.533461i \(0.179109\pi\)
−0.845825 + 0.533461i \(0.820891\pi\)
\(312\) −16.0289 + 32.2731i −0.0513747 + 0.103439i
\(313\) 408.491i 1.30508i −0.757753 0.652541i \(-0.773703\pi\)
0.757753 0.652541i \(-0.226297\pi\)
\(314\) 135.562i 0.431727i
\(315\) −509.795 276.293i −1.61840 0.877122i
\(316\) −88.8108 −0.281047
\(317\) 38.7454 0.122225 0.0611126 0.998131i \(-0.480535\pi\)
0.0611126 + 0.998131i \(0.480535\pi\)
\(318\) −10.3310 164.755i −0.0324874 0.518096i
\(319\) −323.704 −1.01474
\(320\) −248.428 143.430i −0.776337 0.448218i
\(321\) 136.775 + 67.9313i 0.426091 + 0.211624i
\(322\) −93.0573 9.17758i −0.288998 0.0285018i
\(323\) −6.24972 −0.0193490
\(324\) −173.195 177.156i −0.534553 0.546778i
\(325\) −248.367 143.395i −0.764206 0.441215i
\(326\) 380.341 + 658.770i 1.16669 + 2.02077i
\(327\) 8.23139 + 131.271i 0.0251724 + 0.401439i
\(328\) 121.174 69.9598i 0.369433 0.213292i
\(329\) 327.395 148.290i 0.995123 0.450728i
\(330\) 286.307 + 431.122i 0.867597 + 1.30643i
\(331\) 285.046 0.861167 0.430583 0.902551i \(-0.358308\pi\)
0.430583 + 0.902551i \(0.358308\pi\)
\(332\) −171.066 98.7649i −0.515259 0.297485i
\(333\) 316.101 39.7990i 0.949253 0.119517i
\(334\) 430.754 248.696i 1.28968 0.744598i
\(335\) 245.726 + 141.870i 0.733510 + 0.423492i
\(336\) −336.058 210.354i −1.00017 0.626055i
\(337\) 298.113 + 516.347i 0.884608 + 1.53219i 0.846163 + 0.532925i \(0.178907\pi\)
0.0384451 + 0.999261i \(0.487760\pi\)
\(338\) −193.859 + 335.774i −0.573548 + 0.993415i
\(339\) 286.413 + 142.251i 0.844875 + 0.419619i
\(340\) −44.5881 77.2288i −0.131141 0.227144i
\(341\) 93.3082 53.8715i 0.273631 0.157981i
\(342\) −5.89324 46.8067i −0.0172317 0.136862i
\(343\) 328.192 + 99.6959i 0.956827 + 0.290659i
\(344\) 8.63003 14.9476i 0.0250873 0.0434525i
\(345\) −61.7557 + 124.341i −0.179002 + 0.360409i
\(346\) 395.562i 1.14324i
\(347\) −290.571 −0.837379 −0.418690 0.908129i \(-0.637510\pi\)
−0.418690 + 0.908129i \(0.637510\pi\)
\(348\) 26.3498 + 420.215i 0.0757177 + 1.20751i
\(349\) 283.473 + 163.663i 0.812243 + 0.468949i 0.847734 0.530421i \(-0.177966\pi\)
−0.0354909 + 0.999370i \(0.511299\pi\)
\(350\) 646.981 902.612i 1.84852 2.57889i
\(351\) −84.6703 98.2155i −0.241226 0.279816i
\(352\) 141.639 + 245.326i 0.402384 + 0.696950i
\(353\) −72.8629 + 42.0674i −0.206411 + 0.119171i −0.599642 0.800268i \(-0.704690\pi\)
0.393232 + 0.919439i \(0.371357\pi\)
\(354\) 217.607 + 327.673i 0.614709 + 0.925630i
\(355\) 647.719 + 373.961i 1.82456 + 1.05341i
\(356\) 272.520 157.340i 0.765507 0.441965i
\(357\) −31.1843 58.7589i −0.0873509 0.164591i
\(358\) 260.823 451.759i 0.728556 1.26190i
\(359\) −106.191 183.928i −0.295796 0.512334i 0.679374 0.733792i \(-0.262252\pi\)
−0.975170 + 0.221459i \(0.928918\pi\)
\(360\) −165.069 + 125.186i −0.458525 + 0.347738i
\(361\) −178.554 + 309.264i −0.494609 + 0.856687i
\(362\) 214.347i 0.592119i
\(363\) 13.3736 + 213.276i 0.0368418 + 0.587538i
\(364\) 83.5770 + 59.9069i 0.229607 + 0.164579i
\(365\) −328.125 568.329i −0.898973 1.55707i
\(366\) 10.1602 + 15.2993i 0.0277601 + 0.0418013i
\(367\) −363.389 + 209.803i −0.990162 + 0.571670i −0.905323 0.424724i \(-0.860371\pi\)
−0.0848392 + 0.996395i \(0.527038\pi\)
\(368\) −47.4622 + 82.2069i −0.128973 + 0.223388i
\(369\) 62.8992 + 499.573i 0.170458 + 1.35386i
\(370\) 865.639i 2.33957i
\(371\) 144.279 + 14.2292i 0.388892 + 0.0383537i
\(372\) −77.5286 116.743i −0.208410 0.313824i
\(373\) 110.530 191.443i 0.296326 0.513252i −0.678966 0.734169i \(-0.737572\pi\)
0.975292 + 0.220918i \(0.0709052\pi\)
\(374\) 59.3715i 0.158747i
\(375\) −530.268 798.478i −1.41405 2.12928i
\(376\) 128.411i 0.341519i
\(377\) 220.374i 0.584546i
\(378\) 410.664 288.959i 1.08641 0.764442i
\(379\) 317.062 0.836575 0.418287 0.908315i \(-0.362631\pi\)
0.418287 + 0.908315i \(0.362631\pi\)
\(380\) 55.5428 0.146165
\(381\) 459.966 305.462i 1.20726 0.801739i
\(382\) 73.2274 0.191695
\(383\) 240.396 + 138.793i 0.627666 + 0.362383i 0.779847 0.625970i \(-0.215297\pi\)
−0.152182 + 0.988353i \(0.548630\pi\)
\(384\) −194.467 + 129.145i −0.506425 + 0.336316i
\(385\) −414.029 + 187.529i −1.07540 + 0.487088i
\(386\) −330.862 −0.857156
\(387\) 37.5324 + 49.4900i 0.0969830 + 0.127881i
\(388\) 149.229 + 86.1576i 0.384612 + 0.222056i
\(389\) 36.2173 + 62.7303i 0.0931037 + 0.161260i 0.908816 0.417198i \(-0.136988\pi\)
−0.815712 + 0.578458i \(0.803655\pi\)
\(390\) 293.503 194.915i 0.752572 0.499781i
\(391\) −13.7932 + 7.96349i −0.0352767 + 0.0203670i
\(392\) 80.8249 92.1147i 0.206186 0.234987i
\(393\) 21.7794 1.36569i 0.0554184 0.00347503i
\(394\) −305.805 −0.776154
\(395\) −231.442 133.623i −0.585929 0.338286i
\(396\) −192.679 + 24.2595i −0.486564 + 0.0612613i
\(397\) −590.904 + 341.158i −1.48842 + 0.859341i −0.999913 0.0132172i \(-0.995793\pi\)
−0.488510 + 0.872558i \(0.662459\pi\)
\(398\) −278.061 160.539i −0.698647 0.403364i
