gp: [N,k,chi] = [460,2,Mod(91,460)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(460, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 0, 1]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("460.91");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [16]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 15 1,\beta_1,\ldots,\beta_{15} 1 , β 1 , … , β 1 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 16 − x 14 + x 12 + 8 x 10 − 20 x 8 + 32 x 6 + 16 x 4 − 64 x 2 + 256 x^{16} - x^{14} + x^{12} + 8x^{10} - 20x^{8} + 32x^{6} + 16x^{4} - 64x^{2} + 256 x 1 6 − x 1 4 + x 1 2 + 8 x 1 0 − 2 0 x 8 + 3 2 x 6 + 1 6 x 4 − 6 4 x 2 + 2 5 6
x^16 - x^14 + x^12 + 8*x^10 - 20*x^8 + 32*x^6 + 16*x^4 - 64*x^2 + 256
:
β 1 \beta_{1} β 1 = = =
( − ν 15 + 5 ν 13 + 3 ν 11 + 4 ν 9 + 172 ν 7 − 96 ν 5 − 112 ν 3 − 256 ν ) / 1152 ( -\nu^{15} + 5\nu^{13} + 3\nu^{11} + 4\nu^{9} + 172\nu^{7} - 96\nu^{5} - 112\nu^{3} - 256\nu ) / 1152 ( − ν 1 5 + 5 ν 1 3 + 3 ν 1 1 + 4 ν 9 + 1 7 2 ν 7 − 9 6 ν 5 − 1 1 2 ν 3 − 2 5 6 ν ) / 1 1 5 2
(-v^15 + 5*v^13 + 3*v^11 + 4*v^9 + 172*v^7 - 96*v^5 - 112*v^3 - 256*v) / 1152
β 2 \beta_{2} β 2 = = =
( − ν 14 − ν 12 − 15 ν 10 − 2 ν 8 + 28 ν 6 − 96 ν 4 + 80 ν 2 − 160 ) / 288 ( -\nu^{14} - \nu^{12} - 15\nu^{10} - 2\nu^{8} + 28\nu^{6} - 96\nu^{4} + 80\nu^{2} - 160 ) / 288 ( − ν 1 4 − ν 1 2 − 1 5 ν 1 0 − 2 ν 8 + 2 8 ν 6 − 9 6 ν 4 + 8 0 ν 2 − 1 6 0 ) / 2 8 8
(-v^14 - v^12 - 15*v^10 - 2*v^8 + 28*v^6 - 96*v^4 + 80*v^2 - 160) / 288
β 3 \beta_{3} β 3 = = =
( ν 15 + 7 ν 13 + 9 ν 11 − 16 ν 9 + 44 ν 7 + 144 ν 5 − 80 ν 3 + 640 ν ) / 1152 ( \nu^{15} + 7\nu^{13} + 9\nu^{11} - 16\nu^{9} + 44\nu^{7} + 144\nu^{5} - 80\nu^{3} + 640\nu ) / 1152 ( ν 1 5 + 7 ν 1 3 + 9 ν 1 1 − 1 6 ν 9 + 4 4 ν 7 + 1 4 4 ν 5 − 8 0 ν 3 + 6 4 0 ν ) / 1 1 5 2
(v^15 + 7*v^13 + 9*v^11 - 16*v^9 + 44*v^7 + 144*v^5 - 80*v^3 + 640*v) / 1152
β 4 \beta_{4} β 4 = = =
( − 2 ν 14 − 3 ν 13 + 4 ν 12 + 15 ν 11 − 12 ν 10 − 27 ν 9 − 22 ν 8 + ⋯ + 64 ) / 576 ( - 2 \nu^{14} - 3 \nu^{13} + 4 \nu^{12} + 15 \nu^{11} - 12 \nu^{10} - 27 \nu^{9} - 22 \nu^{8} + \cdots + 64 ) / 576 ( − 2 ν 1 4 − 3 ν 1 3 + 4 ν 1 2 + 1 5 ν 1 1 − 1 2 ν 1 0 − 2 7 ν 9 − 2 2 ν 8 + ⋯ + 6 4 ) / 5 7 6
