Properties

Label 484.2.g.f.239.1
Level $484$
Weight $2$
Character 484.239
Analytic conductor $3.865$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [484,2,Mod(215,484)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(484, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("484.215");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 484 = 2^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 484.g (of order \(10\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.86475945783\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 239.1
Root \(-0.204982 + 1.39928i\) of defining polynomial
Character \(\chi\) \(=\) 484.239
Dual form 484.2.g.f.403.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.26745 + 0.627351i) q^{2} +(0.873506 - 0.283819i) q^{3} +(1.21286 - 1.59027i) q^{4} +(-1.38723 - 1.00788i) q^{5} +(-0.929072 + 0.907722i) q^{6} +(-0.738720 + 2.27355i) q^{7} +(-0.539585 + 2.77648i) q^{8} +(-1.74459 + 1.26752i) q^{9} +O(q^{10})\) \(q+(-1.26745 + 0.627351i) q^{2} +(0.873506 - 0.283819i) q^{3} +(1.21286 - 1.59027i) q^{4} +(-1.38723 - 1.00788i) q^{5} +(-0.929072 + 0.907722i) q^{6} +(-0.738720 + 2.27355i) q^{7} +(-0.539585 + 2.77648i) q^{8} +(-1.74459 + 1.26752i) q^{9} +(2.39055 + 0.407162i) q^{10} +(0.608093 - 1.73335i) q^{12} +(-0.945515 - 1.30139i) q^{13} +(-0.490020 - 3.34504i) q^{14} +(-1.49781 - 0.486669i) q^{15} +(-1.05793 - 3.85756i) q^{16} +(-3.55361 + 4.89112i) q^{17} +(1.41600 - 2.70099i) q^{18} +(-0.409609 - 1.26065i) q^{19} +(-3.28533 + 0.983654i) q^{20} +2.19562i q^{21} +7.25726i q^{23} +(0.316689 + 2.57842i) q^{24} +(-0.636498 - 1.95894i) q^{25} +(2.01482 + 1.05628i) q^{26} +(-2.78373 + 3.83148i) q^{27} +(2.71959 + 3.93226i) q^{28} +(0.516085 + 0.167686i) q^{29} +(2.20372 - 0.322825i) q^{30} +(4.83783 + 6.65870i) q^{31} +(3.76092 + 4.22558i) q^{32} +(1.43557 - 8.42861i) q^{34} +(3.31625 - 2.40939i) q^{35} +(-0.100248 + 4.31170i) q^{36} +(0.114237 - 0.351585i) q^{37} +(1.31003 + 1.34084i) q^{38} +(-1.19527 - 0.868417i) q^{39} +(3.54690 - 3.30779i) q^{40} +(-4.84269 + 1.57349i) q^{41} +(-1.37742 - 2.78284i) q^{42} -9.45922 q^{43} +3.69767 q^{45} +(-4.55285 - 9.19822i) q^{46} +(-3.81125 + 1.23835i) q^{47} +(-2.01896 - 3.06934i) q^{48} +(1.03982 + 0.755472i) q^{49} +(2.03567 + 2.08355i) q^{50} +(-1.71590 + 5.28101i) q^{51} +(-3.21634 - 0.0747804i) q^{52} +(2.00527 - 1.45691i) q^{53} +(1.12456 - 6.60259i) q^{54} +(-5.91385 - 3.27781i) q^{56} +(-0.715591 - 0.984927i) q^{57} +(-0.759311 + 0.111232i) q^{58} +(-6.70659 - 2.17910i) q^{59} +(-2.59058 + 1.79167i) q^{60} +(5.81666 - 8.00595i) q^{61} +(-10.3090 - 5.40456i) q^{62} +(-1.59300 - 4.90275i) q^{63} +(-7.41770 - 2.99629i) q^{64} +2.75830i q^{65} +4.79085i q^{67} +(3.46818 + 11.5835i) q^{68} +(2.05975 + 6.33927i) q^{69} +(-2.69164 + 5.13424i) q^{70} +(-2.06424 + 2.84118i) q^{71} +(-2.57789 - 5.52776i) q^{72} +(1.99912 + 0.649555i) q^{73} +(0.0757774 + 0.517283i) q^{74} +(-1.11197 - 1.53050i) q^{75} +(-2.50157 - 0.877601i) q^{76} +(2.05975 + 0.350820i) q^{78} +(2.08801 - 1.51703i) q^{79} +(-2.42038 + 6.41761i) q^{80} +(0.654963 - 2.01577i) q^{81} +(5.15074 - 5.03238i) q^{82} +(-3.21257 - 2.33407i) q^{83} +(3.49163 + 2.66298i) q^{84} +(9.85937 - 3.20350i) q^{85} +(11.9891 - 5.93425i) q^{86} +0.498396 q^{87} -8.45225 q^{89} +(-4.68661 + 2.31973i) q^{90} +(3.65724 - 1.18831i) q^{91} +(11.5410 + 8.80206i) q^{92} +(6.11574 + 4.44334i) q^{93} +(4.05370 - 3.96054i) q^{94} +(-0.702362 + 2.16165i) q^{95} +(4.48449 + 2.62365i) q^{96} +(6.73607 - 4.89404i) q^{97} +(-1.79186 - 0.305193i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{2} - q^{4} + 4 q^{5} + 10 q^{6} - 5 q^{8} + 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 5 q^{2} - q^{4} + 4 q^{5} + 10 q^{6} - 5 q^{8} + 10 q^{9} - 22 q^{12} - 2 q^{14} - 17 q^{16} - 10 q^{17} - 15 q^{18} - 24 q^{20} + 40 q^{24} - 4 q^{25} + 16 q^{26} - 30 q^{28} + 40 q^{29} + 30 q^{30} - 6 q^{34} + 5 q^{36} - 12 q^{37} + 17 q^{38} - 50 q^{41} + 24 q^{42} + 40 q^{45} - 40 q^{46} - q^{48} + 16 q^{49} + 25 q^{50} - 20 q^{52} - 12 q^{53} - 12 q^{56} - 50 q^{57} - 48 q^{60} + 20 q^{61} - 30 q^{62} - 37 q^{64} + 35 q^{68} + 4 q^{69} + 22 q^{70} - 10 q^{72} - 30 q^{73} + 60 q^{74} + 4 q^{78} + 32 q^{80} + 16 q^{81} + 46 q^{82} - 10 q^{84} + 60 q^{85} + 46 q^{86} - 36 q^{89} - 40 q^{90} - 54 q^{92} + 2 q^{93} + 60 q^{94} - 55 q^{96} + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/484\mathbb{Z}\right)^\times\).

\(n\) \(243\) \(365\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.26745 + 0.627351i −0.896223 + 0.443604i
\(3\) 0.873506 0.283819i 0.504319 0.163863i −0.0457980 0.998951i \(-0.514583\pi\)
0.550117 + 0.835088i \(0.314583\pi\)
\(4\) 1.21286 1.59027i 0.606431 0.795136i
\(5\) −1.38723 1.00788i −0.620390 0.450740i 0.232668 0.972556i \(-0.425254\pi\)
−0.853058 + 0.521817i \(0.825254\pi\)
\(6\) −0.929072 + 0.907722i −0.379292 + 0.370576i
\(7\) −0.738720 + 2.27355i −0.279210 + 0.859319i 0.708865 + 0.705344i \(0.249208\pi\)
−0.988075 + 0.153975i \(0.950792\pi\)
\(8\) −0.539585 + 2.77648i −0.190772 + 0.981634i
\(9\) −1.74459 + 1.26752i −0.581530 + 0.422507i
\(10\) 2.39055 + 0.407162i 0.755957 + 0.128756i
\(11\) 0 0
\(12\) 0.608093 1.73335i 0.175541 0.500374i
\(13\) −0.945515 1.30139i −0.262239 0.360941i 0.657512 0.753444i \(-0.271609\pi\)
−0.919750 + 0.392504i \(0.871609\pi\)
\(14\) −0.490020 3.34504i −0.130963 0.894000i
\(15\) −1.49781 0.486669i −0.386734 0.125658i
\(16\) −1.05793 3.85756i −0.264483 0.964390i
\(17\) −3.55361 + 4.89112i −0.861877 + 1.18627i 0.119242 + 0.992865i \(0.461954\pi\)
−0.981119 + 0.193406i \(0.938046\pi\)
\(18\) 1.41600 2.70099i 0.333755 0.636629i
\(19\) −0.409609 1.26065i −0.0939707 0.289212i 0.893013 0.450030i \(-0.148587\pi\)
−0.986984 + 0.160818i \(0.948587\pi\)
\(20\) −3.28533 + 0.983654i −0.734623 + 0.219952i
\(21\) 2.19562i 0.479123i
\(22\) 0 0
\(23\) 7.25726i 1.51324i 0.653853 + 0.756622i \(0.273152\pi\)
−0.653853 + 0.756622i \(0.726848\pi\)
\(24\) 0.316689 + 2.57842i 0.0646438 + 0.526317i
\(25\) −0.636498 1.95894i −0.127300 0.391788i
\(26\) 2.01482 + 1.05628i 0.395139 + 0.207153i
\(27\) −2.78373 + 3.83148i −0.535730 + 0.737369i
\(28\) 2.71959 + 3.93226i 0.513954 + 0.743128i
\(29\) 0.516085 + 0.167686i 0.0958346 + 0.0311386i 0.356542 0.934279i \(-0.383956\pi\)
−0.260707 + 0.965418i \(0.583956\pi\)
\(30\) 2.20372 0.322825i 0.402342 0.0589396i
\(31\) 4.83783 + 6.65870i 0.868899 + 1.19594i 0.979373 + 0.202058i \(0.0647631\pi\)
−0.110474 + 0.993879i \(0.535237\pi\)
\(32\) 3.76092 + 4.22558i 0.664843 + 0.746983i
\(33\) 0 0
\(34\) 1.43557 8.42861i 0.246199 1.44550i
\(35\) 3.31625 2.40939i 0.560548 0.407262i
\(36\) −0.100248 + 4.31170i −0.0167079 + 0.718617i
\(37\) 0.114237 0.351585i 0.0187804 0.0578002i −0.941227 0.337774i \(-0.890326\pi\)
0.960008 + 0.279974i \(0.0903259\pi\)
\(38\) 1.31003 + 1.34084i 0.212514 + 0.217513i
\(39\) −1.19527 0.868417i −0.191397 0.139058i
\(40\) 3.54690 3.30779i 0.560814 0.523007i
\(41\) −4.84269 + 1.57349i −0.756301 + 0.245737i −0.661690 0.749777i \(-0.730161\pi\)
−0.0946108 + 0.995514i \(0.530161\pi\)
\(42\) −1.37742 2.78284i −0.212541 0.429401i
\(43\) −9.45922 −1.44252 −0.721259 0.692666i \(-0.756436\pi\)
−0.721259 + 0.692666i \(0.756436\pi\)
\(44\) 0 0
\(45\) 3.69767 0.551216
\(46\) −4.55285 9.19822i −0.671281 1.35620i
\(47\) −3.81125 + 1.23835i −0.555928 + 0.180632i −0.573488 0.819214i \(-0.694410\pi\)
0.0175599 + 0.999846i \(0.494410\pi\)
\(48\) −2.01896 3.06934i −0.291412 0.443022i
\(49\) 1.03982 + 0.755472i 0.148545 + 0.107925i
\(50\) 2.03567 + 2.08355i 0.287888 + 0.294659i
\(51\) −1.71590 + 5.28101i −0.240275 + 0.739489i
\(52\) −3.21634 0.0747804i −0.446027 0.0103702i
