Properties

Label 45.10.a.e.1.2
Level $45$
Weight $10$
Character 45.1
Self dual yes
Analytic conductor $23.177$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [45,10,Mod(1,45)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(45, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("45.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 45 = 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 45.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.1766126274\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{4729}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1182 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 15)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-33.8839\) of defining polynomial
Character \(\chi\) \(=\) 45.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+24.8839 q^{2} +107.207 q^{4} +625.000 q^{5} -4010.50 q^{7} -10072.8 q^{8} +15552.4 q^{10} -84861.3 q^{11} +119425. q^{13} -99796.8 q^{14} -305541. q^{16} -116934. q^{17} -234932. q^{19} +67004.1 q^{20} -2.11168e6 q^{22} -2.34570e6 q^{23} +390625. q^{25} +2.97176e6 q^{26} -429953. q^{28} +464196. q^{29} -5.11766e6 q^{31} -2.44574e6 q^{32} -2.90976e6 q^{34} -2.50656e6 q^{35} +8.69354e6 q^{37} -5.84601e6 q^{38} -6.29551e6 q^{40} +9.05805e6 q^{41} +8.63491e6 q^{43} -9.09769e6 q^{44} -5.83701e7 q^{46} -3.31511e7 q^{47} -2.42695e7 q^{49} +9.72026e6 q^{50} +1.28032e7 q^{52} +6.41254e7 q^{53} -5.30383e7 q^{55} +4.03971e7 q^{56} +1.15510e7 q^{58} -1.49407e8 q^{59} +1.54634e8 q^{61} -1.27347e8 q^{62} +9.55772e7 q^{64} +7.46408e7 q^{65} +2.72755e8 q^{67} -1.25360e7 q^{68} -6.23730e7 q^{70} +3.56924e8 q^{71} +2.06253e8 q^{73} +2.16329e8 q^{74} -2.51862e7 q^{76} +3.40337e8 q^{77} -4.04380e8 q^{79} -1.90963e8 q^{80} +2.25399e8 q^{82} +5.17034e6 q^{83} -7.30834e7 q^{85} +2.14870e8 q^{86} +8.54793e8 q^{88} -4.32242e8 q^{89} -4.78955e8 q^{91} -2.51475e8 q^{92} -8.24928e8 q^{94} -1.46832e8 q^{95} -1.32066e9 q^{97} -6.03918e8 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 19 q^{2} + 1521 q^{4} + 1250 q^{5} - 11872 q^{7} - 49647 q^{8} - 11875 q^{10} - 35488 q^{11} + 143676 q^{13} + 245196 q^{14} + 707265 q^{16} - 385156 q^{17} - 403296 q^{19} + 950625 q^{20} - 4278368 q^{22}+ \cdots - 1545205739 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 24.8839 1.09972 0.549861 0.835256i \(-0.314681\pi\)
0.549861 + 0.835256i \(0.314681\pi\)
\(3\) 0 0
\(4\) 107.207 0.209388
\(5\) 625.000 0.447214
\(6\) 0 0
\(7\) −4010.50 −0.631332 −0.315666 0.948870i \(-0.602228\pi\)
−0.315666 + 0.948870i \(0.602228\pi\)
\(8\) −10072.8 −0.869453
\(9\) 0 0
\(10\) 15552.4 0.491811
\(11\) −84861.3 −1.74760 −0.873801 0.486283i \(-0.838352\pi\)
−0.873801 + 0.486283i \(0.838352\pi\)
\(12\) 0 0
\(13\) 119425. 1.15971 0.579857 0.814718i \(-0.303108\pi\)
0.579857 + 0.814718i \(0.303108\pi\)
\(14\) −99796.8 −0.694289
\(15\) 0 0
\(16\) −305541. −1.16554
\(17\) −116934. −0.339562 −0.169781 0.985482i \(-0.554306\pi\)
−0.169781 + 0.985482i \(0.554306\pi\)
\(18\) 0 0
\(19\) −234932. −0.413571 −0.206786 0.978386i \(-0.566300\pi\)
−0.206786 + 0.978386i \(0.566300\pi\)
\(20\) 67004.1 0.0936411
\(21\) 0 0
\(22\) −2.11168e6 −1.92188
\(23\) −2.34570e6 −1.74782 −0.873912 0.486084i \(-0.838425\pi\)
−0.873912 + 0.486084i \(0.838425\pi\)
\(24\) 0 0
\(25\) 390625. 0.200000
\(26\) 2.97176e6 1.27536
\(27\) 0 0
\(28\) −429953. −0.132193
\(29\) 464196. 0.121874 0.0609369 0.998142i \(-0.480591\pi\)
0.0609369 + 0.998142i \(0.480591\pi\)
\(30\) 0 0
\(31\) −5.11766e6 −0.995277 −0.497638 0.867385i \(-0.665799\pi\)
−0.497638 + 0.867385i \(0.665799\pi\)
\(32\) −2.44574e6 −0.412321
\(33\) 0 0
\(34\) −2.90976e6 −0.373423
\(35\) −2.50656e6 −0.282340
\(36\) 0 0
\(37\) 8.69354e6 0.762586 0.381293 0.924454i \(-0.375479\pi\)
0.381293 + 0.924454i \(0.375479\pi\)
\(38\) −5.84601e6 −0.454813
\(39\) 0 0
\(40\) −6.29551e6 −0.388831
\(41\) 9.05805e6 0.500619 0.250310 0.968166i \(-0.419468\pi\)
0.250310 + 0.968166i \(0.419468\pi\)
\(42\) 0 0
\(43\) 8.63491e6 0.385168 0.192584 0.981281i \(-0.438313\pi\)
0.192584 + 0.981281i \(0.438313\pi\)
\(44\) −9.09769e6 −0.365927
\(45\) 0 0
\(46\) −5.83701e7 −1.92212
\(47\) −3.31511e7 −0.990964 −0.495482 0.868618i \(-0.665009\pi\)
−0.495482 + 0.868618i \(0.665009\pi\)
\(48\) 0 0
\(49\) −2.42695e7 −0.601420
\(50\) 9.72026e6 0.219944
\(51\) 0 0
\(52\) 1.28032e7 0.242830
\(53\) 6.41254e7 1.11632 0.558160 0.829733i \(-0.311508\pi\)
0.558160 + 0.829733i \(0.311508\pi\)
\(54\) 0 0
\(55\) −5.30383e7 −0.781551
\(56\) 4.03971e7 0.548914
\(57\) 0 0
\(58\) 1.15510e7 0.134027
\(59\) −1.49407e8 −1.60523 −0.802613 0.596500i \(-0.796558\pi\)
−0.802613 + 0.596500i \(0.796558\pi\)
\(60\) 0 0
\(61\) 1.54634e8 1.42995 0.714973 0.699152i \(-0.246439\pi\)
0.714973 + 0.699152i \(0.246439\pi\)
\(62\) −1.27347e8 −1.09453
\(63\) 0 0
\(64\) 9.55772e7 0.712106