(-2*v^14 - 3*v^13 + 4*v^12 + 15*v^11 - 12*v^10 - 27*v^9 - 22*v^8 + 24*v^7 + 32*v^6 + 24*v^5 - 120*v^4 - 216*v^3 - 128*v^2 + 576*v + 64) / 576
β 5 \beta_{5} β 5 = = =
( − ν 15 + 6 ν 14 + 11 ν 13 − 6 ν 12 − 15 ν 11 + 30 ν 10 + 22 ν 9 + ⋯ + 768 ) / 1152 ( - \nu^{15} + 6 \nu^{14} + 11 \nu^{13} - 6 \nu^{12} - 15 \nu^{11} + 30 \nu^{10} + 22 \nu^{9} + \cdots + 768 ) / 1152 ( − ν 1 5 + 6 ν 1 4 + 1 1 ν 1 3 − 6 ν 1 2 − 1 5 ν 1 1 + 3 0 ν 1 0 + 2 2 ν 9 + ⋯ + 7 6 8 ) / 1 1 5 2
(-v^15 + 6*v^14 + 11*v^13 - 6*v^12 - 15*v^11 + 30*v^10 + 22*v^9 + 24*v^8 - 32*v^7 + 96*v^6 - 168*v^5 + 192*v^4 + 176*v^3 - 576*v^2 + 128*v + 768) / 1152
β 6 \beta_{6} β 6 = = =
( 2 ν 14 − 3 ν 13 − 4 ν 12 + 15 ν 11 + 12 ν 10 − 27 ν 9 + 22 ν 8 + 24 ν 7 + ⋯ − 64 ) / 576 ( 2 \nu^{14} - 3 \nu^{13} - 4 \nu^{12} + 15 \nu^{11} + 12 \nu^{10} - 27 \nu^{9} + 22 \nu^{8} + 24 \nu^{7} + \cdots - 64 ) / 576 ( 2 ν 1 4 − 3 ν 1 3 − 4 ν 1 2 + 1 5 ν 1 1 + 1 2 ν 1 0 − 2 7 ν 9 + 2 2 ν 8 + 2 4 ν 7 + ⋯ − 6 4 ) / 5 7 6
(2*v^14 - 3*v^13 - 4*v^12 + 15*v^11 + 12*v^10 - 27*v^9 + 22*v^8 + 24*v^7 - 32*v^6 + 24*v^5 + 120*v^4 - 216*v^3 + 128*v^2 + 576*v - 64) / 576
β 7 \beta_{7} β 7 = = =
( ν 15 − 9 ν 13 + 9 ν 11 − 16 ν 9 − 36 ν 7 + 144 ν 5 − 80 ν 3 ) / 384 ( \nu^{15} - 9\nu^{13} + 9\nu^{11} - 16\nu^{9} - 36\nu^{7} + 144\nu^{5} - 80\nu^{3} ) / 384 ( ν 1 5 − 9 ν 1 3 + 9 ν 1 1 − 1 6 ν 9 − 3 6 ν 7 + 1 4 4 ν 5 − 8 0 ν 3 ) / 3 8 4
(v^15 - 9*v^13 + 9*v^11 - 16*v^9 - 36*v^7 + 144*v^5 - 80*v^3) / 384
β 8 \beta_{8} β 8 = = =
( − 3 ν 15 − 4 ν 14 − 3 ν 13 + 8 ν 12 + 3 ν 11 − 24 ν 10 − 54 ν 9 + ⋯ + 128 ) / 1152 ( - 3 \nu^{15} - 4 \nu^{14} - 3 \nu^{13} + 8 \nu^{12} + 3 \nu^{11} - 24 \nu^{10} - 54 \nu^{9} + \cdots + 128 ) / 1152 ( − 3 ν 1 5 − 4 ν 1 4 − 3 ν 1 3 + 8 ν 1 2 + 3 ν 1 1 − 2 4 ν 1 0 − 5 4 ν 9 + ⋯ + 1 2 8 ) / 1 1 5 2
(-3*v^15 - 4*v^14 - 3*v^13 + 8*v^12 + 3*v^11 - 24*v^10 - 54*v^9 - 44*v^8 - 12*v^7 + 64*v^6 + 48*v^5 - 240*v^4 - 672*v^3 - 256*v^2 + 128) / 1152
β 9 \beta_{9} β 9 = = =
( 2 ν 14 + 9 ν 13 − 4 ν 12 − 9 ν 11 + 12 ν 10 − 27 ν 9 + 22 ν 8 + 36 ν 7 + ⋯ − 64 ) / 576 ( 2 \nu^{14} + 9 \nu^{13} - 4 \nu^{12} - 9 \nu^{11} + 12 \nu^{10} - 27 \nu^{9} + 22 \nu^{8} + 36 \nu^{7} + \cdots - 64 ) / 576 ( 2 ν 1 4 + 9 ν 1 3 − 4 ν 1 2 − 9 ν 1 1 + 1 2 ν 1 0 − 2 7 ν 9 + 2 2 ν 8 + 3 6 ν 7 + ⋯ − 6 4 ) / 5 7 6