\(53\) 2.00527 1.45691i 0.275445 0.200122i −0.441483 0.897269i \(-0.645548\pi\)
0.716928 + 0.697147i \(0.245548\pi\)
\(54\) 1.12456 6.60259i 0.153034 0.898499i
\(55\) 0 0
\(56\) −5.91385 3.27781i −0.790272 0.438016i
\(57\) −0.715591 0.984927i −0.0947824 0.130457i
\(58\) −0.759311 + 0.111232i −0.0997024 + 0.0146055i
\(59\) −6.70659 2.17910i −0.873124 0.283695i −0.162025 0.986787i \(-0.551802\pi\)
−0.711099 + 0.703091i \(0.751802\pi\)
\(60\) −2.59058 + 1.79167i −0.334442 + 0.231304i
\(61\) 5.81666 8.00595i 0.744747 1.02506i −0.253584 0.967313i \(-0.581609\pi\)
0.998331 0.0577436i \(-0.0183906\pi\)
\(62\) −10.3090 5.40456i −1.30925 0.686379i
\(63\) −1.59300 4.90275i −0.200699 0.617688i
\(64\) −7.41770 2.99629i −0.927212 0.374537i
\(65\) 2.75830i 0.342125i
\(66\) 0 0
\(67\) 4.79085i 0.585296i 0.956220 + 0.292648i \(0.0945364\pi\)
−0.956220 + 0.292648i \(0.905464\pi\)
\(68\) 3.46818 + 11.5835i 0.420578 + 1.40470i
\(69\) 2.05975 + 6.33927i 0.247965 + 0.763158i
\(70\) −2.69164 + 5.13424i −0.321713 + 0.613659i
\(71\) −2.06424 + 2.84118i −0.244980 + 0.337187i −0.913745 0.406287i \(-0.866823\pi\)
0.668765 + 0.743474i \(0.266823\pi\)
\(72\) −2.57789 5.52776i −0.303807 0.651453i
\(73\) 1.99912 + 0.649555i 0.233980 + 0.0760246i 0.423660 0.905821i \(-0.360745\pi\)
−0.189680 + 0.981846i \(0.560745\pi\)
\(74\) 0.0757774 + 0.517283i 0.00880894 + 0.0601329i
\(75\) −1.11197 1.53050i −0.128399 0.176727i
\(76\) −2.50157 0.877601i −0.286950 0.100668i
\(77\) 0 0
\(78\) 2.05975 + 0.350820i 0.233221 + 0.0397226i
\(79\) 2.08801 1.51703i 0.234919 0.170679i −0.464098 0.885784i \(-0.653621\pi\)
0.699017 + 0.715105i \(0.253621\pi\)
\(80\) −2.42038 + 6.41761i −0.270607 + 0.717511i
\(81\) 0.654963 2.01577i 0.0727737 0.223974i
\(82\) 5.15074 5.03238i 0.568804 0.555733i
\(83\) −3.21257 2.33407i −0.352625 0.256197i 0.397344 0.917670i \(-0.369932\pi\)
−0.749970 + 0.661472i \(0.769932\pi\)
\(84\) 3.49163 + 2.66298i 0.380968 + 0.290555i
\(85\) 9.85937 3.20350i 1.06940 0.347469i
\(86\) 11.9891 5.93425i 1.29282 0.639906i
\(87\) 0.498396 0.0534337
\(88\) 0 0
\(89\) −8.45225 −0.895937 −0.447969 0.894049i \(-0.647852\pi\)
−0.447969 + 0.894049i \(0.647852\pi\)
\(90\) −4.68661 + 2.31973i −0.494012 + 0.244522i
\(91\) 3.65724 1.18831i 0.383383 0.124569i
\(92\) 11.5410 + 8.80206i 1.20323 + 0.917678i
\(93\) 6.11574 + 4.44334i 0.634173 + 0.460753i
\(94\) 4.05370 3.96054i 0.418107 0.408499i
\(95\) −0.702362 + 2.16165i −0.0720608 + 0.221780i
\(96\) 4.48449 + 2.62365i 0.457696 + 0.267775i
\(97\) 6.73607 4.89404i 0.683944 0.496914i −0.190720 0.981645i \(-0.561082\pi\)
0.874664 + 0.484730i \(0.161082\pi\)
\(98\) −1.79186 0.305193i −0.181005 0.0308291i
\(99\) 0 0
\(100\) −3.88723 1.36372i −0.388723 0.136372i
\(101\) 5.30760 + 7.30528i 0.528126 + 0.726903i 0.986843 0.161679i \(-0.0516910\pi\)
−0.458718 + 0.888582i \(0.651691\pi\)
\(102\) −1.13822 7.76989i −0.112701 0.769334i
\(103\) 8.55390 + 2.77933i 0.842840 + 0.273855i 0.698444 0.715665i \(-0.253876\pi\)
0.144396 + 0.989520i \(0.453876\pi\)
\(104\) 4.12347 1.92300i 0.404340 0.188565i
\(105\) 2.21293 3.04584i 0.215960 0.297243i
\(106\) −1.62758 + 3.10457i −0.158085 + 0.301543i
\(107\) −0.952709 2.93214i −0.0921019 0.283460i 0.894386 0.447297i \(-0.147613\pi\)
−0.986488 + 0.163836i \(0.947613\pi\)
\(108\) 2.71681 + 9.07395i 0.261425 + 0.873142i
\(109\) 9.68863i 0.928002i −0.885835 0.464001i \(-0.846413\pi\)
0.885835 0.464001i \(-0.153587\pi\)
\(110\) 0 0
\(111\) 0.339534i 0.0322271i
\(112\) 9.55186 + 0.444404i 0.902566 + 0.0419922i
\(113\) −3.32368 10.2292i −0.312666 0.962287i −0.976705 0.214588i \(-0.931159\pi\)
0.664039 0.747698i \(-0.268841\pi\)
\(114\) 1.52487 + 0.799420i 0.142817 + 0.0748725i
\(115\) 7.31448 10.0675i 0.682079 0.938801i
\(116\) 0.892607 0.617336i 0.0828765 0.0573182i
\(117\) 3.29908 + 1.07193i 0.305000 + 0.0991004i
\(118\) 9.86734 1.44548i 0.908362 0.133067i
\(119\) −8.49507 11.6925i −0.778742 1.07185i
\(120\) 2.15943 3.89605i 0.197128 0.355659i
\(121\) 0 0
\(122\) −2.34980 + 13.7962i −0.212740 + 1.24905i
\(123\) −3.78353 + 2.74890i −0.341150 + 0.247860i
\(124\) 16.4568 + 0.382622i 1.47786 + 0.0343605i
\(125\) −3.74079 + 11.5130i −0.334587 + 1.02975i
\(126\) 5.09479 + 5.21462i 0.453880 + 0.464556i
\(127\) −0.264088 0.191871i −0.0234340 0.0170258i 0.576007 0.817445i \(-0.304610\pi\)
−0.599441 + 0.800419i \(0.704610\pi\)
\(128\) 11.2813 0.855842i 0.997135 0.0756465i
\(129\) −8.26269 + 2.68471i −0.727489 + 0.236376i
\(130\) −1.73042 3.49601i −0.151768 0.306621i
\(131\) 10.8360 0.946745 0.473372 0.880862i \(-0.343037\pi\)
0.473372 + 0.880862i \(0.343037\pi\)
\(132\) 0 0
\(133\) 3.16872 0.274763
\(134\) −3.00554 6.07217i −0.259639 0.524555i
\(135\) 7.72338 2.50948i 0.664723 0.215982i
\(136\) −11.6626 12.5057i −1.00006 1.07236i
\(137\) 1.02135 + 0.742056i 0.0872601 + 0.0633981i 0.630560 0.776141i \(-0.282825\pi\)
−0.543300 + 0.839539i \(0.682825\pi\)
\(138\) −6.58758 6.74252i −0.560772 0.573961i
\(139\) 3.10550 9.55775i 0.263405 0.810678i −0.728651 0.684885i \(-0.759852\pi\)
0.992057 0.125793i \(-0.0401475\pi\)
\(140\) 0.190558 8.19600i 0.0161051 0.692688i
\(141\) −2.97769 + 2.16342i −0.250766 + 0.182192i
\(142\) 0.833905 4.89606i 0.0699797 0.410869i
\(143\) 0 0
\(144\) 6.73519 + 5.38892i 0.561266 + 0.449077i
\(145\) −0.546923 0.752774i −0.0454194 0.0625145i
\(146\) −2.94129 + 0.430873i −0.243423 + 0.0356593i
\(147\) 1.12270 + 0.364789i 0.0925991 + 0.0300873i
\(148\) −0.420562 0.608091i −0.0345700 0.0499848i
\(149\) 1.38899 1.91178i 0.113790 0.156619i −0.748323 0.663335i \(-0.769141\pi\)
0.862113 + 0.506716i \(0.169141\pi\)
\(150\) 2.36953 + 1.24223i 0.193471 + 0.101428i
\(151\) 5.90285 + 18.1671i 0.480367 + 1.47842i 0.838580 + 0.544779i \(0.183386\pi\)
−0.358213 + 0.933640i \(0.616614\pi\)
\(152\) 3.72118 0.457045i 0.301827 0.0370713i
\(153\) 13.0373i 1.05400i
\(154\) 0 0
\(155\) 14.1131i 1.13359i
\(156\) −2.83072 + 0.847540i −0.226639 + 0.0678575i
\(157\) 3.03166 + 9.33049i 0.241953 + 0.744654i 0.996123 + 0.0879750i \(0.0280396\pi\)
−0.754170 + 0.656679i \(0.771960\pi\)
\(158\) −1.69474 + 3.23267i −0.134826 + 0.257177i
\(159\) 1.33811 1.84176i 0.106119 0.146061i
\(160\) −0.958382 9.65243i −0.0757667 0.763092i
\(161\) −16.4997 5.36108i −1.30036 0.422513i
\(162\) 0.434461 + 2.96578i 0.0341344 + 0.233014i
\(163\) 8.37426 + 11.5262i 0.655923 + 0.902800i 0.999338 0.0363837i \(-0.0115839\pi\)
−0.343415 + 0.939184i \(0.611584\pi\)
\(164\) −3.37125 + 9.60962i −0.263250 + 0.750385i
\(165\) 0 0
\(166\) 5.53605 + 0.942909i 0.429681 + 0.0731839i
\(167\) 0.0567326 0.0412187i 0.00439010 0.00318960i −0.585588 0.810609i \(-0.699136\pi\)
0.589978 + 0.807419i \(0.299136\pi\)
\(168\) −6.09610 1.18472i −0.470324 0.0914033i
\(169\) 3.21760 9.90277i 0.247508 0.761751i
\(170\) −10.4865 + 10.2456i −0.804281 + 0.785799i
\(171\) 2.31249 + 1.68012i 0.176841 + 0.128482i
\(172\) −11.4727 + 15.0427i −0.874788 + 1.14700i
\(173\) 18.8576 6.12721i 1.43372 0.465843i 0.513785 0.857919i \(-0.328243\pi\)
0.919933 + 0.392076i \(0.128243\pi\)
\(174\) −0.631693 + 0.312669i −0.0478885 + 0.0237034i
\(175\) 4.92393 0.372214
\(176\) 0 0
\(177\) −6.47672 −0.486820
\(178\) 10.7128 5.30253i 0.802959 0.397441i
\(179\) −3.27708 + 1.06479i −0.244941 + 0.0795861i −0.428915 0.903345i \(-0.641104\pi\)
0.183974 + 0.982931i \(0.441104\pi\)
\(180\) 4.48476 5.88030i 0.334274 0.438292i
\(181\) −12.7504 9.26371i −0.947730 0.688566i 0.00253904 0.999997i \(-0.499192\pi\)
−0.950269 + 0.311431i \(0.899192\pi\)
\(182\) −3.88989 + 3.80050i −0.288337 + 0.281712i
\(183\) 2.80865 8.64413i 0.207621 0.638993i
\(184\) −20.1497 3.91591i −1.48545 0.288685i
\(185\) −0.512830 + 0.372593i −0.0377040 + 0.0273936i
\(186\) −10.5389 1.79501i −0.772752 0.131616i
\(187\) 0 0
