Properties

Label 459.2.e.b.307.3
Level $459$
Weight $2$
Character 459.307
Analytic conductor $3.665$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [459,2,Mod(154,459)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(459, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("459.154");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 459 = 3^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 459.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.66513345278\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.152695449.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 3x^{5} - 5x^{4} + 6x^{3} - 16x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 153)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 307.3
Root \(1.05924 - 0.937022i\) of defining polynomial
Character \(\chi\) \(=\) 459.307
Dual form 459.2.e.b.154.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.281864 + 0.488204i) q^{2} +(0.841105 - 1.45684i) q^{4} +(-0.281864 + 0.488204i) q^{5} +(-0.841105 - 1.45684i) q^{7} +2.07577 q^{8} -0.317790 q^{10} +(1.03788 + 1.79767i) q^{11} +(2.59712 - 4.49835i) q^{13} +(0.474155 - 0.821261i) q^{14} +(-1.09712 - 1.90028i) q^{16} +1.00000 q^{17} +1.70629 q^{19} +(0.474155 + 0.821261i) q^{20} +(-0.585085 + 1.01340i) q^{22} +(1.80322 - 3.12327i) q^{23} +(2.34110 + 4.05491i) q^{25} +2.92815 q^{26} -2.82983 q^{28} +(-4.16085 - 7.20681i) q^{29} +(0.658895 - 1.14124i) q^{31} +(2.69425 - 4.66658i) q^{32} +(0.281864 + 0.488204i) q^{34} +0.948310 q^{35} -3.50306 q^{37} +(0.480942 + 0.833016i) q^{38} +(-0.585085 + 1.01340i) q^{40} +(-5.06120 + 8.76625i) q^{41} +(5.20323 + 9.01225i) q^{43} +3.49188 q^{44} +2.03306 q^{46} +(3.12297 + 5.40914i) q^{47} +(2.08509 - 3.61147i) q^{49} +(-1.31975 + 2.28587i) q^{50} +(-4.36891 - 7.56717i) q^{52} -2.47898 q^{53} -1.17017 q^{55} +(-1.74594 - 3.02405i) q^{56} +(2.34559 - 4.06269i) q^{58} +(-2.13052 + 3.69017i) q^{59} +(2.76281 + 4.78532i) q^{61} +0.742877 q^{62} -1.35085 q^{64} +(1.46407 + 2.53585i) q^{65} +(-2.45476 + 4.25176i) q^{67} +(0.841105 - 1.45684i) q^{68} +(0.267295 + 0.462968i) q^{70} -2.07071 q^{71} -9.24986 q^{73} +(-0.987389 - 1.71021i) q^{74} +(1.43517 - 2.48578i) q^{76} +(1.74594 - 3.02405i) q^{77} +(0.735003 + 1.27306i) q^{79} +1.23696 q^{80} -5.70629 q^{82} +(2.22009 + 3.84532i) q^{83} +(-0.281864 + 0.488204i) q^{85} +(-2.93321 + 5.08047i) q^{86} +(2.15441 + 3.73154i) q^{88} -12.6473 q^{89} -8.73782 q^{91} +(-3.03340 - 5.25400i) q^{92} +(-1.76051 + 3.04929i) q^{94} +(-0.480942 + 0.833016i) q^{95} +(7.89747 + 13.6788i) q^{97} +2.35085 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} - 3 q^{4} + q^{5} + 3 q^{7} + 6 q^{8} - 22 q^{10} + 3 q^{11} + 9 q^{13} + 5 q^{14} + 3 q^{16} + 8 q^{17} - 14 q^{19} + 5 q^{20} + 3 q^{22} + 10 q^{23} + 9 q^{25} - 22 q^{26} - 38 q^{28} - 15 q^{29}+ \cdots + 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/459\mathbb{Z}\right)^\times\).

\(n\) \(137\) \(190\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.281864 + 0.488204i 0.199308 + 0.345212i 0.948304 0.317362i \(-0.102797\pi\)
−0.748996 + 0.662574i \(0.769464\pi\)
\(3\) 0 0
\(4\) 0.841105 1.45684i 0.420552 0.728418i
\(5\) −0.281864 + 0.488204i −0.126054 + 0.218331i −0.922144 0.386846i \(-0.873564\pi\)
0.796091 + 0.605177i \(0.206898\pi\)
\(6\) 0 0
\(7\) −0.841105 1.45684i −0.317908 0.550632i 0.662144 0.749377i \(-0.269647\pi\)
−0.980051 + 0.198745i \(0.936314\pi\)
\(8\) 2.07577 0.733895
\(9\) 0 0
\(10\) −0.317790 −0.100494
\(11\) 1.03788 + 1.79767i 0.312934 + 0.542017i 0.978996 0.203879i \(-0.0653549\pi\)
−0.666062 + 0.745896i \(0.732022\pi\)
\(12\) 0 0
\(13\) 2.59712 4.49835i 0.720313 1.24762i −0.240562 0.970634i \(-0.577332\pi\)
0.960874 0.276984i \(-0.0893350\pi\)
\(14\) 0.474155 0.821261i 0.126723 0.219491i
\(15\) 0 0
\(16\) −1.09712 1.90028i −0.274281 0.475069i
\(17\) 1.00000 0.242536
\(18\) 0 0
\(19\) 1.70629 0.391449 0.195725 0.980659i \(-0.437294\pi\)
0.195725 + 0.980659i \(0.437294\pi\)
\(20\) 0.474155 + 0.821261i 0.106024 + 0.183639i
\(21\) 0 0
\(22\) −0.585085 + 1.01340i −0.124741 + 0.216057i
\(23\) 1.80322 3.12327i 0.375998 0.651247i −0.614478 0.788934i \(-0.710633\pi\)
0.990476 + 0.137687i \(0.0439668\pi\)
\(24\) 0 0
\(25\) 2.34110 + 4.05491i 0.468221 + 0.810983i
\(26\) 2.92815 0.574257
\(27\) 0 0
\(28\) −2.82983 −0.534788
\(29\) −4.16085 7.20681i −0.772651 1.33827i −0.936105 0.351720i \(-0.885597\pi\)
0.163454 0.986551i \(-0.447736\pi\)
\(30\) 0 0
\(31\) 0.658895 1.14124i 0.118341 0.204973i −0.800769 0.598973i \(-0.795576\pi\)
0.919110 + 0.394000i \(0.128909\pi\)
\(32\) 2.69425 4.66658i 0.476280 0.824942i
\(33\) 0 0
\(34\) 0.281864 + 0.488204i 0.0483394 + 0.0837262i
\(35\) 0.948310 0.160294
\(36\) 0 0
\(37\) −3.50306 −0.575900 −0.287950 0.957645i \(-0.592974\pi\)
−0.287950 + 0.957645i \(0.592974\pi\)
\(38\) 0.480942 + 0.833016i 0.0780191 + 0.135133i
\(39\) 0 0
\(40\) −0.585085 + 1.01340i −0.0925101 + 0.160232i
\(41\) −5.06120 + 8.76625i −0.790426 + 1.36906i 0.135277 + 0.990808i \(0.456808\pi\)
−0.925703 + 0.378251i \(0.876526\pi\)
\(42\) 0 0
\(43\) 5.20323 + 9.01225i 0.793485 + 1.37436i 0.923797 + 0.382883i \(0.125069\pi\)
−0.130313 + 0.991473i \(0.541598\pi\)
\(44\) 3.49188 0.526420
\(45\) 0 0
\(46\) 2.03306 0.299758
\(47\) 3.12297 + 5.40914i 0.455532 + 0.789004i 0.998719 0.0506075i \(-0.0161158\pi\)
−0.543187 + 0.839612i \(0.682782\pi\)
\(48\) 0 0
\(49\) 2.08509 3.61147i 0.297869 0.515925i
\(50\) −1.31975 + 2.28587i −0.186641 + 0.323271i
\(51\) 0 0
\(52\) −4.36891 7.56717i −0.605859 1.04938i
\(53\) −2.47898 −0.340515 −0.170257 0.985400i \(-0.554460\pi\)
−0.170257 + 0.985400i \(0.554460\pi\)
\(54\) 0 0
\(55\) −1.17017 −0.157786
\(56\) −1.74594 3.02405i −0.233311 0.404106i
\(57\) 0 0
\(58\) 2.34559 4.06269i 0.307992 0.533457i
\(59\) −2.13052 + 3.69017i −0.277370 + 0.480419i −0.970730 0.240172i \(-0.922796\pi\)