(2*v^14 + 9*v^13 - 4*v^12 - 9*v^11 + 12*v^10 - 27*v^9 + 22*v^8 + 36*v^7 - 32*v^6 - 144*v^5 + 120*v^4 + 216*v^3 + 128*v^2 - 64) / 576
β 10 \beta_{10} β 1 0 = = =
( − 3 ν 15 + 8 ν 14 + 3 ν 13 − 4 ν 12 − 39 ν 11 + 36 ν 10 − 12 ν 9 + ⋯ + 896 ) / 1152 ( - 3 \nu^{15} + 8 \nu^{14} + 3 \nu^{13} - 4 \nu^{12} - 39 \nu^{11} + 36 \nu^{10} - 12 \nu^{9} + \cdots + 896 ) / 1152 ( − 3 ν 1 5 + 8 ν 1 4 + 3 ν 1 3 − 4 ν 1 2 − 3 9 ν 1 1 + 3 6 ν 1 0 − 1 2 ν 9 + ⋯ + 8 9 6 ) / 1 1 5 2
(-3*v^15 + 8*v^14 + 3*v^13 - 4*v^12 - 39*v^11 + 36*v^10 - 12*v^9 - 44*v^8 + 48*v^7 - 80*v^6 - 120*v^5 + 288*v^4 - 448*v^2 + 896) / 1152
β 11 \beta_{11} β 1 1 = = =
( − ν 15 − 6 ν 14 + 11 ν 13 + 30 ν 12 − 15 ν 11 − 6 ν 10 + 22 ν 9 + ⋯ + 1152 ) / 1152 ( - \nu^{15} - 6 \nu^{14} + 11 \nu^{13} + 30 \nu^{12} - 15 \nu^{11} - 6 \nu^{10} + 22 \nu^{9} + \cdots + 1152 ) / 1152 ( − ν 1 5 − 6 ν 1 4 + 1 1 ν 1 3 + 3 0 ν 1 2 − 1 5 ν 1 1 − 6 ν 1 0 + 2 2 ν 9 + ⋯ + 1 1 5 2 ) / 1 1 5 2
(-v^15 - 6*v^14 + 11*v^13 + 30*v^12 - 15*v^11 - 6*v^10 + 22*v^9 - 48*v^8 - 32*v^7 + 336*v^6 - 168*v^5 - 96*v^4 + 176*v^3 + 192*v^2 + 128*v + 1152) / 1152
β 12 \beta_{12} β 1 2 = = =
( ν 15 − 4 ν 12 + 8 ν 10 + 5 ν 9 − 8 ν 8 − 12 ν 6 + 32 ν 4 − 8 ν 3 − 128 ν 2 + 64 ) / 192 ( \nu^{15} - 4\nu^{12} + 8\nu^{10} + 5\nu^{9} - 8\nu^{8} - 12\nu^{6} + 32\nu^{4} - 8\nu^{3} - 128\nu^{2} + 64 ) / 192 ( ν 1 5 − 4 ν 1 2 + 8 ν 1 0 + 5 ν 9 − 8 ν 8 − 1 2 ν 6 + 3 2 ν 4 − 8 ν 3 − 1 2 8 ν 2 + 6 4 ) / 1 9 2
(v^15 - 4*v^12 + 8*v^10 + 5*v^9 - 8*v^8 - 12*v^6 + 32*v^4 - 8*v^3 - 128*v^2 + 64) / 192
β 13 \beta_{13} β 1 3 = = =
( ν 15 + 4 ν 12 + 5 ν 9 + 20 ν 6 − 96 ν 4 − 8 ν 3 + 96 ν 2 + 64 ) / 192 ( \nu^{15} + 4\nu^{12} + 5\nu^{9} + 20\nu^{6} - 96\nu^{4} - 8\nu^{3} + 96\nu^{2} + 64 ) / 192 ( ν 1 5 + 4 ν 1 2 + 5 ν 9 + 2 0 ν 6 − 9 6 ν 4 − 8 ν 3 + 9 6 ν 2 + 6 4 ) / 1 9 2
(v^15 + 4*v^12 + 5*v^9 + 20*v^6 - 96*v^4 - 8*v^3 + 96*v^2 + 64) / 192
β 14 \beta_{14} β 1 4 = = =
( 3 ν 15 + 8 ν 14 − 3 ν 13 − 4 ν 12 + 39 ν 11 + 36 ν 10 + 12 ν 9 + ⋯ + 896 ) / 1152 ( 3 \nu^{15} + 8 \nu^{14} - 3 \nu^{13} - 4 \nu^{12} + 39 \nu^{11} + 36 \nu^{10} + 12 \nu^{9} + \cdots + 896 ) / 1152 ( 3 ν 1 5 + 8 ν 1 4 − 3 ν 1 3 − 4 ν 1 2 + 3 9 ν 1 1 + 3 6 ν 1 0 + 1 2 ν 9 + ⋯ + 8 9 6 ) / 1 1 5 2