\(188\) −2.65321 + 7.56288i −0.193505 + 0.551580i
\(189\) −6.65465 9.15934i −0.484054 0.666244i
\(190\) −0.465902 3.18041i −0.0338001 0.230731i
\(191\) 6.77521 + 2.20140i 0.490237 + 0.159288i 0.543696 0.839282i \(-0.317025\pi\)
−0.0534587 + 0.998570i \(0.517025\pi\)
\(192\) −7.32981 0.511995i −0.528984 0.0369501i
\(193\) −9.91153 + 13.6420i −0.713447 + 0.981976i 0.286269 + 0.958149i \(0.407585\pi\)
−0.999716 + 0.0238267i \(0.992415\pi\)
\(194\) −5.46735 + 10.4288i −0.392533 + 0.748746i
\(195\) 0.782860 + 2.40939i 0.0560618 + 0.172540i
\(196\) 2.46256 0.737310i 0.175897 0.0526650i
\(197\) 24.6863i 1.75883i 0.476058 + 0.879414i \(0.342065\pi\)
−0.476058 + 0.879414i \(0.657935\pi\)
\(198\) 0 0
\(199\) 15.7596i 1.11717i −0.829449 0.558583i \(-0.811345\pi\)
0.829449 0.558583i \(-0.188655\pi\)
\(200\) 5.78241 0.710211i 0.408878 0.0502195i
\(201\) 1.35974 + 4.18484i 0.0959084 + 0.295176i
\(202\) −11.3101 5.92936i −0.795775 0.417188i
\(203\) −0.762485 + 1.04947i −0.0535159 + 0.0736584i
\(204\) 6.31709 + 9.13389i 0.442284 + 0.639500i
\(205\) 8.30383 + 2.69808i 0.579965 + 0.188442i
\(206\) −12.5853 + 1.84363i −0.876856 + 0.128452i
\(207\) −9.19872 12.6610i −0.639356 0.879997i
\(208\) −4.01990 + 5.02416i −0.278730 + 0.348363i
\(209\) 0 0
\(210\) −0.893972 + 5.24873i −0.0616899 + 0.362197i
\(211\) −19.3303 + 14.0443i −1.33076 + 0.966851i −0.331026 + 0.943622i \(0.607395\pi\)
−0.999730 + 0.0232291i \(0.992605\pi\)
\(212\) 0.115227 4.95595i 0.00791380 0.340376i
\(213\) −0.996744 + 3.06766i −0.0682958 + 0.210193i
\(214\) 3.04699 + 3.11866i 0.208288 + 0.213187i
\(215\) 13.1221 + 9.53380i 0.894923 + 0.650200i
\(216\) −9.13598 9.79640i −0.621624 0.666560i
\(217\) −18.7126 + 6.08011i −1.27030 + 0.412745i
\(218\) 6.07817 + 12.2799i 0.411665 + 0.831697i
\(219\) 1.93060 0.130458
\(220\) 0 0
\(221\) 9.72525 0.654191
\(222\) 0.213007 + 0.430343i 0.0142961 + 0.0288827i
\(223\) −17.9430 + 5.83003i −1.20155 + 0.390408i −0.840331 0.542073i \(-0.817640\pi\)
−0.361220 + 0.932481i \(0.617640\pi\)
\(224\) −12.3853 + 5.42910i −0.827528 + 0.362747i
\(225\) 3.59343 + 2.61078i 0.239562 + 0.174052i
\(226\) 10.6299 + 10.8800i 0.707093 + 0.723724i
\(227\) 3.48214 10.7169i 0.231118 0.711308i −0.766495 0.642251i \(-0.778001\pi\)
0.997613 0.0690573i \(-0.0219991\pi\)
\(228\) −2.43422 0.0565958i −0.161210 0.00374815i
\(229\) −17.6785 + 12.8442i −1.16823 + 0.848766i −0.990795 0.135368i \(-0.956778\pi\)
−0.177430 + 0.984133i \(0.556778\pi\)
\(230\) −2.95488 + 17.3488i −0.194839 + 1.14395i
\(231\) 0 0
\(232\) −0.744050 + 1.34242i −0.0488492 + 0.0881342i
\(233\) 3.73432 + 5.13984i 0.244643 + 0.336722i 0.913626 0.406555i \(-0.133270\pi\)
−0.668983 + 0.743278i \(0.733270\pi\)
\(234\) −4.85389 + 0.711053i −0.317309 + 0.0464830i
\(235\) 6.53521 + 2.12342i 0.426310 + 0.138517i
\(236\) −11.5995 + 8.02236i −0.755066 + 0.522211i
\(237\) 1.39333 1.91775i 0.0905062 0.124571i
\(238\) 18.1023 + 9.49023i 1.17340 + 0.615160i
\(239\) −4.62139 14.2232i −0.298933 0.920021i −0.981872 0.189546i \(-0.939298\pi\)
0.682939 0.730476i \(-0.260702\pi\)
\(240\) −0.292774 + 6.29277i −0.0188985 + 0.406197i
\(241\) 0.457365i 0.0294615i −0.999891 0.0147307i \(-0.995311\pi\)
0.999891 0.0147307i \(-0.00468911\pi\)
\(242\) 0 0
\(243\) 16.1546i 1.03632i
\(244\) −5.67683 18.9602i −0.363422 1.21380i
\(245\) −0.681042 2.09603i −0.0435102 0.133911i
\(246\) 3.07092 5.85770i 0.195795 0.373473i
\(247\) −1.25330 + 1.72502i −0.0797456 + 0.109760i
\(248\) −21.0982 + 9.83920i −1.33973 + 0.624790i
\(249\) −3.46865 1.12703i −0.219817 0.0714229i
\(250\) −2.48140 16.9389i −0.156938 1.07131i
\(251\) −7.47418 10.2873i −0.471766 0.649330i 0.505130 0.863043i \(-0.331444\pi\)
−0.976897 + 0.213713i \(0.931444\pi\)
\(252\) −9.72879 3.41306i −0.612856 0.215002i
\(253\) 0 0
\(254\) 0.455090 + 0.0775115i 0.0285549 + 0.00486351i
\(255\) 7.70301 5.59656i 0.482381 0.350470i
\(256\) −13.7616 + 8.16206i −0.860098 + 0.510129i
\(257\) −0.460724 + 1.41796i −0.0287392 + 0.0884501i −0.964397 0.264458i \(-0.914807\pi\)
0.935658 + 0.352908i \(0.114807\pi\)
\(258\) 8.78830 8.58634i 0.547135 0.534562i
\(259\) 0.714955 + 0.519445i 0.0444251 + 0.0322767i
\(260\) 4.38645 + 3.34544i 0.272036 + 0.207475i
\(261\) −1.11290 + 0.361604i −0.0688870 + 0.0223827i
\(262\) −13.7341 + 6.79797i −0.848494 + 0.419980i
\(263\) 14.7580 0.910017 0.455008 0.890487i \(-0.349636\pi\)
0.455008 + 0.890487i \(0.349636\pi\)
\(264\) 0 0
\(265\) −4.25017 −0.261086
\(266\) −4.01620 + 1.98790i −0.246249 + 0.121886i
\(267\) −7.38310 + 2.39891i −0.451838 + 0.146811i
\(268\) 7.61876 + 5.81064i 0.465390 + 0.354942i
\(269\) −10.6338 7.72593i −0.648356 0.471059i 0.214354 0.976756i \(-0.431235\pi\)
−0.862711 + 0.505697i \(0.831235\pi\)
\(270\) −8.21468 + 8.02591i −0.499930 + 0.488441i
\(271\) 3.49273 10.7495i 0.212168 0.652987i −0.787174 0.616731i \(-0.788457\pi\)
0.999343 0.0362561i \(-0.0115432\pi\)
\(272\) 22.6273 + 8.53380i 1.37198 + 0.517437i
\(273\) 2.85736 2.07599i 0.172935 0.125645i
\(274\) −1.76004 0.299773i −0.106328 0.0181100i
\(275\) 0 0
\(276\) 12.5794 + 4.41309i 0.757188 + 0.265637i
\(277\) −0.929657 1.27956i −0.0558577 0.0768815i 0.780174 0.625562i \(-0.215130\pi\)
−0.836032 + 0.548681i \(0.815130\pi\)
\(278\) 2.05999 + 14.0622i 0.123550 + 0.843396i
\(279\) −16.8801 5.48466i −1.01058 0.328358i
\(280\) 4.90024 + 10.5076i 0.292846 + 0.627947i
\(281\) −5.18136 + 7.13153i −0.309094 + 0.425431i −0.935098 0.354388i \(-0.884689\pi\)
0.626005 + 0.779819i \(0.284689\pi\)
\(282\) 2.41685 4.61008i 0.143921 0.274526i
\(283\) 6.26632 + 19.2857i 0.372494 + 1.14642i 0.945154 + 0.326625i \(0.105911\pi\)
−0.572660 + 0.819793i \(0.694089\pi\)
\(284\) 2.01462 + 6.72867i 0.119545 + 0.399273i
\(285\) 2.08756i 0.123656i
\(286\) 0 0
\(287\) 12.1724i 0.718516i
\(288\) −11.9173 2.60486i −0.702232 0.153493i
\(289\) −6.04165 18.5943i −0.355391 1.09378i
\(290\) 1.16545 + 0.610992i 0.0684376 + 0.0358787i
\(291\) 4.49497 6.18680i 0.263500 0.362677i
\(292\) 3.45763 2.39133i 0.202342 0.139942i
\(293\) 13.2689 + 4.31133i 0.775178 + 0.251871i 0.669780 0.742559i \(-0.266388\pi\)
0.105398 + 0.994430i \(0.466388\pi\)
\(294\) −1.65182 + 0.241978i −0.0963363 + 0.0141124i
\(295\) 7.10733 + 9.78240i 0.413805 + 0.569553i
\(296\) 0.914528 + 0.506886i 0.0531558 + 0.0294621i
\(297\) 0 0
\(298\) −0.561118 + 3.29446i −0.0325047 + 0.190843i
\(299\) 9.44453 6.86185i 0.546191 0.396831i
\(300\) −3.78257 0.0879453i −0.218387 0.00507753i
\(301\) 6.98771 21.5060i 0.402765 1.23958i
\(302\) −18.8787 19.3228i −1.08635 1.11190i
\(303\) 6.70960 + 4.87481i 0.385457 + 0.280051i
\(304\) −4.42968 + 2.91377i −0.254060 + 0.167116i
\(305\) −16.1381 + 5.24360i −0.924067 + 0.300248i
\(306\) 8.17894 + 16.5241i 0.467559 + 0.944620i
\(307\) −5.88829 −0.336062 −0.168031 0.985782i \(-0.553741\pi\)
−0.168031 + 0.985782i \(0.553741\pi\)
\(308\) 0 0
\(309\) 8.26071 0.469935
\(310\) 8.85389 + 17.8877i 0.502867 + 1.01595i
\(311\) 24.9494 8.10657i 1.41475 0.459681i 0.500822 0.865550i \(-0.333031\pi\)
0.913931 + 0.405869i \(0.133031\pi\)
\(312\) 3.05610 2.85007i 0.173017 0.161353i
\(313\) 13.8600 + 10.0699i 0.783411 + 0.569182i 0.906001 0.423276i \(-0.139120\pi\)
−0.122589 + 0.992457i \(0.539120\pi\)
\(314\) −9.69597 9.92403i −0.547175 0.560045i
\(315\) −2.73154 + 8.40682i −0.153905 + 0.473670i
\(316\) 0.119981 5.16044i 0.00674945 0.290297i
\(317\) −0.644937 + 0.468574i −0.0362233 + 0.0263177i −0.605750 0.795655i \(-0.707127\pi\)
0.569526 + 0.821973i \(0.307127\pi\)
\(318\) −0.540567 + 3.17380i −0.0303135 + 0.177978i
\(319\) 0 0
\(320\) 7.27016 + 11.6327i 0.406414 + 0.650290i
\(321\) −1.66439 2.29084i −0.0928975 0.127862i
\(322\) 24.2759 3.55620i 1.35284 0.198179i
\(323\) 7.62156 + 2.47640i 0.424075 + 0.137790i