\(399\) 41.4059 + 1.47806i 0.103774 + 0.00370441i
\(400\) −563.675 976.313i −1.40919 2.44078i
\(401\) −224.827 + 389.411i −0.560665 + 0.971100i 0.436774 + 0.899571i \(0.356121\pi\)
−0.997439 + 0.0715286i \(0.977212\pi\)
\(402\) −204.687 + 135.932i −0.509171 + 0.338140i
\(403\) −36.6752 63.5232i −0.0910054 0.157626i
\(404\) 296.667 171.281i 0.734324 0.423962i
\(405\) −184.802 722.257i −0.456302 1.78335i
\(406\) −849.236 83.7542i −2.09171 0.206291i
\(407\) 124.866 216.275i 0.306797 0.531388i
\(408\) −23.7201 + 1.48738i −0.0581375 + 0.00364554i
\(409\) 148.908i 0.364079i −0.983291 0.182040i \(-0.941730\pi\)
0.983291 0.182040i \(-0.0582699\pi\)
\(410\) −1368.07 −3.33676
\(411\) −127.013 63.0829i −0.309035 0.153486i
\(412\) 229.255 + 132.360i 0.556444 + 0.321263i
\(413\) −314.682 + 142.531i −0.761941 + 0.345111i
\(414\) −72.6483 95.7935i −0.175479 0.231385i
\(415\) −297.199 514.765i −0.716143 1.24040i
\(416\) 167.016 96.4265i 0.401480 0.231794i
\(417\) 338.002 680.545i 0.810557 1.63200i
\(418\) −32.0249 18.4896i −0.0766146 0.0442335i
\(419\) 399.171 230.461i 0.952675 0.550027i 0.0587641 0.998272i \(-0.481284\pi\)
0.893911 + 0.448245i \(0.147951\pi\)
\(420\) 277.143 + 522.205i 0.659863 + 1.24335i
\(421\) −63.9001 + 110.678i −0.151782 + 0.262894i −0.931883 0.362760i \(-0.881834\pi\)
0.780101 + 0.625654i \(0.215168\pi\)
\(422\) 159.916 + 276.982i 0.378947 + 0.656356i
\(423\) 425.920 + 179.249i 1.00690 + 0.423757i
\(424\) 25.8991 44.8585i 0.0610827 0.105798i
\(425\) 189.154i 0.445067i
\(426\) −539.542 + 358.309i −1.26653 + 0.841101i
\(427\) −14.6927 + 6.65486i −0.0344091 + 0.0155852i
\(428\) −77.8510 134.842i −0.181895 0.315051i
\(429\) −101.446 + 6.36121i −0.236471 + 0.0148280i
\(430\) −146.152 + 84.3807i −0.339888 + 0.196234i
\(431\) −104.431 + 180.879i −0.242298 + 0.419673i −0.961369 0.275264i \(-0.911235\pi\)
0.719070 + 0.694937i \(0.244568\pi\)
\(432\) −95.2025 500.770i −0.220376 1.15919i
\(433\) 492.194i 1.13671i −0.822784 0.568354i \(-0.807581\pi\)
0.822784 0.568354i \(-0.192419\pi\)
\(434\) 258.733 117.190i 0.596158 0.270022i
\(435\) −563.580 + 1134.73i −1.29559 + 2.60857i
\(436\) 67.0502 116.134i 0.153785 0.266363i
\(437\) 9.92003i 0.0227003i
\(438\) 567.183 35.5654i 1.29494 0.0811996i
\(439\) 70.4474i 0.160472i 0.996776 + 0.0802362i \(0.0255675\pi\)
−0.996776 + 0.0802362i \(0.974433\pi\)
\(440\) 162.390i 0.369069i
\(441\) 192.707 + 396.667i 0.436977 + 0.899472i
\(442\) 40.4195 0.0914468
\(443\) 716.071 1.61641 0.808206 0.588900i \(-0.200439\pi\)
0.808206 + 0.588900i \(0.200439\pi\)
\(444\) −290.921 144.490i −0.655227 0.325428i
\(445\) 946.921 2.12791
\(446\) 540.967 + 312.328i 1.21293 + 0.700286i
\(447\) 48.2218 + 769.021i 0.107879 + 1.72041i
\(448\) 90.0135 + 198.733i 0.200923 + 0.443600i
\(449\) −130.350 −0.290313 −0.145156 0.989409i \(-0.546369\pi\)
−0.145156 + 0.989409i \(0.546369\pi\)
\(450\) 1416.65 178.365i 3.14811 0.396366i
\(451\) 341.805 + 197.341i 0.757883 + 0.437564i
\(452\) −163.023 282.364i −0.360671 0.624700i
\(453\) −318.088 157.983i −0.702180 0.348748i
\(454\) −347.980 + 200.906i −0.766476 + 0.442525i
\(455\) 127.668 + 281.866i 0.280588 + 0.619486i
\(456\) 6.58467 13.2578i 0.0144401 0.0290741i
\(457\) −211.530 −0.462866 −0.231433 0.972851i \(-0.574341\pi\)
−0.231433 + 0.972851i \(0.574341\pi\)
\(458\) −952.527 549.942i −2.07975 1.20075i
\(459\) 28.1775 80.7523i 0.0613890 0.175931i
\(460\) 122.583 70.7736i 0.266486 0.153856i
\(461\) −457.027 263.865i −0.991381 0.572374i −0.0856943 0.996321i \(-0.527311\pi\)
−0.905687 + 0.423947i \(0.860644\pi\)
\(462\) 14.0414 393.351i 0.0303926 0.851409i
\(463\) −367.066 635.777i −0.792800 1.37317i −0.924227 0.381843i \(-0.875289\pi\)
0.131428 0.991326i \(-0.458044\pi\)
\(464\) −433.137 + 750.216i −0.933485 + 1.61684i
\(465\) −26.3915 420.880i −0.0567559 0.905119i
\(466\) 443.160 + 767.576i 0.950988 + 1.64716i
\(467\) 280.938 162.200i 0.601581 0.347323i −0.168082 0.985773i \(-0.553757\pi\)
0.769663 + 0.638450i \(0.220424\pi\)
\(468\) 16.5156 + 131.174i 0.0352897 + 0.280286i
\(469\) −89.0345 196.571i −0.189839 0.419129i
\(470\) −627.774 + 1087.34i −1.33569 + 2.31348i
\(471\) 84.6828 + 127.516i 0.179794 + 0.270734i
\(472\) 123.424i 0.261492i
\(473\) 48.6868 0.102932
\(474\) 192.788 128.030i 0.406727 0.270106i
\(475\) 102.029 + 58.9066i 0.214798 + 0.124014i
\(476\) −6.65650 + 67.4945i −0.0139843 + 0.141795i
\(477\) 112.636 + 148.521i 0.236135 + 0.311366i
\(478\) −278.485 482.349i −0.582604 1.00910i
\(479\) −364.187 + 210.264i −0.760307 + 0.438964i −0.829406 0.558646i \(-0.811321\pi\)
0.0690988 + 0.997610i \(0.477988\pi\)
\(480\) 1106.58 69.3886i 2.30538 0.144560i
\(481\) −147.238 85.0077i −0.306107 0.176731i
\(482\) 524.011 302.538i 1.08716 0.627672i
\(483\) 93.2666 49.4980i 0.193099 0.102480i
\(484\) 108.937 188.684i 0.225076 0.389843i
\(485\) 259.262 + 449.055i 0.534561 + 0.925887i
