Properties

Label 396.2.r.a.127.2
Level $396$
Weight $2$
Character 396.127
Analytic conductor $3.162$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [396,2,Mod(19,396)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(396, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 0, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("396.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 396 = 2^{2} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 396.r (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.16207592004\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 127.2
Root \(0.656642 - 1.25253i\) of defining polynomial
Character \(\chi\) \(=\) 396.127
Dual form 396.2.r.a.343.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.656642 + 1.25253i) q^{2} +(-1.13764 + 1.64492i) q^{4} +(-0.529876 + 1.63079i) q^{5} +(-1.93399 + 1.40513i) q^{7} +(-2.80733 - 0.344804i) q^{8} +O(q^{10})\) \(q+(0.656642 + 1.25253i) q^{2} +(-1.13764 + 1.64492i) q^{4} +(-0.529876 + 1.63079i) q^{5} +(-1.93399 + 1.40513i) q^{7} +(-2.80733 - 0.344804i) q^{8} +(-2.39055 + 0.407162i) q^{10} +(-2.65349 - 1.98973i) q^{11} +(-1.52988 + 0.497087i) q^{13} +(-3.02990 - 1.49971i) q^{14} +(-1.41153 - 3.74267i) q^{16} +(5.74986 + 1.86824i) q^{17} +(-1.07237 - 0.779122i) q^{19} +(-2.07971 - 2.72686i) q^{20} +(0.749794 - 4.63010i) q^{22} +7.25726i q^{23} +(1.66637 + 1.21069i) q^{25} +(-1.62719 - 1.58980i) q^{26} +(-0.111131 - 4.77980i) q^{28} +(0.318958 + 0.439008i) q^{29} +(-7.82777 + 2.54340i) q^{31} +(3.76092 - 4.22558i) q^{32} +(1.43557 + 8.42861i) q^{34} +(-1.26669 - 3.89848i) q^{35} +(-0.299076 + 0.217291i) q^{37} +(0.271708 - 1.85477i) q^{38} +(2.04984 - 4.39547i) q^{40} +(-2.99295 + 4.11944i) q^{41} +9.45922 q^{43} +(6.29167 - 2.10118i) q^{44} +(-9.08991 + 4.76542i) q^{46} +(2.35548 - 3.24205i) q^{47} +(-0.397175 + 1.22238i) q^{49} +(-0.422212 + 2.88217i) q^{50} +(0.922785 - 3.08203i) q^{52} +(0.765944 + 2.35733i) q^{53} +(4.65085 - 3.27297i) q^{55} +(5.91385 - 3.27781i) q^{56} +(-0.340428 + 0.687775i) q^{58} +(4.14490 + 5.70497i) q^{59} +(9.41156 + 3.05800i) q^{61} +(-8.32571 - 8.13438i) q^{62} +(7.76222 + 1.93596i) q^{64} -2.75830i q^{65} -4.79085i q^{67} +(-9.61440 + 7.33267i) q^{68} +(4.05119 - 4.14647i) q^{70} +(-3.34001 - 1.08524i) q^{71} +(-1.23553 - 1.70056i) q^{73} +(-0.468549 - 0.231918i) q^{74} +(2.50157 - 0.877601i) q^{76} +(7.92764 + 0.119627i) q^{77} +(0.797547 + 2.45460i) q^{79} +(6.85145 - 0.318767i) q^{80} +(-7.12500 - 1.04375i) q^{82} +(1.22709 - 3.77660i) q^{83} +(-6.09343 + 8.38688i) q^{85} +(6.21132 + 11.8479i) q^{86} +(6.76315 + 6.50075i) q^{88} +8.45225 q^{89} +(2.26030 - 3.11103i) q^{91} +(-11.9376 - 8.25618i) q^{92} +(5.60746 + 0.821443i) q^{94} +(1.83881 - 1.33597i) q^{95} +(-2.57295 - 7.91872i) q^{97} +(-1.79186 + 0.305193i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 5 q^{2} - q^{4} + 6 q^{5} + 5 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 5 q^{2} - q^{4} + 6 q^{5} + 5 q^{8} - 10 q^{13} - 8 q^{14} + 23 q^{16} + 10 q^{17} - 16 q^{20} + 17 q^{22} + 6 q^{25} + 4 q^{26} + 20 q^{28} + 10 q^{29} - 6 q^{34} + 18 q^{37} + 38 q^{38} - 40 q^{40} - 10 q^{41} + 28 q^{44} - 30 q^{46} + 6 q^{49} + 15 q^{50} - 10 q^{52} - 38 q^{53} + 12 q^{56} + 30 q^{58} - 10 q^{61} - 70 q^{62} + 23 q^{64} - 60 q^{68} + 12 q^{70} - 30 q^{73} - 40 q^{74} - 2 q^{77} + 28 q^{80} - 59 q^{82} - 50 q^{85} + 39 q^{86} - 53 q^{88} + 36 q^{89} - 36 q^{92} - 30 q^{94} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/396\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\)
\(\chi(n)\) \(e\left(\frac{9}{10}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.656642 + 1.25253i 0.464316 + 0.885670i
\(3\) 0 0
\(4\) −1.13764 + 1.64492i −0.568822 + 0.822461i
\(5\) −0.529876 + 1.63079i −0.236968 + 0.729312i 0.759886 + 0.650056i \(0.225254\pi\)
−0.996854 + 0.0792561i \(0.974746\pi\)
\(6\) 0 0
\(7\) −1.93399 + 1.40513i −0.730981 + 0.531089i −0.889874 0.456207i \(-0.849208\pi\)
0.158893 + 0.987296i \(0.449208\pi\)
\(8\) −2.80733 0.344804i −0.992542 0.121907i
\(9\) 0 0
\(10\) −2.39055 + 0.407162i −0.755957 + 0.128756i
\(11\) −2.65349 1.98973i −0.800056 0.599925i
\(12\) 0 0
\(13\) −1.52988 + 0.497087i −0.424311 + 0.137867i −0.513386 0.858158i \(-0.671609\pi\)
0.0890746 + 0.996025i \(0.471609\pi\)
\(14\) −3.02990 1.49971i −0.809775 0.400815i
\(15\) 0 0
\(16\) −1.41153 3.74267i −0.352884 0.935667i
\(17\) 5.74986 + 1.86824i 1.39455 + 0.453115i 0.907423 0.420218i \(-0.138046\pi\)
0.487123 + 0.873334i \(0.338046\pi\)
\(18\) 0 0
\(19\) −1.07237 0.779122i −0.246018 0.178743i 0.457942 0.888982i \(-0.348587\pi\)
−0.703960 + 0.710239i \(0.748587\pi\)
\(20\) −2.07971 2.72686i −0.465038 0.609745i
\(21\) 0 0
\(22\) 0.749794 4.63010i 0.159857 0.987140i
\(23\) 7.25726i 1.51324i 0.653853 + 0.756622i \(0.273152\pi\)
−0.653853 + 0.756622i \(0.726848\pi\)
\(24\) 0 0
\(25\) 1.66637 + 1.21069i 0.333275 + 0.242138i
\(26\) −1.62719 1.58980i −0.319119 0.311786i
\(27\) 0 0
\(28\) −0.111131 4.77980i −0.0210018 0.903298i
\(29\) 0.318958 + 0.439008i 0.0592291 + 0.0815218i 0.837604 0.546278i \(-0.183956\pi\)
−0.778375 + 0.627800i \(0.783956\pi\)
\(30\) 0 0
\(31\) −7.82777 + 2.54340i −1.40591 + 0.456807i −0.911097 0.412193i \(-0.864763\pi\)
−0.494812 + 0.869000i \(0.664763\pi\)
\(32\) 3.76092 4.22558i 0.664843 0.746983i
\(33\) 0 0
\(34\) 1.43557 + 8.42861i 0.246199 + 1.44550i
\(35\) −1.26669 3.89848i −0.214110 0.658964i