\(324\) −2.41124 3.48642i −0.133958 0.193690i
\(325\) −1.94753 + 2.68054i −0.108029 + 0.148690i
\(326\) −17.8449 9.35526i −0.988338 0.518140i
\(327\) −2.74982 8.46308i −0.152065 0.468009i
\(328\) −1.75571 14.2947i −0.0969429 0.789291i
\(329\) 9.57985i 0.528154i
\(330\) 0 0
\(331\) 21.2979i 1.17064i 0.810803 + 0.585319i \(0.199031\pi\)
−0.810803 + 0.585319i \(0.800969\pi\)
\(332\) −7.60821 + 2.27796i −0.417555 + 0.125019i
\(333\) 0.246344 + 0.758169i 0.0134996 + 0.0415474i
\(334\) −0.0460473 + 0.0878339i −0.00251959 + 0.00480606i
\(335\) 4.82862 6.64603i 0.263816 0.363111i
\(336\) 8.46974 2.32281i 0.462062 0.126720i
\(337\) −10.3436 3.36083i −0.563450 0.183076i 0.0134229 0.999910i \(-0.495727\pi\)
−0.576873 + 0.816834i \(0.695727\pi\)
\(338\) 2.13435 + 14.5698i 0.116093 + 0.792494i
\(339\) −5.80652 7.99199i −0.315367 0.434065i
\(340\) 6.86362 19.5645i 0.372232 1.06103i
\(341\) 0 0
\(342\) −3.98500 0.678731i −0.215484 0.0367016i
\(343\) −16.0237 + 11.6419i −0.865198 + 0.628603i
\(344\) 5.10405 26.2633i 0.275192 1.41602i
\(345\) 3.53189 10.8700i 0.190150 0.585223i
\(346\) −20.0572 + 19.5963i −1.07828 + 1.05350i
\(347\) 0.520630 + 0.378260i 0.0279489 + 0.0203061i 0.601672 0.798743i \(-0.294501\pi\)
−0.573723 + 0.819049i \(0.694501\pi\)
\(348\) 0.604486 0.792586i 0.0324039 0.0424871i
\(349\) 16.4340 5.33972i 0.879690 0.285829i 0.165861 0.986149i \(-0.446960\pi\)
0.713829 + 0.700321i \(0.246960\pi\)
\(350\) −6.24084 + 3.08903i −0.333587 + 0.165116i
\(351\) 7.61832 0.406636
\(352\) 0 0
\(353\) −28.3825 −1.51065 −0.755324 0.655352i \(-0.772520\pi\)
−0.755324 + 0.655352i \(0.772520\pi\)
\(354\) 8.20893 4.06318i 0.436300 0.215955i
\(355\) 5.72717 1.86087i 0.303967 0.0987647i
\(356\) −10.2514 + 13.4414i −0.543324 + 0.712392i
\(357\) −10.7390 7.80237i −0.568370 0.412945i
\(358\) 3.48555 3.40545i 0.184217 0.179984i
\(359\) −8.82347 + 27.1558i −0.465685 + 1.43323i 0.392434 + 0.919780i \(0.371633\pi\)
−0.858119 + 0.513451i \(0.828367\pi\)
\(360\) −1.99521 + 10.2665i −0.105157 + 0.541092i
\(361\) 13.9499 10.1352i 0.734204 0.533430i
\(362\) 21.9721 + 3.74232i 1.15483 + 0.196692i
\(363\) 0 0
\(364\) 2.54599 7.25726i 0.133446 0.380384i
\(365\) −2.11858 2.91597i −0.110891 0.152629i
\(366\) 1.86308 + 12.7180i 0.0973847 + 0.664781i
\(367\) 0.370369 + 0.120340i 0.0193331 + 0.00628170i 0.318668 0.947867i \(-0.396765\pi\)
−0.299334 + 0.954148i \(0.596765\pi\)
\(368\) 27.9953 7.67768i 1.45936 0.400227i
\(369\) 6.45409 8.88329i 0.335987 0.462446i
\(370\) 0.416240 0.793967i 0.0216393 0.0412764i
\(371\) 1.83103 + 5.63532i 0.0950621 + 0.292571i
\(372\) 14.4837 4.33652i 0.750944 0.224838i
\(373\) 9.95150i 0.515269i 0.966242 + 0.257635i \(0.0829430\pi\)
−0.966242 + 0.257635i \(0.917057\pi\)
\(374\) 0 0
\(375\) 11.1184i 0.574150i
\(376\) −1.38177 11.2501i −0.0712591 0.580178i
\(377\) −0.269741 0.830178i −0.0138924 0.0427564i
\(378\) 14.1806 + 7.43421i 0.729369 + 0.382374i
\(379\) −11.8218 + 16.2713i −0.607244 + 0.835800i −0.996347 0.0853946i \(-0.972785\pi\)
0.389103 + 0.921194i \(0.372785\pi\)
\(380\) 2.58574 + 3.73873i 0.132646 + 0.191793i
\(381\) −0.285140 0.0926475i −0.0146081 0.00474647i
\(382\) −9.96829 + 1.46027i −0.510022 + 0.0747138i
\(383\) 6.04340 + 8.31802i 0.308803 + 0.425031i 0.935007 0.354628i \(-0.115392\pi\)
−0.626204 + 0.779659i \(0.715392\pi\)
\(384\) 9.61137 3.94943i 0.490478 0.201544i
\(385\) 0 0
\(386\) 4.00402 23.5086i 0.203799 1.19656i
\(387\) 16.5025 11.9897i 0.838868 0.609473i
\(388\) 0.387068 16.6480i 0.0196504 0.845173i
\(389\) −5.95780 + 18.3362i −0.302073 + 0.929684i 0.678681 + 0.734433i \(0.262552\pi\)
−0.980753 + 0.195251i \(0.937448\pi\)
\(390\) −2.50377 2.56266i −0.126783 0.129765i
\(391\) −35.4962 25.7895i −1.79512 1.30423i
\(392\) −2.65862 + 2.47939i −0.134281 + 0.125228i
\(393\) 9.46530 3.07546i 0.477461 0.155137i
\(394\) −15.4870 31.2887i −0.780223 1.57630i
\(395\) −4.42554 −0.222673
\(396\) 0 0
\(397\) 38.1030 1.91233 0.956167 0.292823i \(-0.0945945\pi\)
0.956167 + 0.292823i \(0.0945945\pi\)
\(398\) 9.88677 + 19.9745i 0.495579 + 1.00123i
\(399\) 2.76790 0.899345i 0.138568 0.0450235i
\(400\) −6.88336 + 4.52776i −0.344168 + 0.226388i
\(401\) 3.35886 + 2.44035i 0.167733 + 0.121866i 0.668485 0.743725i \(-0.266943\pi\)
−0.500752 + 0.865591i \(0.666943\pi\)
\(402\) −4.34876 4.45105i −0.216896 0.221998i
\(403\) 4.09132 12.5918i 0.203803 0.627242i
\(404\) 18.0548 + 0.419776i 0.898259 + 0.0208846i
\(405\) −2.94025 + 2.13622i −0.146102 + 0.106149i
\(406\) 0.308026 1.80850i 0.0152871 0.0897542i
\(407\) 0 0
\(408\) −13.7367 7.61373i −0.680070 0.376936i
\(409\) 6.65491 + 9.15969i 0.329064 + 0.452918i 0.941208 0.337829i \(-0.109693\pi\)
−0.612144 + 0.790747i \(0.709693\pi\)
\(410\) −12.2173 + 1.78973i −0.603371 + 0.0883886i
\(411\) 1.10277 + 0.358311i 0.0543955 + 0.0176742i
\(412\) 14.7946 10.2321i 0.728877 0.504098i
\(413\) 9.90859 13.6380i 0.487570 0.671082i
\(414\) 19.6018 + 10.2763i 0.963375 + 0.505053i
\(415\) 2.10411 + 6.47580i 0.103287 + 0.317884i
\(416\) 1.94312 8.88977i 0.0952692 0.435857i
\(417\) 9.23016i 0.452003i
\(418\) 0 0
\(419\) 21.2095i 1.03615i 0.855335 + 0.518075i \(0.173351\pi\)
−0.855335 + 0.518075i \(0.826649\pi\)
\(420\) −2.15973 7.21334i −0.105384 0.351975i
\(421\) 7.65848 + 23.5704i 0.373251 + 1.14875i 0.944651 + 0.328077i \(0.106401\pi\)
−0.571399 + 0.820672i \(0.693599\pi\)
\(422\) 15.6895 29.9274i 0.763755 1.45684i
\(423\) 5.07944 6.99126i 0.246971 0.339926i
\(424\) 2.96308 + 6.35372i 0.143900 + 0.308564i
\(425\) 11.8433 + 3.84812i 0.574484 + 0.186661i
\(426\) −0.661177 4.51342i −0.0320341 0.218676i
\(427\) 13.9050 + 19.1386i 0.672911 + 0.926182i
\(428\) −5.81840 2.04121i −0.281243 0.0986657i
\(429\) 0 0
\(430\) −22.6127 3.85143i −1.09048 0.185732i
\(431\) −1.42978 + 1.03880i −0.0688703 + 0.0500372i −0.621688 0.783265i \(-0.713553\pi\)
0.552817 + 0.833302i \(0.313553\pi\)
\(432\) 17.7252 + 6.68499i 0.852803 + 0.321632i
\(433\) −10.1825 + 31.3386i −0.489342 + 1.50604i 0.336251 + 0.941773i \(0.390841\pi\)
−0.825592 + 0.564267i \(0.809159\pi\)
\(434\) 19.9030 19.4456i 0.955374 0.933420i
\(435\) −0.691392 0.502326i −0.0331497 0.0240847i
\(436\) −15.4076 11.7510i −0.737888 0.562769i
\(437\) 9.14884 2.97264i 0.437648 0.142201i
\(438\) −2.44694 + 1.21117i −0.116920 + 0.0578717i
\(439\) −27.3520 −1.30544 −0.652719 0.757600i \(-0.726372\pi\)
−0.652719 + 0.757600i \(0.726372\pi\)
\(440\) 0 0
\(441\) −2.77163 −0.131982
\(442\) −12.3263 + 6.10114i −0.586301 + 0.290202i
\(443\) −1.61235 + 0.523885i −0.0766051 + 0.0248905i −0.347069 0.937840i \(-0.612823\pi\)
0.270464 + 0.962730i \(0.412823\pi\)
\(444\) −0.539951 0.411808i −0.0256250 0.0195435i
\(445\) 11.7253 + 8.51889i 0.555830 + 0.403834i
\(446\) 19.0844 18.6458i 0.903672 0.882905i
\(447\) 0.670689 2.06417i 0.0317225 0.0976319i
\(448\) 12.2918 14.6510i 0.580733 0.692197i
\(449\) 14.9936 10.8935i 0.707590 0.514095i −0.174805 0.984603i \(-0.555929\pi\)
0.882395 + 0.470508i \(0.155929\pi\)
\(450\) −6.19236 1.05469i −0.291911 0.0497187i
\(451\) 0 0
\(452\) −20.2985 7.12111i −0.954759 0.334949i
\(453\) 10.3124 + 14.1937i 0.484517 + 0.666880i
\(454\) 2.30983 + 15.7677i 0.108406 + 0.740015i
\(455\) −6.27113 2.03761i −0.293995 0.0955247i
\(456\) 3.12075 1.45537i 0.146143 0.0681542i
\(457\) 6.39687 8.80454i 0.299233 0.411859i −0.632753 0.774354i \(-0.718075\pi\)
0.931986 + 0.362495i \(0.118075\pi\)
\(458\) 14.3488 27.3699i 0.670475 1.27891i
\(459\) −8.84794 27.2312i −0.412987 1.27104i
\(460\) −7.13864 23.8425i −0.332841 1.11166i
\(461\) 13.8278i 0.644024i −0.946736 0.322012i \(-0.895641\pi\)
0.946736 0.322012i \(-0.104359\pi\)
\(462\) 0 0
\(463\) 37.3657i 1.73653i 0.496099 + 0.868266i \(0.334765\pi\)
−0.496099 + 0.868266i \(0.665235\pi\)