\(65\) 7.46408e7 0.518640
\(66\) 0 0
\(67\) 2.72755e8 1.65362 0.826811 0.562479i \(-0.190152\pi\)
0.826811 + 0.562479i \(0.190152\pi\)
\(68\) −1.25360e7 −0.0711001
\(69\) 0 0
\(70\) −6.23730e7 −0.310496
\(71\) 3.56924e8 1.66691 0.833457 0.552584i \(-0.186358\pi\)
0.833457 + 0.552584i \(0.186358\pi\)
\(72\) 0 0
\(73\) 2.06253e8 0.850057 0.425029 0.905180i \(-0.360264\pi\)
0.425029 + 0.905180i \(0.360264\pi\)
\(74\) 2.16329e8 0.838632
\(75\) 0 0
\(76\) −2.51862e7 −0.0865968
\(77\) 3.40337e8 1.10332
\(78\) 0 0
\(79\) −4.04380e8 −1.16807 −0.584033 0.811730i \(-0.698526\pi\)
−0.584033 + 0.811730i \(0.698526\pi\)
\(80\) −1.90963e8 −0.521247
\(81\) 0 0
\(82\) 2.25399e8 0.550542
\(83\) 5.17034e6 0.0119582 0.00597912 0.999982i \(-0.498097\pi\)
0.00597912 + 0.999982i \(0.498097\pi\)
\(84\) 0 0
\(85\) −7.30834e7 −0.151857
\(86\) 2.14870e8 0.423577
\(87\) 0 0
\(88\) 8.54793e8 1.51946
\(89\) −4.32242e8 −0.730250 −0.365125 0.930958i \(-0.618974\pi\)
−0.365125 + 0.930958i \(0.618974\pi\)
\(90\) 0 0
\(91\) −4.78955e8 −0.732165
\(92\) −2.51475e8 −0.365973
\(93\) 0 0
\(94\) −8.24928e8 −1.08978
\(95\) −1.46832e8 −0.184955
\(96\) 0 0
\(97\) −1.32066e9 −1.51468 −0.757338 0.653023i \(-0.773501\pi\)
−0.757338 + 0.653023i \(0.773501\pi\)
\(98\) −6.03918e8 −0.661395
\(99\) 0 0
\(100\) 4.18776e7 0.0418776
\(101\) −5.30458e8 −0.507230 −0.253615 0.967305i \(-0.581620\pi\)
−0.253615 + 0.967305i \(0.581620\pi\)
\(102\) 0 0
\(103\) −6.07207e7 −0.0531580 −0.0265790 0.999647i \(-0.508461\pi\)
−0.0265790 + 0.999647i \(0.508461\pi\)
\(104\) −1.20295e9 −1.00832
\(105\) 0 0
\(106\) 1.59569e9 1.22764
\(107\) 1.00828e9 0.743625 0.371812 0.928308i \(-0.378736\pi\)
0.371812 + 0.928308i \(0.378736\pi\)
\(108\) 0 0
\(109\) −1.77424e9 −1.20391 −0.601954 0.798531i \(-0.705611\pi\)
−0.601954 + 0.798531i \(0.705611\pi\)
\(110\) −1.31980e9 −0.859489
\(111\) 0 0
\(112\) 1.22537e9 0.735846
\(113\) −9.45495e8 −0.545514 −0.272757 0.962083i \(-0.587936\pi\)
−0.272757 + 0.962083i \(0.587936\pi\)
\(114\) 0 0
\(115\) −1.46606e9 −0.781651
\(116\) 4.97649e7 0.0255189
\(117\) 0 0
\(118\) −3.71782e9 −1.76530
\(119\) 4.68962e8 0.214376
\(120\) 0 0
\(121\) 4.84349e9 2.05411
\(122\) 3.84788e9 1.57254
\(123\) 0 0
\(124\) −5.48647e8 −0.208399
\(125\) 2.44141e8 0.0894427
\(126\) 0 0
\(127\) −5.19758e9 −1.77290 −0.886450 0.462825i \(-0.846836\pi\)
−0.886450 + 0.462825i \(0.846836\pi\)
\(128\) 3.63055e9 1.19544
\(129\) 0 0
\(130\) 1.85735e9 0.570360
\(131\) −5.28408e8 −0.156765 −0.0783824 0.996923i \(-0.524976\pi\)
−0.0783824 + 0.996923i \(0.524976\pi\)
\(132\) 0 0
\(133\) 9.42194e8 0.261101
\(134\) 6.78720e9 1.81852
\(135\) 0 0
\(136\) 1.17785e9 0.295233
\(137\) −5.01761e9 −1.21690 −0.608449 0.793593i \(-0.708208\pi\)
−0.608449 + 0.793593i \(0.708208\pi\)
\(138\) 0 0
\(139\) 3.51872e9 0.799499 0.399750 0.916624i \(-0.369097\pi\)
0.399750 + 0.916624i \(0.369097\pi\)
\(140\) −2.68720e8 −0.0591186
\(141\) 0 0
\(142\) 8.88165e9 1.83314
\(143\) −1.01346e10 −2.02672
\(144\) 0 0
\(145\) 2.90123e8 0.0545036
\(146\) 5.13238e9 0.934827
\(147\) 0 0
\(148\) 9.32005e8 0.159676
\(149\) −4.32815e9 −0.719390 −0.359695 0.933070i \(-0.617119\pi\)
−0.359695 + 0.933070i \(0.617119\pi\)
\(150\) 0 0
\(151\) −5.61832e9 −0.879448 −0.439724 0.898133i \(-0.644924\pi\)
−0.439724 + 0.898133i \(0.644924\pi\)
\(152\) 2.36642e9 0.359581
\(153\) 0 0
\(154\) 8.46889e9 1.21334
\(155\) −3.19854e9 −0.445101
\(156\) 0 0
\(157\) 1.55603e9 0.204394 0.102197 0.994764i \(-0.467413\pi\)
0.102197 + 0.994764i \(0.467413\pi\)
\(158\) −1.00625e10 −1.28455
\(159\) 0 0
\(160\) −1.52859e9 −0.184396
\(161\) 9.40745e9 1.10346
\(162\) 0 0
\(163\) −1.15580e10 −1.28245 −0.641224 0.767354i \(-0.721573\pi\)
−0.641224 + 0.767354i \(0.721573\pi\)
\(164\) 9.71083e8 0.104824
\(165\) 0 0
\(166\) 1.28658e8 0.0131507
\(167\) 1.50486e10 1.49717 0.748585 0.663039i \(-0.230734\pi\)
0.748585 + 0.663039i \(0.230734\pi\)
\(168\) 0 0
\(169\) 3.65789e9 0.344938
\(170\) −1.81860e9 −0.167000
\(171\) 0 0
\(172\) 9.25719e8 0.0806494
\(173\) −2.23157e10 −1.89410 −0.947052 0.321081i \(-0.895954\pi\)
−0.947052 + 0.321081i \(0.895954\pi\)
\(174\) 0 0
\(175\) −1.56660e9 −0.126266
\(176\) 2.59286e10 2.03691
\(177\) 0 0
\(178\) −1.07558e10 −0.803072
\(179\) 1.73543e10 1.26348 0.631742 0.775179i \(-0.282340\pi\)
0.631742 + 0.775179i \(0.282340\pi\)
\(180\) 0 0
\(181\) −1.34040e10 −0.928282 −0.464141 0.885761i \(-0.653637\pi\)
−0.464141 + 0.885761i \(0.653637\pi\)
\(182\) −1.19183e10 −0.805178
\(183\) 0 0
\(184\) 2.36278e10 1.51965
\(185\) 5.43346e9 0.341039
\(186\) 0 0
\(187\) 9.92313e9 0.593419
\(188\) −3.55402e9 −0.207496
\(189\) 0 0
\(190\) −3.65375e9 −0.203399
\(191\) 6.01312e9 0.326926 0.163463 0.986549i \(-0.447734\pi\)
0.163463 + 0.986549i \(0.447734\pi\)
\(192\) 0 0
\(193\) −6.91844e9 −0.358922 −0.179461 0.983765i \(-0.557435\pi\)