(3*v^15 + 8*v^14 - 3*v^13 - 4*v^12 + 39*v^11 + 36*v^10 + 12*v^9 - 44*v^8 - 48*v^7 - 80*v^6 + 120*v^5 + 288*v^4 - 448*v^2 + 896) / 1152
β 15 \beta_{15} β 1 5 = = =
( − ν 15 − 4 ν 12 + 8 ν 10 − 5 ν 9 − 8 ν 8 − 12 ν 6 + 32 ν 4 + 8 ν 3 − 128 ν 2 + 64 ) / 192 ( -\nu^{15} - 4\nu^{12} + 8\nu^{10} - 5\nu^{9} - 8\nu^{8} - 12\nu^{6} + 32\nu^{4} + 8\nu^{3} - 128\nu^{2} + 64 ) / 192 ( − ν 1 5 − 4 ν 1 2 + 8 ν 1 0 − 5 ν 9 − 8 ν 8 − 1 2 ν 6 + 3 2 ν 4 + 8 ν 3 − 1 2 8 ν 2 + 6 4 ) / 1 9 2
(-v^15 - 4*v^12 + 8*v^10 - 5*v^9 - 8*v^8 - 12*v^6 + 32*v^4 + 8*v^3 - 128*v^2 + 64) / 192
ν \nu ν = = =
( − β 14 + β 10 − β 9 − 2 β 8 − β 7 + β 6 + 2 β 4 + β 3 − 2 β 1 ) / 4 ( -\beta_{14} + \beta_{10} - \beta_{9} - 2\beta_{8} - \beta_{7} + \beta_{6} + 2\beta_{4} + \beta_{3} - 2\beta_1 ) / 4 ( − β 1 4 + β 1 0 − β 9 − 2 β 8 − β 7 + β 6 + 2 β 4 + β 3 − 2 β 1 ) / 4
(-b14 + b10 - b9 - 2*b8 - b7 + b6 + 2*b4 + b3 - 2*b1) / 4
ν 2 \nu^{2} ν 2 = = =
( β 15 + β 14 + β 13 + 2 β 11 + β 10 − β 7 + 4 β 6 − 4 β 5 + ⋯ + 1 ) / 4 ( \beta_{15} + \beta_{14} + \beta_{13} + 2 \beta_{11} + \beta_{10} - \beta_{7} + 4 \beta_{6} - 4 \beta_{5} + \cdots + 1 ) / 4 ( β 1 5 + β 1 4 + β 1 3 + 2 β 1 1 + β 1 0 − β 7 + 4 β 6 − 4 β 5 + ⋯ + 1 ) / 4
(b15 + b14 + b13 + 2*b11 + b10 - b7 + 4*b6 - 4*b5 - 4*b4 + 3*b2 - b1 + 1) / 4
ν 3 \nu^{3} ν 3 = = =
( β 15 − β 12 + β 9 − 3 β 8 + β 7 − 2 β 6 + 2 β 4 ) / 2 ( \beta_{15} - \beta_{12} + \beta_{9} - 3\beta_{8} + \beta_{7} - 2\beta_{6} + 2\beta_{4} ) / 2 ( β 1 5 − β 1 2 + β 9 − 3 β 8 + β 7 − 2 β 6 + 2 β 4 ) / 2
(b15 - b12 + b9 - 3*b8 + b7 - 2*b6 + 2*b4) / 2
ν 4 \nu^{4} ν 4 = = =
( − 5 β 15 + β 14 − 7 β 13 + 2 β 12 + 4 β 11 + β 10 + β 7 + ⋯ − 1 ) / 4 ( - 5 \beta_{15} + \beta_{14} - 7 \beta_{13} + 2 \beta_{12} + 4 \beta_{11} + \beta_{10} + \beta_{7} + \cdots - 1 ) / 4 ( − 5 β 1 5 + β 1 4 − 7 β 1 3 + 2 β 1 2 + 4 β 1 1 + β 1 0 + β 7 + ⋯ − 1 ) / 4
(-5*b15 + b14 - 7*b13 + 2*b12 + 4*b11 + b10 + b7 + 2*b6 - 2*b5 - 2*b4 - b2 + b1 - 1) / 4
ν 5 \nu^{5} ν 5 = = =