\(464\) 0.100878 2.16823i 0.00468314 0.100658i
\(465\) −4.00558 12.3279i −0.185754 0.571693i
\(466\) −7.95754 4.17177i −0.368626 0.193254i
\(467\) −8.10864 + 11.1606i −0.375223 + 0.516450i −0.954311 0.298815i \(-0.903409\pi\)
0.579088 + 0.815265i \(0.303409\pi\)
\(468\) 5.70599 3.94632i 0.263760 0.182419i
\(469\) −10.8922 3.53910i −0.502956 0.163420i
\(470\) −9.61519 + 1.40854i −0.443516 + 0.0649712i
\(471\) 5.29635 + 7.28980i 0.244043 + 0.335896i
\(472\) 9.66902 17.4449i 0.445053 0.802968i
\(473\) 0 0
\(474\) −0.562871 + 3.30475i −0.0258535 + 0.151792i
\(475\) −2.20882 + 1.60480i −0.101347 + 0.0736332i
\(476\) −28.8975 0.671872i −1.32452 0.0307952i
\(477\) −1.65171 + 5.08343i −0.0756265 + 0.232754i
\(478\) 14.7803 + 15.1280i 0.676036 + 0.691936i
\(479\) 10.9275 + 7.93926i 0.499288 + 0.362754i 0.808745 0.588159i \(-0.200147\pi\)
−0.309457 + 0.950913i \(0.600147\pi\)
\(480\) −3.57670 8.15945i −0.163253 0.372426i
\(481\) −0.565561 + 0.183762i −0.0257874 + 0.00837883i
\(482\) 0.286928 + 0.579688i 0.0130692 + 0.0264041i
\(483\) −15.9342 −0.725031
\(484\) 0 0
\(485\) −14.2771 −0.648291
\(486\) 10.1346 + 20.4751i 0.459715 + 0.928772i
\(487\) −33.9895 + 11.0438i −1.54021 + 0.500445i −0.951434 0.307852i \(-0.900390\pi\)
−0.588776 + 0.808296i \(0.700390\pi\)
\(488\) 19.0898 + 20.4697i 0.864154 + 0.926622i
\(489\) 10.5863 + 7.69141i 0.478730 + 0.347818i
\(490\) 2.17813 + 2.22936i 0.0983980 + 0.100712i
\(491\) −12.4684 + 38.3738i −0.562690 + 1.73178i 0.112025 + 0.993705i \(0.464266\pi\)
−0.674716 + 0.738078i \(0.735734\pi\)
\(492\) −0.217409 + 9.35089i −0.00980157 + 0.421570i
\(493\) −2.65414 + 1.92834i −0.119536 + 0.0868483i
\(494\) 0.506304 2.97264i 0.0227797 0.133745i
\(495\) 0 0
\(496\) 20.5683 25.7067i 0.923542 1.15426i
\(497\) −4.93467 6.79198i −0.221350 0.304662i
\(498\) 5.10339 0.747602i 0.228688 0.0335009i
\(499\) 3.87103 + 1.25777i 0.173291 + 0.0563057i 0.394377 0.918949i \(-0.370960\pi\)
−0.221086 + 0.975254i \(0.570960\pi\)
\(500\) 13.7717 + 19.9125i 0.615889 + 0.890516i
\(501\) 0.0378577 0.0521066i 0.00169136 0.00232795i
\(502\) 15.9269 + 8.34975i 0.710853 + 0.372668i
\(503\) −6.03101 18.5615i −0.268909 0.827618i −0.990767 0.135576i \(-0.956712\pi\)
0.721858 0.692041i \(-0.243288\pi\)
\(504\) 14.4719 1.77749i 0.644632 0.0791755i
\(505\) 15.4836i 0.689010i
\(506\) 0 0
\(507\) 9.56335i 0.424723i
\(508\) −0.625430 + 0.187259i −0.0277490 + 0.00830826i
\(509\) 7.25254 + 22.3210i 0.321463 + 0.989362i 0.973012 + 0.230755i \(0.0741196\pi\)
−0.651549 + 0.758607i \(0.725880\pi\)
\(510\) −6.25217 + 11.9258i −0.276851 + 0.528086i
\(511\) −2.95358 + 4.06526i −0.130659 + 0.179836i
\(512\) 12.3216 18.9783i 0.544544 0.838732i
\(513\) 5.97038 + 1.93990i 0.263599 + 0.0856485i
\(514\) −0.305615 2.08623i −0.0134801 0.0920199i
\(515\) −9.06501 12.4769i −0.399452 0.549799i
\(516\) −5.75208 + 16.3961i −0.253221 + 0.721798i
\(517\) 0 0
\(518\) −1.23204 0.209844i −0.0541329 0.00922000i
\(519\) 14.7332 10.7043i 0.646717 0.469867i
\(520\) −7.65838 1.48834i −0.335842 0.0652679i
\(521\) 6.32368 19.4623i 0.277046 0.852659i −0.711625 0.702559i \(-0.752041\pi\)
0.988671 0.150100i \(-0.0479594\pi\)
\(522\) 1.18370 1.15650i 0.0518090 0.0506185i
\(523\) −6.66151 4.83987i −0.291287 0.211633i 0.432538 0.901616i \(-0.357618\pi\)
−0.723826 + 0.689983i \(0.757618\pi\)
\(524\) 13.1426 17.2322i 0.574136 0.752791i
\(525\) 4.30109 1.39751i 0.187715 0.0609923i
\(526\) −18.7050 + 9.25844i −0.815578 + 0.403687i
\(527\) −49.7602 −2.16759
\(528\) 0 0
\(529\) −29.6679 −1.28991
\(530\) 5.38689 2.66635i 0.233991 0.115819i
\(531\) 14.4623 4.69909i 0.627611 0.203923i
\(532\) 3.84322 5.03913i 0.166625 0.218474i
\(533\) 6.62656 + 4.81448i 0.287028 + 0.208538i
\(534\) 7.85275 7.67230i 0.339822 0.332013i
\(535\) −1.63362 + 5.02778i −0.0706278 + 0.217370i
\(536\) −13.3017 2.58507i −0.574546 0.111658i
\(537\) −2.56035 + 1.86020i −0.110487 + 0.0802736i
\(538\) 18.3247 + 3.12110i 0.790035 + 0.134560i
\(539\) 0 0
\(540\) 5.37664 15.3259i 0.231374 0.659523i
\(541\) −12.9257 17.7907i −0.555719 0.764882i 0.435055 0.900404i \(-0.356729\pi\)
−0.990774 + 0.135522i \(0.956729\pi\)
\(542\) 2.31685 + 15.8157i 0.0995174 + 0.679340i
\(543\) −13.7668 4.47310i −0.590789 0.191959i
\(544\) −34.0326 + 3.37907i −1.45914 + 0.144876i
\(545\) −9.76502 + 13.4404i −0.418287 + 0.575723i
\(546\) −2.31918 + 4.42378i −0.0992519 + 0.189320i
\(547\) −7.83614 24.1171i −0.335049 1.03117i −0.966698 0.255920i \(-0.917622\pi\)
0.631649 0.775255i \(-0.282378\pi\)
\(548\) 2.41883 0.724217i 0.103327 0.0309370i
\(549\) 21.3398i 0.910762i
\(550\) 0 0
\(551\) 0.719286i 0.0306426i
\(552\) −18.7123 + 2.29829i −0.796447 + 0.0978218i
\(553\) 1.90657 + 5.86783i 0.0810758 + 0.249526i
\(554\) 1.98103 + 1.03856i 0.0841659 + 0.0441243i
\(555\) −0.342211 + 0.471013i −0.0145260 + 0.0199934i
\(556\) −11.4329 16.5308i −0.484862 0.701063i
\(557\) −4.30585 1.39905i −0.182445 0.0592798i 0.216370 0.976311i \(-0.430578\pi\)
−0.398815 + 0.917032i \(0.630578\pi\)
\(558\) 24.8354 3.63818i 1.05137 0.154016i
\(559\) 8.94384 + 12.3101i 0.378284 + 0.520663i
\(560\) −12.8027 10.2437i −0.541015 0.432874i
\(561\) 0 0
\(562\) 2.09315 12.2894i 0.0882940 0.518396i
\(563\) 31.5504 22.9227i 1.32969 0.966076i 0.329933 0.944004i \(-0.392974\pi\)
0.999756 0.0220712i \(-0.00702604\pi\)
\(564\) −0.171104 + 7.35926i −0.00720476 + 0.309881i
\(565\) −5.69917 + 17.5402i −0.239766 + 0.737924i
\(566\) −20.0412 20.5125i −0.842393 0.862206i
\(567\) 4.09911 + 2.97818i 0.172146 + 0.125072i
\(568\) −6.77466 7.26439i −0.284258 0.304807i
\(569\) −33.4766 + 10.8772i −1.40341 + 0.455996i −0.910293 0.413965i \(-0.864144\pi\)
−0.493120 + 0.869961i \(0.664144\pi\)
\(570\) −1.30963 2.64588i −0.0548544 0.110824i
\(571\) 28.8320 1.20658 0.603291 0.797521i \(-0.293856\pi\)
0.603291 + 0.797521i \(0.293856\pi\)
\(572\) 0 0
\(573\) 6.54299 0.273337
\(574\) 7.63639 + 15.4280i 0.318737 + 0.643951i
\(575\) 14.2165 4.61924i 0.592871 0.192635i
\(576\) 16.7387 4.17477i 0.697446 0.173949i
\(577\) 4.61336 + 3.35180i 0.192057 + 0.139537i 0.679658 0.733529i \(-0.262128\pi\)
−0.487602 + 0.873066i \(0.662128\pi\)
\(578\) 19.3226 + 19.7771i 0.803716 + 0.822620i
\(579\) −4.78590 + 14.7295i −0.198895 + 0.612137i
\(580\) −1.86046 0.0432559i −0.0772513 0.00179610i
\(581\) 7.67980 5.57970i 0.318612 0.231485i
\(582\) −1.81586 + 10.6614i −0.0752700 + 0.441929i
\(583\) 0 0
\(584\) −2.88217 + 5.20004i −0.119265 + 0.215179i
\(585\) −3.49620 4.81211i −0.144550 0.198956i
\(586\) −19.5224 + 2.85986i −0.806464 + 0.118140i
\(587\) −40.1885 13.0580i −1.65876 0.538962i −0.678145 0.734928i \(-0.737216\pi\)
−0.980611 + 0.195966i \(0.937216\pi\)
\(588\) 1.94180 1.34297i 0.0800785 0.0553830i
\(589\) 6.41264 8.82625i 0.264228 0.363679i
\(590\) −15.1452 7.93992i −0.623517 0.326881i
\(591\) 7.00646 + 21.5637i 0.288207 + 0.887010i
\(592\) −1.47711 0.0687233i −0.0607090 0.00282451i
\(593\) 21.6694i 0.889855i 0.895567 + 0.444927i \(0.146771\pi\)
−0.895567 + 0.444927i \(0.853229\pi\)
\(594\) 0 0
\(595\) 24.7822i 1.01597i
\(596\) −1.35559 4.52759i −0.0555273 0.185457i
\(597\) −4.47287 13.7661i −0.183062 0.563408i
\(598\) −7.66569 + 14.6221i −0.313473 + 0.597942i
\(599\) −11.0726 + 15.2401i −0.452414 + 0.622694i −0.972914 0.231167i \(-0.925746\pi\)
0.520500 + 0.853862i \(0.325746\pi\)
\(600\) 4.84940 2.26153i 0.197976 0.0923267i
\(601\) −14.4069 4.68109i −0.587670 0.190946i 6.34538e−5 1.00000i \(-0.499980\pi\)
−0.587734 + 0.809054i \(0.699980\pi\)
\(602\) 4.63520 + 31.6415i 0.188917 + 1.28961i
\(603\) −6.07250 8.35808i −0.247291 0.340367i
\(604\) 36.0500 + 12.6471i 1.46685 + 0.514602i
\(605\) 0 0
\(606\) −11.5623 1.96931i −0.469687 0.0799977i
\(607\) −5.49233 + 3.99041i −0.222927 + 0.161966i −0.693643 0.720319i \(-0.743996\pi\)