−0.179461 + 0.983765i \(0.557435\pi\)
\(194\) −3.28632e10 −1.66572
\(195\) 0 0
\(196\) −2.60185e9 −0.125930
\(197\) −1.66139e10 −0.785909 −0.392955 0.919558i \(-0.628547\pi\)
−0.392955 + 0.919558i \(0.628547\pi\)
\(198\) 0 0
\(199\) −3.06711e10 −1.38641 −0.693204 0.720742i \(-0.743801\pi\)
−0.693204 + 0.720742i \(0.743801\pi\)
\(200\) −3.93470e9 −0.173891
\(201\) 0 0
\(202\) −1.31998e10 −0.557812
\(203\) −1.86166e9 −0.0769428
\(204\) 0 0
\(205\) 5.66128e9 0.223884
\(206\) −1.51096e9 −0.0584591
\(207\) 0 0
\(208\) −3.64893e10 −1.35170
\(209\) 1.99366e10 0.722758
\(210\) 0 0
\(211\) 3.85598e10 1.33926 0.669628 0.742697i \(-0.266454\pi\)
0.669628 + 0.742697i \(0.266454\pi\)
\(212\) 6.87467e9 0.233744
\(213\) 0 0
\(214\) 2.50899e10 0.817780
\(215\) 5.39682e9 0.172252
\(216\) 0 0
\(217\) 2.05244e10 0.628350
\(218\) −4.41500e10 −1.32396
\(219\) 0 0
\(220\) −5.68606e9 −0.163647
\(221\) −1.39648e10 −0.393795
\(222\) 0 0
\(223\) −3.11357e10 −0.843115 −0.421558 0.906802i \(-0.638516\pi\)
−0.421558 + 0.906802i \(0.638516\pi\)
\(224\) 9.80866e9 0.260312
\(225\) 0 0
\(226\) −2.35276e10 −0.599914
\(227\) 1.14589e10 0.286436 0.143218 0.989691i \(-0.454255\pi\)
0.143218 + 0.989691i \(0.454255\pi\)
\(228\) 0 0
\(229\) −3.04556e10 −0.731825 −0.365913 0.930649i \(-0.619243\pi\)
−0.365913 + 0.930649i \(0.619243\pi\)
\(230\) −3.64813e10 −0.859598
\(231\) 0 0
\(232\) −4.67576e9 −0.105964
\(233\) −2.83630e9 −0.0630451 −0.0315225 0.999503i \(-0.510036\pi\)
−0.0315225 + 0.999503i \(0.510036\pi\)
\(234\) 0 0
\(235\) −2.07195e10 −0.443173
\(236\) −1.60174e10 −0.336115
\(237\) 0 0
\(238\) 1.16696e10 0.235754
\(239\) 6.25862e10 1.24076 0.620381 0.784301i \(-0.286978\pi\)
0.620381 + 0.784301i \(0.286978\pi\)
\(240\) 0 0
\(241\) 7.24015e10 1.38252 0.691259 0.722607i \(-0.257056\pi\)
0.691259 + 0.722607i \(0.257056\pi\)
\(242\) 1.20525e11 2.25895
\(243\) 0 0
\(244\) 1.65778e10 0.299414
\(245\) −1.51684e10 −0.268963
\(246\) 0 0
\(247\) −2.80568e10 −0.479624
\(248\) 5.15493e10 0.865347
\(249\) 0 0
\(250\) 6.07516e9 0.0983621
\(251\) 5.65927e10 0.899971 0.449986 0.893036i \(-0.351429\pi\)
0.449986 + 0.893036i \(0.351429\pi\)
\(252\) 0 0
\(253\) 1.99059e11 3.05450
\(254\) −1.29336e11 −1.94970
\(255\) 0 0
\(256\) 4.14066e10 0.602545
\(257\) −4.95688e10 −0.708777 −0.354388 0.935098i \(-0.615311\pi\)
−0.354388 + 0.935098i \(0.615311\pi\)
\(258\) 0 0
\(259\) −3.48655e10 −0.481445
\(260\) 8.00199e9 0.108597
\(261\) 0 0
\(262\) −1.31488e10 −0.172398
\(263\) −3.59498e10 −0.463336 −0.231668 0.972795i \(-0.574418\pi\)
−0.231668 + 0.972795i \(0.574418\pi\)
\(264\) 0 0
\(265\) 4.00784e10 0.499233
\(266\) 2.34454e10 0.287138
\(267\) 0 0
\(268\) 2.92412e10 0.346249
\(269\) 7.09650e10 0.826340 0.413170 0.910654i \(-0.364421\pi\)
0.413170 + 0.910654i \(0.364421\pi\)
\(270\) 0 0
\(271\) 1.47201e11 1.65786 0.828930 0.559352i \(-0.188950\pi\)
0.828930 + 0.559352i \(0.188950\pi\)
\(272\) 3.57279e10 0.395774
\(273\) 0 0
\(274\) −1.24857e11 −1.33825
\(275\) −3.31489e10 −0.349520
\(276\) 0 0
\(277\) −2.87336e10 −0.293245 −0.146622 0.989193i \(-0.546840\pi\)
−0.146622 + 0.989193i \(0.546840\pi\)
\(278\) 8.75593e10 0.879227
\(279\) 0 0
\(280\) 2.52482e10 0.245482
\(281\) −5.17071e10 −0.494734 −0.247367 0.968922i \(-0.579565\pi\)
−0.247367 + 0.968922i \(0.579565\pi\)
\(282\) 0 0
\(283\) −3.22434e9 −0.0298814 −0.0149407 0.999888i \(-0.504756\pi\)
−0.0149407 + 0.999888i \(0.504756\pi\)
\(284\) 3.82646e10 0.349032
\(285\) 0 0
\(286\) −2.52188e11 −2.22883
\(287\) −3.63273e10 −0.316057
\(288\) 0 0
\(289\) −1.04914e11 −0.884698
\(290\) 7.21937e9 0.0599388
\(291\) 0 0
\(292\) 2.21117e10 0.177992
\(293\) 1.13591e11 0.900409 0.450204 0.892926i \(-0.351351\pi\)
0.450204 + 0.892926i \(0.351351\pi\)
\(294\) 0 0
\(295\) −9.33792e10 −0.717879
\(296\) −8.75685e10 −0.663033
\(297\) 0 0
\(298\) −1.07701e11 −0.791129
\(299\) −2.80136e11 −2.02698
\(300\) 0 0
\(301\) −3.46303e10 −0.243169
\(302\) −1.39805e11 −0.967148
\(303\) 0 0
\(304\) 7.17811e10 0.482036
\(305\) 9.66460e10 0.639492
\(306\) 0 0
\(307\) −2.30543e10 −0.148125 −0.0740627 0.997254i \(-0.523597\pi\)
−0.0740627 + 0.997254i \(0.523597\pi\)
\(308\) 3.64863e10 0.231021
\(309\) 0 0
\(310\) −7.95920e10 −0.489488
\(311\) −7.71709e10 −0.467769 −0.233885 0.972264i \(-0.575144\pi\)
−0.233885 + 0.972264i \(0.575144\pi\)
\(312\) 0 0
\(313\) −4.68832e10 −0.276101 −0.138050 0.990425i \(-0.544084\pi\)
−0.138050 + 0.990425i \(0.544084\pi\)
\(314\) 3.87200e10 0.224777
\(315\) 0 0
\(316\) −4.33522e10 −0.244579
\(317\) −2.19420e11 −1.22042 −0.610210 0.792240i \(-0.708915\pi\)
−0.610210 + 0.792240i \(0.708915\pi\)
\(318\) 0 0
\(319\) −3.93923e10 −0.212987
\(320\) 5.97358e10 0.318463
\(321\) 0 0
\(322\) 2.34094e11 1.21350
\(323\) 2.74714e10 0.140433
\(324\) 0 0
\(325\) 4.66505e10 0.231943