\(36\) 0 0
\(37\) −0.299076 + 0.217291i −0.0491678 + 0.0357225i −0.612098 0.790782i \(-0.709674\pi\)
0.562930 + 0.826505i \(0.309674\pi\)
\(38\) 0.271708 1.85477i 0.0440769 0.300884i
\(39\) 0 0
\(40\) 2.04984 4.39547i 0.324108 0.694984i
\(41\) −2.99295 + 4.11944i −0.467420 + 0.643348i −0.976027 0.217651i \(-0.930161\pi\)
0.508607 + 0.860999i \(0.330161\pi\)
\(42\) 0 0
\(43\) 9.45922 1.44252 0.721259 0.692666i \(-0.243564\pi\)
0.721259 + 0.692666i \(0.243564\pi\)
\(44\) 6.29167 2.10118i 0.948504 0.316765i
\(45\) 0 0
\(46\) −9.08991 + 4.76542i −1.34023 + 0.702623i
\(47\) 2.35548 3.24205i 0.343583 0.472901i −0.601901 0.798571i \(-0.705590\pi\)
0.945484 + 0.325670i \(0.105590\pi\)
\(48\) 0 0
\(49\) −0.397175 + 1.22238i −0.0567393 + 0.174626i
\(50\) −0.422212 + 2.88217i −0.0597099 + 0.407600i
\(51\) 0 0
\(52\) 0.922785 3.08203i 0.127967 0.427401i
\(53\) 0.765944 + 2.35733i 0.105211 + 0.323805i 0.989780 0.142604i \(-0.0455476\pi\)
−0.884569 + 0.466409i \(0.845548\pi\)
\(54\) 0 0
\(55\) 4.65085 3.27297i 0.627120 0.441328i
\(56\) 5.91385 3.27781i 0.790272 0.438016i
\(57\) 0 0
\(58\) −0.340428 + 0.687775i −0.0447004 + 0.0903092i
\(59\) 4.14490 + 5.70497i 0.539620 + 0.742724i 0.988558 0.150839i \(-0.0481975\pi\)
−0.448938 + 0.893563i \(0.648198\pi\)
\(60\) 0 0
\(61\) 9.41156 + 3.05800i 1.20503 + 0.391537i 0.841608 0.540089i \(-0.181609\pi\)
0.363419 + 0.931626i \(0.381609\pi\)
\(62\) −8.32571 8.13438i −1.05737 1.03307i
\(63\) 0 0
\(64\) 7.76222 + 1.93596i 0.970277 + 0.241995i
\(65\) 2.75830i 0.342125i
\(66\) 0 0
\(67\) 4.79085i 0.585296i −0.956220 0.292648i \(-0.905464\pi\)
0.956220 0.292648i \(-0.0945364\pi\)
\(68\) −9.61440 + 7.33267i −1.16592 + 0.889217i
\(69\) 0 0
\(70\) 4.05119 4.14647i 0.484210 0.495598i
\(71\) −3.34001 1.08524i −0.396387 0.128794i 0.104039 0.994573i \(-0.466823\pi\)
−0.500426 + 0.865779i \(0.666823\pi\)
\(72\) 0 0
\(73\) −1.23553 1.70056i −0.144607 0.199035i 0.730569 0.682839i \(-0.239255\pi\)
−0.875177 + 0.483804i \(0.839255\pi\)
\(74\) −0.468549 0.231918i −0.0544677 0.0269599i
\(75\) 0 0
\(76\) 2.50157 0.877601i 0.286950 0.100668i
\(77\) 7.92764 + 0.119627i 0.903439 + 0.0136328i
\(78\) 0 0
\(79\) 0.797547 + 2.45460i 0.0897311 + 0.276164i 0.985845 0.167661i \(-0.0536213\pi\)
−0.896114 + 0.443825i \(0.853621\pi\)
\(80\) 6.85145 0.318767i 0.766015 0.0356392i
\(81\) 0 0
\(82\) −7.12500 1.04375i −0.786824 0.115263i
\(83\) 1.22709 3.77660i 0.134691 0.414536i −0.860851 0.508857i \(-0.830068\pi\)
0.995542 + 0.0943213i \(0.0300681\pi\)
\(84\) 0 0
\(85\) −6.09343 + 8.38688i −0.660925 + 0.909685i
\(86\) 6.21132 + 11.8479i 0.669784 + 1.27759i
\(87\) 0 0
\(88\) 6.76315 + 6.50075i 0.720954 + 0.692983i