0.470716 + 0.882285i \(0.343996\pi\)
\(608\) 3.78645 6.47202i 0.153561 0.262475i
\(609\) −0.368175 + 1.13313i −0.0149192 + 0.0459166i
\(610\) 17.1647 16.7703i 0.694979 0.679009i
\(611\) 5.21518 + 3.78905i 0.210984 + 0.153288i
\(612\) −20.7328 15.8124i −0.838074 0.639179i
\(613\) 8.52662 2.77047i 0.344387 0.111898i −0.131716 0.991287i \(-0.542049\pi\)
0.476103 + 0.879389i \(0.342049\pi\)
\(614\) 7.46312 3.69402i 0.301187 0.149079i
\(615\) 8.01922 0.323366
\(616\) 0 0
\(617\) 41.7476 1.68069 0.840347 0.542049i \(-0.182351\pi\)
0.840347 + 0.542049i \(0.182351\pi\)
\(618\) −10.4700 + 5.18236i −0.421167 + 0.208465i
\(619\) −5.76294 + 1.87249i −0.231632 + 0.0752619i −0.422533 0.906347i \(-0.638859\pi\)
0.190901 + 0.981609i \(0.438859\pi\)
\(620\) −22.4437 17.1173i −0.901362 0.687447i
\(621\) −27.8061 20.2023i −1.11582 0.810690i
\(622\) −26.5365 + 25.9267i −1.06402 + 1.03957i
\(623\) 6.24385 19.2166i 0.250154 0.769896i
\(624\) −2.08546 + 5.52957i −0.0834851 + 0.221360i
\(625\) 8.46123 6.14745i 0.338449 0.245898i
\(626\) −23.8841 4.06798i −0.954603 0.162589i
\(627\) 0 0
\(628\) 18.5150 + 6.49544i 0.738829 + 0.259196i
\(629\) 1.31369 + 1.80814i 0.0523803 + 0.0720953i
\(630\) −1.81193 12.3689i −0.0721890 0.492787i
\(631\) 15.2719 + 4.96214i 0.607965 + 0.197540i 0.596789 0.802398i \(-0.296443\pi\)
0.0111752 + 0.999938i \(0.496443\pi\)
\(632\) 3.08534 + 6.61587i 0.122728 + 0.263165i
\(633\) −12.8991 + 17.7541i −0.512694 + 0.705663i
\(634\) 0.523465 0.998496i 0.0207895 0.0396553i
\(635\) 0.172968 + 0.532341i 0.00686403 + 0.0211253i
\(636\) −1.30594 4.36176i −0.0517841 0.172955i
\(637\) 2.06752i 0.0819181i
\(638\) 0 0
\(639\) 7.57317i 0.299590i
\(640\) −16.5124 10.1830i −0.652709 0.402518i
\(641\) −6.20653 19.1017i −0.245143 0.754473i −0.995613 0.0935681i \(-0.970173\pi\)
0.750470 0.660905i \(-0.229827\pi\)
\(642\) 3.54670 + 1.85937i 0.139977 + 0.0733835i
\(643\) −2.56484 + 3.53021i −0.101148 + 0.139218i −0.856591 0.515997i \(-0.827422\pi\)
0.755443 + 0.655214i \(0.227422\pi\)
\(644\) −28.5375 + 19.7368i −1.12453 + 0.777738i
\(645\) 14.1682 + 4.60351i 0.557871 + 0.181263i
\(646\) −11.2135 + 1.64268i −0.441190 + 0.0646305i
\(647\) 5.66148 + 7.79236i 0.222576 + 0.306349i 0.905672 0.423979i \(-0.139367\pi\)
−0.683096 + 0.730329i \(0.739367\pi\)
\(648\) 5.24334 + 2.90617i 0.205978 + 0.114165i
\(649\) 0 0
\(650\) 0.786755 4.61924i 0.0308591 0.181181i
\(651\) −14.6200 + 10.6220i −0.573002 + 0.416310i
\(652\) 28.4866 + 0.662317i 1.11562 + 0.0259383i
\(653\) 5.64612 17.3770i 0.220950 0.680014i −0.777728 0.628601i \(-0.783628\pi\)
0.998678 0.0514125i \(-0.0163723\pi\)
\(654\) 8.79458 + 9.00143i 0.343895 + 0.351984i
\(655\) −15.0320 10.9214i −0.587351 0.426735i
\(656\) 11.1930 + 17.0163i 0.437015 + 0.664376i
\(657\) −4.31098 + 1.40072i −0.168187 + 0.0546473i
\(658\) 6.00993 + 12.1420i 0.234291 + 0.473344i
\(659\) 17.9779 0.700318 0.350159 0.936690i \(-0.386128\pi\)
0.350159 + 0.936690i \(0.386128\pi\)
\(660\) 0 0
\(661\) 2.57645 0.100212 0.0501062 0.998744i \(-0.484044\pi\)
0.0501062 + 0.998744i \(0.484044\pi\)
\(662\) −13.3612 26.9940i −0.519299 1.04915i
\(663\) 8.49507 2.76021i 0.329921 0.107198i
\(664\) 8.21395 7.66021i 0.318763 0.297274i
\(665\) −4.39576 3.19370i −0.170460 0.123847i
\(666\) −0.787867 0.806397i −0.0305292 0.0312473i
\(667\) −1.21694 + 3.74537i −0.0471202 + 0.145021i
\(668\) 0.00325997 0.140213i 0.000126132 0.00542500i
\(669\) −14.0186 + 10.1851i −0.541992 + 0.393780i
\(670\) −1.95065 + 11.4528i −0.0753602 + 0.442459i
\(671\) 0 0
\(672\) −9.27776 + 8.25754i −0.357897 + 0.318542i
\(673\) 20.1822 + 27.7784i 0.777966 + 1.07078i 0.995503 + 0.0947261i \(0.0301975\pi\)
−0.217538 + 0.976052i \(0.569802\pi\)
\(674\) 15.2184 2.22936i 0.586190 0.0858717i
\(675\) 9.27749 + 3.01444i 0.357091 + 0.116026i
\(676\) −11.8456 17.1276i −0.455599 0.658752i
\(677\) 10.1454 13.9639i 0.389919 0.536677i −0.568259 0.822850i \(-0.692383\pi\)
0.958178 + 0.286172i \(0.0923829\pi\)
\(678\) 12.3733 + 6.48673i 0.475192 + 0.249121i
\(679\) 6.15076 + 18.9301i 0.236044 + 0.726470i
\(680\) 3.57450 + 29.1029i 0.137076 + 1.11605i
\(681\) 10.3496i 0.396598i
\(682\) 0 0
\(683\) 0.254052i 0.00972104i −0.999988 0.00486052i \(-0.998453\pi\)
0.999988 0.00486052i \(-0.00154716\pi\)
\(684\) 5.47659 1.63973i 0.209403 0.0626968i
\(685\) −0.668948 2.05881i −0.0255592 0.0786631i
\(686\) 13.0057 24.8080i 0.496559 0.947173i
\(687\) −11.7968 + 16.2369i −0.450077 + 0.619478i
\(688\) 10.0072 + 36.4895i 0.381521 + 1.39115i
\(689\) −3.79202 1.23210i −0.144465 0.0469394i
\(690\) 2.34283 + 15.9930i 0.0891900 + 0.608842i
\(691\) 5.57531 + 7.67375i 0.212095 + 0.291923i 0.901788 0.432178i \(-0.142255\pi\)
−0.689694 + 0.724101i \(0.742255\pi\)
\(692\) 13.1278 37.4202i 0.499043 1.42250i
\(693\) 0 0
\(694\) −0.897175 0.152808i −0.0340563 0.00580052i
\(695\) −13.9412 + 10.1288i −0.528818 + 0.384209i
\(696\) −0.268927 + 1.38379i −0.0101937 + 0.0524524i
\(697\) 9.51291 29.2777i 0.360327 1.10897i
\(698\) −17.4794 + 17.0777i −0.661604 + 0.646400i
\(699\) 4.72074 + 3.42981i 0.178555 + 0.129728i
\(700\) 5.97205 7.83040i 0.225722 0.295961i
\(701\) 8.15984 2.65129i 0.308193 0.100138i −0.150837 0.988559i \(-0.548197\pi\)
0.459030 + 0.888421i \(0.348197\pi\)
\(702\) −9.65584 + 4.77936i −0.364436 + 0.180385i
\(703\) −0.490016 −0.0184813
\(704\) 0 0
\(705\) 6.31122 0.237694
\(706\) 35.9734 17.8058i 1.35388 0.670129i
\(707\) −20.5297 + 6.67051i −0.772100 + 0.250870i
\(708\) −7.85537 + 10.2998i −0.295223 + 0.387088i
\(709\) −5.59572 4.06553i −0.210152 0.152684i 0.477731 0.878506i \(-0.341459\pi\)
−0.687882 + 0.725822i \(0.741459\pi\)
\(710\) −6.09149 + 5.95150i −0.228609 + 0.223356i
\(711\) −1.71986 + 5.29318i −0.0644997 + 0.198510i
\(712\) 4.56071 23.4675i 0.170920 0.879483i
\(713\) −48.3239 + 35.1094i −1.80975 + 1.31486i
\(714\) 18.5060 + 3.15197i 0.692571 + 0.117960i
\(715\) 0 0
\(716\) −2.28135 + 6.50290i −0.0852580 + 0.243025i
\(717\) −8.07363 11.1124i −0.301515 0.415000i
\(718\) −5.85293 39.9541i −0.218429 1.49107i
\(719\) 18.1005 + 5.88121i 0.675035 + 0.219332i 0.626421 0.779485i \(-0.284519\pi\)
0.0486149 + 0.998818i \(0.484519\pi\)
\(720\) −3.91188 14.2640i −0.145787 0.531587i
\(721\) −12.6379 + 17.3945i −0.470659 + 0.647806i
\(722\) −11.3225 + 21.5973i −0.421379 + 0.803768i
\(723\) −0.129809 0.399511i −0.00482765 0.0148580i
\(724\) −30.1963 + 9.04100i −1.12224 + 0.336006i
\(725\) 1.11771i 0.0415108i
\(726\) 0 0
\(727\) 19.7014i 0.730685i −0.930873 0.365342i \(-0.880952\pi\)
0.930873 0.365342i \(-0.119048\pi\)
\(728\) 1.32593 + 10.7955i 0.0491422 + 0.400106i
\(729\) −2.62010 8.06383i −0.0970407 0.298661i
\(730\) 4.51453 + 2.36676i 0.167090 + 0.0875976i
\(731\) 33.6144 46.2662i 1.24327 1.71122i
\(732\) −10.3400 14.9507i −0.382178 0.552592i
\(733\) 47.3926 + 15.3988i 1.75049 + 0.568767i 0.996146 0.0877158i \(-0.0279567\pi\)
0.754341 + 0.656483i \(0.227957\pi\)
\(734\) −0.544919 + 0.0798259i −0.0201133 + 0.00294643i
\(735\) −1.18979 1.63760i −0.0438860 0.0604039i
\(736\) −30.6661 + 27.2940i −1.13037 + 1.00607i
\(737\) 0 0
\(738\) −2.60730 + 15.3081i −0.0959761 + 0.563500i
\(739\) −13.2872 + 9.65373i −0.488778 + 0.355118i −0.804714 0.593662i \(-0.797682\pi\)
0.315936 + 0.948781i \(0.397682\pi\)
\(740\) −0.0294682 + 1.26744i −0.00108327 + 0.0465921i
\(741\) −0.605172 + 1.86253i −0.0222315 + 0.0684217i
\(742\) −5.85605 5.99379i −0.214983 0.220039i
\(743\) −2.41980 1.75809i −0.0887737 0.0644979i 0.542513 0.840047i \(-0.317473\pi\)
−0.631287 + 0.775549i \(0.717473\pi\)
\(744\) −15.6368 + 14.5827i −0.573274 + 0.534627i
\(745\) −3.85370 + 1.25214i −0.141189 + 0.0458749i
\(746\) −6.24308 12.6130i −0.228575 0.461796i
\(747\) 8.56310 0.313307