\(326\) −2.87609e11 −1.41034
\(327\) 0 0
\(328\) −9.12401e10 −0.435265
\(329\) 1.32953e11 0.625627
\(330\) 0 0
\(331\) 3.89075e9 0.0178159 0.00890794 0.999960i \(-0.497164\pi\)
0.00890794 + 0.999960i \(0.497164\pi\)
\(332\) 5.54295e8 0.00250391
\(333\) 0 0
\(334\) 3.74466e11 1.64647
\(335\) 1.70472e11 0.739522
\(336\) 0 0
\(337\) −1.48259e11 −0.626163 −0.313082 0.949726i \(-0.601361\pi\)
−0.313082 + 0.949726i \(0.601361\pi\)
\(338\) 9.10225e10 0.379336
\(339\) 0 0
\(340\) −7.83503e9 −0.0317969
\(341\) 4.34291e11 1.73935
\(342\) 0 0
\(343\) 2.59171e11 1.01103
\(344\) −8.69779e10 −0.334885
\(345\) 0 0
\(346\) −5.55302e11 −2.08299
\(347\) 1.63695e11 0.606114 0.303057 0.952972i \(-0.401993\pi\)
0.303057 + 0.952972i \(0.401993\pi\)
\(348\) 0 0
\(349\) 7.02057e10 0.253313 0.126657 0.991947i \(-0.459575\pi\)
0.126657 + 0.991947i \(0.459575\pi\)
\(350\) −3.89831e10 −0.138858
\(351\) 0 0
\(352\) 2.07549e11 0.720574
\(353\) 1.55727e10 0.0533798 0.0266899 0.999644i \(-0.491503\pi\)
0.0266899 + 0.999644i \(0.491503\pi\)
\(354\) 0 0
\(355\) 2.23078e11 0.745467
\(356\) −4.63392e10 −0.152906
\(357\) 0 0
\(358\) 4.31843e11 1.38948
\(359\) −3.28525e10 −0.104386 −0.0521931 0.998637i \(-0.516621\pi\)
−0.0521931 + 0.998637i \(0.516621\pi\)
\(360\) 0 0
\(361\) −2.67495e11 −0.828959
\(362\) −3.33543e11 −1.02085
\(363\) 0 0
\(364\) −5.13472e10 −0.153306
\(365\) 1.28908e11 0.380157
\(366\) 0 0
\(367\) −4.76030e11 −1.36974 −0.684868 0.728667i \(-0.740140\pi\)
−0.684868 + 0.728667i \(0.740140\pi\)
\(368\) 7.16707e11 2.03717
\(369\) 0 0
\(370\) 1.35205e11 0.375048
\(371\) −2.57175e11 −0.704768
\(372\) 0 0
\(373\) −9.72745e10 −0.260201 −0.130101 0.991501i \(-0.541530\pi\)
−0.130101 + 0.991501i \(0.541530\pi\)
\(374\) 2.46926e11 0.652596
\(375\) 0 0
\(376\) 3.33925e11 0.861597
\(377\) 5.54367e10 0.141339
\(378\) 0 0
\(379\) 4.45171e11 1.10828 0.554141 0.832423i \(-0.313047\pi\)
0.554141 + 0.832423i \(0.313047\pi\)
\(380\) −1.57414e10 −0.0387273
\(381\) 0 0
\(382\) 1.49630e11 0.359528
\(383\) −2.19414e11 −0.521039 −0.260519 0.965469i \(-0.583894\pi\)
−0.260519 + 0.965469i \(0.583894\pi\)
\(384\) 0 0
\(385\) 2.12710e11 0.493418
\(386\) −1.72157e11 −0.394714
\(387\) 0 0
\(388\) −1.41584e11 −0.317155
\(389\) 3.71956e11 0.823603 0.411801 0.911274i \(-0.364900\pi\)
0.411801 + 0.911274i \(0.364900\pi\)
\(390\) 0 0
\(391\) 2.74291e11 0.593494
\(392\) 2.44462e11 0.522907
\(393\) 0 0
\(394\) −4.13417e11 −0.864281
\(395\) −2.52737e11 −0.522375
\(396\) 0 0
\(397\) −1.38786e11 −0.280406 −0.140203 0.990123i \(-0.544776\pi\)
−0.140203 + 0.990123i \(0.544776\pi\)
\(398\) −7.63216e11 −1.52466
\(399\) 0 0
\(400\) −1.19352e11 −0.233109
\(401\) −6.95127e11 −1.34250 −0.671251 0.741231i \(-0.734243\pi\)
−0.671251 + 0.741231i \(0.734243\pi\)
\(402\) 0 0
\(403\) −6.11178e11 −1.15424
\(404\) −5.68686e10 −0.106208
\(405\) 0 0
\(406\) −4.63253e10 −0.0846157
\(407\) −7.37745e11 −1.33270
\(408\) 0 0
\(409\) 9.10800e11 1.60942 0.804708 0.593671i \(-0.202322\pi\)
0.804708 + 0.593671i \(0.202322\pi\)
\(410\) 1.40875e11 0.246210
\(411\) 0 0
\(412\) −6.50966e9 −0.0111307
\(413\) 5.99196e11 1.01343
\(414\) 0 0
\(415\) 3.23146e9 0.00534789
\(416\) −2.92084e11 −0.478175
\(417\) 0 0
\(418\) 4.96100e11 0.794832
\(419\) −3.11152e11 −0.493184 −0.246592 0.969119i \(-0.579311\pi\)
−0.246592 + 0.969119i \(0.579311\pi\)
\(420\) 0 0
\(421\) 7.63941e11 1.18520 0.592598 0.805498i \(-0.298102\pi\)
0.592598 + 0.805498i \(0.298102\pi\)
\(422\) 9.59516e11 1.47281
\(423\) 0 0
\(424\) −6.45924e11 −0.970588
\(425\) −4.56771e10 −0.0679124
\(426\) 0 0
\(427\) −6.20159e11 −0.902771
\(428\) 1.08094e11 0.155706
\(429\) 0 0
\(430\) 1.34294e11 0.189429
\(431\) −6.54629e10 −0.0913792 −0.0456896 0.998956i \(-0.514549\pi\)
−0.0456896 + 0.998956i \(0.514549\pi\)
\(432\) 0 0
\(433\) −7.87434e11 −1.07651 −0.538256 0.842781i \(-0.680917\pi\)
−0.538256 + 0.842781i \(0.680917\pi\)
\(434\) 5.10726e11 0.691010
\(435\) 0 0
\(436\) −1.90210e11 −0.252084
\(437\) 5.51080e11 0.722850
\(438\) 0 0
\(439\) −8.39211e11 −1.07840 −0.539201 0.842177i \(-0.681274\pi\)
−0.539201 + 0.842177i \(0.681274\pi\)
\(440\) 5.34246e11 0.679523
\(441\) 0 0
\(442\) −3.47499e11 −0.433065
\(443\) 1.28252e12 1.58215 0.791074 0.611720i \(-0.209522\pi\)
0.791074 + 0.611720i \(0.209522\pi\)
\(444\) 0 0
\(445\) −2.70151e11 −0.326578
\(446\) −7.74777e11 −0.927192
\(447\) 0 0
\(448\) −3.83313e11 −0.449575
\(449\) −8.02030e10 −0.0931284 −0.0465642 0.998915i \(-0.514827\pi\)
−0.0465642 + 0.998915i \(0.514827\pi\)
\(450\) 0 0
\(451\) −7.68678e11 −0.874883
\(452\) −1.01363e11 −0.114224
\(453\) 0 0
\(454\) 2.85143e11 0.315000
\(455\) −2.99347e11 −0.327434
\(456\) 0 0
\(457\) 1.27085e11 0.136292 0.0681461 0.997675i \(-0.478292\pi\)
0.0681461 + 0.997675i \(0.478292\pi\)
\(458\) −7.57853e11 −0.804804
\(459\) 0 0
\(460\) −1.57172e11 −0.163668