\(89\) 8.45225 0.895937 0.447969 0.894049i \(-0.352148\pi\)
0.447969 + 0.894049i \(0.352148\pi\)
\(90\) 0 0
\(91\) 2.26030 3.11103i 0.236944 0.326125i
\(92\) −11.9376 8.25618i −1.24458 0.860766i
\(93\) 0 0
\(94\) 5.60746 + 0.821443i 0.578365 + 0.0847254i
\(95\) 1.83881 1.33597i 0.188658 0.137068i
\(96\) 0 0
\(97\) −2.57295 7.91872i −0.261243 0.804024i −0.992535 0.121960i \(-0.961082\pi\)
0.731292 0.682065i \(-0.238918\pi\)
\(98\) −1.79186 + 0.305193i −0.181005 + 0.0308291i
\(99\) 0 0
\(100\) −3.88723 + 1.36372i −0.388723 + 0.136372i
\(101\) −8.58788 + 2.79037i −0.854526 + 0.277652i −0.703340 0.710853i \(-0.748309\pi\)
−0.151185 + 0.988505i \(0.548309\pi\)
\(102\) 0 0
\(103\) 5.28660 + 7.27638i 0.520904 + 0.716963i 0.985710 0.168450i \(-0.0538760\pi\)
−0.464806 + 0.885412i \(0.653876\pi\)
\(104\) 4.46627 0.867980i 0.437954 0.0851124i
\(105\) 0 0
\(106\) −2.44967 + 2.50729i −0.237933 + 0.243529i
\(107\) 2.49422 + 1.81216i 0.241126 + 0.175188i 0.701785 0.712389i \(-0.252387\pi\)
−0.460659 + 0.887577i \(0.652387\pi\)
\(108\) 0 0
\(109\) 9.68863i 0.928002i −0.885835 0.464001i \(-0.846413\pi\)
0.885835 0.464001i \(-0.153587\pi\)
\(110\) 7.15342 + 3.67614i 0.682052 + 0.350506i
\(111\) 0 0
\(112\) 7.98883 + 5.25491i 0.754873 + 0.496542i
\(113\) −8.70152 6.32202i −0.818570 0.594726i 0.0977325 0.995213i \(-0.468841\pi\)
−0.916303 + 0.400487i \(0.868841\pi\)
\(114\) 0 0
\(115\) −11.8351 3.84545i −1.10363 0.358590i
\(116\) −1.08500 + 0.0252263i −0.100739 + 0.00234220i
\(117\) 0 0
\(118\) −4.42391 + 8.93772i −0.407254 + 0.822784i
\(119\) −13.7453 + 4.46612i −1.26003 + 0.409409i
\(120\) 0 0
\(121\) 3.08198 + 10.5594i 0.280180 + 0.959947i
\(122\) 2.34980 + 13.7962i 0.212740 + 1.24905i
\(123\) 0 0
\(124\) 4.72152 15.7695i 0.424005 1.41615i
\(125\) −9.79353 + 7.11541i −0.875960 + 0.636422i
\(126\) 0 0
\(127\) −0.100873 + 0.310454i −0.00895101 + 0.0275484i −0.955432 0.295210i \(-0.904610\pi\)
0.946481 + 0.322759i \(0.104610\pi\)
\(128\) 2.67216 + 10.9936i 0.236187 + 0.971708i
\(129\) 0 0
\(130\) 3.45485 1.81122i 0.303010 0.158854i
\(131\) 10.8360 0.946745 0.473372 0.880862i \(-0.343037\pi\)
0.473372 + 0.880862i \(0.343037\pi\)
\(132\) 0 0
\(133\) 3.16872 0.274763
\(134\) 6.00067 3.14587i 0.518379 0.271762i
\(135\) 0 0
\(136\) −15.4976 7.22735i −1.32891 0.619740i
\(137\) 0.390122 1.20067i 0.0333304 0.102580i −0.933007 0.359857i \(-0.882825\pi\)
0.966338 + 0.257277i \(0.0828253\pi\)
\(138\) 0 0
\(139\) 8.13031 5.90702i 0.689604 0.501026i −0.186926 0.982374i \(-0.559852\pi\)
0.876530 + 0.481347i \(0.159852\pi\)
\(140\) 7.85374 + 2.35147i 0.663763 + 0.198736i
\(141\) 0 0
\(142\) −0.833905 4.89606i −0.0699797 0.410869i
\(143\) 5.04857 + 1.72502i 0.422183 + 0.144253i