\(486\) 631.358 + 134.887i 1.29909 + 0.277545i
\(487\) 19.3349 33.4890i 0.0397020 0.0687658i −0.845492 0.533989i \(-0.820692\pi\)
0.885194 + 0.465223i \(0.154026\pi\)
\(488\) 5.76277i 0.0118089i
\(489\) −769.284 382.076i −1.57318 0.781341i
\(490\) −1134.72 + 384.857i −2.31576 + 0.785423i
\(491\) 435.683 + 754.625i 0.887338 + 1.53691i 0.843011 + 0.537897i \(0.180781\pi\)
0.0443266 + 0.999017i \(0.485886\pi\)
\(492\) 228.355 459.777i 0.464136 0.934507i
\(493\) −125.876 + 72.6744i −0.255326 + 0.147413i
\(494\) −12.5875 + 21.8022i −0.0254808 + 0.0441341i
\(495\) −538.624 226.681i −1.08813 0.457942i
\(496\) 288.335i 0.581320i
\(497\) −234.690 518.151i −0.472213 1.04256i
\(498\) 513.726 32.2134i 1.03158 0.0646856i
\(499\) 184.126 318.916i 0.368991 0.639111i −0.620417 0.784272i \(-0.713037\pi\)
0.989408 + 0.145161i \(0.0463700\pi\)
\(500\) 977.258i 1.95452i
\(501\) −249.830 + 503.016i −0.498663 + 1.00402i
\(502\) 1122.71i 2.23648i
\(503\) 603.853i 1.20050i −0.799811 0.600251i \(-0.795067\pi\)
0.799811 0.600251i \(-0.204933\pi\)
\(504\) 157.503 4.24445i 0.312507 0.00842154i
\(505\) 1030.82 2.04123
\(506\) −94.2390 −0.186243
\(507\) −27.3987 436.943i −0.0540408 0.861820i
\(508\) −562.953 −1.10817
\(509\) −197.693 114.138i −0.388394 0.224240i 0.293070 0.956091i \(-0.405323\pi\)
−0.681464 + 0.731851i \(0.738656\pi\)
\(510\) 208.124 + 103.368i 0.408087 + 0.202682i
\(511\) −48.9854 + 496.694i −0.0958619 + 0.972004i
\(512\) 569.227 1.11177
\(513\) 34.7826 + 40.3470i 0.0678023 + 0.0786491i
\(514\) 200.535 + 115.779i 0.390147 + 0.225251i
\(515\) 398.294 + 689.865i 0.773386 + 1.33954i
\(516\) −3.96315 63.2027i −0.00768053 0.122486i
\(517\) 313.691 181.110i 0.606753 0.350309i
\(518\) 383.545 535.089i 0.740434 1.03299i
\(519\) −247.099 372.082i −0.476106 0.716922i
\(520\) 110.554 0.212603
\(521\) 409.376 + 236.354i 0.785751 + 0.453654i 0.838465 0.544956i \(-0.183454\pi\)
−0.0527134 + 0.998610i \(0.516787\pi\)
\(522\) −662.985 874.207i −1.27009 1.67473i
\(523\) 242.231 139.852i 0.463156 0.267403i −0.250214 0.968190i \(-0.580501\pi\)
0.713370 + 0.700787i \(0.247168\pi\)
\(524\) −19.2681 11.1245i −0.0367712 0.0212299i
\(525\) −44.7348 + 1253.19i −0.0852092 + 2.38703i
\(526\) 58.6991 + 101.670i 0.111595 + 0.193289i
\(527\) 24.1893 41.8971i 0.0459000 0.0795011i
\(528\) −357.854 177.733i −0.677753 0.336616i
\(529\) 251.860 + 436.234i 0.476105 + 0.824639i
\(530\) −438.607 + 253.230i −0.827561 + 0.477792i
\(531\) −409.380 172.289i −0.770961 0.324460i
\(532\) −34.3334 24.6098i −0.0645366 0.0462590i
\(533\) 134.348 232.697i 0.252060 0.436580i
\(534\) −364.759 + 734.417i −0.683068 + 1.37531i
\(535\) 468.532i 0.875761i
\(536\) −77.0993 −0.143842
\(537\) 36.8628 + 587.873i 0.0686459 + 1.09474i
\(538\) −451.649 260.759i −0.839496 0.484683i
\(539\) 339.019 + 67.5269i 0.628978 + 0.125282i
\(540\) −250.421 + 717.666i −0.463743 + 1.32901i
\(541\) 508.919 + 881.473i 0.940700 + 1.62934i 0.764139 + 0.645051i \(0.223164\pi\)
0.176561 + 0.984290i \(0.443503\pi\)
\(542\) −389.916 + 225.118i −0.719402 + 0.415347i
\(543\) 133.898 + 201.624i 0.246589 + 0.371315i
\(544\) 110.156 + 63.5986i 0.202493 + 0.116909i
\(545\) 349.467 201.765i 0.641224 0.370211i
\(546\) −267.789 9.55921i −0.490457 0.0175077i
\(547\) −195.785 + 339.109i −0.357924 + 0.619943i −0.987614 0.156904i \(-0.949849\pi\)
0.629690 + 0.776847i \(0.283182\pi\)
\(548\) 72.2946 + 125.218i 0.131924 + 0.228500i
\(549\) −19.1142 8.04426i −0.0348165 0.0146526i
\(550\) 559.605 969.264i 1.01746 1.76230i
\(551\) 90.5297i 0.164301i
\(552\) −2.36088 37.6504i −0.00427696 0.0682072i
\(553\) 83.8589 + 185.145i 0.151644 + 0.334801i
\(554\) −491.645 851.554i −0.887445 1.53710i
\(555\) −540.746 814.256i −0.974317 1.46713i
\(556\) −670.925 + 387.359i −1.20670 + 0.696689i
\(557\) 249.913 432.862i 0.448677 0.777131i −0.549623 0.835413i \(-0.685229\pi\)
0.998300 + 0.0582814i \(0.0185621\pi\)
\(558\) 336.594 + 141.656i 0.603216 + 0.253864i
\(559\) 33.1455i 0.0592942i
\(560\) −119.381 + 1210.48i −0.213180 + 2.16157i
\(561\) −37.0881 55.8473i −0.0661107 0.0995496i
\(562\) 163.400 283.018i 0.290748 0.503590i
\(563\) 323.183i 0.574038i −0.957925 0.287019i \(-0.907336\pi\)
0.957925 0.287019i \(-0.0926643\pi\)
\(564\) −260.642 392.475i −0.462131 0.695878i
\(565\) 981.126i 1.73651i
\(566\) 399.712i 0.706204i
\(567\) −205.781 + 528.340i −0.362930 + 0.931817i
\(568\) −203.229 −0.357798
\(569\) 176.881 0.310863 0.155431 0.987847i \(-0.450323\pi\)
0.155431 + 0.987847i \(0.450323\pi\)
\(570\) −120.571 + 80.0710i −0.211528 + 0.140475i
\(571\) −557.593 −0.976519 −0.488260 0.872698i \(-0.662368\pi\)
−0.488260 + 0.872698i \(0.662368\pi\)
\(572\) 89.7486 + 51.8164i 0.156903 + 0.0905881i
\(573\) −68.8807 + 45.7436i −0.120211 + 0.0798317i
\(574\) 845.666 + 606.162i 1.47329 + 1.05603i
\(575\) 300.239 0.522155
\(576\) −108.807 + 258.539i −0.188900 + 0.448852i