\(461\) 7.39880e11 0.762970 0.381485 0.924375i \(-0.375413\pi\)
0.381485 + 0.924375i \(0.375413\pi\)
\(462\) 0 0
\(463\) 5.71025e11 0.577485 0.288742 0.957407i \(-0.406763\pi\)
0.288742 + 0.957407i \(0.406763\pi\)
\(464\) −1.41831e11 −0.142049
\(465\) 0 0
\(466\) −7.05782e10 −0.0693320
\(467\) −1.19075e12 −1.15850 −0.579249 0.815150i \(-0.696654\pi\)
−0.579249 + 0.815150i \(0.696654\pi\)
\(468\) 0 0
\(469\) −1.09389e12 −1.04398
\(470\) −5.15580e11 −0.487367
\(471\) 0 0
\(472\) 1.50495e12 1.39567
\(473\) −7.32770e11 −0.673120
\(474\) 0 0
\(475\) −9.17701e10 −0.0827142
\(476\) 5.02759e10 0.0448878
\(477\) 0 0
\(478\) 1.55739e12 1.36449
\(479\) −1.46074e12 −1.26784 −0.633919 0.773400i \(-0.718555\pi\)
−0.633919 + 0.773400i \(0.718555\pi\)
\(480\) 0 0
\(481\) 1.03823e12 0.884382
\(482\) 1.80163e12 1.52038
\(483\) 0 0
\(484\) 5.19254e11 0.430107
\(485\) −8.25416e11 −0.677384
\(486\) 0 0
\(487\) −1.46931e12 −1.18368 −0.591839 0.806056i \(-0.701598\pi\)
−0.591839 + 0.806056i \(0.701598\pi\)
\(488\) −1.55760e12 −1.24327
\(489\) 0 0
\(490\) −3.77449e11 −0.295785
\(491\) 1.76138e12 1.36769 0.683843 0.729629i \(-0.260307\pi\)
0.683843 + 0.729629i \(0.260307\pi\)
\(492\) 0 0
\(493\) −5.42801e10 −0.0413837
\(494\) −6.98161e11 −0.527453
\(495\) 0 0
\(496\) 1.56365e12 1.16004
\(497\) −1.43145e12 −1.05238
\(498\) 0 0
\(499\) −1.63016e12 −1.17700 −0.588502 0.808496i \(-0.700282\pi\)
−0.588502 + 0.808496i \(0.700282\pi\)
\(500\) 2.61735e10 0.0187282
\(501\) 0 0
\(502\) 1.40825e12 0.989718
\(503\) −9.47625e11 −0.660056 −0.330028 0.943971i \(-0.607058\pi\)
−0.330028 + 0.943971i \(0.607058\pi\)
\(504\) 0 0
\(505\) −3.31536e11 −0.226840
\(506\) 4.95337e12 3.35910
\(507\) 0 0
\(508\) −5.57214e11 −0.371224
\(509\) 2.90709e11 0.191968 0.0959838 0.995383i \(-0.469400\pi\)
0.0959838 + 0.995383i \(0.469400\pi\)
\(510\) 0 0
\(511\) −8.27180e11 −0.536668
\(512\) −8.28486e11 −0.532808
\(513\) 0 0
\(514\) −1.23346e12 −0.779457
\(515\) −3.79504e10 −0.0237730
\(516\) 0 0
\(517\) 2.81325e12 1.73181
\(518\) −8.67587e11 −0.529455
\(519\) 0 0
\(520\) −7.51843e11 −0.450933
\(521\) 2.04811e12 1.21782 0.608910 0.793240i \(-0.291607\pi\)
0.608910 + 0.793240i \(0.291607\pi\)
\(522\) 0 0
\(523\) 8.49299e10 0.0496367 0.0248184 0.999692i \(-0.492099\pi\)
0.0248184 + 0.999692i \(0.492099\pi\)
\(524\) −5.66488e10 −0.0328247
\(525\) 0 0
\(526\) −8.94570e11 −0.509540
\(527\) 5.98426e11 0.337958
\(528\) 0 0
\(529\) 3.70117e12 2.05489
\(530\) 9.97305e11 0.549018
\(531\) 0 0
\(532\) 1.01009e11 0.0546713
\(533\) 1.08176e12 0.580575
\(534\) 0 0
\(535\) 6.30175e11 0.332559
\(536\) −2.74741e12 −1.43775
\(537\) 0 0
\(538\) 1.76588e12 0.908745
\(539\) 2.05954e12 1.05104
\(540\) 0 0
\(541\) −1.29101e12 −0.647949 −0.323974 0.946066i \(-0.605019\pi\)
−0.323974 + 0.946066i \(0.605019\pi\)
\(542\) 3.66292e12 1.82318
\(543\) 0 0
\(544\) 2.85989e11 0.140009
\(545\) −1.10890e12 −0.538404
\(546\) 0 0
\(547\) −5.30222e11 −0.253230 −0.126615 0.991952i \(-0.540411\pi\)
−0.126615 + 0.991952i \(0.540411\pi\)
\(548\) −5.37921e11 −0.254804
\(549\) 0 0
\(550\) −8.24874e11 −0.384375
\(551\) −1.09054e11 −0.0504035
\(552\) 0 0
\(553\) 1.62177e12 0.737438
\(554\) −7.15002e11 −0.322488
\(555\) 0 0
\(556\) 3.77230e11 0.167405
\(557\) −8.17386e11 −0.359815 −0.179907 0.983684i \(-0.557580\pi\)
−0.179907 + 0.983684i \(0.557580\pi\)
\(558\) 0 0
\(559\) 1.03123e12 0.446684
\(560\) 7.65857e11 0.329080
\(561\) 0 0
\(562\) −1.28667e12 −0.544069
\(563\) 1.42197e12 0.596488 0.298244 0.954490i \(-0.403599\pi\)
0.298244 + 0.954490i \(0.403599\pi\)
\(564\) 0 0
\(565\) −5.90934e11 −0.243961
\(566\) −8.02339e10 −0.0328613
\(567\) 0 0
\(568\) −3.59523e12 −1.44930
\(569\) 1.04614e12 0.418394 0.209197 0.977874i \(-0.432915\pi\)
0.209197 + 0.977874i \(0.432915\pi\)
\(570\) 0 0
\(571\) 2.09508e12 0.824780 0.412390 0.911007i \(-0.364694\pi\)
0.412390 + 0.911007i \(0.364694\pi\)
\(572\) −1.08649e12 −0.424371
\(573\) 0 0
\(574\) −9.03965e11 −0.347575
\(575\) −9.16290e11 −0.349565
\(576\) 0 0
\(577\) 2.68760e12 1.00942 0.504711 0.863288i \(-0.331599\pi\)
0.504711 + 0.863288i \(0.331599\pi\)
\(578\) −2.61068e12 −0.972921
\(579\) 0 0
\(580\) 3.11031e10 0.0114124
\(581\) −2.07357e10 −0.00754962
\(582\) 0 0
\(583\) −5.44176e12 −1.95088
\(584\) −2.07755e12 −0.739085
\(585\) 0 0
\(586\) 2.82658e12 0.990199
\(587\) −1.61925e12 −0.562913 −0.281457 0.959574i \(-0.590818\pi\)
−0.281457 + 0.959574i \(0.590818\pi\)
\(588\) 0 0
\(589\) 1.20230e12 0.411618
\(590\) −2.32364e12 −0.789467
\(591\) 0 0
\(592\) −2.65623e12 −0.888828
\(593\) −5.82677e12 −1.93500 −0.967502 0.252863i \(-0.918628\pi\)
−0.967502 + 0.252863i \(0.918628\pi\)
\(594\) 0 0
\(595\) 2.93101e11 0.0958719
\(596\) −4.64007e11 −0.150632
\(597\) 0 0
\(598\) −6.97087e12 −2.22911
\(599\) 3.89086e12 1.23488 0.617441 0.786617i \(-0.288169\pi\)