\(144\) 0 0
\(145\) −0.884939 + 0.287534i −0.0734902 + 0.0238784i
\(146\) 1.31869 2.66418i 0.109136 0.220490i
\(147\) 0 0
\(148\) −0.0171855 0.739156i −0.00141264 0.0607583i
\(149\) −2.24743 0.730233i −0.184116 0.0598230i 0.215508 0.976502i \(-0.430859\pi\)
−0.399624 + 0.916679i \(0.630859\pi\)
\(150\) 0 0
\(151\) 15.4539 + 11.2279i 1.25762 + 0.913713i 0.998638 0.0521699i \(-0.0166137\pi\)
0.258980 + 0.965883i \(0.416614\pi\)
\(152\) 2.74185 + 2.55701i 0.222394 + 0.207401i
\(153\) 0 0
\(154\) 5.05579 + 10.0081i 0.407407 + 0.806479i
\(155\) 14.1131i 1.13359i
\(156\) 0 0
\(157\) −7.93699 5.76656i −0.633441 0.460222i 0.224150 0.974555i \(-0.428040\pi\)
−0.857591 + 0.514333i \(0.828040\pi\)
\(158\) −2.55075 + 2.61074i −0.202926 + 0.207699i
\(159\) 0 0
\(160\) 4.89821 + 8.37230i 0.387237 + 0.661889i
\(161\) −10.1974 14.0355i −0.803667 1.10615i
\(162\) 0 0
\(163\) −13.5498 + 4.40261i −1.06130 + 0.344839i −0.787096 0.616831i \(-0.788416\pi\)
−0.274209 + 0.961670i \(0.588416\pi\)
\(164\) −3.37125 9.60962i −0.263250 0.750385i
\(165\) 0 0
\(166\) 5.53605 0.942909i 0.429681 0.0731839i
\(167\) −0.0216699 0.0666932i −0.00167687 0.00516088i 0.950215 0.311596i \(-0.100864\pi\)
−0.951891 + 0.306435i \(0.900864\pi\)
\(168\) 0 0
\(169\) −8.42380 + 6.12025i −0.647984 + 0.470788i
\(170\) −14.5060 2.12500i −1.11256 0.162980i
\(171\) 0 0
\(172\) −10.7612 + 15.5597i −0.820535 + 1.18641i
\(173\) 11.6546 16.0412i 0.886086 1.21959i −0.0886112 0.996066i \(-0.528243\pi\)
0.974698 0.223527i \(-0.0717571\pi\)
\(174\) 0 0
\(175\) −4.92393 −0.372214
\(176\) −3.70140 + 12.7397i −0.279003 + 0.960290i
\(177\) 0 0
\(178\) 5.55010 + 10.5867i 0.415998 + 0.793504i
\(179\) 2.02535 2.78765i 0.151382 0.208359i −0.726590 0.687071i \(-0.758896\pi\)
0.877972 + 0.478712i \(0.158896\pi\)
\(180\) 0 0
\(181\) 4.87022 14.9890i 0.362001 1.11412i −0.589837 0.807522i \(-0.700808\pi\)
0.951838 0.306601i \(-0.0991918\pi\)
\(182\) 5.38086 + 0.788249i 0.398856 + 0.0584289i
\(183\) 0 0
\(184\) 2.50234 20.3735i 0.184475 1.50196i
\(185\) −0.195884 0.602867i −0.0144016 0.0443237i
\(186\) 0 0
\(187\) −11.5399 16.3980i −0.843880 1.19914i
\(188\) 2.65321 + 7.56288i 0.193505 + 0.551580i
\(189\) 0 0
\(190\) 2.88078 + 1.42590i 0.208994 + 0.103446i
\(191\) −4.18731 5.76334i −0.302983 0.417020i 0.630194 0.776438i \(-0.282975\pi\)
−0.933177 + 0.359417i \(0.882975\pi\)
\(192\) 0 0
\(193\) −16.0372 5.21080i −1.15438 0.375081i −0.331590 0.943424i \(-0.607585\pi\)
−0.822792 + 0.568342i \(0.807585\pi\)
\(194\) 8.22890 8.42245i 0.590801 0.604697i
\(195\) 0 0
\(196\) −1.55887 2.04395i −0.111348 0.145997i
\(197\) 24.6863i 1.75883i −0.476058 0.879414i \(-0.657935\pi\)
0.476058 0.879414i \(-0.342065\pi\)
\(198\) 0 0