( 2 β 15 − β 14 − 2 β 12 + β 10 − 3 β 9 + 5 β 7 − 3 β 6 + ⋯ + 2 β 1 ) / 4 ( 2 \beta_{15} - \beta_{14} - 2 \beta_{12} + \beta_{10} - 3 \beta_{9} + 5 \beta_{7} - 3 \beta_{6} + \cdots + 2 \beta_1 ) / 4 ( 2 β 1 5 − β 1 4 − 2 β 1 2 + β 1 0 − 3 β 9 + 5 β 7 − 3 β 6 + ⋯ + 2 β 1 ) / 4
(2*b15 - b14 - 2*b12 + b10 - 3*b9 + 5*b7 - 3*b6 - 6*b4 + 17*b3 + 2*b1) / 4
ν 6 \nu^{6} ν 6 = = =
( β 15 + β 12 + 5 β 11 + 5 β 7 + 3 β 6 + 5 β 5 − 3 β 4 + 6 β 2 + 5 β 1 − 5 ) / 2 ( \beta_{15} + \beta_{12} + 5\beta_{11} + 5\beta_{7} + 3\beta_{6} + 5\beta_{5} - 3\beta_{4} + 6\beta_{2} + 5\beta _1 - 5 ) / 2 ( β 1 5 + β 1 2 + 5 β 1 1 + 5 β 7 + 3 β 6 + 5 β 5 − 3 β 4 + 6 β 2 + 5 β 1 − 5 ) / 2
(b15 + b12 + 5*b11 + 5*b7 + 3*b6 + 5*b5 - 3*b4 + 6*b2 + 5*b1 - 5) / 2
ν 7 \nu^{7} ν 7 = = =
( − 5 β 14 + 5 β 10 − β 9 − 10 β 8 + 7 β 7 − 3 β 6 + 6 β 4 + 5 β 3 + 26 β 1 ) / 4 ( -5\beta_{14} + 5\beta_{10} - \beta_{9} - 10\beta_{8} + 7\beta_{7} - 3\beta_{6} + 6\beta_{4} + 5\beta_{3} + 26\beta_1 ) / 4 ( − 5 β 1 4 + 5 β 1 0 − β 9 − 1 0 β 8 + 7 β 7 − 3 β 6 + 6 β 4 + 5 β 3 + 2 6 β 1 ) / 4
(-5*b14 + 5*b10 - b9 - 10*b8 + 7*b7 - 3*b6 + 6*b4 + 5*b3 + 26*b1) / 4
ν 8 \nu^{8} ν 8 = = =
( − 9 β 15 − 25 β 14 − β 13 − 8 β 12 − 18 β 11 − 25 β 10 + 9 β 7 + ⋯ + 23 ) / 4 ( - 9 \beta_{15} - 25 \beta_{14} - \beta_{13} - 8 \beta_{12} - 18 \beta_{11} - 25 \beta_{10} + 9 \beta_{7} + \cdots + 23 ) / 4 ( − 9 β 1 5 − 2 5 β 1 4 − β 1 3 − 8 β 1 2 − 1 8 β 1 1 − 2 5 β 1 0 + 9 β 7 + ⋯ + 2 3 ) / 4
(-9*b15 - 25*b14 - b13 - 8*b12 - 18*b11 - 25*b10 + 9*b7 - 4*b6 + 36*b5 + 4*b4 - 27*b2 + 9*b1 + 23) / 4
ν 9 \nu^{9} ν 9 = = =
( − β 15 + β 12 − 21 β 9 − 9 β 8 − 13 β 7 + 6 β 6 − 6 β 4 ) / 2 ( -\beta_{15} + \beta_{12} - 21\beta_{9} - 9\beta_{8} - 13\beta_{7} + 6\beta_{6} - 6\beta_{4} ) / 2 ( − β 1 5 + β 1 2 − 2 1 β 9 − 9 β 8 − 1 3 β 7 + 6 β 6 − 6 β 4 ) / 2
(-b15 + b12 - 21*b9 - 9*b8 - 13*b7 + 6*b6 - 6*b4) / 2
ν 10 \nu^{10} ν 1 0 = = =
( 49 β 15 − 13 β 14 + 43 β 13 + 6 β 12 + 12 β 11 − 13 β 10 + 3 β 7 + ⋯ − 35 ) / 4 ( 49 \beta_{15} - 13 \beta_{14} + 43 \beta_{13} + 6 \beta_{12} + 12 \beta_{11} - 13 \beta_{10} + 3 \beta_{7} + \cdots - 35 ) / 4 ( 4 9 β 1 5 − 1 3 β 1 4 + 4 3 β 1 3 + 6 β 1 2 + 1 2 β 1 1 − 1 3 β 1 0 + 3 β 7 + ⋯ − 3 5 ) / 4
(49*b15 - 13*b14 + 43*b13 + 6*b12 + 12*b11 - 13*b10 + 3*b7 + 22*b6 - 6*b5 - 22*b4 - 35*b2 + 3*b1 - 35) / 4