\(577\) −640.283 369.668i −1.10968 0.640672i −0.170931 0.985283i \(-0.554677\pi\)
−0.938745 + 0.344611i \(0.888011\pi\)
\(578\) −370.580 641.864i −0.641142 1.11049i
\(579\) 311.223 206.683i 0.537518 0.356965i
\(580\) 1118.69 645.876i 1.92878 1.11358i
\(581\) −44.3686 + 449.881i −0.0763659 + 0.774321i
\(582\) −448.149 + 28.1014i −0.770016 + 0.0482842i
\(583\) 146.111 0.250620
\(584\) 154.430 + 89.1599i 0.264434 + 0.152671i
\(585\) −154.322 + 366.690i −0.263798 + 0.626820i
\(586\) −992.949 + 573.280i −1.69445 + 0.978293i
\(587\) 47.8551 + 27.6292i 0.0815249 + 0.0470684i 0.540208 0.841531i \(-0.318345\pi\)
−0.458683 + 0.888600i \(0.651679\pi\)
\(588\) 60.0634 445.593i 0.102149 0.757812i
\(589\) 15.0662 + 26.0954i 0.0255792 + 0.0443045i
\(590\) 603.396 1045.11i 1.02270 1.77138i
\(591\) 287.652 191.029i 0.486722 0.323231i
\(592\) −334.159 578.780i −0.564458 0.977670i
\(593\) −663.928 + 383.319i −1.11961 + 0.646406i −0.941301 0.337569i \(-0.890395\pi\)
−0.178307 + 0.983975i \(0.557062\pi\)
\(594\) 383.291 330.430i 0.645271 0.556279i
\(595\) −118.898 + 165.876i −0.199828 + 0.278783i
\(596\) 392.799 680.348i 0.659059 1.14152i
\(597\) 361.841 22.6894i 0.606099 0.0380057i
\(598\) 64.1569i 0.107286i
\(599\) −906.266 −1.51296 −0.756482 0.654014i \(-0.773084\pi\)
−0.756482 + 0.654014i \(0.773084\pi\)
\(600\) 401.260 + 199.291i 0.668766 + 0.332152i
\(601\) 192.859 + 111.347i 0.320897 + 0.185270i 0.651793 0.758397i \(-0.274017\pi\)
−0.330895 + 0.943668i \(0.607351\pi\)
\(602\) 127.730 + 12.5971i 0.212176 + 0.0209254i
\(603\) 107.623 255.727i 0.178479 0.424091i
\(604\) 181.052 + 313.591i 0.299755 + 0.519191i
\(605\) 567.781 327.808i 0.938481 0.541832i
\(606\) −397.078 + 799.490i −0.655244 + 1.31929i
\(607\) 518.849 + 299.558i 0.854776 + 0.493505i 0.862259 0.506467i \(-0.169049\pi\)
−0.00748365 + 0.999972i \(0.502382\pi\)
\(608\) −68.6100 + 39.6120i −0.112845 + 0.0651514i
\(609\) 851.146 451.717i 1.39761 0.741735i
\(610\) 28.1729 48.7970i 0.0461851 0.0799950i
\(611\) −123.298 213.558i −0.201796 0.349522i
\(612\) −69.4791 + 52.6918i −0.113528 + 0.0860978i
\(613\) −270.643 + 468.768i −0.441506 + 0.764711i −0.997801 0.0662736i \(-0.978889\pi\)
0.556295 + 0.830985i \(0.312222\pi\)
\(614\) 417.565i 0.680073i
\(615\) 1286.87 854.606i 2.09247 1.38960i
\(616\) 71.9515 100.381i 0.116804 0.162955i
\(617\) 331.635 + 574.409i 0.537497 + 0.930972i 0.999038 + 0.0438529i \(0.0139633\pi\)
−0.461541 + 0.887119i \(0.652703\pi\)
\(618\) −688.473 + 43.1710i −1.11403 + 0.0698560i
\(619\) −847.625 + 489.377i −1.36935 + 0.790592i −0.990844 0.135008i \(-0.956894\pi\)
−0.378502 + 0.925601i \(0.623561\pi\)
\(620\) −214.977 + 372.350i −0.346736 + 0.600565i
\(621\) 128.176 + 44.7255i 0.206403 + 0.0720218i
\(622\) 881.565i 1.41731i
\(623\) −585.333 419.559i −0.939539 0.673450i
\(624\) −120.999 + 243.623i −0.193908 + 0.390421i
\(625\) −723.942 + 1253.90i −1.15831 + 2.00625i
\(626\) 1085.28i 1.73368i
\(627\) 41.6740 2.61319i 0.0664657 0.00416776i
\(628\) 156.066i 0.248513i
\(629\) 112.135i 0.178274i
\(630\) −1354.43 734.060i −2.14989 1.16517i
\(631\) 256.500 0.406498 0.203249 0.979127i \(-0.434850\pi\)
0.203249 + 0.979127i \(0.434850\pi\)
\(632\) 72.6175 0.114901
\(633\) −323.448 160.645i −0.510977 0.253784i
\(634\) 102.939 0.162365
\(635\) −1467.06 847.007i −2.31033 1.33387i
\(636\) −11.8936 189.674i −0.0187006 0.298229i
\(637\) 45.9716 230.800i 0.0721689 0.362324i
\(638\) −860.020 −1.34799
\(639\) 283.688 674.081i 0.443956 1.05490i
\(640\) 620.253 + 358.103i 0.969145 + 0.559536i
\(641\) 168.080 + 291.123i 0.262215 + 0.454170i 0.966830 0.255419i \(-0.0822136\pi\)
−0.704615 + 0.709590i \(0.748880\pi\)
\(642\) 363.386 + 180.481i 0.566022 + 0.281123i
\(643\) −754.603 + 435.671i −1.17357 + 0.677559i −0.954518 0.298155i \(-0.903629\pi\)
−0.219049 + 0.975714i \(0.570296\pi\)
\(644\) −107.132 10.5657i −0.166355 0.0164064i
\(645\) 84.7656 170.670i 0.131419 0.264604i
\(646\) −16.6043 −0.0257033
\(647\) −707.666 408.571i −1.09376 0.631485i −0.159189 0.987248i \(-0.550888\pi\)
−0.934576 + 0.355763i \(0.884221\pi\)
\(648\) 141.616 + 144.854i 0.218543 + 0.223541i
\(649\) −301.510 + 174.077i −0.464576 + 0.268223i
\(650\) −659.865 380.973i −1.01518 0.586113i
\(651\) −170.169 + 271.858i −0.261396 + 0.417601i
\(652\) 437.868 + 758.410i 0.671577 + 1.16321i
\(653\) 180.418 312.493i 0.276291 0.478550i −0.694169 0.719812i \(-0.744228\pi\)
0.970460 + 0.241262i \(0.0775613\pi\)
\(654\) 21.8693 + 348.762i 0.0334392 + 0.533275i
\(655\) −33.4753 57.9809i −0.0511073 0.0885204i
\(656\) 914.716 528.112i 1.39438 0.805048i
\(657\) −511.299 + 387.761i −0.778232 + 0.590199i
\(658\) 869.829 393.978i 1.32193 0.598750i
\(659\) 515.473 892.826i 0.782205 1.35482i −0.148449 0.988920i \(-0.547428\pi\)
0.930654 0.365899i \(-0.119239\pi\)
\(660\) 329.611 + 496.329i 0.499411 + 0.752014i