0.617441 + 0.786617i \(0.288169\pi\)
\(600\) 0 0
\(601\) 2.13051e12 0.666115 0.333058 0.942907i \(-0.391920\pi\)
0.333058 + 0.942907i \(0.391920\pi\)
\(602\) −8.61737e11 −0.267418
\(603\) 0 0
\(604\) −6.02321e11 −0.184146
\(605\) 3.02718e12 0.918628
\(606\) 0 0
\(607\) −2.52733e12 −0.755637 −0.377818 0.925880i \(-0.623326\pi\)
−0.377818 + 0.925880i \(0.623326\pi\)
\(608\) 5.74582e11 0.170524
\(609\) 0 0
\(610\) 2.40493e12 0.703263
\(611\) −3.95908e12 −1.14924
\(612\) 0 0
\(613\) 1.89788e12 0.542870 0.271435 0.962457i \(-0.412502\pi\)
0.271435 + 0.962457i \(0.412502\pi\)
\(614\) −5.73681e11 −0.162897
\(615\) 0 0
\(616\) −3.42815e12 −0.959283
\(617\) 1.40480e12 0.390240 0.195120 0.980779i \(-0.437490\pi\)
0.195120 + 0.980779i \(0.437490\pi\)
\(618\) 0 0
\(619\) −2.81250e12 −0.769989 −0.384995 0.922919i \(-0.625797\pi\)
−0.384995 + 0.922919i \(0.625797\pi\)
\(620\) −3.42904e11 −0.0931988
\(621\) 0 0
\(622\) −1.92031e12 −0.514416
\(623\) 1.73351e12 0.461030
\(624\) 0 0
\(625\) 1.52588e11 0.0400000
\(626\) −1.16664e12 −0.303634
\(627\) 0 0
\(628\) 1.66817e11 0.0427977
\(629\) −1.01657e12 −0.258945
\(630\) 0 0
\(631\) −1.92653e12 −0.483775 −0.241888 0.970304i \(-0.577767\pi\)
−0.241888 + 0.970304i \(0.577767\pi\)
\(632\) 4.07325e12 1.01558
\(633\) 0 0
\(634\) −5.46001e12 −1.34212
\(635\) −3.24848e12 −0.792865
\(636\) 0 0
\(637\) −2.89839e12 −0.697476
\(638\) −9.80232e11 −0.234226
\(639\) 0 0
\(640\) 2.26909e12 0.534617
\(641\) 7.10318e12 1.66185 0.830924 0.556385i \(-0.187812\pi\)
0.830924 + 0.556385i \(0.187812\pi\)
\(642\) 0 0
\(643\) 3.40733e12 0.786077 0.393038 0.919522i \(-0.371424\pi\)
0.393038 + 0.919522i \(0.371424\pi\)
\(644\) 1.00854e12 0.231051
\(645\) 0 0
\(646\) 6.83594e11 0.154437
\(647\) 4.31347e12 0.967737 0.483868 0.875141i \(-0.339231\pi\)
0.483868 + 0.875141i \(0.339231\pi\)
\(648\) 0 0
\(649\) 1.26789e13 2.80530
\(650\) 1.16084e12 0.255073
\(651\) 0 0
\(652\) −1.23910e12 −0.268529
\(653\) 2.53169e12 0.544880 0.272440 0.962173i \(-0.412169\pi\)
0.272440 + 0.962173i \(0.412169\pi\)
\(654\) 0 0
\(655\) −3.30255e11 −0.0701074
\(656\) −2.76760e12 −0.583494
\(657\) 0 0
\(658\) 3.30838e12 0.688016
\(659\) 4.43263e12 0.915540 0.457770 0.889071i \(-0.348648\pi\)
0.457770 + 0.889071i \(0.348648\pi\)
\(660\) 0 0
\(661\) 9.79827e11 0.199638 0.0998189 0.995006i \(-0.468174\pi\)
0.0998189 + 0.995006i \(0.468174\pi\)
\(662\) 9.68168e10 0.0195925
\(663\) 0 0
\(664\) −5.20799e10 −0.0103971
\(665\) 5.88871e11 0.116768
\(666\) 0 0
\(667\) −1.08887e12 −0.213014
\(668\) 1.61331e12 0.313489
\(669\) 0 0
\(670\) 4.24200e12 0.813269
\(671\) −1.31224e13 −2.49898
\(672\) 0 0
\(673\) 7.69434e12 1.44578 0.722892 0.690961i \(-0.242812\pi\)
0.722892 + 0.690961i \(0.242812\pi\)
\(674\) −3.68927e12 −0.688605
\(675\) 0 0
\(676\) 3.92151e11 0.0722258
\(677\) −2.45111e12 −0.448451 −0.224225 0.974537i \(-0.571985\pi\)
−0.224225 + 0.974537i \(0.571985\pi\)
\(678\) 0 0
\(679\) 5.29653e12 0.956264
\(680\) 7.36157e11 0.132032
\(681\) 0 0
\(682\) 1.08068e13 1.91280
\(683\) −3.13070e12 −0.550488 −0.275244 0.961374i \(-0.588759\pi\)
−0.275244 + 0.961374i \(0.588759\pi\)
\(684\) 0 0
\(685\) −3.13601e12 −0.544213
\(686\) 6.44918e12 1.11185
\(687\) 0 0
\(688\) −2.63831e12 −0.448930
\(689\) 7.65819e12 1.29461
\(690\) 0 0
\(691\) −8.92815e12 −1.48974 −0.744870 0.667210i \(-0.767488\pi\)
−0.744870 + 0.667210i \(0.767488\pi\)
\(692\) −2.39239e12 −0.396602
\(693\) 0 0
\(694\) 4.07338e12 0.666556
\(695\) 2.19920e12 0.357547
\(696\) 0 0
\(697\) −1.05919e12 −0.169991
\(698\) 1.74699e12 0.278574
\(699\) 0 0
\(700\) −1.67950e11 −0.0264387
\(701\) 1.44295e12 0.225695 0.112847 0.993612i \(-0.464003\pi\)
0.112847 + 0.993612i \(0.464003\pi\)
\(702\) 0 0
\(703\) −2.04239e12 −0.315383
\(704\) −8.11081e12 −1.24448
\(705\) 0 0
\(706\) 3.87509e11 0.0587030
\(707\) 2.12740e12 0.320230
\(708\) 0 0
\(709\) −7.40550e12 −1.10064 −0.550321 0.834953i \(-0.685495\pi\)
−0.550321 + 0.834953i \(0.685495\pi\)
\(710\) 5.55103e12 0.819806
\(711\) 0 0
\(712\) 4.35390e12 0.634919
\(713\) 1.20045e13 1.73957
\(714\) 0 0
\(715\) −6.33411e12 −0.906377
\(716\) 1.86050e12 0.264558
\(717\) 0 0
\(718\) −8.17496e11 −0.114796
\(719\) 3.90289e12 0.544636 0.272318 0.962207i \(-0.412210\pi\)
0.272318 + 0.962207i \(0.412210\pi\)
\(720\) 0 0
\(721\) 2.43520e11 0.0335604
\(722\) −6.65631e12 −0.911624
\(723\) 0 0
\(724\) −1.43699e12 −0.194371
\(725\) 1.81327e11 0.0243748
\(726\) 0 0
\(727\) 1.33674e12 0.177477 0.0887384 0.996055i \(-0.471716\pi\)
0.0887384 + 0.996055i \(0.471716\pi\)
\(728\) 4.82443e12 0.636583
\(729\) 0 0
\(730\) 3.20774e12 0.418067
\(731\) −1.00971e12 −0.130788
\(732\) 0 0
\(733\) −5.98863e11 −0.0766231 −0.0383116 0.999266i \(-0.512198\pi\)
−0.0383116 + 0.999266i \(0.512198\pi\)
\(734\) −1.18455e13 −1.50633
\(735\) 0 0
\(736\) 5.73699e12 0.720665