ν 11 \nu^{11} ν 1 1 = = =
( 22 β 15 + 61 β 14 − 22 β 12 − 61 β 10 + 7 β 9 − 17 β 7 + ⋯ + 22 β 1 ) / 4 ( 22 \beta_{15} + 61 \beta_{14} - 22 \beta_{12} - 61 \beta_{10} + 7 \beta_{9} - 17 \beta_{7} + \cdots + 22 \beta_1 ) / 4 ( 2 2 β 1 5 + 6 1 β 1 4 − 2 2 β 1 2 − 6 1 β 1 0 + 7 β 9 − 1 7 β 7 + ⋯ + 2 2 β 1 ) / 4
(22*b15 + 61*b14 - 22*b12 - 61*b10 + 7*b9 - 17*b7 + 7*b6 + 14*b4 - 29*b3 + 22*b1) / 4
ν 12 \nu^{12} ν 1 2 = = =
( − 29 β 15 − 29 β 12 − β 11 − β 7 − 39 β 6 − β 5 + 39 β 4 + ⋯ − 31 ) / 2 ( - 29 \beta_{15} - 29 \beta_{12} - \beta_{11} - \beta_{7} - 39 \beta_{6} - \beta_{5} + 39 \beta_{4} + \cdots - 31 ) / 2 ( − 2 9 β 1 5 − 2 9 β 1 2 − β 1 1 − β 7 − 3 9 β 6 − β 5 + 3 9 β 4 + ⋯ − 3 1 ) / 2
(-29*b15 - 29*b12 - b11 - b7 - 39*b6 - b5 + 39*b4 - 78*b2 - b1 - 31) / 2
ν 13 \nu^{13} ν 1 3 = = =
( 65 β 14 − 65 β 10 + 45 β 9 + 130 β 8 − 91 β 7 − 25 β 6 + ⋯ − 50 β 1 ) / 4 ( 65 \beta_{14} - 65 \beta_{10} + 45 \beta_{9} + 130 \beta_{8} - 91 \beta_{7} - 25 \beta_{6} + \cdots - 50 \beta_1 ) / 4 ( 6 5 β 1 4 − 6 5 β 1 0 + 4 5 β 9 + 1 3 0 β 8 − 9 1 β 7 − 2 5 β 6 + ⋯ − 5 0 β 1 ) / 4
(65*b14 - 65*b10 + 45*b9 + 130*b8 - 91*b7 - 25*b6 - 110*b4 + 223*b3 - 50*b1) / 4
ν 14 \nu^{14} ν 1 4 = = =
( − 43 β 15 + 229 β 14 + 109 β 13 − 152 β 12 − 86 β 11 + 229 β 10 + ⋯ − 203 ) / 4 ( - 43 \beta_{15} + 229 \beta_{14} + 109 \beta_{13} - 152 \beta_{12} - 86 \beta_{11} + 229 \beta_{10} + \cdots - 203 ) / 4 ( − 4 3 β 1 5 + 2 2 9 β 1 4 + 1 0 9 β 1 3 − 1 5 2 β 1 2 − 8 6 β 1 1 + 2 2 9 β 1 0 + ⋯ − 2 0 3 ) / 4
(-43*b15 + 229*b14 + 109*b13 - 152*b12 - 86*b11 + 229*b10 + 43*b7 + 52*b6 + 172*b5 - 52*b4 + 255*b2 + 43*b1 - 203) / 4
ν 15 \nu^{15} ν 1 5 = = =
( − 179 β 15 + 179 β 12 + 113 β 9 + 21 β 8 + 73 β 7 − 46 β 6 + 46 β 4 ) / 2 ( -179\beta_{15} + 179\beta_{12} + 113\beta_{9} + 21\beta_{8} + 73\beta_{7} - 46\beta_{6} + 46\beta_{4} ) / 2 ( − 1 7 9 β 1 5 + 1 7 9 β 1 2 + 1 1 3 β 9 + 2 1 β 8 + 7 3 β 7 − 4 6 β 6 + 4 6 β 4 ) / 2
(-179*b15 + 179*b12 + 113*b9 + 21*b8 + 73*b7 - 46*b6 + 46*b4) / 2
Character values
We give the values of χ \chi χ on generators for ( Z / 460 Z ) × \left(\mathbb{Z}/460\mathbb{Z}\right)^\times ( Z / 4 6 0 Z ) × .