\(661\) 332.364i 0.502820i −0.967881 0.251410i \(-0.919106\pi\)
0.967881 0.251410i \(-0.0808942\pi\)
\(662\) 757.315 1.14398
\(663\) −38.0203 + 25.2492i −0.0573458 + 0.0380832i
\(664\) 139.875 + 80.7566i 0.210654 + 0.121621i
\(665\) −52.4459 115.791i −0.0788660 0.174121i
\(666\) 839.822 105.739i 1.26099 0.158767i
\(667\) −115.354 199.800i −0.172945 0.299550i
\(668\) 495.906 286.311i 0.742374 0.428610i
\(669\) −703.961 + 44.1422i −1.05226 + 0.0659823i
\(670\) 652.848 + 376.922i 0.974400 + 0.562570i
\(671\) −14.0777 + 8.12775i −0.0209801 + 0.0121129i
\(672\) −714.770 447.409i −1.06365 0.665787i
\(673\) −241.240 + 417.840i −0.358455 + 0.620862i −0.987703 0.156343i \(-0.950030\pi\)
0.629248 + 0.777204i \(0.283363\pi\)
\(674\) 792.030 + 1371.84i 1.17512 + 2.03537i
\(675\) −1221.14 + 1052.73i −1.80909 + 1.55960i
\(676\) −223.181 + 386.561i −0.330149 + 0.571835i
\(677\) 622.267i 0.919154i −0.888138 0.459577i \(-0.848001\pi\)
0.888138 0.459577i \(-0.151999\pi\)
\(678\) 760.946 + 377.934i 1.12234 + 0.557425i
\(679\) 38.7049 392.454i 0.0570029 0.577988i
\(680\) 36.4581 + 63.1473i 0.0536149 + 0.0928637i
\(681\) 201.823 406.356i 0.296362 0.596705i
\(682\) 247.903 143.127i 0.363494 0.209863i
\(683\) 235.625 408.115i 0.344986 0.597533i −0.640366 0.768070i \(-0.721217\pi\)
0.985351 + 0.170538i \(0.0545505\pi\)
\(684\) −6.78461 53.8863i −0.00991901 0.0787812i
\(685\) 435.092i 0.635171i
\(686\) 871.944 + 264.874i 1.27106 + 0.386113i
\(687\) 1239.52 77.7248i 1.80426 0.113137i
\(688\) 65.1463 112.837i 0.0946894 0.164007i
\(689\) 99.4710i 0.144370i
\(690\) −164.073 + 330.351i −0.237788 + 0.478770i
\(691\) 519.523i 0.751843i 0.926652 + 0.375921i \(0.122674\pi\)
−0.926652 + 0.375921i \(0.877326\pi\)
\(692\) 455.392i 0.658081i
\(693\) 232.510 + 378.774i 0.335512 + 0.546571i
\(694\) −771.992 −1.11238
\(695\) −2331.25 −3.35432
\(696\) −21.5453 343.595i −0.0309559 0.493671i
\(697\) 177.220 0.254261
\(698\) 753.135 + 434.823i 1.07899 + 0.622955i
\(699\) −896.343 445.182i −1.28232 0.636883i
\(700\) 744.838 1039.13i 1.06405 1.48448i
\(701\) −985.712 −1.40615 −0.703076 0.711115i \(-0.748191\pi\)
−0.703076 + 0.711115i \(0.748191\pi\)
\(702\) −224.953 260.940i −0.320446 0.371710i
\(703\) 60.4852 + 34.9212i 0.0860387 + 0.0496745i
\(704\) 109.936 + 190.414i 0.156159 + 0.270475i
\(705\) −88.7251 1414.95i −0.125851 2.00702i
\(706\) −193.583 + 111.765i −0.274197 + 0.158308i
\(707\) −637.196 456.734i −0.901268 0.646017i
\(708\) 250.520 + 377.234i 0.353842 + 0.532817i
\(709\) 590.228 0.832479 0.416240 0.909255i \(-0.363348\pi\)
0.416240 + 0.909255i \(0.363348\pi\)
\(710\) 1720.87 + 993.544i 2.42376 + 1.39936i
\(711\) −101.367 + 240.861i −0.142570 + 0.338764i
\(712\) −222.830 + 128.651i −0.312964 + 0.180690i
\(713\) 66.5023 + 38.3951i 0.0932711 + 0.0538501i
\(714\) −82.8508 156.111i −0.116038 0.218643i
\(715\) 155.924 + 270.068i 0.218075 + 0.377717i
\(716\) 300.273 520.088i 0.419376 0.726380i
\(717\) 563.267 + 279.755i 0.785589 + 0.390174i
\(718\) −282.129 488.662i −0.392938 0.680588i
\(719\) 320.943 185.297i 0.446375 0.257715i −0.259923 0.965629i \(-0.583697\pi\)
0.706298 + 0.707915i \(0.250364\pi\)
\(720\) −1246.07 + 945.002i −1.73066 + 1.31250i
\(721\) 59.4608 602.911i 0.0824699 0.836214i
\(722\) −474.384 + 821.657i −0.657042 + 1.13803i
\(723\) −303.918 + 611.918i −0.420357 + 0.846360i
\(724\) 246.768i 0.340839i
\(725\) 2739.97 3.77926
\(726\) 35.5311 + 566.635i 0.0489409 + 0.780489i
\(727\) −98.4688 56.8510i −0.135445 0.0781995i 0.430746 0.902473i \(-0.358250\pi\)
−0.566192 + 0.824274i \(0.691584\pi\)
\(728\) −68.3380 48.9838i −0.0938709 0.0672854i
\(729\) −678.142 + 267.515i −0.930236 + 0.366962i
\(730\) −871.768 1509.95i −1.19420 2.06842i
\(731\) 18.9324 10.9306i 0.0258994 0.0149530i
\(732\) 11.6970 + 17.6133i 0.0159795 + 0.0240619i
\(733\) 526.757 + 304.124i 0.718632 + 0.414903i 0.814249 0.580516i \(-0.197149\pi\)
−0.0956168 + 0.995418i \(0.530482\pi\)
\(734\) −965.458 + 557.407i −1.31534 + 0.759411i
\(735\) 826.957 1070.85i 1.12511 1.45694i
\(736\) −100.949 + 174.848i −0.137158 + 0.237565i
\(737\) −108.740 188.343i −0.147544 0.255554i
\(738\) 167.111 + 1327.27i 0.226438 + 1.79847i
\(739\) 605.973 1049.58i 0.819990 1.42026i −0.0856983 0.996321i \(-0.527312\pi\)
0.905689 0.423944i \(-0.139355\pi\)
\(740\) 996.568i 1.34671i
\(741\) −1.77903 28.3712i −0.00240085 0.0382878i
\(742\) 383.323 + 37.8044i 0.516607 + 0.0509493i
\(743\) 82.8636 + 143.524i 0.111526 + 0.193168i 0.916386 0.400297i \(-0.131093\pi\)
−0.804860 + 0.593465i \(0.797760\pi\)
\(744\) 63.3924 + 95.4564i 0.0852048 + 0.128302i
\(745\) 2047.28 1182.00i 2.74802 1.58657i
\(746\) 293.657 508.628i 0.393642 0.681807i
\(747\) −463.109 + 351.215i −0.619958 + 0.470167i
\(748\) 68.3515i 0.0913791i
\(749\) −207.596 + 289.620i −0.277164 + 0.386676i
\(750\) −1408.82 2121.41i −1.87843 2.82854i
\(751\) −676.588 + 1171.89i −0.900916 + 1.56043i −0.0746094 + 0.997213i \(0.523771\pi\)