\(199\) 15.7596i 1.11717i 0.829449 + 0.558583i \(0.188655\pi\)
−0.829449 + 0.558583i \(0.811345\pi\)
\(200\) −4.26061 3.97339i −0.301271 0.280961i
\(201\) 0 0
\(202\) −9.13417 8.92427i −0.642678 0.627909i
\(203\) −1.23373 0.400862i −0.0865906 0.0281350i
\(204\) 0 0
\(205\) −5.13205 7.06366i −0.358438 0.493348i
\(206\) −5.64245 + 11.3996i −0.393128 + 0.794246i
\(207\) 0 0
\(208\) 4.01990 + 5.02416i 0.278730 + 0.348363i
\(209\) 1.29528 + 4.20111i 0.0895963 + 0.290597i
\(210\) 0 0
\(211\) −7.38354 22.7242i −0.508304 1.56440i −0.795145 0.606419i \(-0.792605\pi\)
0.286841 0.957978i \(-0.407395\pi\)
\(212\) −4.74900 1.42189i −0.326163 0.0976556i
\(213\) 0 0
\(214\) −0.631966 + 4.31402i −0.0432003 + 0.294900i
\(215\) −5.01221 + 15.4260i −0.341830 + 1.05205i
\(216\) 0 0
\(217\) 11.5651 15.9179i 0.785087 1.08058i
\(218\) 12.1353 6.36196i 0.821904 0.430886i
\(219\) 0 0
\(220\) 0.0927799 + 11.3738i 0.00625522 + 0.766818i
\(221\) −9.72525 −0.654191
\(222\) 0 0
\(223\) −11.0894 + 15.2632i −0.742600 + 1.02210i 0.255865 + 0.966712i \(0.417640\pi\)
−0.998465 + 0.0553883i \(0.982360\pi\)
\(224\) −1.33611 + 13.4568i −0.0892729 + 0.899121i
\(225\) 0 0
\(226\) 2.20472 15.0502i 0.146656 1.00112i
\(227\) −9.11637 + 6.62343i −0.605075 + 0.439612i −0.847676 0.530514i \(-0.821999\pi\)
0.242602 + 0.970126i \(0.421999\pi\)
\(228\) 0 0
\(229\) 6.75257 + 20.7823i 0.446223 + 1.37333i 0.881137 + 0.472860i \(0.156778\pi\)
−0.434915 + 0.900472i \(0.643222\pi\)
\(230\) −2.95488 17.3488i −0.194839 1.14395i
\(231\) 0 0
\(232\) −0.744050 1.34242i −0.0488492 0.0881342i
\(233\) −6.04225 + 1.96325i −0.395841 + 0.128617i −0.500172 0.865926i \(-0.666730\pi\)
0.104331 + 0.994543i \(0.466730\pi\)
\(234\) 0 0
\(235\) 4.03898 + 5.55919i 0.263474 + 0.362641i
\(236\) −14.0997 + 0.327819i −0.917809 + 0.0213392i
\(237\) 0 0
\(238\) −14.6197 14.2837i −0.947653 0.925876i
\(239\) 12.0990 + 8.79041i 0.782617 + 0.568605i 0.905763 0.423784i \(-0.139298\pi\)
−0.123146 + 0.992389i \(0.539298\pi\)
\(240\) 0 0
\(241\) 0.457365i 0.0294615i −0.999891 0.0147307i \(-0.995311\pi\)
0.999891 0.0147307i \(-0.00468911\pi\)
\(242\) −11.2022 + 10.7940i −0.720104 + 0.693866i
\(243\) 0 0
\(244\) −15.7372 + 12.0024i −1.00747 + 0.768373i
\(245\) −1.78299 1.29542i −0.113911 0.0827612i
\(246\) 0 0
\(247\) 2.02788 + 0.658899i 0.129031 + 0.0419248i
\(248\) 22.8521 4.44111i 1.45111 0.282011i
\(249\) 0 0
\(250\) −15.3431 7.59437i −0.970381 0.480310i
\(251\) −12.0935 + 3.92941i −0.763334 + 0.248022i −0.664709 0.747103i \(-0.731444\pi\)
−0.0986249 + 0.995125i \(0.531444\pi\)
\(252\) 0 0
\(253\) 14.4400 19.2571i 0.907833 1.21068i
\(254\) −0.455090 + 0.0775115i −0.0285549 + 0.00486351i
\(255\) 0 0