0.693360 + 0.720591i \(0.256129\pi\)
\(60\) 0 0
\(61\) 2.76281 + 4.78532i 0.353741 + 0.612698i 0.986902 0.161323i \(-0.0515761\pi\)
−0.633161 + 0.774020i \(0.718243\pi\)
\(62\) 0.742877 0.0943454
\(63\) 0 0
\(64\) −1.35085 −0.168856
\(65\) 1.46407 + 2.53585i 0.181596 + 0.314534i
\(66\) 0 0
\(67\) −2.45476 + 4.25176i −0.299896 + 0.519436i −0.976112 0.217268i \(-0.930285\pi\)
0.676216 + 0.736704i \(0.263619\pi\)
\(68\) 0.841105 1.45684i 0.101999 0.176667i
\(69\) 0 0
\(70\) 0.267295 + 0.462968i 0.0319479 + 0.0553353i
\(71\) −2.07071 −0.245748 −0.122874 0.992422i \(-0.539211\pi\)
−0.122874 + 0.992422i \(0.539211\pi\)
\(72\) 0 0
\(73\) −9.24986 −1.08261 −0.541307 0.840825i \(-0.682070\pi\)
−0.541307 + 0.840825i \(0.682070\pi\)
\(74\) −0.987389 1.71021i −0.114782 0.198808i
\(75\) 0 0
\(76\) 1.43517 2.48578i 0.164625 0.285139i
\(77\) 1.74594 3.02405i 0.198968 0.344623i
\(78\) 0 0
\(79\) 0.735003 + 1.27306i 0.0826943 + 0.143231i 0.904406 0.426672i \(-0.140314\pi\)
−0.821712 + 0.569903i \(0.806981\pi\)
\(80\) 1.23696 0.138297
\(81\) 0 0
\(82\) −5.70629 −0.630154
\(83\) 2.22009 + 3.84532i 0.243687 + 0.422078i 0.961762 0.273888i \(-0.0883097\pi\)
−0.718075 + 0.695966i \(0.754976\pi\)
\(84\) 0 0
\(85\) −0.281864 + 0.488204i −0.0305725 + 0.0529531i
\(86\) −2.93321 + 5.08047i −0.316296 + 0.547841i
\(87\) 0 0
\(88\) 2.15441 + 3.73154i 0.229661 + 0.397784i
\(89\) −12.6473 −1.34061 −0.670307 0.742084i \(-0.733838\pi\)
−0.670307 + 0.742084i \(0.733838\pi\)
\(90\) 0 0
\(91\) −8.73782 −0.915972
\(92\) −3.03340 5.25400i −0.316253 0.547767i
\(93\) 0 0
\(94\) −1.76051 + 3.04929i −0.181583 + 0.314510i
\(95\) −0.480942 + 0.833016i −0.0493436 + 0.0854656i
\(96\) 0 0
\(97\) 7.89747 + 13.6788i 0.801867 + 1.38887i 0.918386 + 0.395686i \(0.129493\pi\)
−0.116519 + 0.993188i \(0.537174\pi\)
\(98\) 2.35085 0.237471
\(99\) 0 0
\(100\) 7.87646 0.787646
\(101\) 0.758550 + 1.31385i 0.0754785 + 0.130733i 0.901294 0.433207i \(-0.142618\pi\)
−0.825816 + 0.563940i \(0.809285\pi\)
\(102\) 0 0
\(103\) 5.83213 10.1015i 0.574657 0.995334i −0.421422 0.906865i \(-0.638469\pi\)
0.996079 0.0884699i \(-0.0281977\pi\)
\(104\) 5.39103 9.33753i 0.528634 0.915621i
\(105\) 0 0
\(106\) −0.698737 1.21025i −0.0678674 0.117550i
\(107\) −8.75730 −0.846600 −0.423300 0.905990i \(-0.639128\pi\)
−0.423300 + 0.905990i \(0.639128\pi\)
\(108\) 0 0
\(109\) −11.6007 −1.11115 −0.555573 0.831468i \(-0.687501\pi\)
−0.555573 + 0.831468i \(0.687501\pi\)
\(110\) −0.329829 0.571281i −0.0314480 0.0544695i
\(111\) 0 0
\(112\) −1.84559 + 3.19666i −0.174392 + 0.302056i
\(113\) −7.33604 + 12.7064i −0.690117 + 1.19532i 0.281682 + 0.959508i \(0.409108\pi\)
−0.971799 + 0.235810i \(0.924226\pi\)
\(114\) 0 0
\(115\) 1.01653 + 1.76068i 0.0947917 + 0.164184i
\(116\) −13.9989 −1.29976
\(117\) 0 0
\(118\) −2.40207 −0.221129
\(119\) −0.841105 1.45684i −0.0771040 0.133548i
\(120\) 0 0
\(121\) 3.34559 5.79474i 0.304145 0.526794i
\(122\) −1.55747 + 2.69762i −0.141007 + 0.244231i
\(123\) 0 0
\(124\) −1.10840 1.91980i −0.0995372 0.172404i
\(125\) −5.45814 −0.488191
\(126\) 0 0
\(127\) −6.87186 −0.609779 −0.304890 0.952388i \(-0.598620\pi\)
−0.304890 + 0.952388i \(0.598620\pi\)
\(128\) −5.76925 9.99264i −0.509935 0.883233i
\(129\) 0 0
\(130\) −0.825341 + 1.42953i −0.0723872 + 0.125378i
\(131\) 9.63892 16.6951i 0.842157 1.45866i −0.0459109 0.998946i \(-0.514619\pi\)
0.888068 0.459713i \(-0.152048\pi\)
\(132\) 0 0
\(133\) −1.43517 2.48578i −0.124445 0.215545i
\(134\) −2.76764 −0.239087
\(135\) 0 0
\(136\) 2.07577 0.177996
\(137\) −1.99298 3.45194i −0.170272 0.294920i 0.768243 0.640158i \(-0.221131\pi\)
−0.938515 + 0.345239i \(0.887798\pi\)
\(138\) 0 0
\(139\) −7.47052 + 12.9393i −0.633641 + 1.09750i 0.353160 + 0.935563i \(0.385107\pi\)
−0.986801 + 0.161936i \(0.948226\pi\)
\(140\) 0.797628 1.38153i 0.0674119 0.116761i
\(141\) 0 0
\(142\) −0.583659 1.01093i −0.0489796 0.0848351i
\(143\) 10.7821 0.901641
\(144\) 0 0
\(145\) 4.69119 0.389582
\(146\) −2.60721 4.51581i −0.215774 0.373731i
\(147\) 0 0
\(148\) −2.94644 + 5.10339i −0.242196 + 0.419496i
\(149\) 8.04410 13.9328i 0.658998 1.14142i −0.321877 0.946781i \(-0.604314\pi\)
0.980875 0.194637i \(-0.0623529\pi\)
\(150\) 0 0
\(151\) −0.0850853 0.147372i −0.00692414 0.0119930i 0.862543 0.505984i \(-0.168871\pi\)
−0.869467 + 0.493992i \(0.835537\pi\)
\(152\) 3.54186 0.287283
\(153\) 0 0
\(154\) 1.96847 0.158624
\(155\) 0.371438 + 0.643350i 0.0298346 + 0.0516751i
\(156\) 0 0
\(157\) −10.0497 + 17.4066i −0.802053 + 1.38920i 0.116210 + 0.993225i \(0.462925\pi\)
−0.918263 + 0.395971i \(0.870408\pi\)
\(158\) −0.414343 + 0.717663i −0.0329633 + 0.0570942i
\(159\) 0 0
\(160\) 1.51883 + 2.63068i 0.120074 + 0.207974i
\(161\) −6.06679 −0.478130
\(162\) 0 0
\(163\) 21.4333 1.67879 0.839393 0.543525i \(-0.182911\pi\)
0.839393 + 0.543525i \(0.182911\pi\)
\(164\) 8.51400 + 14.7467i 0.664832 + 1.15152i
\(165\) 0 0
\(166\) −1.25153 + 2.16772i −0.0971376 + 0.168247i
\(167\) −8.99494 + 15.5797i −0.696049 + 1.20559i 0.273776 + 0.961793i \(0.411727\pi\)
−0.969826 + 0.243799i \(0.921606\pi\)
\(168\) 0 0
\(169\) −6.99011 12.1072i −0.537701 0.931325i
\(170\) −0.317790 −0.0243734
\(171\) 0 0
\(172\) 17.5058 1.33481
\(173\) 5.48739 + 9.50444i 0.417198 + 0.722609i 0.995656 0.0931033i \(-0.0296787\pi\)
−0.578458 + 0.815712i \(0.696345\pi\)
\(174\) 0 0
\(175\) 3.93823 6.82121i 0.297702 0.515635i
\(176\) 2.27738 3.94453i 0.171664 0.297330i
\(177\) 0 0
\(178\) −3.56483 6.17447i −0.267196 0.462796i
\(179\) 23.4021 1.74915 0.874576 0.484888i \(-0.161139\pi\)
0.874576 + 0.484888i \(0.161139\pi\)
\(180\) 0 0
\(181\) 3.14609 0.233847 0.116924 0.993141i \(-0.462697\pi\)
0.116924 + 0.993141i \(0.462697\pi\)
\(182\) −2.46288 4.26583i −0.182561 0.316205i
\(183\) 0 0
\(184\) 3.74307 6.48318i 0.275943 0.477947i
\(185\) 0.987389 1.71021i 0.0725943 0.125737i
\(186\) 0 0
\(187\) 1.03788 + 1.79767i 0.0758976 + 0.131458i