\(748\) 0 0
\(749\) 7.37013 0.269299
\(750\) −6.97512 14.0920i −0.254695 0.514567i
\(751\) 39.5784 12.8598i 1.44424 0.469261i 0.521021 0.853544i \(-0.325551\pi\)
0.923215 + 0.384283i \(0.125551\pi\)
\(752\) 8.80906 + 13.3921i 0.321233 + 0.488358i
\(753\) −9.44849 6.86473i −0.344322 0.250165i
\(754\) 0.862697 + 0.882988i 0.0314176 + 0.0321565i
\(755\) 10.1217 31.1514i 0.368367 1.13372i
\(756\) −22.6370 0.526313i −0.823300 0.0191418i
\(757\) 18.5203 13.4558i 0.673131 0.489058i −0.197941 0.980214i \(-0.563425\pi\)
0.871072 + 0.491156i \(0.163425\pi\)
\(758\) 4.77572 28.0394i 0.173462 1.01844i
\(759\) 0 0
\(760\) −5.62279 3.11649i −0.203960 0.113047i
\(761\) −28.1805 38.7871i −1.02154 1.40603i −0.911117 0.412147i \(-0.864779\pi\)
−0.110425 0.993884i \(-0.535221\pi\)
\(762\) 0.419523 0.0614564i 0.0151977 0.00222633i
\(763\) 22.0275 + 7.15718i 0.797450 + 0.259107i
\(764\) 11.7182 8.10443i 0.423950 0.293208i
\(765\) −13.1401 + 18.0857i −0.475080 + 0.653892i
\(766\) −12.8780 6.75135i −0.465302 0.243936i
\(767\) 3.50532 + 10.7883i 0.126570 + 0.389542i
\(768\) −9.70426 + 11.0354i −0.350172 + 0.398206i
\(769\) 43.0718i 1.55321i 0.629989 + 0.776604i \(0.283059\pi\)
−0.629989 + 0.776604i \(0.716941\pi\)
\(770\) 0 0
\(771\) 1.36936i 0.0493164i
\(772\) 9.67325 + 32.3079i 0.348148 + 1.16279i
\(773\) −3.97191 12.2243i −0.142860 0.439677i 0.853870 0.520486i \(-0.174249\pi\)
−0.996730 + 0.0808097i \(0.974249\pi\)
\(774\) −13.3943 + 25.5493i −0.481448 + 0.918349i
\(775\) 9.96472 13.7153i 0.357943 0.492667i
\(776\) 9.95353 + 21.3433i 0.357311 + 0.766180i
\(777\) 0.771946 + 0.250820i 0.0276934 + 0.00899813i
\(778\) −3.95203 26.9779i −0.141687 0.967205i
\(779\) 3.96722 + 5.46040i 0.142140 + 0.195639i
\(780\) 4.78109 + 1.67730i 0.171191 + 0.0600571i
\(781\) 0 0
\(782\) 61.1687 + 10.4183i 2.18739 + 0.372559i
\(783\) −2.07913 + 1.51058i −0.0743021 + 0.0539836i
\(784\) 1.81422 4.81040i 0.0647937 0.171800i
\(785\) 5.19844 15.9991i 0.185540 0.571034i
\(786\) −10.0674 + 9.83606i −0.359093 + 0.350841i
\(787\) 32.2532 + 23.4333i 1.14970 + 0.835308i 0.988441 0.151604i \(-0.0484439\pi\)
0.161261 + 0.986912i \(0.448444\pi\)
\(788\) 39.2580 + 29.9411i 1.39851 + 1.06661i
\(789\) 12.8912 4.18860i 0.458939 0.149118i
\(790\) 5.60915 2.77636i 0.199565 0.0987786i
\(791\) 25.7119 0.914211
\(792\) 0 0
\(793\) −15.9186 −0.565287
\(794\) −48.2936 + 23.9039i −1.71388 + 0.848319i
\(795\) −3.71255 + 1.20628i −0.131671 + 0.0427824i
\(796\) −25.0620 19.1142i −0.888299 0.677484i
\(797\) 21.7562 + 15.8068i 0.770643 + 0.559905i 0.902156 0.431409i \(-0.141984\pi\)
−0.131513 + 0.991314i \(0.541984\pi\)
\(798\) −2.94397 + 2.87632i −0.104215 + 0.101821i
\(799\) 7.48677 23.0419i 0.264863 0.815165i
\(800\) 5.88383 10.0570i 0.208025 0.355568i
\(801\) 14.7457 10.7134i 0.521015 0.378539i
\(802\) −5.78815 0.985846i −0.204387 0.0348114i
\(803\) 0 0
\(804\) 8.30421 + 2.91328i 0.292867 + 0.102744i
\(805\) 17.4856 + 24.0669i 0.616287 + 0.848246i
\(806\) 2.71392 + 18.5262i 0.0955939 + 0.652557i
\(807\) −11.4815 3.73056i −0.404168 0.131322i
\(808\) −23.1469 + 10.7946i −0.814304 + 0.379754i
\(809\) −6.81793 + 9.38407i −0.239706 + 0.329926i −0.911873 0.410473i \(-0.865364\pi\)
0.672167 + 0.740399i \(0.265364\pi\)
\(810\) 2.38646 4.55211i 0.0838518 0.159945i
\(811\) 11.3129 + 34.8176i 0.397251 + 1.22261i 0.927195 + 0.374580i \(0.122213\pi\)
−0.529944 + 0.848033i \(0.677787\pi\)
\(812\) 0.744154 + 2.48542i 0.0261147 + 0.0872212i
\(813\) 10.3811i 0.364080i
\(814\) 0 0
\(815\) 24.4298i 0.855738i
\(816\) 22.1871 + 1.03227i 0.776705 + 0.0361365i
\(817\) 3.87458 + 11.9247i 0.135554 + 0.417193i
\(818\) −14.1811 7.43450i −0.495831 0.259941i
\(819\) −4.87418 + 6.70874i −0.170318 + 0.234422i
\(820\) 14.3621 9.93296i 0.501546 0.346874i
\(821\) −30.1599 9.79956i −1.05259 0.342007i −0.268905 0.963167i \(-0.586662\pi\)
−0.783684 + 0.621160i \(0.786662\pi\)
\(822\) −1.62249 + 0.237681i −0.0565909 + 0.00829007i
\(823\) −10.8506 14.9345i −0.378226 0.520584i 0.576887 0.816824i \(-0.304267\pi\)
−0.955114 + 0.296240i \(0.904267\pi\)
\(824\) −12.3323 + 22.2500i −0.429616 + 0.775117i
\(825\) 0 0
\(826\) −4.00284 + 23.5016i −0.139276 + 0.817727i
\(827\) −15.3185 + 11.1295i −0.532676 + 0.387012i −0.821358 0.570413i \(-0.806783\pi\)
0.288682 + 0.957425i \(0.406783\pi\)
\(828\) −31.2912 0.727523i −1.08744 0.0252832i
\(829\) 2.53131 7.79058i 0.0879162 0.270578i −0.897427 0.441164i \(-0.854566\pi\)
0.985343 + 0.170585i \(0.0545659\pi\)
\(830\) −6.72946 6.88773i −0.233583 0.239077i
\(831\) −1.17523 0.853852i −0.0407681 0.0296198i
\(832\) 3.11420 + 12.4864i 0.107965 + 0.432887i
\(833\) −7.39021 + 2.40122i −0.256055 + 0.0831975i
\(834\) 5.79055 + 11.6988i 0.200510 + 0.405095i
\(835\) −0.120245 −0.00416125
\(836\) 0 0
\(837\) −38.9799 −1.34734
\(838\) −13.3058 26.8819i −0.459640 0.928621i
\(839\) −34.5606 + 11.2294i −1.19316 + 0.387682i −0.837242 0.546833i \(-0.815833\pi\)
−0.355922 + 0.934516i \(0.615833\pi\)
\(840\) 7.26265 + 7.78765i 0.250585 + 0.268699i
\(841\) −23.2233 16.8727i −0.800802 0.581817i
\(842\) −24.4936 25.0697i −0.844106 0.863960i
\(843\) −2.50188 + 7.70000i −0.0861694 + 0.265202i
\(844\) −1.11076 + 47.7743i −0.0382339 + 1.64446i
\(845\) −14.4444 + 10.4945i −0.496903 + 0.361021i
\(846\) −2.05198 + 12.0477i −0.0705484 + 0.414207i
\(847\) 0 0
\(848\) −7.74156 6.19413i −0.265846 0.212707i
\(849\) 10.9473 + 15.0677i 0.375711 + 0.517123i
\(850\) −17.4249 + 2.55260i −0.597669 + 0.0875533i
\(851\) 2.55154 + 0.829046i 0.0874657 + 0.0284193i
\(852\) 3.66951 + 5.30575i 0.125715 + 0.181772i
\(853\) −6.98930 + 9.61995i −0.239309 + 0.329381i −0.911731 0.410787i \(-0.865254\pi\)
0.672422 + 0.740168i \(0.265254\pi\)
\(854\) −29.6305 15.5339i −1.01394 0.531560i
\(855\) −1.51460 4.66145i −0.0517981 0.159418i
\(856\) 8.65509 1.06304i 0.295825 0.0363340i
\(857\) 35.7039i 1.21962i −0.792547 0.609811i \(-0.791245\pi\)
0.792547 0.609811i \(-0.208755\pi\)
\(858\) 0 0
\(859\) 40.2518i 1.37337i −0.726953 0.686687i \(-0.759064\pi\)
0.726953 0.686687i \(-0.240936\pi\)
\(860\) 31.0767 9.30460i 1.05971 0.317284i
\(861\) −3.45477 10.6327i −0.117738 0.362362i
\(862\) 1.16049 2.21360i 0.0395264 0.0753956i
\(863\) 10.6919 14.7161i 0.363955 0.500941i −0.587290 0.809376i \(-0.699805\pi\)
0.951245 + 0.308435i \(0.0998053\pi\)
\(864\) −26.6596 + 2.64701i −0.906979 + 0.0900531i
\(865\) −32.3354 10.5064i −1.09944 0.357229i
\(866\) −6.75445 46.1082i −0.229526 1.56682i
\(867\) −10.5548 14.5275i −0.358461 0.493380i
\(868\) −13.0268 + 37.1325i −0.442160 + 1.26036i
\(869\) 0 0
\(870\) 1.19144 + 0.202928i 0.0403936 + 0.00687990i
\(871\) 6.23477 4.52982i 0.211257 0.153487i
\(872\) 26.9003 + 5.22784i 0.910959 + 0.177037i
\(873\) −5.54839 + 17.0762i −0.187785 + 0.577942i
\(874\) −9.73082 + 9.50720i −0.329150 + 0.321586i
\(875\) −23.4119 17.0097i −0.791466 0.575034i
\(876\) 2.34156 3.07018i 0.0791138 0.103732i
\(877\) −37.9877 + 12.3429i −1.28275 + 0.416791i −0.869549 0.493847i \(-0.835590\pi\)
−0.413203 + 0.910639i \(0.635590\pi\)
\(878\) 34.6673 17.1593i 1.16996 0.579097i
\(879\) 12.8141 0.432210
\(880\) 0 0
\(881\) 21.8173 0.735045 0.367522 0.930015i \(-0.380206\pi\)
0.367522 + 0.930015i \(0.380206\pi\)
\(882\) 3.51291 1.73878i 0.118286 0.0585479i
\(883\) −14.6757 + 4.76844i −0.493878 + 0.160471i −0.545358 0.838203i \(-0.683606\pi\)
0.0514797 + 0.998674i \(0.483606\pi\)
\(884\) 11.7954 15.4658i 0.396722 0.520171i
\(885\) 8.98473 + 6.52779i 0.302018 + 0.219429i
\(886\) 1.71492 1.67551i 0.0576137 0.0562898i
\(887\) 5.23296 16.1054i 0.175706 0.540767i −0.823959 0.566649i \(-0.808240\pi\)
0.999665 + 0.0258824i \(0.00823956\pi\)
\(888\) 0.942710 + 0.183207i 0.0316353 + 0.00614804i
\(889\) 0.631316 0.458678i 0.0211736 0.0153836i