n n n
231 231 2 3 1
277 277 2 7 7
281 281 2 8 1
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
1 1 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 3 8 + 11 T 3 6 + 24 T 3 4 + 11 T 3 2 + 1 T_{3}^{8} + 11T_{3}^{6} + 24T_{3}^{4} + 11T_{3}^{2} + 1 T 3 8 + 1 1 T 3 6 + 2 4 T 3 4 + 1 1 T 3 2 + 1
T3^8 + 11*T3^6 + 24*T3^4 + 11*T3^2 + 1
acting on S 2 n e w ( 460 , [ χ ] ) S_{2}^{\mathrm{new}}(460, [\chi]) S 2 n e w ( 4 6 0 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
( T 8 − T 6 − 4 T 2 + 16 ) 2 (T^{8} - T^{6} - 4 T^{2} + 16)^{2} ( T 8 − T 6 − 4 T 2 + 1 6 ) 2
(T^8 - T^6 - 4*T^2 + 16)^2
3 3 3
( T 8 + 11 T 6 + 24 T 4 + ⋯ + 1 ) 2 (T^{8} + 11 T^{6} + 24 T^{4} + \cdots + 1)^{2} ( T 8 + 1 1 T 6 + 2 4 T 4 + ⋯ + 1 ) 2
(T^8 + 11*T^6 + 24*T^4 + 11*T^2 + 1)^2
5 5 5
( T 2 + 1 ) 8 (T^{2} + 1)^{8} ( T 2 + 1 ) 8
(T^2 + 1)^8
7 7 7
( T 8 − 45 T 6 + ⋯ + 2916 ) 2 (T^{8} - 45 T^{6} + \cdots + 2916)^{2} ( T 8 − 4 5 T 6 + ⋯ + 2 9 1 6 ) 2
(T^8 - 45*T^6 + 621*T^4 - 2916*T^2 + 2916)^2
11 11 1 1
( T 8 − 45 T 6 + ⋯ + 2916 ) 2 (T^{8} - 45 T^{6} + \cdots + 2916)^{2} ( T 8 − 4 5 T 6 + ⋯ + 2 9 1 6 ) 2
(T^8 - 45*T^6 + 621*T^4 - 2916*T^2 + 2916)^2
13 13 1 3
( T 4 − T 3 − 24 T 2 + ⋯ + 31 ) 4 (T^{4} - T^{3} - 24 T^{2} + \cdots + 31)^{4} ( T 4 − T 3 − 2 4 T 2 + ⋯ + 3 1 ) 4
(T^4 - T^3 - 24*T^2 - 25*T + 31)^4
17 17 1 7
( T 8 + 99 T 6 + ⋯ + 11664 ) 2 (T^{8} + 99 T^{6} + \cdots + 11664)^{2} ( T 8 + 9 9 T 6 + ⋯ + 1 1 6 6 4 ) 2
(T^8 + 99*T^6 + 2889*T^4 + 21384*T^2 + 11664)^2
19 19 1 9
( T 8 − 45 T 6 + ⋯ + 2916 ) 2 (T^{8} - 45 T^{6} + \cdots + 2916)^{2} ( T 8 − 4 5 T 6 + ⋯ + 2 9 1 6 ) 2
(T^8 - 45*T^6 + 621*T^4 - 2916*T^2 + 2916)^2
23 23 2 3
( T 8 − 16 T 6 + ⋯ + 279841 ) 2 (T^{8} - 16 T^{6} + \cdots + 279841)^{2} ( T 8 − 1 6 T 6 + ⋯ + 2 7 9 8 4 1 ) 2
(T^8 - 16*T^6 - 66*T^4 - 8464*T^2 + 279841)^2
29 29 2 9
( T 4 + 12 T 3 + ⋯ + 12 ) 4 (T^{4} + 12 T^{3} + \cdots + 12)^{4} ( T 4 + 1 2 T 3 + ⋯ + 1 2 ) 4
(T^4 + 12*T^3 + 45*T^2 + 54*T + 12)^4
31 31 3 1
( T 8 + 207 T 6 + ⋯ + 4124961 ) 2 (T^{8} + 207 T^{6} + \cdots + 4124961)^{2} ( T 8 + 2 0 7 T 6 + ⋯ + 4 1 2 4 9 6 1 ) 2
(T^8 + 207*T^6 + 14892*T^4 + 430191*T^2 + 4124961)^2
37 37 3 7
( T 8 + 108 T 6 + ⋯ + 46656 ) 2 (T^{8} + 108 T^{6} + \cdots + 46656)^{2} ( T 8 + 1 0 8 T 6 + ⋯ + 4 6 6 5 6 ) 2