\(188\) 10.5070 0.766300
\(189\) 0 0
\(190\) −0.542242 −0.0393384
\(191\) −1.95008 3.37763i −0.141103 0.244397i 0.786809 0.617196i \(-0.211731\pi\)
−0.927912 + 0.372799i \(0.878398\pi\)
\(192\) 0 0
\(193\) 3.17017 5.49090i 0.228194 0.395243i −0.729079 0.684430i \(-0.760051\pi\)
0.957273 + 0.289186i \(0.0933847\pi\)
\(194\) −4.45203 + 7.71115i −0.319637 + 0.553628i
\(195\) 0 0
\(196\) −3.50755 6.07526i −0.250539 0.433947i
\(197\) −2.03488 −0.144979 −0.0724896 0.997369i \(-0.523094\pi\)
−0.0724896 + 0.997369i \(0.523094\pi\)
\(198\) 0 0
\(199\) 15.8792 1.12565 0.562824 0.826576i \(-0.309715\pi\)
0.562824 + 0.826576i \(0.309715\pi\)
\(200\) 4.85959 + 8.41706i 0.343625 + 0.595176i
\(201\) 0 0
\(202\) −0.427617 + 0.740654i −0.0300870 + 0.0521122i
\(203\) −6.99943 + 12.1234i −0.491264 + 0.850893i
\(204\) 0 0
\(205\) −2.85314 4.94179i −0.199272 0.345150i
\(206\) 6.57548 0.458135
\(207\) 0 0
\(208\) −11.3975 −0.790273
\(209\) 1.77093 + 3.06734i 0.122498 + 0.212172i
\(210\) 0 0
\(211\) 2.95925 5.12556i 0.203723 0.352858i −0.746002 0.665943i \(-0.768029\pi\)
0.949725 + 0.313085i \(0.101363\pi\)
\(212\) −2.08509 + 3.61147i −0.143204 + 0.248037i
\(213\) 0 0
\(214\) −2.46837 4.27534i −0.168734 0.292256i
\(215\) −5.86642 −0.400086
\(216\) 0 0
\(217\) −2.21680 −0.150486
\(218\) −3.26983 5.66350i −0.221461 0.383581i
\(219\) 0 0
\(220\) −0.984236 + 1.70475i −0.0663572 + 0.114934i
\(221\) 2.59712 4.49835i 0.174701 0.302592i
\(222\) 0 0
\(223\) 8.02995 + 13.9083i 0.537725 + 0.931368i 0.999026 + 0.0441239i \(0.0140496\pi\)
−0.461301 + 0.887244i \(0.652617\pi\)
\(224\) −9.06458 −0.605653
\(225\) 0 0
\(226\) −8.27108 −0.550184
\(227\) 7.06350 + 12.2343i 0.468821 + 0.812021i 0.999365 0.0356360i \(-0.0113457\pi\)
−0.530544 + 0.847657i \(0.678012\pi\)
\(228\) 0 0
\(229\) −3.05279 + 5.28759i −0.201734 + 0.349414i −0.949087 0.315013i \(-0.897991\pi\)
0.747353 + 0.664427i \(0.231324\pi\)
\(230\) −0.573046 + 0.992545i −0.0377855 + 0.0654465i
\(231\) 0 0
\(232\) −8.63697 14.9597i −0.567045 0.982150i
\(233\) 13.7798 0.902748 0.451374 0.892335i \(-0.350934\pi\)
0.451374 + 0.892335i \(0.350934\pi\)
\(234\) 0 0
\(235\) −3.52102 −0.229686
\(236\) 3.58398 + 6.20764i 0.233297 + 0.404083i
\(237\) 0 0
\(238\) 0.474155 0.821261i 0.0307349 0.0532344i
\(239\) 11.6985 20.2624i 0.756713 1.31067i −0.187805 0.982206i \(-0.560137\pi\)
0.944518 0.328460i \(-0.106529\pi\)
\(240\) 0 0
\(241\) −14.3845 24.9147i −0.926589 1.60490i −0.788986 0.614411i \(-0.789394\pi\)
−0.137602 0.990488i \(-0.543940\pi\)
\(242\) 3.77202 0.242474
\(243\) 0 0
\(244\) 9.29524 0.595067
\(245\) 1.17542 + 2.03589i 0.0750950 + 0.130068i
\(246\) 0 0
\(247\) 4.43144 7.67548i 0.281966 0.488379i
\(248\) 1.36771 2.36895i 0.0868499 0.150428i
\(249\) 0 0
\(250\) −1.53846 2.66468i −0.0973005 0.168529i
\(251\) −22.6143 −1.42740 −0.713700 0.700451i \(-0.752982\pi\)
−0.713700 + 0.700451i \(0.752982\pi\)
\(252\) 0 0
\(253\) 7.48614 0.470649
\(254\) −1.93693 3.35487i −0.121534 0.210503i
\(255\) 0 0
\(256\) 1.90145 3.29341i 0.118841 0.205838i
\(257\) 12.1795 21.0956i 0.759738 1.31591i −0.183246 0.983067i \(-0.558660\pi\)
0.942984 0.332838i \(-0.108006\pi\)
\(258\) 0 0
\(259\) 2.94644 + 5.10339i 0.183083 + 0.317109i
\(260\) 4.92576 0.305483
\(261\) 0 0
\(262\) 10.8675 0.671395
\(263\) 15.5016 + 26.8495i 0.955868 + 1.65561i 0.732369 + 0.680908i \(0.238415\pi\)
0.223500 + 0.974704i \(0.428252\pi\)
\(264\) 0 0
\(265\) 0.698737 1.21025i 0.0429231 0.0743450i
\(266\) 0.809045 1.40131i 0.0496057 0.0859197i
\(267\) 0 0
\(268\) 4.12942 + 7.15236i 0.252244 + 0.436900i
\(269\) 31.2060 1.90266 0.951332 0.308169i \(-0.0997162\pi\)
0.951332 + 0.308169i \(0.0997162\pi\)
\(270\) 0 0
\(271\) −16.6097 −1.00897 −0.504483 0.863422i \(-0.668317\pi\)
−0.504483 + 0.863422i \(0.668317\pi\)
\(272\) −1.09712 1.90028i −0.0665229 0.115221i
\(273\) 0 0
\(274\) 1.12350 1.94596i 0.0678732 0.117560i
\(275\) −4.85959 + 8.41706i −0.293044 + 0.507568i
\(276\) 0 0
\(277\) −3.81469 6.60723i −0.229202 0.396990i 0.728370 0.685184i \(-0.240278\pi\)
−0.957572 + 0.288194i \(0.906945\pi\)
\(278\) −8.42270 −0.505160
\(279\) 0 0
\(280\) 1.96847 0.117639
\(281\) −13.4470 23.2908i −0.802179 1.38942i −0.918179 0.396166i \(-0.870340\pi\)
0.116000 0.993249i \(-0.462993\pi\)
\(282\) 0 0
\(283\) 0.175423 0.303841i 0.0104278 0.0180615i −0.860764 0.509004i \(-0.830014\pi\)
0.871192 + 0.490942i \(0.163347\pi\)
\(284\) −1.74168 + 3.01668i −0.103350 + 0.179007i
\(285\) 0 0
\(286\) 3.03908 + 5.26384i 0.179704 + 0.311257i
\(287\) 17.0280 1.00513
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 1.32228 + 2.29025i 0.0776469 + 0.134488i
\(291\) 0 0
\(292\) −7.78010 + 13.4755i −0.455296 + 0.788595i
\(293\) −8.47969 + 14.6873i −0.495389 + 0.858039i −0.999986 0.00531644i \(-0.998308\pi\)
0.504597 + 0.863355i \(0.331641\pi\)
\(294\) 0 0
\(295\) −1.20104 2.08025i −0.0699270 0.121117i
\(296\) −7.27154 −0.422650
\(297\) 0 0
\(298\) 9.06938 0.525375
\(299\) −9.36638 16.2230i −0.541672 0.938203i
\(300\) 0 0
\(301\) 8.75292 15.1605i 0.504510 0.873837i
\(302\) 0.0479650 0.0830779i 0.00276008 0.00478059i
\(303\) 0 0
\(304\) −1.87201 3.24242i −0.107367 0.185965i
\(305\) −3.11495 −0.178361
\(306\) 0 0
\(307\) 13.4800 0.769345 0.384672 0.923053i \(-0.374314\pi\)
0.384672 + 0.923053i \(0.374314\pi\)
\(308\) −2.93703 5.08709i −0.167353 0.289864i
\(309\) 0 0
\(310\) −0.209390 + 0.362675i −0.0118926 + 0.0205986i
\(311\) −5.95729 + 10.3183i −0.337807 + 0.585098i −0.984020 0.178058i \(-0.943018\pi\)
0.646213 + 0.763157i \(0.276352\pi\)
\(312\) 0 0
\(313\) −4.68527 8.11513i −0.264827 0.458694i 0.702691 0.711495i \(-0.251982\pi\)
−0.967518 + 0.252801i \(0.918648\pi\)
\(314\) −11.3306 −0.639423
\(315\) 0 0
\(316\) 2.47286 0.139109
\(317\) −10.6675 18.4766i −0.599146 1.03775i −0.992947 0.118556i \(-0.962174\pi\)
0.393801 0.919196i \(-0.371160\pi\)
\(318\) 0 0