\(737\) −2.31464e13 −2.88987
\(738\) 0 0
\(739\) −1.40697e13 −1.73534 −0.867671 0.497138i \(-0.834384\pi\)
−0.867671 + 0.497138i \(0.834384\pi\)
\(740\) 5.82503e11 0.0714094
\(741\) 0 0
\(742\) −6.39951e12 −0.775049
\(743\) 2.52604e12 0.304082 0.152041 0.988374i \(-0.451415\pi\)
0.152041 + 0.988374i \(0.451415\pi\)
\(744\) 0 0
\(745\) −2.70510e12 −0.321721
\(746\) −2.42056e12 −0.286149
\(747\) 0 0
\(748\) 1.06383e12 0.124255
\(749\) −4.04371e12 −0.469474
\(750\) 0 0
\(751\) 3.78704e12 0.434430 0.217215 0.976124i \(-0.430303\pi\)
0.217215 + 0.976124i \(0.430303\pi\)
\(752\) 1.01290e13 1.15501
\(753\) 0 0
\(754\) 1.37948e12 0.155433
\(755\) −3.51145e12 −0.393301
\(756\) 0 0
\(757\) 3.55646e12 0.393629 0.196814 0.980441i \(-0.436940\pi\)
0.196814 + 0.980441i \(0.436940\pi\)
\(758\) 1.10776e13 1.21880
\(759\) 0 0
\(760\) 1.47902e12 0.160809
\(761\) −1.67100e13 −1.80612 −0.903058 0.429519i \(-0.858683\pi\)
−0.903058 + 0.429519i \(0.858683\pi\)
\(762\) 0 0
\(763\) 7.11560e12 0.760066
\(764\) 6.44647e11 0.0684544
\(765\) 0 0
\(766\) −5.45987e12 −0.572997
\(767\) −1.78429e13 −1.86160
\(768\) 0 0
\(769\) −7.51512e12 −0.774939 −0.387469 0.921883i \(-0.626651\pi\)
−0.387469 + 0.921883i \(0.626651\pi\)
\(770\) 5.29306e12 0.542623
\(771\) 0 0
\(772\) −7.41702e11 −0.0751540
\(773\) 8.52580e12 0.858870 0.429435 0.903098i \(-0.358713\pi\)
0.429435 + 0.903098i \(0.358713\pi\)
\(774\) 0 0
\(775\) −1.99909e12 −0.199055
\(776\) 1.33028e13 1.31694
\(777\) 0 0
\(778\) 9.25569e12 0.905734
\(779\) −2.12802e12 −0.207042
\(780\) 0 0
\(781\) −3.02890e13 −2.91310
\(782\) 6.82543e12 0.652679
\(783\) 0 0
\(784\) 7.41531e12 0.700982
\(785\) 9.72518e11 0.0914080
\(786\) 0 0
\(787\) 3.20742e12 0.298037 0.149018 0.988834i \(-0.452389\pi\)
0.149018 + 0.988834i \(0.452389\pi\)
\(788\) −1.78112e12 −0.164560
\(789\) 0 0
\(790\) −6.28908e12 −0.574467
\(791\) 3.79191e12 0.344401
\(792\) 0 0
\(793\) 1.84672e13 1.65833
\(794\) −3.45353e12 −0.308369
\(795\) 0 0
\(796\) −3.28815e12 −0.290297
\(797\) 1.83036e13 1.60684 0.803421 0.595412i \(-0.203011\pi\)
0.803421 + 0.595412i \(0.203011\pi\)
\(798\) 0 0
\(799\) 3.87648e12 0.336494
\(800\) −9.55368e11 −0.0824643
\(801\) 0 0
\(802\) −1.72975e13 −1.47638
\(803\) −1.75029e13 −1.48556
\(804\) 0 0
\(805\) 5.87966e12 0.493481
\(806\) −1.52085e13 −1.26934
\(807\) 0 0
\(808\) 5.34321e12 0.441013
\(809\) −9.38919e12 −0.770655 −0.385327 0.922780i \(-0.625911\pi\)
−0.385327 + 0.922780i \(0.625911\pi\)
\(810\) 0 0
\(811\) 2.03949e13 1.65549 0.827746 0.561103i \(-0.189623\pi\)
0.827746 + 0.561103i \(0.189623\pi\)
\(812\) −1.99582e11 −0.0161109
\(813\) 0 0
\(814\) −1.83579e13 −1.46560
\(815\) −7.22377e12 −0.573528
\(816\) 0 0
\(817\) −2.02861e12 −0.159294
\(818\) 2.26642e13 1.76991
\(819\) 0 0
\(820\) 6.06927e11 0.0468785
\(821\) 1.52259e13 1.16961 0.584803 0.811176i \(-0.301172\pi\)
0.584803 + 0.811176i \(0.301172\pi\)
\(822\) 0 0
\(823\) −2.70705e12 −0.205682 −0.102841 0.994698i \(-0.532793\pi\)
−0.102841 + 0.994698i \(0.532793\pi\)
\(824\) 6.11629e11 0.0462184
\(825\) 0 0
\(826\) 1.49103e13 1.11449
\(827\) −5.67203e10 −0.00421661 −0.00210831 0.999998i \(-0.500671\pi\)
−0.00210831 + 0.999998i \(0.500671\pi\)
\(828\) 0 0
\(829\) −1.43206e13 −1.05309 −0.526547 0.850146i \(-0.676513\pi\)
−0.526547 + 0.850146i \(0.676513\pi\)
\(830\) 8.04113e10 0.00588119
\(831\) 0 0
\(832\) 1.14143e13 0.825839
\(833\) 2.83791e12 0.204219
\(834\) 0 0
\(835\) 9.40535e12 0.669555
\(836\) 2.13734e12 0.151337
\(837\) 0 0
\(838\) −7.74265e12 −0.542365
\(839\) 2.13693e13 1.48889 0.744443 0.667686i \(-0.232715\pi\)
0.744443 + 0.667686i \(0.232715\pi\)
\(840\) 0 0
\(841\) −1.42917e13 −0.985147
\(842\) 1.90098e13 1.30339
\(843\) 0 0
\(844\) 4.13386e12 0.280424
\(845\) 2.28618e12 0.154261
\(846\) 0 0
\(847\) −1.94248e13 −1.29683
\(848\) −1.95929e13 −1.30112
\(849\) 0 0
\(850\) −1.13662e12 −0.0746847
\(851\) −2.03925e13 −1.33287
\(852\) 0 0
\(853\) −1.18123e13 −0.763948 −0.381974 0.924173i \(-0.624756\pi\)
−0.381974 + 0.924173i \(0.624756\pi\)
\(854\) −1.54319e13 −0.992797
\(855\) 0 0
\(856\) −1.01562e13 −0.646547
\(857\) −2.69459e13 −1.70640 −0.853198 0.521587i \(-0.825340\pi\)
−0.853198 + 0.521587i \(0.825340\pi\)
\(858\) 0 0
\(859\) 9.66669e12 0.605771 0.302885 0.953027i \(-0.402050\pi\)
0.302885 + 0.953027i \(0.402050\pi\)
\(860\) 5.78575e11 0.0360675
\(861\) 0 0
\(862\) −1.62897e12 −0.100492
\(863\) −2.80982e12 −0.172437 −0.0862185 0.996276i \(-0.527478\pi\)
−0.0862185 + 0.996276i \(0.527478\pi\)
\(864\) 0 0
\(865\) −1.39473e13 −0.847069
\(866\) −1.95944e13 −1.18386
\(867\) 0 0
\(868\) 2.20035e12 0.131569
\(869\) 3.43162e13 2.04132
\(870\) 0 0
\(871\) 3.25739e13 1.91773
\(872\) 1.78716e13 1.04674
\(873\) 0 0
\(874\) 1.37130e13 0.794933
\(875\) −9.79127e11 −0.0564680
\(876\) 0 0