−0.826307 + 0.563220i \(0.809562\pi\)
\(752\) 969.349i 1.28903i
\(753\) 701.333 + 1056.07i 0.931385 + 1.40248i
\(754\) 585.493i 0.776515i
\(755\) 1089.63i 1.44322i
\(756\) 472.778 332.665i 0.625367 0.440033i
\(757\) 128.108 0.169231 0.0846155 0.996414i \(-0.473034\pi\)
0.0846155 + 0.996414i \(0.473034\pi\)
\(758\) 842.374 1.11131
\(759\) 88.6451 58.8690i 0.116792 0.0775613i
\(760\) −45.4154 −0.0597572
\(761\) 697.444 + 402.669i 0.916483 + 0.529132i 0.882511 0.470291i \(-0.155851\pi\)
0.0339717 + 0.999423i \(0.489184\pi\)
\(762\) 1222.04 811.557i 1.60373 1.06504i
\(763\) −305.418 30.1212i −0.400286 0.0394774i
\(764\) 84.3032 0.110344
\(765\) −260.342 + 32.7786i −0.340317 + 0.0428479i
\(766\) 638.687 + 368.746i 0.833795 + 0.481392i
\(767\) 118.510 + 205.265i 0.154511 + 0.267620i
\(768\) −828.221 + 550.020i −1.07841 + 0.716172i
\(769\) −501.209 + 289.373i −0.651767 + 0.376298i −0.789133 0.614222i \(-0.789470\pi\)
0.137366 + 0.990520i \(0.456136\pi\)
\(770\) −1100.00 + 498.229i −1.42857 + 0.647051i
\(771\) −260.957 + 16.3634i −0.338465 + 0.0212236i
\(772\) −380.906 −0.493401
\(773\) 685.032 + 395.504i 0.886200 + 0.511648i 0.872698 0.488261i \(-0.162369\pi\)
0.0135021 + 0.999909i \(0.495702\pi\)
\(774\) 99.7167 + 131.486i 0.128833 + 0.169878i
\(775\) −789.801 + 455.992i −1.01910 + 0.588376i
\(776\) −122.020 70.4481i −0.157242 0.0907836i
\(777\) −26.5198 + 742.919i −0.0341310 + 0.956138i
\(778\) 96.2228 + 166.663i 0.123680 + 0.214219i
\(779\) −55.1901 + 95.5921i −0.0708474 + 0.122711i
\(780\) 337.896 224.396i 0.433200 0.287687i
\(781\) −286.633 496.462i −0.367007 0.635675i
\(782\) −36.6459 + 21.1575i −0.0468618 + 0.0270557i
\(783\) 1169.73 + 408.163i 1.49391 + 0.521281i
\(784\) 610.131 695.355i 0.778228 0.886932i
\(785\) 234.814 406.710i 0.299126 0.518102i
\(786\) 57.8639 3.62838i 0.0736182 0.00461626i
\(787\) 989.401i 1.25718i −0.777737 0.628590i \(-0.783632\pi\)
0.777737 0.628590i \(-0.216368\pi\)
\(788\) −352.058 −0.446774
\(789\) −118.726 58.9668i −0.150476 0.0747362i
\(790\) −614.898 355.011i −0.778352 0.449382i
\(791\) −434.714 + 606.476i −0.549576 + 0.766721i
\(792\) 157.547 19.8361i 0.198923 0.0250456i
\(793\) 5.53329 + 9.58394i 0.00697766 + 0.0120857i
\(794\) −1569.92 + 906.395i −1.97723 + 1.14155i
\(795\) 254.385 512.187i 0.319981 0.644260i
\(796\) −320.119 184.821i −0.402159 0.232187i
\(797\) 104.384 60.2662i 0.130971 0.0756163i −0.433083 0.901354i \(-0.642574\pi\)
0.564054 + 0.825738i \(0.309241\pi\)
\(798\) 110.008 + 3.92693i 0.137854 + 0.00492096i
\(799\) 81.3216 140.853i 0.101779 0.176287i
\(800\) −1198.90 2076.55i −1.49862 2.59568i
\(801\) −115.667 918.680i −0.144404 1.14692i
\(802\) −597.323 + 1034.59i −0.744791 + 1.29002i
\(803\) 503.001i 0.626403i
\(804\) −235.646 + 156.492i −0.293092 + 0.194642i
\(805\) −263.291 188.724i −0.327070 0.234439i
\(806\) −97.4391 168.769i −0.120892 0.209391i
\(807\) 587.730 36.8539i 0.728290 0.0456677i
\(808\) −242.574 + 140.050i −0.300216 + 0.173330i
\(809\) −94.3098 + 163.349i −0.116576 + 0.201915i −0.918409 0.395633i \(-0.870525\pi\)
0.801833 + 0.597548i \(0.203858\pi\)
\(810\) −490.985 1918.90i −0.606155 2.36901i
\(811\) 1191.68i 1.46940i −0.678394 0.734699i \(-0.737324\pi\)
0.678394 0.734699i \(-0.262676\pi\)
\(812\) −977.684 96.4221i −1.20404 0.118746i
\(813\) 226.145 455.327i 0.278161 0.560058i
\(814\) 331.747 574.602i 0.407551 0.705899i
\(815\) 2635.23i 3.23341i
\(816\) −179.058 + 11.2279i −0.219434 + 0.0137597i
\(817\) 13.6162i 0.0166661i
\(818\) 395.622i 0.483645i
\(819\) 257.865 158.290i 0.314854 0.193273i
\(820\) −1575.00 −1.92073
\(821\) −677.226 −0.824879 −0.412440 0.910985i \(-0.635323\pi\)
−0.412440 + 0.910985i \(0.635323\pi\)
\(822\) −337.450 167.600i −0.410524 0.203892i
\(823\) −1610.79 −1.95722 −0.978608 0.205732i \(-0.934043\pi\)
−0.978608 + 0.205732i \(0.934043\pi\)
\(824\) −187.454 108.227i −0.227493 0.131343i
\(825\) 79.0906 + 1261.30i 0.0958674 + 1.52885i
\(826\) −836.051 + 378.678i −1.01217 + 0.458448i
\(827\) −626.312 −0.757331 −0.378665 0.925534i \(-0.623617\pi\)
−0.378665 + 0.925534i \(0.623617\pi\)
\(828\) −83.6365 110.282i −0.101010 0.133191i
\(829\) −469.693 271.178i −0.566578 0.327114i 0.189203 0.981938i \(-0.439409\pi\)
−0.755782 + 0.654824i \(0.772743\pi\)
\(830\) −789.604 1367.63i −0.951330 1.64775i
\(831\) 994.408 + 493.887i 1.19664 + 0.594329i
\(832\) 129.632 74.8431i 0.155808 0.0899557i
\(833\) 146.992 49.8543i 0.176461 0.0598491i
\(834\) 898.009 1808.08i 1.07675 2.16796i
\(835\) 1723.11 2.06361
\(836\) −36.8687 21.2862i −0.0441014 0.0254619i
\(837\) −405.104 + 77.0153i −0.483996 + 0.0920135i
\(838\) 1060.52 612.293i 1.26554 0.730660i
\(839\) 1281.98 + 740.153i 1.52799 + 0.882185i 0.999446 + 0.0332790i \(0.0105950\pi\)
0.528543 + 0.848906i \(0.322738\pi\)
\(840\) −226.610 426.989i −0.269774 0.508320i