\(890\) −20.2055 3.44143i −0.677290 0.115357i
\(891\) 0 0
\(892\) −12.4910 + 35.6053i −0.418231 + 1.19215i
\(893\) 3.12224 + 4.29740i 0.104482 + 0.143807i
\(894\) 0.444893 + 3.03699i 0.0148794 + 0.101572i
\(895\) 5.61927 + 1.82581i 0.187831 + 0.0610301i
\(896\) −6.38792 + 26.2808i −0.213405 + 0.877978i
\(897\) 6.30233 8.67441i 0.210429 0.289630i
\(898\) −12.1696 + 23.2132i −0.406104 + 0.774633i
\(899\) 1.38016 + 4.24769i 0.0460309 + 0.141668i
\(900\) 8.51017 2.54801i 0.283672 0.0849337i
\(901\) 14.9853i 0.499233i
\(902\) 0 0
\(903\) 20.7688i 0.691144i
\(904\) 30.1947 3.70860i 1.00426 0.123346i
\(905\) 8.35104 + 25.7019i 0.277598 + 0.854359i
\(906\) −21.9749 11.5204i −0.730066 0.382740i
\(907\) −14.6614 + 20.1797i −0.486825 + 0.670057i −0.979799 0.199987i \(-0.935910\pi\)
0.492973 + 0.870044i \(0.335910\pi\)
\(908\) −12.8195 18.5357i −0.425429 0.615129i
\(909\) −18.5192 6.01725i −0.614242 0.199579i
\(910\) 9.22664 1.35162i 0.305860 0.0448058i
\(911\) −26.1026 35.9271i −0.864818 1.19032i −0.980399 0.197021i \(-0.936873\pi\)
0.115582 0.993298i \(-0.463127\pi\)
\(912\) −3.04237 + 3.80242i −0.100743 + 0.125911i
\(913\) 0 0
\(914\) −2.58419 + 15.1724i −0.0854773 + 0.501858i
\(915\) −12.6085 + 9.16064i −0.416825 + 0.302841i
\(916\) −1.01584 + 43.6918i −0.0335643 + 1.44362i
\(917\) −8.00476 + 24.6361i −0.264340 + 0.813556i
\(918\) 28.2978 + 28.9634i 0.933967 + 0.955935i
\(919\) 39.2030 + 28.4827i 1.29319 + 0.939556i 0.999865 0.0164566i \(-0.00523854\pi\)
0.293324 + 0.956013i \(0.405239\pi\)
\(920\) 24.0055 + 25.7408i 0.791438 + 0.848649i
\(921\) −5.14346 + 1.67121i −0.169483 + 0.0550683i
\(922\) 8.67487 + 17.5260i 0.285692 + 0.577189i
\(923\) 5.64926 0.185948
\(924\) 0 0
\(925\) −0.761445 −0.0250362
\(926\) −23.4414 47.3592i −0.770333 1.55632i
\(927\) −18.4459 + 5.99344i −0.605843 + 0.196850i
\(928\) 1.23238 + 2.81141i 0.0404550 + 0.0922891i
\(929\) −18.1130 13.1598i −0.594267 0.431761i 0.249572 0.968356i \(-0.419710\pi\)
−0.843839 + 0.536596i \(0.819710\pi\)
\(930\) 12.8108 + 13.1121i 0.420083 + 0.429963i
\(931\) 0.526464 1.62029i 0.0172542 0.0531028i
\(932\) 12.7030 + 0.295346i 0.416099 + 0.00967436i
\(933\) 19.4927 14.1623i 0.638162 0.463652i
\(934\) 3.27570 19.2324i 0.107184 0.629305i
\(935\) 0 0
\(936\) −4.75634 + 8.58142i −0.155466 + 0.280493i
\(937\) −21.1435 29.1016i −0.690729 0.950707i 0.309271 0.950974i \(-0.399915\pi\)
−1.00000 0.000266837i \(0.999915\pi\)
\(938\) 16.0256 2.34761i 0.523255 0.0766522i
\(939\) 14.9648 + 4.86235i 0.488357 + 0.158677i
\(940\) 11.3031 7.81735i 0.368667 0.254974i
\(941\) 29.1444 40.1139i 0.950082 1.30768i −0.00140961 0.999999i \(-0.500449\pi\)
0.951491 0.307676i \(-0.0995513\pi\)
\(942\) −11.2861 5.91679i −0.367722 0.192780i
\(943\) −11.4192 35.1447i −0.371860 1.14447i
\(944\) −1.31092 + 28.1764i −0.0426668 + 0.917065i
\(945\) 19.4133i 0.631513i
\(946\) 0 0
\(947\) 45.1846i 1.46830i −0.678985 0.734152i \(-0.737580\pi\)
0.678985 0.734152i \(-0.262420\pi\)
\(948\) −1.35983 4.54173i −0.0441652 0.147509i
\(949\) −1.04488 3.21580i −0.0339182 0.104389i
\(950\) 1.79279 3.41970i 0.0581659 0.110950i
\(951\) −0.430366 + 0.592348i −0.0139556 + 0.0192082i
\(952\) 37.0477 17.2773i 1.20072 0.559961i
\(953\) 28.3348 + 9.20654i 0.917855 + 0.298229i 0.729586 0.683889i \(-0.239713\pi\)
0.188268 + 0.982118i \(0.439713\pi\)
\(954\) −1.09564 7.47920i −0.0354726 0.242148i
\(955\) −7.18004 9.88248i −0.232341 0.319790i
\(956\) −28.2239 9.90149i −0.912825 0.320237i
\(957\) 0 0
\(958\) −18.8307 3.20728i −0.608393 0.103622i
\(959\) −2.44159 + 1.77392i −0.0788431 + 0.0572829i
\(960\) 9.65213 + 8.09786i 0.311521 + 0.261357i
\(961\) −11.3542 + 34.9445i −0.366263 + 1.12724i
\(962\) 0.601538 0.587715i 0.0193944 0.0189487i
\(963\) 5.37863 + 3.90780i 0.173324 + 0.125927i
\(964\) −0.727335 0.554721i −0.0234259 0.0178664i
\(965\) 27.4992 8.93503i 0.885231 0.287629i
\(966\) 20.1958 9.99632i 0.649789 0.321626i
\(967\) −2.10906 −0.0678227 −0.0339113 0.999425i \(-0.510796\pi\)
−0.0339113 + 0.999425i \(0.510796\pi\)
\(968\) 0 0
\(969\) 7.36033 0.236448
\(970\) 18.0956 8.95676i 0.581013 0.287584i
\(971\) 54.6230 17.7481i 1.75293 0.569563i 0.756504 0.653989i \(-0.226906\pi\)
0.996430 + 0.0844257i \(0.0269056\pi\)
\(972\) −25.6902 19.5933i −0.824013 0.628455i
\(973\) 19.4359 + 14.1210i 0.623086 + 0.452698i
\(974\) 36.1516 35.3209i 1.15837 1.13175i
\(975\) −0.940388 + 2.89422i −0.0301165 + 0.0926891i
\(976\) −37.0371 13.9684i −1.18553 0.447118i
\(977\) −4.23080 + 3.07386i −0.135355 + 0.0983414i −0.653403 0.757011i \(-0.726659\pi\)
0.518047 + 0.855352i \(0.326659\pi\)
\(978\) −18.2429 3.10715i −0.583342 0.0993557i
\(979\) 0 0
\(980\) −4.15927 1.45916i −0.132863 0.0466110i
\(981\) 12.2805 + 16.9027i 0.392087 + 0.539662i
\(982\) −8.27073 56.4589i −0.263930 1.80168i
\(983\) −27.1601 8.82486i −0.866273 0.281469i −0.158027 0.987435i \(-0.550513\pi\)
−0.708246 + 0.705966i \(0.750513\pi\)
\(984\) −5.59073 11.9882i −0.178226 0.382169i
\(985\) 24.8809 34.2457i 0.792773 1.09116i
\(986\) 2.15424 4.10916i 0.0686050 0.130862i
\(987\) −2.71895 8.36806i −0.0865451 0.266358i
\(988\) 1.22317 + 4.08530i 0.0389143 + 0.129971i
\(989\) 68.6481i 2.18288i
\(990\) 0 0
\(991\) 0.537995i 0.0170900i −0.999963 0.00854499i \(-0.997280\pi\)
0.999963 0.00854499i \(-0.00271999\pi\)
\(992\) −9.94216 + 45.4854i −0.315664 + 1.44416i
\(993\) 6.04475 + 18.6038i 0.191824 + 0.590375i
\(994\) 10.5154 + 5.51274i 0.333528 + 0.174853i
\(995\) −15.8838 + 21.8622i −0.503551 + 0.693078i
\(996\) −5.99929 + 4.14917i −0.190095 + 0.131471i
\(997\) −23.1078 7.50819i −0.731832 0.237787i −0.0806867 0.996740i \(-0.525711\pi\)
−0.651146 + 0.758953i \(0.725711\pi\)
\(998\) −5.69540 + 0.834326i −0.180285 + 0.0264101i
\(999\) 1.02909 + 1.41641i 0.0325588 + 0.0448134i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 484.2.g.f.239.1 16
4.3 odd 2 inner 484.2.g.f.239.4 16
11.2 odd 10 484.2.c.d.483.1 16
11.3 even 5 44.2.g.a.39.4 yes 16
11.4 even 5 484.2.g.j.403.1 16
11.5 even 5 484.2.g.i.475.2 16
11.6 odd 10 44.2.g.a.35.3 16
11.7 odd 10 inner 484.2.g.f.403.4 16
11.8 odd 10 484.2.g.i.215.1 16
11.9 even 5 484.2.c.d.483.16 16
11.10 odd 2 484.2.g.j.239.4 16
33.14 odd 10 396.2.r.a.127.1 16
33.17 even 10 396.2.r.a.343.2 16
44.3 odd 10 44.2.g.a.39.3 yes 16
44.7 even 10 inner 484.2.g.f.403.1 16
44.15 odd 10 484.2.g.j.403.4 16
44.19 even 10 484.2.g.i.215.2 16
44.27 odd 10 484.2.g.i.475.1 16
44.31 odd 10 484.2.c.d.483.2 16
44.35 even 10 484.2.c.d.483.15 16
44.39 even 10 44.2.g.a.35.4 yes 16
44.43 even 2 484.2.g.j.239.1 16
88.3 odd 10 704.2.u.c.127.2 16
88.61 odd 10 704.2.u.c.255.2 16
88.69 even 10 704.2.u.c.127.3 16
88.83 even 10 704.2.u.c.255.3 16
132.47 even 10 396.2.r.a.127.2 16
132.83 odd 10 396.2.r.a.343.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.35.3 16 11.6 odd 10
44.2.g.a.35.4 yes 16 44.39 even 10
44.2.g.a.39.3 yes 16 44.3 odd 10
44.2.g.a.39.4 yes 16 11.3 even 5
396.2.r.a.127.1 16 33.14 odd 10
396.2.r.a.127.2 16 132.47 even 10
396.2.r.a.343.1 16 132.83 odd 10
396.2.r.a.343.2 16 33.17 even 10
484.2.c.d.483.1 16 11.2 odd 10
484.2.c.d.483.2 16 44.31 odd 10
484.2.c.d.483.15 16 44.35 even 10
484.2.c.d.483.16 16 11.9 even 5
484.2.g.f.239.1 16 1.1 even 1 trivial
484.2.g.f.239.4 16 4.3 odd 2 inner
484.2.g.f.403.1 16 44.7 even 10 inner
484.2.g.f.403.4 16 11.7 odd 10 inner
484.2.g.i.215.1 16 11.8 odd 10
484.2.g.i.215.2 16 44.19 even 10
484.2.g.i.475.1 16 44.27 odd 10
484.2.g.i.475.2 16 11.5 even 5
484.2.g.j.239.1 16 44.43 even 2
484.2.g.j.239.4 16 11.10 odd 2
484.2.g.j.403.1 16 11.4 even 5
484.2.g.j.403.4 16 44.15 odd 10
704.2.u.c.127.2 16 88.3 odd 10
704.2.u.c.127.3 16 88.69 even 10
704.2.u.c.255.2 16 88.61 odd 10
704.2.u.c.255.3 16 88.83 even 10