\(319\) 8.63697 14.9597i 0.483577 0.837580i
\(320\) 0.380755 0.659488i 0.0212849 0.0368665i
\(321\) 0 0
\(322\) −1.71001 2.96183i −0.0952953 0.165056i
\(323\) 1.70629 0.0949404
\(324\) 0 0
\(325\) 24.3206 1.34906
\(326\) 6.04129 + 10.4638i 0.334596 + 0.579537i
\(327\) 0 0
\(328\) −10.5059 + 18.1967i −0.580090 + 1.00475i
\(329\) 5.25349 9.09931i 0.289634 0.501661i
\(330\) 0 0
\(331\) 8.77485 + 15.1985i 0.482309 + 0.835384i 0.999794 0.0203086i \(-0.00646487\pi\)
−0.517485 + 0.855693i \(0.673132\pi\)
\(332\) 7.46933 0.409933
\(333\) 0 0
\(334\) −10.1414 −0.554914
\(335\) −1.38382 2.39684i −0.0756060 0.130953i
\(336\) 0 0
\(337\) −15.1203 + 26.1891i −0.823655 + 1.42661i 0.0792884 + 0.996852i \(0.474735\pi\)
−0.902943 + 0.429760i \(0.858598\pi\)
\(338\) 3.94053 6.82519i 0.214336 0.371242i
\(339\) 0 0
\(340\) 0.474155 + 0.821261i 0.0257147 + 0.0445391i
\(341\) 2.73543 0.148132
\(342\) 0 0
\(343\) −18.7906 −1.01460
\(344\) 10.8007 + 18.7073i 0.582334 + 1.00863i
\(345\) 0 0
\(346\) −3.09340 + 5.35793i −0.166302 + 0.288044i
\(347\) 4.87397 8.44196i 0.261648 0.453188i −0.705032 0.709176i \(-0.749067\pi\)
0.966680 + 0.255988i \(0.0824006\pi\)
\(348\) 0 0
\(349\) −1.89084 3.27502i −0.101214 0.175308i 0.810971 0.585086i \(-0.198939\pi\)
−0.912185 + 0.409778i \(0.865606\pi\)
\(350\) 4.44019 0.237338
\(351\) 0 0
\(352\) 11.1853 0.596177
\(353\) −7.12765 12.3455i −0.379367 0.657082i 0.611604 0.791164i \(-0.290525\pi\)
−0.990970 + 0.134082i \(0.957191\pi\)
\(354\) 0 0
\(355\) 0.583659 1.01093i 0.0309774 0.0536544i
\(356\) −10.6377 + 18.4251i −0.563799 + 0.976528i
\(357\) 0 0
\(358\) 6.59621 + 11.4250i 0.348621 + 0.603829i
\(359\) 12.2391 0.645953 0.322976 0.946407i \(-0.395317\pi\)
0.322976 + 0.946407i \(0.395317\pi\)
\(360\) 0 0
\(361\) −16.0886 −0.846767
\(362\) 0.886772 + 1.53593i 0.0466077 + 0.0807269i
\(363\) 0 0
\(364\) −7.34942 + 12.7296i −0.385214 + 0.667211i
\(365\) 2.60721 4.51581i 0.136467 0.236368i
\(366\) 0 0
\(367\) 5.26729 + 9.12322i 0.274951 + 0.476228i 0.970123 0.242615i \(-0.0780052\pi\)
−0.695172 + 0.718843i \(0.744672\pi\)
\(368\) −7.91343 −0.412516
\(369\) 0 0
\(370\) 1.11324 0.0578745
\(371\) 2.08509 + 3.61147i 0.108252 + 0.187498i
\(372\) 0 0
\(373\) 4.41400 7.64528i 0.228548 0.395857i −0.728830 0.684695i \(-0.759935\pi\)
0.957378 + 0.288838i \(0.0932688\pi\)
\(374\) −0.585085 + 1.01340i −0.0302540 + 0.0524015i
\(375\) 0 0
\(376\) 6.48256 + 11.2281i 0.334313 + 0.579046i
\(377\) −43.2250 −2.22620
\(378\) 0 0
\(379\) 7.68221 0.394609 0.197304 0.980342i \(-0.436781\pi\)
0.197304 + 0.980342i \(0.436781\pi\)
\(380\) 0.809045 + 1.40131i 0.0415031 + 0.0718856i
\(381\) 0 0
\(382\) 1.09931 1.90407i 0.0562458 0.0974206i
\(383\) −15.0287 + 26.0304i −0.767929 + 1.33009i 0.170756 + 0.985313i \(0.445379\pi\)
−0.938684 + 0.344778i \(0.887954\pi\)
\(384\) 0 0
\(385\) 0.984236 + 1.70475i 0.0501613 + 0.0868819i
\(386\) 3.57423 0.181924
\(387\) 0 0
\(388\) 26.5704 1.34891
\(389\) −18.2127 31.5454i −0.923422 1.59941i −0.794079 0.607814i \(-0.792046\pi\)
−0.129343 0.991600i \(-0.541287\pi\)
\(390\) 0 0
\(391\) 1.80322 3.12327i 0.0911928 0.157951i
\(392\) 4.32815 7.49658i 0.218605 0.378635i
\(393\) 0 0
\(394\) −0.573560 0.993436i −0.0288956 0.0500486i
\(395\) −0.828685 −0.0416957
\(396\) 0 0
\(397\) −13.1637 −0.660670 −0.330335 0.943864i \(-0.607162\pi\)
−0.330335 + 0.943864i \(0.607162\pi\)
\(398\) 4.47579 + 7.75230i 0.224351 + 0.388588i
\(399\) 0 0
\(400\) 5.13697 8.89749i 0.256848 0.444874i
\(401\) 10.1156 17.5208i 0.505149 0.874945i −0.494833 0.868988i \(-0.664771\pi\)
0.999982 0.00595634i \(-0.00189597\pi\)
\(402\) 0 0
\(403\) −3.42247 5.92788i −0.170485 0.295289i
\(404\) 2.55208 0.126971
\(405\) 0 0
\(406\) −7.89156 −0.391652
\(407\) −3.63577 6.29734i −0.180219 0.312148i
\(408\) 0 0
\(409\) −18.3515 + 31.7857i −0.907422 + 1.57170i −0.0897886 + 0.995961i \(0.528619\pi\)
−0.817633 + 0.575740i \(0.804714\pi\)
\(410\) 1.60840 2.78583i 0.0794332 0.137582i
\(411\) 0 0
\(412\) −9.81086 16.9929i −0.483346 0.837181i
\(413\) 7.16796 0.352712
\(414\) 0 0
\(415\) −2.50306 −0.122870
\(416\) −13.9946 24.2394i −0.686142 1.18843i
\(417\) 0 0
\(418\) −0.998324 + 1.72915i −0.0488296 + 0.0845754i
\(419\) −7.62731 + 13.2109i −0.372618 + 0.645394i −0.989967 0.141295i \(-0.954873\pi\)
0.617349 + 0.786689i \(0.288207\pi\)
\(420\) 0 0
\(421\) −6.68078 11.5715i −0.325601 0.563958i 0.656032 0.754733i \(-0.272233\pi\)
−0.981634 + 0.190774i \(0.938900\pi\)
\(422\) 3.33642 0.162415
\(423\) 0 0
\(424\) −5.14580 −0.249902
\(425\) 2.34110 + 4.05491i 0.113560 + 0.196692i
\(426\) 0 0
\(427\) 4.64762 8.04991i 0.224914 0.389563i
\(428\) −7.36581 + 12.7579i −0.356040 + 0.616679i
\(429\) 0 0
\(430\) −1.65353 2.86401i −0.0797405 0.138115i
\(431\) −19.3600 −0.932540 −0.466270 0.884642i \(-0.654403\pi\)
−0.466270 + 0.884642i \(0.654403\pi\)
\(432\) 0 0
\(433\) −20.9302 −1.00584 −0.502922 0.864332i \(-0.667742\pi\)
−0.502922 + 0.864332i \(0.667742\pi\)
\(434\) −0.624837 1.08225i −0.0299931 0.0519496i
\(435\) 0 0
\(436\) −9.75741 + 16.9003i −0.467295 + 0.809379i
\(437\) 3.07681 5.32920i 0.147184 0.254930i
\(438\) 0 0
\(439\) −8.28291 14.3464i −0.395322 0.684717i 0.597820 0.801630i \(-0.296034\pi\)
−0.993142 + 0.116913i \(0.962700\pi\)
\(440\) −2.42900 −0.115798
\(441\) 0 0
\(442\) 2.92815 0.139278
\(443\) −2.82796 4.89817i −0.134361 0.232719i 0.790992 0.611826i \(-0.209565\pi\)
−0.925353 + 0.379107i \(0.876231\pi\)
\(444\) 0 0
\(445\) 3.56483 6.17447i 0.168989 0.292698i
\(446\) −4.52672 + 7.84050i −0.214346 + 0.371259i
\(447\) 0 0
\(448\) 1.13620 + 1.96796i 0.0536805 + 0.0929774i
\(449\) −3.40360 −0.160626 −0.0803129 0.996770i \(-0.525592\pi\)
−0.0803129 + 0.996770i \(0.525592\pi\)
\(450\) 0 0
\(451\) −21.0117 −0.989405
\(452\) 12.3408 + 21.3748i 0.580461 + 1.00539i
\(453\) 0 0
\(454\) −3.98190 + 6.89685i −0.186880 + 0.323685i
\(455\) 2.46288 4.26583i 0.115462 0.199985i