(T^8 + 108*T^6 + 2484*T^4 + 19440*T^2 + 46656)^2
41 41 4 1
( T 4 + 9 T 3 + ⋯ − 681 ) 4 (T^{4} + 9 T^{3} + \cdots - 681)^{4} ( T 4 + 9 T 3 + ⋯ − 6 8 1 ) 4
(T^4 + 9*T^3 - 30*T^2 - 387*T - 681)^4
43 43 4 3
( T 8 − 180 T 6 + ⋯ + 46656 ) 2 (T^{8} - 180 T^{6} + \cdots + 46656)^{2} ( T 8 − 1 8 0 T 6 + ⋯ + 4 6 6 5 6 ) 2
(T^8 - 180*T^6 + 7668*T^4 - 89424*T^2 + 46656)^2
47 47 4 7
( T 8 + 362 T 6 + ⋯ + 163216 ) 2 (T^{8} + 362 T^{6} + \cdots + 163216)^{2} ( T 8 + 3 6 2 T 6 + ⋯ + 1 6 3 2 1 6 ) 2
(T^8 + 362*T^6 + 41457*T^4 + 1530020*T^2 + 163216)^2
53 53 5 3
( T 4 + 180 T 2 + 6912 ) 4 (T^{4} + 180 T^{2} + 6912)^{4} ( T 4 + 1 8 0 T 2 + 6 9 1 2 ) 4
(T^4 + 180*T^2 + 6912)^4
59 59 5 9
( T 4 + 76 T 2 + 256 ) 4 (T^{4} + 76 T^{2} + 256)^{4} ( T 4 + 7 6 T 2 + 2 5 6 ) 4
(T^4 + 76*T^2 + 256)^4
61 61 6 1
( T 8 + 243 T 6 + ⋯ + 13089924 ) 2 (T^{8} + 243 T^{6} + \cdots + 13089924)^{2} ( T 8 + 2 4 3 T 6 + ⋯ + 1 3 0 8 9 9 2 4 ) 2
(T^8 + 243*T^6 + 22005*T^4 + 879660*T^2 + 13089924)^2
67 67 6 7
( T 8 − 288 T 6 + ⋯ + 6718464 ) 2 (T^{8} - 288 T^{6} + \cdots + 6718464)^{2} ( T 8 − 2 8 8 T 6 + ⋯ + 6 7 1 8 4 6 4 ) 2
(T^8 - 288*T^6 + 26244*T^4 - 793152*T^2 + 6718464)^2
71 71 7 1
( T 8 + 215 T 6 + ⋯ + 6889 ) 2 (T^{8} + 215 T^{6} + \cdots + 6889)^{2} ( T 8 + 2 1 5 T 6 + ⋯ + 6 8 8 9 ) 2
(T^8 + 215*T^6 + 8940*T^4 + 21359*T^2 + 6889)^2
73 73 7 3
( T 4 − 2 T 3 + ⋯ − 908 ) 4 (T^{4} - 2 T^{3} + \cdots - 908)^{4} ( T 4 − 2 T 3 + ⋯ − 9 0 8 ) 4
(T^4 - 2*T^3 - 123*T^2 + 718*T - 908)^4
79 79 7 9
( T 8 − 324 T 6 + ⋯ + 3779136 ) 2 (T^{8} - 324 T^{6} + \cdots + 3779136)^{2} ( T 8 − 3 2 4 T 6 + ⋯ + 3 7 7 9 1 3 6 ) 2
(T^8 - 324*T^6 + 22356*T^4 - 524880*T^2 + 3779136)^2
83 83 8 3
( T 4 − 252 T 2 + 5184 ) 4 (T^{4} - 252 T^{2} + 5184)^{4} ( T 4 − 2 5 2 T 2 + 5 1 8 4 ) 4
(T^4 - 252*T^2 + 5184)^4
89 89 8 9
( T 8 + 396 T 6 + ⋯ + 13483584 ) 2 (T^{8} + 396 T^{6} + \cdots + 13483584)^{2} ( T 8 + 3 9 6 T 6 + ⋯ + 1 3 4 8 3 5 8 4 ) 2
(T^8 + 396*T^6 + 46548*T^4 + 1839024*T^2 + 13483584)^2
97 97 9 7
( T 8 + 531 T 6 + ⋯ + 29746116 ) 2 (T^{8} + 531 T^{6} + \cdots + 29746116)^{2} ( T 8 + 5 3 1 T 6 + ⋯ + 2 9 7 4 6 1 1 6 ) 2
(T^8 + 531*T^6 + 88749*T^4 + 4740444*T^2 + 29746116)^2
show more
show less