\(841\) −632.218 1095.03i −0.751746 1.30206i
\(842\) −169.771 + 294.051i −0.201628 + 0.349230i
\(843\) 23.0938 + 368.291i 0.0273948 + 0.436881i
\(844\) 184.103 + 318.876i 0.218132 + 0.377815i
\(845\) −1163.22 + 671.587i −1.37660 + 0.794778i
\(846\) 1131.59 + 476.232i 1.33758 + 0.562922i
\(847\) −496.215 48.9381i −0.585850 0.0577782i
\(848\) 195.507 338.627i 0.230550 0.399325i
\(849\) −249.691 375.985i −0.294100 0.442857i
\(850\) 502.546i 0.591230i
\(851\) 177.988 0.209152
\(852\) −621.149 + 412.504i −0.729048 + 0.484159i
\(853\) −744.542 429.861i −0.872851 0.503941i −0.00455615 0.999990i \(-0.501450\pi\)
−0.868294 + 0.496049i \(0.834784\pi\)
\(854\) −39.0357 + 17.6807i −0.0457093 + 0.0207034i
\(855\) 63.3955 150.636i 0.0741468 0.176183i
\(856\) 63.6560 + 110.255i 0.0743645 + 0.128803i
\(857\) 383.456 221.388i 0.447440 0.258330i −0.259308 0.965795i \(-0.583495\pi\)
0.706748 + 0.707465i \(0.250161\pi\)
\(858\) −269.523 + 16.9006i −0.314129 + 0.0196976i
\(859\) 433.921 + 250.524i 0.505146 + 0.291646i 0.730836 0.682553i \(-0.239130\pi\)
−0.225690 + 0.974199i \(0.572464\pi\)
\(860\) −168.257 + 97.1434i −0.195648 + 0.112957i
\(861\) −1174.12 41.9125i −1.36368 0.0486788i
\(862\) −277.453 + 480.562i −0.321871 + 0.557497i
\(863\) −182.251 315.667i −0.211183 0.365779i 0.740902 0.671613i \(-0.234398\pi\)
−0.952085 + 0.305834i \(0.901065\pi\)
\(864\) −202.489 1065.10i −0.234362 1.23276i
\(865\) −685.174 + 1186.76i −0.792108 + 1.37197i
\(866\) 1307.67i 1.51001i
\(867\) 749.541 + 372.270i 0.864523 + 0.429378i
\(868\) 297.866 134.915i 0.343164 0.155432i
\(869\) 102.419 + 177.395i 0.117859 + 0.204137i
\(870\) −1497.33 + 3014.77i −1.72106 + 3.46525i
\(871\) −128.222 + 74.0291i −0.147213 + 0.0849932i
\(872\) −54.8246 + 94.9590i −0.0628723 + 0.108898i
\(873\) 403.993 306.382i 0.462764 0.350953i
\(874\) 26.3557i 0.0301552i
\(875\) 2037.30 922.769i 2.32834 1.05459i
\(876\) 652.970 40.9448i 0.745400 0.0467406i
\(877\) 391.240 677.647i 0.446111 0.772688i −0.552017 0.833833i \(-0.686142\pi\)
0.998129 + 0.0611449i \(0.0194752\pi\)
\(878\) 187.166i 0.213173i
\(879\) 575.894 1159.52i 0.655170 1.31914i
\(880\) 1225.85i 1.39301i
\(881\) 337.263i 0.382818i −0.981510 0.191409i \(-0.938694\pi\)
0.981510 0.191409i \(-0.0613058\pi\)
\(882\) 511.987 + 1053.87i 0.580484 + 1.19487i
\(883\) 556.002 0.629674 0.314837 0.949146i \(-0.398050\pi\)
0.314837 + 0.949146i \(0.398050\pi\)
\(884\) 46.5330 0.0526392
\(885\) 85.2796 + 1360.00i 0.0963612 + 1.53673i
\(886\) 1902.47 2.14725
\(887\) −626.057 361.454i −0.705814 0.407502i 0.103695 0.994609i \(-0.466933\pi\)
−0.809509 + 0.587107i \(0.800267\pi\)
\(888\) 237.876 + 118.144i 0.267878 + 0.133045i
\(889\) 531.564 + 1173.59i 0.597934 + 1.32013i
\(890\) 2515.79 2.82673
\(891\) −154.127 + 550.250i −0.172982 + 0.617564i
\(892\) 622.790 + 359.568i 0.698195 + 0.403103i
\(893\) 50.6507 + 87.7296i 0.0567197 + 0.0982414i
\(894\) 128.116 + 2043.15i 0.143307 + 2.28540i
\(895\) 1565.03 903.569i 1.74863 1.00957i
\(896\) −224.738 496.179i −0.250823 0.553771i
\(897\) −40.0774 60.3486i −0.0446794 0.0672783i
\(898\) −346.317 −0.385653
\(899\) 606.896 + 350.392i 0.675079 + 0.389757i
\(900\) 1630.92 205.342i 1.81213 0.228158i
\(901\) 56.8170 32.8033i 0.0630599 0.0364077i
\(902\) 908.113 + 524.299i 1.00678 + 0.581263i
\(903\) −128.017 + 67.9407i −0.141769 + 0.0752389i
\(904\) 133.298 + 230.879i 0.147454 + 0.255398i
\(905\) 371.282 643.079i 0.410256 0.710584i
\(906\) −845.100 419.731i −0.932781 0.463279i
\(907\) −563.871 976.653i −0.621688 1.07679i −0.989171 0.146765i \(-0.953114\pi\)
0.367484 0.930030i \(-0.380219\pi\)
\(908\) −400.613 + 231.294i −0.441203 + 0.254729i
\(909\) −125.916 1000.08i −0.138521 1.10020i
\(910\) 339.189 + 748.866i 0.372736 + 0.822930i
\(911\) −890.109 + 1541.71i −0.977068 + 1.69233i −0.304136 + 0.952629i \(0.598368\pi\)
−0.672933 + 0.739703i \(0.734966\pi\)
\(912\) 49.7063 100.080i 0.0545025 0.109737i
\(913\) 455.594i 0.499007i
\(914\) −561.995 −0.614875
\(915\) 3.98176 + 63.4995i 0.00435165 + 0.0693983i
\(916\) −1096.60 633.121i −1.19716 0.691181i
\(917\) −4.99748 + 50.6726i −0.00544982 + 0.0552591i
\(918\) 74.8625 214.544i 0.0815496 0.233708i
\(919\) −350.534 607.142i −0.381429 0.660655i 0.609837 0.792527i \(-0.291235\pi\)
−0.991267 + 0.131871i \(0.957901\pi\)
\(920\) −100.232 + 57.8691i −0.108948 + 0.0629012i
\(921\) −260.844 392.779i −0.283218 0.426470i
\(922\) −1214.24 701.039i −1.31696 0.760346i
\(923\) −337.986 + 195.136i −0.366182 + 0.211415i
\(924\) 16.1651 452.846i 0.0174947 0.490093i
\(925\) −1056.92 + 1830.64i −1.14262 + 1.97907i
\(926\) −975.227 1689.14i −1.05316 1.82413i
\(927\) 620.638 470.683i 0.669513 0.507748i
\(928\) −921.252 + 1595.65i −0.992728 + 1.71946i
\(929\) 981.172i 1.05616i 0.849195 + 0.528080i \(0.177088\pi\)
−0.849195 + 0.528080i \(0.822912\pi\)
\(930\) −70.1173 1118.20i −0.0753949 1.20237i