\(456\) 0 0
\(457\) 4.75832 + 8.24165i 0.222585 + 0.385528i 0.955592 0.294693i \(-0.0952173\pi\)
−0.733007 + 0.680221i \(0.761884\pi\)
\(458\) −3.44190 −0.160829
\(459\) 0 0
\(460\) 3.42003 0.159460
\(461\) 0.00253032 + 0.00438263i 0.000117849 + 0.000204120i 0.866084 0.499898i \(-0.166629\pi\)
−0.865966 + 0.500102i \(0.833296\pi\)
\(462\) 0 0
\(463\) 12.1061 20.9684i 0.562618 0.974483i −0.434649 0.900600i \(-0.643127\pi\)
0.997267 0.0738833i \(-0.0235392\pi\)
\(464\) −9.12995 + 15.8135i −0.423847 + 0.734125i
\(465\) 0 0
\(466\) 3.88405 + 6.72737i 0.179925 + 0.311639i
\(467\) −9.24373 −0.427749 −0.213874 0.976861i \(-0.568608\pi\)
−0.213874 + 0.976861i \(0.568608\pi\)
\(468\) 0 0
\(469\) 8.25883 0.381357
\(470\) −0.992449 1.71897i −0.0457783 0.0792903i
\(471\) 0 0
\(472\) −4.42247 + 7.65993i −0.203560 + 0.352577i
\(473\) −10.8007 + 18.7073i −0.496616 + 0.860165i
\(474\) 0 0
\(475\) 3.99460 + 6.91885i 0.183285 + 0.317459i
\(476\) −2.82983 −0.129705
\(477\) 0 0
\(478\) 13.1896 0.603277
\(479\) 11.9761 + 20.7432i 0.547203 + 0.947783i 0.998465 + 0.0553912i \(0.0176406\pi\)
−0.451262 + 0.892391i \(0.649026\pi\)
\(480\) 0 0
\(481\) −9.09789 + 15.7580i −0.414828 + 0.718503i
\(482\) 8.10897 14.0452i 0.369354 0.639739i
\(483\) 0 0
\(484\) −5.62799 9.74796i −0.255818 0.443089i
\(485\) −8.90407 −0.404313
\(486\) 0 0
\(487\) −28.0512 −1.27112 −0.635561 0.772051i \(-0.719231\pi\)
−0.635561 + 0.772051i \(0.719231\pi\)
\(488\) 5.73495 + 9.93322i 0.259609 + 0.449656i
\(489\) 0 0
\(490\) −0.662620 + 1.14769i −0.0299341 + 0.0518474i
\(491\) 9.70733 16.8136i 0.438086 0.758787i −0.559456 0.828860i \(-0.688990\pi\)
0.997542 + 0.0700731i \(0.0223233\pi\)
\(492\) 0 0
\(493\) −4.16085 7.20681i −0.187395 0.324578i
\(494\) 4.99626 0.224793
\(495\) 0 0
\(496\) −2.89156 −0.129835
\(497\) 1.74168 + 3.01668i 0.0781251 + 0.135317i
\(498\) 0 0
\(499\) −4.96552 + 8.60053i −0.222287 + 0.385013i −0.955502 0.294984i \(-0.904686\pi\)
0.733215 + 0.679997i \(0.238019\pi\)
\(500\) −4.59087 + 7.95162i −0.205310 + 0.355607i
\(501\) 0 0
\(502\) −6.37416 11.0404i −0.284493 0.492756i
\(503\) 9.73782 0.434188 0.217094 0.976151i \(-0.430342\pi\)
0.217094 + 0.976151i \(0.430342\pi\)
\(504\) 0 0
\(505\) −0.855233 −0.0380574
\(506\) 2.11008 + 3.65476i 0.0938043 + 0.162474i
\(507\) 0 0
\(508\) −5.77996 + 10.0112i −0.256444 + 0.444174i
\(509\) −4.36925 + 7.56776i −0.193664 + 0.335435i −0.946462 0.322816i \(-0.895370\pi\)
0.752798 + 0.658252i \(0.228704\pi\)
\(510\) 0 0
\(511\) 7.78010 + 13.4755i 0.344171 + 0.596122i
\(512\) −20.9332 −0.925126
\(513\) 0 0
\(514\) 13.7319 0.605688
\(515\) 3.28774 + 5.69453i 0.144875 + 0.250931i
\(516\) 0 0
\(517\) −6.48256 + 11.2281i −0.285103 + 0.493812i
\(518\) −1.66099 + 2.87693i −0.0729799 + 0.126405i
\(519\) 0 0
\(520\) 3.03908 + 5.26384i 0.133272 + 0.230835i
\(521\) −15.7724 −0.691001 −0.345501 0.938419i \(-0.612291\pi\)
−0.345501 + 0.938419i \(0.612291\pi\)
\(522\) 0 0
\(523\) 27.1291 1.18627 0.593136 0.805102i \(-0.297890\pi\)
0.593136 + 0.805102i \(0.297890\pi\)
\(524\) −16.2147 28.0847i −0.708342 1.22688i
\(525\) 0 0
\(526\) −8.73869 + 15.1359i −0.381025 + 0.659954i
\(527\) 0.658895 1.14124i 0.0287019 0.0497132i
\(528\) 0 0
\(529\) 4.99679 + 8.65469i 0.217252 + 0.376291i
\(530\) 0.787797 0.0342197
\(531\) 0 0
\(532\) −4.82850 −0.209342
\(533\) 26.2891 + 45.5341i 1.13871 + 1.97230i
\(534\) 0 0
\(535\) 2.46837 4.27534i 0.106717 0.184839i
\(536\) −5.09551 + 8.82568i −0.220092 + 0.381211i
\(537\) 0 0
\(538\) 8.79586 + 15.2349i 0.379217 + 0.656822i
\(539\) 8.65631 0.372854
\(540\) 0 0
\(541\) −21.6670 −0.931538 −0.465769 0.884906i \(-0.654222\pi\)
−0.465769 + 0.884906i \(0.654222\pi\)
\(542\) −4.68168 8.10890i −0.201095 0.348307i
\(543\) 0 0
\(544\) 2.69425 4.66658i 0.115515 0.200078i
\(545\) 3.26983 5.66350i 0.140064 0.242598i
\(546\) 0 0
\(547\) −14.0615 24.3552i −0.601226 1.04135i −0.992636 0.121137i \(-0.961346\pi\)
0.391410 0.920216i \(-0.371987\pi\)
\(548\) −6.70522 −0.286433
\(549\) 0 0
\(550\) −5.47898 −0.233625
\(551\) −7.09961 12.2969i −0.302454 0.523865i
\(552\) 0 0
\(553\) 1.23643 2.14156i 0.0525783 0.0910684i
\(554\) 2.15045 3.72469i 0.0913639 0.158247i
\(555\) 0 0
\(556\) 12.5670 + 21.7667i 0.532959 + 0.923112i
\(557\) 25.4592 1.07874 0.539371 0.842069i \(-0.318662\pi\)
0.539371 + 0.842069i \(0.318662\pi\)
\(558\) 0 0
\(559\) 54.0537 2.28623
\(560\) −1.04041 1.80205i −0.0439655 0.0761505i
\(561\) 0 0
\(562\) 7.58045 13.1297i 0.319762 0.553844i
\(563\) 20.6985 35.8509i 0.872338 1.51093i 0.0127663 0.999919i \(-0.495936\pi\)
0.859572 0.511015i \(-0.170730\pi\)
\(564\) 0 0
\(565\) −4.13554 7.16297i −0.173983 0.301348i
\(566\) 0.197782 0.00831339
\(567\) 0 0
\(568\) −4.29831 −0.180353
\(569\) −3.79246 6.56873i −0.158988 0.275376i 0.775516 0.631328i \(-0.217490\pi\)
−0.934504 + 0.355952i \(0.884157\pi\)
\(570\) 0 0
\(571\) 6.45487 11.1802i 0.270128 0.467875i −0.698767 0.715350i \(-0.746267\pi\)
0.968894 + 0.247475i \(0.0796007\pi\)
\(572\) 9.06884 15.7077i 0.379187 0.656772i
\(573\) 0 0
\(574\) 4.79959 + 8.31313i 0.200331 + 0.346983i
\(575\) 16.8861 0.704200
\(576\) 0 0
\(577\) −28.6186 −1.19141 −0.595703 0.803204i \(-0.703127\pi\)
−0.595703 + 0.803204i \(0.703127\pi\)
\(578\) 0.281864 + 0.488204i 0.0117240 + 0.0203066i
\(579\) 0 0
\(580\) 3.94578 6.83429i 0.163840 0.283779i
\(581\) 3.73466 6.46863i 0.154940 0.268364i
\(582\) 0 0
\(583\) −2.57290 4.45639i −0.106559 0.184565i
\(584\) −19.2006 −0.794525
\(585\) 0 0
\(586\) −9.56049 −0.394940
\(587\) −3.32964 5.76710i −0.137429 0.238034i 0.789094 0.614273i \(-0.210551\pi\)
−0.926523 + 0.376239i \(0.877217\pi\)
\(588\) 0 0
\(589\) 1.12426 1.94728i 0.0463245 0.0802364i
\(590\) 0.677059 1.17270i 0.0278741 0.0482793i
\(591\) 0 0
\(592\) 3.84330 + 6.65678i 0.157958 + 0.273592i
\(593\) 13.1202 0.538782 0.269391 0.963031i \(-0.413178\pi\)
0.269391 + 0.963031i \(0.413178\pi\)