\(877\) 3.37045e13 1.92393 0.961966 0.273169i \(-0.0880718\pi\)
0.961966 + 0.273169i \(0.0880718\pi\)
\(878\) −2.08828e13 −1.18594
\(879\) 0 0
\(880\) 1.62054e13 0.910933
\(881\) 1.20571e13 0.674297 0.337148 0.941452i \(-0.390538\pi\)
0.337148 + 0.941452i \(0.390538\pi\)
\(882\) 0 0
\(883\) −1.91595e13 −1.06062 −0.530311 0.847803i \(-0.677925\pi\)
−0.530311 + 0.847803i \(0.677925\pi\)
\(884\) −1.49712e12 −0.0824559
\(885\) 0 0
\(886\) 3.19140e13 1.73992
\(887\) 2.24991e13 1.22042 0.610209 0.792241i \(-0.291086\pi\)
0.610209 + 0.792241i \(0.291086\pi\)
\(888\) 0 0
\(889\) 2.08449e13 1.11929
\(890\) −6.72241e12 −0.359145
\(891\) 0 0
\(892\) −3.33795e12 −0.176538
\(893\) 7.78825e12 0.409834
\(894\) 0 0
\(895\) 1.08465e13 0.565047
\(896\) −1.45603e13 −0.754719
\(897\) 0 0
\(898\) −1.99576e12 −0.102415
\(899\) −2.37560e12 −0.121298
\(900\) 0 0
\(901\) −7.49841e12 −0.379060
\(902\) −1.91277e13 −0.962128
\(903\) 0 0
\(904\) 9.52380e12 0.474299
\(905\) −8.37748e12 −0.415140
\(906\) 0 0
\(907\) −2.39724e13 −1.17619 −0.588096 0.808791i \(-0.700122\pi\)
−0.588096 + 0.808791i \(0.700122\pi\)
\(908\) 1.22847e12 0.0599763
\(909\) 0 0
\(910\) −7.44891e12 −0.360086
\(911\) 6.54470e12 0.314816 0.157408 0.987534i \(-0.449686\pi\)
0.157408 + 0.987534i \(0.449686\pi\)
\(912\) 0 0
\(913\) −4.38762e11 −0.0208983
\(914\) 3.16236e12 0.149884
\(915\) 0 0
\(916\) −3.26504e12 −0.153235
\(917\) 2.11918e12 0.0989706
\(918\) 0 0
\(919\) 2.63348e12 0.121789 0.0608947 0.998144i \(-0.480605\pi\)
0.0608947 + 0.998144i \(0.480605\pi\)
\(920\) 1.47674e13 0.679609
\(921\) 0 0
\(922\) 1.84111e13 0.839055
\(923\) 4.26258e13 1.93314
\(924\) 0 0
\(925\) 3.39591e12 0.152517
\(926\) 1.42093e13 0.635073
\(927\) 0 0
\(928\) −1.13530e12 −0.0502512
\(929\) −2.94271e13 −1.29621 −0.648106 0.761550i \(-0.724439\pi\)
−0.648106 + 0.761550i \(0.724439\pi\)
\(930\) 0 0
\(931\) 5.70166e12 0.248730
\(932\) −3.04070e11 −0.0132009
\(933\) 0 0
\(934\) −2.96305e13 −1.27403
\(935\) 6.20196e12 0.265385
\(936\) 0 0
\(937\) −1.71769e13 −0.727974 −0.363987 0.931404i \(-0.618585\pi\)
−0.363987 + 0.931404i \(0.618585\pi\)
\(938\) −2.72201e13 −1.14809
\(939\) 0 0
\(940\) −2.22126e12 −0.0927950
\(941\) 2.46944e13 1.02670 0.513352 0.858178i \(-0.328404\pi\)
0.513352 + 0.858178i \(0.328404\pi\)
\(942\) 0 0
\(943\) −2.12475e13 −0.874994
\(944\) 4.56498e13 1.87096
\(945\) 0 0
\(946\) −1.82341e13 −0.740244
\(947\) 1.19428e12 0.0482537 0.0241268 0.999709i \(-0.492319\pi\)
0.0241268 + 0.999709i \(0.492319\pi\)
\(948\) 0 0
\(949\) 2.46319e13 0.985824
\(950\) −2.28360e12 −0.0909626
\(951\) 0 0
\(952\) −4.72377e12 −0.186390
\(953\) −1.47694e13 −0.580023 −0.290011 0.957023i \(-0.593659\pi\)
−0.290011 + 0.957023i \(0.593659\pi\)
\(954\) 0 0
\(955\) 3.75820e12 0.146206
\(956\) 6.70966e12 0.259800
\(957\) 0 0
\(958\) −3.63489e13 −1.39427
\(959\) 2.01231e13 0.768267
\(960\) 0 0
\(961\) −2.49176e11 −0.00942435
\(962\) 2.58351e13 0.972574
\(963\) 0 0
\(964\) 7.76192e12 0.289483
\(965\) −4.32402e12 −0.160515
\(966\) 0 0
\(967\) −8.95584e12 −0.329372 −0.164686 0.986346i \(-0.552661\pi\)
−0.164686 + 0.986346i \(0.552661\pi\)
\(968\) −4.87876e13 −1.78596
\(969\) 0 0
\(970\) −2.05395e13 −0.744934
\(971\) 2.20587e13 0.796330 0.398165 0.917314i \(-0.369647\pi\)
0.398165 + 0.917314i \(0.369647\pi\)
\(972\) 0 0
\(973\) −1.41118e13 −0.504749
\(974\) −3.65621e13 −1.30172
\(975\) 0 0
\(976\) −4.72469e13 −1.66667
\(977\) −3.56972e13 −1.25345 −0.626727 0.779239i \(-0.715606\pi\)
−0.626727 + 0.779239i \(0.715606\pi\)
\(978\) 0 0
\(979\) 3.66806e13 1.27619
\(980\) −1.62615e12 −0.0563176
\(981\) 0 0
\(982\) 4.38300e13 1.50408
\(983\) −3.19525e13 −1.09147 −0.545737 0.837956i \(-0.683750\pi\)
−0.545737 + 0.837956i \(0.683750\pi\)
\(984\) 0 0
\(985\) −1.03837e13 −0.351469
\(986\) −1.35070e12 −0.0455105
\(987\) 0 0
\(988\) −3.00787e12 −0.100428
\(989\) −2.02549e13 −0.673205
\(990\) 0 0
\(991\) 1.56883e13 0.516706 0.258353 0.966051i \(-0.416820\pi\)
0.258353 + 0.966051i \(0.416820\pi\)
\(992\) 1.25165e13 0.410374
\(993\) 0 0
\(994\) −3.56199e13 −1.15732
\(995\) −1.91694e13 −0.620020
\(996\) 0 0
\(997\) 6.52145e12 0.209033 0.104517 0.994523i \(-0.466670\pi\)
0.104517 + 0.994523i \(0.466670\pi\)
\(998\) −4.05647e13 −1.29438
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 45.10.a.e.1.2 2
3.2 odd 2 15.10.a.c.1.1 2
5.2 odd 4 225.10.b.g.199.3 4
5.3 odd 4 225.10.b.g.199.2 4
5.4 even 2 225.10.a.j.1.1 2
12.11 even 2 240.10.a.m.1.1 2
15.2 even 4 75.10.b.e.49.2 4
15.8 even 4 75.10.b.e.49.3 4
15.14 odd 2 75.10.a.g.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
15.10.a.c.1.1 2 3.2 odd 2
45.10.a.e.1.2 2 1.1 even 1 trivial
75.10.a.g.1.2 2 15.14 odd 2
75.10.b.e.49.2 4 15.2 even 4
75.10.b.e.49.3 4 15.8 even 4
225.10.a.j.1.1 2 5.4 even 2
225.10.b.g.199.2 4 5.3 odd 4
225.10.b.g.199.3 4 5.2 odd 4
240.10.a.m.1.1 2 12.11 even 2