\(931\) −18.8851 + 94.8129i −0.0202848 + 0.101840i
\(932\) 510.189 + 883.674i 0.547413 + 0.948148i
\(933\) −550.695 829.237i −0.590241 0.888785i
\(934\) 746.401 430.935i 0.799145 0.461386i
\(935\) −102.840 + 178.125i −0.109990 + 0.190508i
\(936\) −13.5042 107.256i −0.0144276 0.114590i
\(937\) 949.998i 1.01387i −0.861984 0.506936i \(-0.830778\pi\)
0.861984 0.506936i \(-0.169222\pi\)
\(938\) −236.548 522.254i −0.252184 0.556774i
\(939\) 677.953 + 1020.86i 0.721995 + 1.08718i
\(940\) −722.726 + 1251.80i −0.768858 + 1.33170i
\(941\) 380.205i 0.404043i −0.979381 0.202022i \(-0.935249\pi\)
0.979381 0.202022i \(-0.0647512\pi\)
\(942\) 224.986 + 338.785i 0.238839 + 0.359644i
\(943\) 281.297i 0.298300i
\(944\) 931.705i 0.986976i
\(945\) 1732.58 155.596i 1.83342 0.164651i
\(946\) 129.352 0.136736
\(947\) 326.068 0.344317 0.172159 0.985069i \(-0.444926\pi\)
0.172159 + 0.985069i \(0.444926\pi\)
\(948\) 221.948 147.395i 0.234122 0.155480i
\(949\) 342.438 0.360841
\(950\) 271.073 + 156.504i 0.285340 + 0.164741i
\(951\) −96.8290 + 64.3039i −0.101818 + 0.0676172i
\(952\) 5.44279 55.1879i 0.00571722 0.0579704i
\(953\) 1009.14 1.05891 0.529455 0.848338i \(-0.322397\pi\)
0.529455 + 0.848338i \(0.322397\pi\)
\(954\) 299.254 + 394.594i 0.313683 + 0.413620i
\(955\) 219.695 + 126.841i 0.230047 + 0.132818i
\(956\) −320.606 555.306i −0.335362 0.580864i
\(957\) 808.971 537.236i 0.845319 0.561375i
\(958\) −967.578 + 558.631i −1.01000 + 0.583122i
\(959\) 192.779 268.949i 0.201021 0.280448i
\(960\) 858.892 53.8572i 0.894679 0.0561013i
\(961\) 727.748 0.757282
\(962\) −391.183 225.850i −0.406635 0.234771i
\(963\) −454.559 + 57.2316i −0.472023 + 0.0594305i
\(964\) 603.269 348.298i 0.625798 0.361304i
\(965\) −992.644 573.103i −1.02865 0.593890i
\(966\) 247.792 131.507i 0.256513 0.136136i
\(967\) 277.066 + 479.892i 0.286521 + 0.496269i 0.972977 0.230902i \(-0.0741678\pi\)
−0.686456 + 0.727172i \(0.740834\pi\)
\(968\) −89.0739 + 154.280i −0.0920184 + 0.159381i
\(969\) 15.6187 10.3724i 0.0161184 0.0107042i
\(970\) 688.811 + 1193.06i 0.710115 + 1.22995i
\(971\) 1334.71 770.592i 1.37457 0.793607i 0.383069 0.923720i \(-0.374867\pi\)
0.991499 + 0.130113i \(0.0415340\pi\)
\(972\) 726.851 + 155.289i 0.747790 + 0.159762i
\(973\) 1441.05 + 1032.92i 1.48104 + 1.06159i
\(974\) 51.3691 88.9739i 0.0527404 0.0913490i
\(975\) 858.682 53.8440i 0.880699 0.0552246i
\(976\) 43.5019i 0.0445716i
\(977\) −1625.38 −1.66365 −0.831824 0.555039i \(-0.812703\pi\)
−0.831824 + 0.555039i \(0.812703\pi\)
\(978\) −2043.84 1015.10i −2.08982 1.03794i
\(979\) −628.556 362.897i −0.642039 0.370681i
\(980\) −1306.35 + 443.068i −1.33301 + 0.452110i
\(981\) −238.435 314.399i −0.243053 0.320488i
\(982\) 1157.53 + 2004.90i 1.17875 + 2.04165i
\(983\) 30.5458 17.6356i 0.0310740 0.0179406i −0.484383 0.874856i \(-0.660956\pi\)
0.515457 + 0.856916i \(0.327622\pi\)
\(984\) −186.718 + 375.944i −0.189754 + 0.382057i
\(985\) −917.466 529.699i −0.931438 0.537766i
\(986\) −334.429 + 193.082i −0.339177 + 0.195824i
\(987\) −572.088 + 913.955i −0.579623 + 0.925993i
\(988\) −14.4914 + 25.0998i −0.0146674 + 0.0254047i
\(989\) 17.3499 + 30.0510i 0.0175429 + 0.0303852i
\(990\) −1431.03 602.250i −1.44548 0.608333i
\(991\) 567.488 982.918i 0.572642 0.991845i −0.423652 0.905825i \(-0.639252\pi\)
0.996293 0.0860197i \(-0.0274148\pi\)
\(992\) 613.268i 0.618213i
\(993\) −712.362 + 473.078i −0.717384 + 0.476413i
\(994\) −623.527 1376.63i −0.627291 1.38494i
\(995\) −556.155 963.288i −0.558950 0.968129i
\(996\) 591.428 37.0857i 0.593803 0.0372347i
\(997\) −44.4032 + 25.6362i −0.0445368 + 0.0257133i −0.522103 0.852882i \(-0.674852\pi\)
0.477566 + 0.878596i \(0.341519\pi\)
\(998\) 489.190 847.301i 0.490170 0.848999i
\(999\) −723.919 + 624.081i −0.724643 + 0.624705i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 63.3.t.a.52.12 yes 28
3.2 odd 2 189.3.t.a.73.3 28
7.2 even 3 441.3.k.b.313.3 28
7.3 odd 6 441.3.l.a.97.3 28
7.4 even 3 441.3.l.b.97.3 28
7.5 odd 6 63.3.k.a.61.3 yes 28
7.6 odd 2 441.3.t.a.178.12 28
9.4 even 3 63.3.k.a.31.3 28
9.5 odd 6 189.3.k.a.10.12 28
21.5 even 6 189.3.k.a.19.12 28
63.4 even 3 441.3.l.a.391.3 28
63.5 even 6 189.3.t.a.145.3 28
63.13 odd 6 441.3.k.b.31.3 28
63.31 odd 6 441.3.l.b.391.3 28
63.40 odd 6 inner 63.3.t.a.40.12 yes 28
63.58 even 3 441.3.t.a.166.12 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.3.k.a.31.3 28 9.4 even 3
63.3.k.a.61.3 yes 28 7.5 odd 6
63.3.t.a.40.12 yes 28 63.40 odd 6 inner
63.3.t.a.52.12 yes 28 1.1 even 1 trivial
189.3.k.a.10.12 28 9.5 odd 6
189.3.k.a.19.12 28 21.5 even 6
189.3.t.a.73.3 28 3.2 odd 2
189.3.t.a.145.3 28 63.5 even 6
441.3.k.b.31.3 28 63.13 odd 6
441.3.k.b.313.3 28 7.2 even 3
441.3.l.a.97.3 28 7.3 odd 6
441.3.l.a.391.3 28 63.4 even 3
441.3.l.b.97.3 28 7.4 even 3
441.3.l.b.391.3 28 63.31 odd 6
441.3.t.a.166.12 28 63.58 even 3
441.3.t.a.178.12 28 7.6 odd 2