\(594\) 0 0
\(595\) 0.948310 0.0388769
\(596\) −13.5319 23.4379i −0.554287 0.960053i
\(597\) 0 0
\(598\) 5.28010 9.14540i 0.215919 0.373983i
\(599\) −13.5595 + 23.4858i −0.554027 + 0.959603i 0.443951 + 0.896051i \(0.353576\pi\)
−0.997979 + 0.0635522i \(0.979757\pi\)
\(600\) 0 0
\(601\) 3.86223 + 6.68958i 0.157544 + 0.272874i 0.933982 0.357319i \(-0.116309\pi\)
−0.776439 + 0.630193i \(0.782976\pi\)
\(602\) 9.86855 0.402212
\(603\) 0 0
\(604\) −0.286262 −0.0116479
\(605\) 1.88601 + 3.26666i 0.0766771 + 0.132809i
\(606\) 0 0
\(607\) 23.1586 40.1119i 0.939979 1.62809i 0.174473 0.984662i \(-0.444178\pi\)
0.765506 0.643429i \(-0.222489\pi\)
\(608\) 4.59716 7.96252i 0.186440 0.322923i
\(609\) 0 0
\(610\) −0.877993 1.52073i −0.0355489 0.0615725i
\(611\) 32.4430 1.31250
\(612\) 0 0
\(613\) 34.6545 1.39968 0.699841 0.714299i \(-0.253254\pi\)
0.699841 + 0.714299i \(0.253254\pi\)
\(614\) 3.79954 + 6.58099i 0.153337 + 0.265587i
\(615\) 0 0
\(616\) 3.62416 6.27724i 0.146022 0.252917i
\(617\) 2.49135 4.31514i 0.100298 0.173721i −0.811510 0.584339i \(-0.801354\pi\)
0.911807 + 0.410618i \(0.134687\pi\)
\(618\) 0 0
\(619\) 16.8220 + 29.1365i 0.676133 + 1.17110i 0.976136 + 0.217158i \(0.0696788\pi\)
−0.300004 + 0.953938i \(0.596988\pi\)
\(620\) 1.24967 0.0501881
\(621\) 0 0
\(622\) −6.71659 −0.269311
\(623\) 10.6377 + 18.4251i 0.426192 + 0.738186i
\(624\) 0 0
\(625\) −10.1671 + 17.6099i −0.406683 + 0.704395i
\(626\) 2.64122 4.57473i 0.105565 0.182843i
\(627\) 0 0
\(628\) 16.9057 + 29.2815i 0.674610 + 1.16846i
\(629\) −3.50306 −0.139676
\(630\) 0 0
\(631\) −27.4426 −1.09247 −0.546236 0.837631i \(-0.683940\pi\)
−0.546236 + 0.837631i \(0.683940\pi\)
\(632\) 1.52570 + 2.64258i 0.0606889 + 0.105116i
\(633\) 0 0
\(634\) 6.01357 10.4158i 0.238830 0.413665i
\(635\) 1.93693 3.35487i 0.0768649 0.133134i
\(636\) 0 0
\(637\) −10.8305 18.7589i −0.429118 0.743254i
\(638\) 9.73782 0.385524
\(639\) 0 0
\(640\) 6.50459 0.257116
\(641\) −6.52910 11.3087i −0.257884 0.446668i 0.707791 0.706422i \(-0.249692\pi\)
−0.965675 + 0.259754i \(0.916359\pi\)
\(642\) 0 0
\(643\) 4.96782 8.60451i 0.195912 0.339329i −0.751287 0.659975i \(-0.770567\pi\)
0.947199 + 0.320646i \(0.103900\pi\)
\(644\) −5.10281 + 8.83832i −0.201079 + 0.348279i
\(645\) 0 0
\(646\) 0.480942 + 0.833016i 0.0189224 + 0.0327746i
\(647\) −22.1278 −0.869935 −0.434968 0.900446i \(-0.643240\pi\)
−0.434968 + 0.900446i \(0.643240\pi\)
\(648\) 0 0
\(649\) −8.84493 −0.347194
\(650\) 6.85510 + 11.8734i 0.268879 + 0.465712i
\(651\) 0 0
\(652\) 18.0277 31.2248i 0.706017 1.22286i
\(653\) 6.44631 11.1653i 0.252264 0.436933i −0.711885 0.702296i \(-0.752158\pi\)
0.964149 + 0.265363i \(0.0854916\pi\)
\(654\) 0 0
\(655\) 5.43374 + 9.41152i 0.212314 + 0.367738i
\(656\) 22.2111 0.867196
\(657\) 0 0
\(658\) 5.92309 0.230906
\(659\) −7.19851 12.4682i −0.280414 0.485691i 0.691073 0.722785i \(-0.257138\pi\)
−0.971487 + 0.237094i \(0.923805\pi\)
\(660\) 0 0
\(661\) 6.35902 11.0141i 0.247337 0.428401i −0.715449 0.698665i \(-0.753778\pi\)
0.962786 + 0.270264i \(0.0871111\pi\)
\(662\) −4.94663 + 8.56782i −0.192256 + 0.332998i
\(663\) 0 0
\(664\) 4.60840 + 7.98198i 0.178841 + 0.309761i
\(665\) 1.61809 0.0627469
\(666\) 0 0
\(667\) −30.0117 −1.16206
\(668\) 15.1314 + 26.2083i 0.585450 + 1.01403i
\(669\) 0 0
\(670\) 0.780098 1.35117i 0.0301378 0.0522002i
\(671\) −5.73495 + 9.93322i −0.221395 + 0.383468i
\(672\) 0 0
\(673\) −7.28612 12.6199i −0.280859 0.486463i 0.690737 0.723106i \(-0.257286\pi\)
−0.971597 + 0.236643i \(0.923953\pi\)
\(674\) −17.0475 −0.656645
\(675\) 0 0
\(676\) −23.5177 −0.904526
\(677\) −0.789032 1.36664i −0.0303250 0.0525244i 0.850465 0.526032i \(-0.176321\pi\)
−0.880790 + 0.473508i \(0.842988\pi\)
\(678\) 0 0
\(679\) 13.2852 23.0107i 0.509840 0.883068i
\(680\) −0.585085 + 1.01340i −0.0224370 + 0.0388620i
\(681\) 0 0
\(682\) 0.771020 + 1.33545i 0.0295239 + 0.0511368i
\(683\) −3.39595 −0.129942 −0.0649712 0.997887i \(-0.520696\pi\)
−0.0649712 + 0.997887i \(0.520696\pi\)
\(684\) 0 0
\(685\) 2.24700 0.0858535
\(686\) −5.29639 9.17362i −0.202217 0.350251i
\(687\) 0 0
\(688\) 11.4172 19.7751i 0.435276 0.753920i
\(689\) −6.43823 + 11.1513i −0.245277 + 0.424832i
\(690\) 0 0
\(691\) −4.75368 8.23362i −0.180839 0.313222i 0.761328 0.648367i \(-0.224548\pi\)
−0.942166 + 0.335146i \(0.891214\pi\)
\(692\) 18.4619 0.701815
\(693\) 0 0
\(694\) 5.49519 0.208595
\(695\) −4.21135 7.29427i −0.159746 0.276687i
\(696\) 0 0
\(697\) −5.06120 + 8.76625i −0.191707 + 0.332046i
\(698\) 1.06592 1.84623i 0.0403456 0.0698807i
\(699\) 0 0
\(700\) −6.62493 11.4747i −0.250399 0.433703i
\(701\) 17.4848 0.660392 0.330196 0.943912i \(-0.392885\pi\)
0.330196 + 0.943912i \(0.392885\pi\)
\(702\) 0 0
\(703\) −5.97723 −0.225436
\(704\) −1.40202 2.42837i −0.0528407 0.0915227i
\(705\) 0 0
\(706\) 4.01806 6.95949i 0.151222 0.261924i
\(707\) 1.27604 2.21017i 0.0479904 0.0831219i
\(708\) 0 0
\(709\) −14.4481 25.0248i −0.542609 0.939826i −0.998753 0.0499204i \(-0.984103\pi\)
0.456144 0.889906i \(-0.349230\pi\)
\(710\) 0.658051 0.0246962
\(711\) 0 0
\(712\) −26.2529 −0.983870
\(713\) −2.37627 4.11581i −0.0889919 0.154138i
\(714\) 0 0
\(715\) −3.03908 + 5.26384i −0.113655 + 0.196856i
\(716\) 19.6836 34.0930i 0.735611 1.27411i
\(717\) 0 0
\(718\) 3.44975 + 5.97515i 0.128744 + 0.222991i
\(719\) −12.7032 −0.473751 −0.236875 0.971540i \(-0.576123\pi\)
−0.236875 + 0.971540i \(0.576123\pi\)
\(720\) 0 0
\(721\) −19.6217 −0.730751
\(722\) −4.53480 7.85450i −0.168768 0.292314i
\(723\) 0 0
\(724\) 2.64619 4.58334i 0.0983450 0.170339i
\(725\) 19.4820 33.7438i 0.723543 1.25321i
\(726\) 0 0
\(727\) 11.0459 + 19.1320i 0.409668 + 0.709567i 0.994852 0.101334i \(-0.0323111\pi\)
−0.585184 + 0.810901i \(0.698978\pi\)
\(728\) −18.1377 −0.672227
\(729\) 0 0
\(730\) 2.93951 0.108796
\(731\) 5.20323 + 9.01225i 0.192448 + 0.333330i
\(732\) 0 0