\(256\) −12.0151 + 10.5658i −0.750946 + 0.660363i
\(257\) −1.20619 + 0.876350i −0.0752402 + 0.0546652i −0.624770 0.780809i \(-0.714807\pi\)
0.549529 + 0.835474i \(0.314807\pi\)
\(258\) 0 0
\(259\) 0.273088 0.840480i 0.0169689 0.0522249i
\(260\) 4.53719 + 3.13797i 0.281385 + 0.194608i
\(261\) 0 0
\(262\) 7.11536 + 13.5724i 0.439589 + 0.838503i
\(263\) 14.7580 0.910017 0.455008 0.890487i \(-0.349636\pi\)
0.455008 + 0.890487i \(0.349636\pi\)
\(264\) 0 0
\(265\) −4.25017 −0.261086
\(266\) 2.08071 + 3.96891i 0.127577 + 0.243349i
\(267\) 0 0
\(268\) 7.88058 + 5.45028i 0.481383 + 0.332929i
\(269\) −4.06176 + 12.5008i −0.247650 + 0.762189i 0.747539 + 0.664218i \(0.231235\pi\)
−0.995189 + 0.0979710i \(0.968765\pi\)
\(270\) 0 0
\(271\) 9.14409 6.64357i 0.555464 0.403568i −0.274332 0.961635i \(-0.588457\pi\)
0.829796 + 0.558067i \(0.188457\pi\)
\(272\) −1.12391 24.1569i −0.0681471 1.46473i
\(273\) 0 0
\(274\) 1.76004 0.299773i 0.106328 0.0181100i
\(275\) −2.01276 6.52818i −0.121374 0.393664i
\(276\) 0 0
\(277\) −1.50422 + 0.488750i −0.0903796 + 0.0293661i −0.353858 0.935299i \(-0.615130\pi\)
0.263478 + 0.964665i \(0.415130\pi\)
\(278\) 12.7374 + 6.30463i 0.763938 + 0.378127i
\(279\) 0 0
\(280\) 2.21182 + 11.3811i 0.132181 + 0.680150i
\(281\) 8.38361 + 2.72400i 0.500124 + 0.162500i 0.548206 0.836343i \(-0.315311\pi\)
−0.0480820 + 0.998843i \(0.515311\pi\)
\(282\) 0 0
\(283\) 16.4054 + 11.9192i 0.975201 + 0.708525i 0.956631 0.291302i \(-0.0940885\pi\)
0.0185704 + 0.999828i \(0.494089\pi\)
\(284\) 5.58487 4.25945i 0.331401 0.252752i
\(285\) 0 0
\(286\) 1.15447 + 7.45619i 0.0682652 + 0.440894i
\(287\) 12.1724i 0.718516i
\(288\) 0 0
\(289\) 15.8173 + 11.4919i 0.930427 + 0.675995i
\(290\) −0.941232 0.919603i −0.0552710 0.0540009i
\(291\) 0 0
\(292\) 4.20287 0.0977173i 0.245954 0.00571847i
\(293\) 8.20064 + 11.2872i 0.479087 + 0.659406i 0.978329 0.207056i \(-0.0663883\pi\)
−0.499242 + 0.866462i \(0.666388\pi\)
\(294\) 0 0
\(295\) −11.4999 + 3.73654i −0.669550 + 0.217550i
\(296\) 0.914528 0.506886i 0.0531558 0.0294621i
\(297\) 0 0
\(298\) −0.561118 3.29446i −0.0325047 0.190843i
\(299\) −3.60749 11.1027i −0.208627 0.642087i
\(300\) 0 0
\(301\) −18.2941 + 13.2914i −1.05445 + 0.766105i
\(302\) −3.91558 + 26.7291i −0.225316 + 1.53809i
\(303\) 0 0
\(304\) −1.40231 + 5.11328i −0.0804280 + 0.293267i
\(305\) −9.97392 + 13.7279i −0.571105 + 0.786059i
\(306\) 0 0
\(307\) 5.88829 0.336062 0.168031 0.985782i \(-0.446259\pi\)
0.168031 + 0.985782i \(0.446259\pi\)
\(308\) −9.21561 + 12.9043i −0.525108 + 0.735289i
\(309\) 0 0
\(310\) 17.6771 9.26727i 1.00399 0.526346i
\(311\) −15.4196 + 21.2233i −0.874366 + 1.20346i 0.103584 + 0.994621i \(0.466969\pi\)
−0.977950 + 0.208840i \(0.933031\pi\)