\(733\) 6.65952 11.5346i 0.245975 0.426041i −0.716430 0.697659i \(-0.754225\pi\)
0.962405 + 0.271618i \(0.0875586\pi\)
\(734\) −2.96933 + 5.14302i −0.109600 + 0.189832i
\(735\) 0 0
\(736\) −9.71665 16.8297i −0.358161 0.620352i
\(737\) −10.1910 −0.375391
\(738\) 0 0
\(739\) 15.6507 0.575720 0.287860 0.957673i \(-0.407056\pi\)
0.287860 + 0.957673i \(0.407056\pi\)
\(740\) −1.66099 2.87693i −0.0610594 0.105758i
\(741\) 0 0
\(742\) −1.17542 + 2.03589i −0.0431511 + 0.0747400i
\(743\) −16.5152 + 28.6052i −0.605884 + 1.04942i 0.386028 + 0.922487i \(0.373847\pi\)
−0.991911 + 0.126934i \(0.959486\pi\)
\(744\) 0 0
\(745\) 4.53469 + 7.85432i 0.166138 + 0.287760i
\(746\) 4.97660 0.182206
\(747\) 0 0
\(748\) 3.49188 0.127676
\(749\) 7.36581 + 12.7579i 0.269141 + 0.466165i
\(750\) 0 0
\(751\) 0.486534 0.842702i 0.0177539 0.0307506i −0.857012 0.515297i \(-0.827682\pi\)
0.874766 + 0.484546i \(0.161015\pi\)
\(752\) 6.85257 11.8690i 0.249888 0.432818i
\(753\) 0 0
\(754\) −12.1836 21.1026i −0.443700 0.768512i
\(755\) 0.0959300 0.00349125
\(756\) 0 0
\(757\) 39.7406 1.44440 0.722198 0.691686i \(-0.243132\pi\)
0.722198 + 0.691686i \(0.243132\pi\)
\(758\) 2.16534 + 3.75048i 0.0786488 + 0.136224i
\(759\) 0 0
\(760\) −0.998324 + 1.72915i −0.0362130 + 0.0627228i
\(761\) 12.2971 21.2991i 0.445768 0.772093i −0.552337 0.833621i \(-0.686264\pi\)
0.998105 + 0.0615279i \(0.0195973\pi\)
\(762\) 0 0
\(763\) 9.75741 + 16.9003i 0.353242 + 0.611833i
\(764\) −6.56088 −0.237364
\(765\) 0 0
\(766\) −16.9442 −0.612218
\(767\) 11.0665 + 19.1677i 0.399586 + 0.692104i
\(768\) 0 0
\(769\) 1.77025 3.06616i 0.0638368 0.110569i −0.832341 0.554264i \(-0.813000\pi\)
0.896177 + 0.443696i \(0.146333\pi\)
\(770\) −0.554842 + 0.961015i −0.0199951 + 0.0346326i
\(771\) 0 0
\(772\) −5.33289 9.23684i −0.191935 0.332441i
\(773\) 42.9261 1.54394 0.771972 0.635657i \(-0.219271\pi\)
0.771972 + 0.635657i \(0.219271\pi\)
\(774\) 0 0
\(775\) 6.17017 0.221639
\(776\) 16.3933 + 28.3941i 0.588486 + 1.01929i
\(777\) 0 0
\(778\) 10.2670 17.7830i 0.368091 0.637553i
\(779\) −8.63586 + 14.9578i −0.309412 + 0.535917i
\(780\) 0 0
\(781\) −2.14915 3.72244i −0.0769028 0.133200i
\(782\) 2.03306 0.0727019
\(783\) 0 0
\(784\) −9.15039 −0.326800
\(785\) −5.66530 9.81259i −0.202203 0.350226i
\(786\) 0 0
\(787\) 8.10829 14.0440i 0.289029 0.500614i −0.684549 0.728967i \(-0.740001\pi\)
0.973578 + 0.228353i \(0.0733341\pi\)
\(788\) −1.71155 + 2.96449i −0.0609713 + 0.105605i
\(789\) 0 0
\(790\) −0.233577 0.404567i −0.00831029 0.0143939i
\(791\) 24.6815 0.877574
\(792\) 0 0
\(793\) 28.7014 1.01922
\(794\) −3.71039 6.42659i −0.131677 0.228071i
\(795\) 0 0
\(796\) 13.3561 23.1334i 0.473394 0.819943i
\(797\) −20.9362 + 36.2626i −0.741599 + 1.28449i 0.210167 + 0.977665i \(0.432599\pi\)
−0.951767 + 0.306822i \(0.900734\pi\)
\(798\) 0 0
\(799\) 3.12297 + 5.40914i 0.110483 + 0.191362i
\(800\) 25.2301 0.892018
\(801\) 0 0
\(802\) 11.4049 0.402722
\(803\) −9.60028 16.6282i −0.338786 0.586795i
\(804\) 0 0
\(805\) 1.71001 2.96183i 0.0602700 0.104391i
\(806\) 1.92934 3.34172i 0.0679582 0.117707i
\(807\) 0 0
\(808\) 1.57457 + 2.72724i 0.0553933 + 0.0959440i
\(809\) −30.0115 −1.05515 −0.527575 0.849509i \(-0.676899\pi\)
−0.527575 + 0.849509i \(0.676899\pi\)
\(810\) 0 0
\(811\) 13.4654 0.472834 0.236417 0.971652i \(-0.424027\pi\)
0.236417 + 0.971652i \(0.424027\pi\)
\(812\) 11.7745 + 20.3940i 0.413204 + 0.715691i
\(813\) 0 0
\(814\) 2.04959 3.54999i 0.0718381 0.124427i
\(815\) −6.04129 + 10.4638i −0.211617 + 0.366531i
\(816\) 0 0
\(817\) 8.87820 + 15.3775i 0.310609 + 0.537991i
\(818\) −20.6905 −0.723427
\(819\) 0 0
\(820\) −9.59917 −0.335218
\(821\) 8.22020 + 14.2378i 0.286887 + 0.496903i 0.973065 0.230531i \(-0.0740462\pi\)
−0.686178 + 0.727434i \(0.740713\pi\)
\(822\) 0 0
\(823\) 5.81473 10.0714i 0.202689 0.351067i −0.746705 0.665155i \(-0.768365\pi\)
0.949394 + 0.314088i \(0.101699\pi\)
\(824\) 12.1061 20.9685i 0.421738 0.730471i
\(825\) 0 0
\(826\) 2.02039 + 3.49942i 0.0702985 + 0.121761i
\(827\) −12.5268 −0.435601 −0.217801 0.975993i \(-0.569888\pi\)
−0.217801 + 0.975993i \(0.569888\pi\)
\(828\) 0 0
\(829\) −17.6538 −0.613140 −0.306570 0.951848i \(-0.599181\pi\)
−0.306570 + 0.951848i \(0.599181\pi\)
\(830\) −0.705524 1.22200i −0.0244891 0.0424164i
\(831\) 0 0
\(832\) −3.50831 + 6.07658i −0.121629 + 0.210667i
\(833\) 2.08509 3.61147i 0.0722439 0.125130i
\(834\) 0 0
\(835\) −5.07071 8.78272i −0.175479 0.303939i
\(836\) 5.95815 0.206067
\(837\) 0 0
\(838\) −8.59947 −0.297064
\(839\) 19.9829 + 34.6113i 0.689885 + 1.19492i 0.971875 + 0.235498i \(0.0756722\pi\)
−0.281990 + 0.959417i \(0.590994\pi\)
\(840\) 0 0
\(841\) −20.1254 + 34.8582i −0.693979 + 1.20201i
\(842\) 3.76615 6.52316i 0.129790 0.224803i
\(843\) 0 0
\(844\) −4.97807 8.62227i −0.171352 0.296791i
\(845\) 7.88106 0.271117
\(846\) 0 0
\(847\) −11.2560 −0.386760
\(848\) 2.71975 + 4.71075i 0.0933967 + 0.161768i
\(849\) 0 0
\(850\) −1.31975 + 2.28587i −0.0452670 + 0.0784047i
\(851\) −6.31679 + 10.9410i −0.216537 + 0.375053i
\(852\) 0 0
\(853\) 19.8596 + 34.3979i 0.679981 + 1.17776i 0.974986 + 0.222266i \(0.0713454\pi\)
−0.295005 + 0.955496i \(0.595321\pi\)
\(854\) 5.24000 0.179309
\(855\) 0 0
\(856\) −18.1781 −0.621315
\(857\) −14.2073 24.6078i −0.485313 0.840587i 0.514544 0.857464i \(-0.327961\pi\)
−0.999858 + 0.0168765i \(0.994628\pi\)
\(858\) 0 0
\(859\) −15.2484 + 26.4111i −0.520270 + 0.901134i 0.479453 + 0.877568i \(0.340835\pi\)
−0.999722 + 0.0235657i \(0.992498\pi\)
\(860\) −4.93427 + 8.54641i −0.168257 + 0.291430i
\(861\) 0 0
\(862\) −5.45691 9.45164i −0.185863 0.321924i
\(863\) −55.9758 −1.90544 −0.952719 0.303854i \(-0.901726\pi\)
−0.952719 + 0.303854i \(0.901726\pi\)
\(864\) 0 0
\(865\) −6.18680 −0.210357
\(866\) −5.89949 10.2182i −0.200473 0.347229i
\(867\) 0 0
\(868\) −1.86456 + 3.22951i −0.0632873 + 0.109617i
\(869\) −1.52570 + 2.64258i −0.0517557 + 0.0896435i
\(870\) 0 0
\(871\) 12.7506 + 22.0847i 0.432038 + 0.748312i
\(872\) −24.0804 −0.815464
\(873\) 0 0
\(874\) 3.46898 0.117340
\(875\) 4.59087 + 7.95162i 0.155200 + 0.268814i
\(876\) 0 0
\(877\) 9.39069 16.2651i 0.317101 0.549235i −0.662781 0.748813i \(-0.730624\pi\)
0.979882 + 0.199578i \(0.0639572\pi\)
\(878\) 4.66932 8.08749i 0.157582 0.272940i
\(879\) 0 0
\(880\) 1.28382 + 2.22365i 0.0432777 + 0.0749591i
\(881\) 16.0574 0.540989 0.270494 0.962722i \(-0.412813\pi\)
0.270494 + 0.962722i \(0.412813\pi\)
\(882\) 0 0
\(883\) −7.50162 −0.252449 −0.126225 0.992002i \(-0.540286\pi\)
−0.126225 + 0.992002i \(0.540286\pi\)
\(884\) −4.36891 7.56717i −0.146942 0.254511i
\(885\) 0 0
\(886\) 1.59420 2.76124i 0.0535583 0.0927657i
\(887\) 16.4778 28.5405i 0.553272 0.958295i −0.444764 0.895648i \(-0.646712\pi\)
0.998036 0.0626469i \(-0.0199542\pi\)
\(888\) 0 0
\(889\) 5.77996 + 10.0112i 0.193854 + 0.335764i
\(890\) 4.01920 0.134724
\(891\) 0 0
\(892\) 27.0161 0.904567
\(893\) 5.32869 + 9.22955i 0.178318 + 0.308855i
\(894\) 0 0
\(895\) −6.59621 + 11.4250i −0.220487 + 0.381895i
\(896\) −9.70509 + 16.8097i −0.324224 + 0.561573i
\(897\) 0 0
\(898\) −0.959354 1.66165i −0.0320140 0.0554500i
\(899\) −10.9663 −0.365745
\(900\) 0 0
\(901\) −2.47898 −0.0825869
\(902\) −5.92247 10.2580i −0.197197 0.341554i
\(903\) 0 0
\(904\) −15.2279 + 26.3755i −0.506473 + 0.877237i
\(905\) −0.886772 + 1.53593i −0.0294773 + 0.0510562i
\(906\) 0 0
\(907\) 23.3642 + 40.4680i 0.775797 + 1.34372i 0.934346 + 0.356368i \(0.115985\pi\)
−0.158549 + 0.987351i \(0.550682\pi\)
\(908\) 23.7646 0.788655
\(909\) 0 0
\(910\) 2.77679 0.0920498
\(911\) −13.6560 23.6528i −0.452442 0.783653i 0.546095 0.837723i \(-0.316114\pi\)
−0.998537 + 0.0540702i \(0.982781\pi\)
\(912\) 0 0
\(913\) −4.60840 + 7.98198i −0.152516 + 0.264165i
\(914\) −2.68240 + 4.64606i −0.0887260 + 0.153678i
\(915\) 0 0
\(916\) 5.13544 + 8.89484i 0.169680 + 0.293894i
\(917\) −32.4294 −1.07091
\(918\) 0 0
\(919\) −34.5935 −1.14113 −0.570567 0.821251i \(-0.693276\pi\)
−0.570567 + 0.821251i \(0.693276\pi\)
\(920\) 2.11008 + 3.65476i 0.0695671 + 0.120494i
\(921\) 0 0
\(922\) −0.00142641 + 0.00247062i −4.69764e−5 + 8.13655e-5i
\(923\) −5.37789 + 9.31477i −0.177015 + 0.306599i
\(924\) 0 0
\(925\) −8.20104 14.2046i −0.269648 0.467045i
\(926\) 13.6491 0.448538
\(927\) 0 0
\(928\) −44.8415 −1.47199
\(929\) 11.0477 + 19.1352i 0.362464 + 0.627807i 0.988366 0.152095i \(-0.0486021\pi\)
−0.625901 + 0.779902i \(0.715269\pi\)
\(930\) 0 0
\(931\) 3.55776 6.16221i 0.116601 0.201958i
\(932\) 11.5903 20.0750i 0.379653 0.657578i
\(933\) 0 0
\(934\) −2.60548 4.51282i −0.0852539 0.147664i
\(935\) −1.17017 −0.0382687
\(936\) 0 0
\(937\) 5.76840 0.188445 0.0942226 0.995551i \(-0.469963\pi\)
0.0942226 + 0.995551i \(0.469963\pi\)
\(938\) 2.32787 + 4.03199i 0.0760077 + 0.131649i
\(939\) 0 0
\(940\) −2.96154 + 5.12954i −0.0965949 + 0.167307i
\(941\) −6.22903 + 10.7890i −0.203061 + 0.351711i −0.949513 0.313727i \(-0.898422\pi\)
0.746452 + 0.665439i \(0.231756\pi\)
\(942\) 0 0
\(943\) 18.2529 + 31.6150i 0.594397 + 1.02953i
\(944\) 9.34978 0.304309
\(945\) 0 0
\(946\) −12.1773 −0.395919
\(947\) −16.9339 29.3303i −0.550277 0.953108i −0.998254 0.0590628i \(-0.981189\pi\)
0.447977 0.894045i \(-0.352145\pi\)
\(948\) 0 0
\(949\) −24.0230 + 41.6091i −0.779820 + 1.35069i
\(950\) −2.25187 + 3.90036i −0.0730603 + 0.126544i
\(951\) 0 0
\(952\) −1.74594 3.02405i −0.0565862 0.0980102i
\(953\) −7.12201 −0.230705 −0.115352 0.993325i \(-0.536800\pi\)
−0.115352 + 0.993325i \(0.536800\pi\)
\(954\) 0 0
\(955\) 2.19863 0.0711460
\(956\) −19.6793 34.0856i −0.636475 1.10241i
\(957\) 0 0
\(958\) −6.75128 + 11.6936i −0.218124 + 0.377802i
\(959\) −3.35261 + 5.80689i −0.108261 + 0.187514i
\(960\) 0 0
\(961\) 14.6317 + 25.3429i 0.471991 + 0.817512i
\(962\) −10.2575 −0.330715
\(963\) 0 0
\(964\) −48.3956 −1.55872
\(965\) 1.78712 + 3.09538i 0.0575293 + 0.0996437i
\(966\) 0 0
\(967\) −12.8017 + 22.1733i −0.411676 + 0.713044i −0.995073 0.0991432i \(-0.968390\pi\)
0.583397 + 0.812187i \(0.301723\pi\)
\(968\) 6.94468 12.0285i 0.223210 0.386612i
\(969\) 0 0
\(970\) −2.50974 4.34700i −0.0805829 0.139574i
\(971\) 3.26678 0.104836 0.0524180 0.998625i \(-0.483307\pi\)
0.0524180 + 0.998625i \(0.483307\pi\)
\(972\) 0 0
\(973\) 25.1340 0.805758
\(974\) −7.90664 13.6947i −0.253345 0.438807i
\(975\) 0 0
\(976\) 6.06228 10.5002i 0.194049 0.336103i
\(977\) −29.8689 + 51.7345i −0.955591 + 1.65513i −0.222582 + 0.974914i \(0.571448\pi\)
−0.733010 + 0.680218i \(0.761885\pi\)
\(978\) 0 0
\(979\) −13.1265 22.7357i −0.419524 0.726636i
\(980\) 3.95462 0.126326
\(981\) 0 0
\(982\) 10.9446 0.349257
\(983\) −13.2360 22.9255i −0.422164 0.731210i 0.573987 0.818865i \(-0.305396\pi\)
−0.996151 + 0.0876545i \(0.972063\pi\)
\(984\) 0 0
\(985\) 0.573560 0.993436i 0.0182752 0.0316535i
\(986\) 2.34559 4.06269i 0.0746989 0.129382i
\(987\) 0 0
\(988\) −7.45462 12.9118i −0.237163 0.410778i
\(989\) 37.5303 1.19339
\(990\) 0 0
\(991\) 16.1219 0.512130 0.256065 0.966660i \(-0.417574\pi\)
0.256065 + 0.966660i \(0.417574\pi\)
\(992\) −3.55046 6.14957i −0.112727 0.195249i
\(993\) 0 0
\(994\) −0.981837 + 1.70059i −0.0311420 + 0.0539395i
\(995\) −4.47579 + 7.75230i −0.141892 + 0.245764i
\(996\) 0 0
\(997\) −5.18312 8.97743i −0.164151 0.284318i 0.772202 0.635377i \(-0.219155\pi\)
−0.936354 + 0.351059i \(0.885822\pi\)
\(998\) −5.59841 −0.177215
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 459.2.e.b.307.3 8
3.2 odd 2 153.2.e.b.103.2 yes 8
9.2 odd 6 153.2.e.b.52.2 8
9.4 even 3 1377.2.a.f.1.2 4
9.5 odd 6 1377.2.a.e.1.3 4
9.7 even 3 inner 459.2.e.b.154.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
153.2.e.b.52.2 8 9.2 odd 6
153.2.e.b.103.2 yes 8 3.2 odd 2
459.2.e.b.154.3 8 9.7 even 3 inner
459.2.e.b.307.3 8 1.1 even 1 trivial
1377.2.a.e.1.3 4 9.5 odd 6
1377.2.a.f.1.2 4 9.4 even 3