\(312\) 0 0
\(313\) −5.29404 + 16.2934i −0.299237 + 0.920955i 0.682529 + 0.730859i \(0.260880\pi\)
−0.981765 + 0.190097i \(0.939120\pi\)
\(314\) 2.01101 13.7279i 0.113488 0.774708i
\(315\) 0 0
\(316\) −4.94495 1.48056i −0.278175 0.0832877i
\(317\) −0.246344 0.758169i −0.0138361 0.0425830i 0.943900 0.330231i \(-0.107127\pi\)
−0.957736 + 0.287648i \(0.907127\pi\)
\(318\) 0 0
\(319\) 0.0271549 1.79954i 0.00152038 0.100755i
\(320\) −7.27016 + 11.6327i −0.406414 + 0.650290i
\(321\) 0 0
\(322\) 10.8838 21.9888i 0.606530 1.22539i
\(323\) −4.71038 6.48329i −0.262093 0.360740i
\(324\) 0 0
\(325\) −3.15117 1.02388i −0.174795 0.0567944i
\(326\) −14.4118 14.0806i −0.798194 0.779852i
\(327\) 0 0
\(328\) 9.82259 10.5326i 0.542362 0.581568i
\(329\) 9.57985i 0.528154i
\(330\) 0 0
\(331\) 21.2979i 1.17064i −0.810803 0.585319i \(-0.800969\pi\)
0.810803 0.585319i \(-0.199031\pi\)
\(332\) 4.81622 + 6.31490i 0.264324 + 0.346575i
\(333\) 0 0
\(334\) 0.0693056 0.0709357i 0.00379223 0.00388143i
\(335\) 7.81288 + 2.53856i 0.426863 + 0.138696i
\(336\) 0 0
\(337\) 6.39268 + 8.79876i 0.348231 + 0.479299i 0.946823 0.321755i \(-0.104273\pi\)
−0.598592 + 0.801054i \(0.704273\pi\)
\(338\) −13.1972 6.53222i −0.717832 0.355306i
\(339\) 0 0
\(340\) −6.86362 19.5645i −0.372232 1.06103i
\(341\) 25.8315 + 8.82625i 1.39886 + 0.477968i
\(342\) 0 0
\(343\) −6.12050 18.8370i −0.330476 1.01710i
\(344\) −26.5552 3.26158i −1.43176 0.175853i
\(345\) 0 0
\(346\) 27.7450 + 4.06440i 1.49158 + 0.218504i
\(347\) −0.198863 + 0.612038i −0.0106755 + 0.0328559i −0.956252 0.292543i \(-0.905499\pi\)
0.945577 + 0.325399i \(0.105499\pi\)
\(348\) 0 0
\(349\) −10.1567 + 13.9796i −0.543678 + 0.748309i −0.989137 0.146993i \(-0.953040\pi\)
0.445459 + 0.895302i \(0.353040\pi\)
\(350\) −3.23326 6.16736i −0.172825 0.329659i
\(351\) 0 0
\(352\) −18.3873 + 3.72931i −0.980046 + 0.198773i
\(353\) 28.3825 1.51065 0.755324 0.655352i \(-0.227480\pi\)
0.755324 + 0.655352i \(0.227480\pi\)
\(354\) 0 0
\(355\) 3.53959 4.87182i 0.187862 0.258569i
\(356\) −9.61565 + 13.9033i −0.509629 + 0.736873i
\(357\) 0 0
\(358\) 4.82154 + 0.706313i 0.254826 + 0.0373298i
\(359\) 23.1001 16.7832i 1.21918 0.885785i 0.223147 0.974785i \(-0.428367\pi\)
0.996032 + 0.0889996i \(0.0283670\pi\)
\(360\) 0 0
\(361\) −5.32838 16.3991i −0.280441 0.863108i
\(362\) 21.9721 3.74232i 1.15483 0.196692i
\(363\) 0 0
\(364\) 2.54599 + 7.25726i 0.133446 + 0.380384i
\(365\) 3.42793 1.11380i 0.179426 0.0582990i
\(366\) 0 0
\(367\) 0.228900 + 0.315054i 0.0119485 + 0.0164457i 0.814949 0.579532i \(-0.196765\pi\)
−0.803001 + 0.595978i \(0.796765\pi\)
\(368\) 27.1615 10.2439i 1.41589 0.533999i
\(369\) 0 0
\(370\) 0.626482 0.641217i 0.0325692 0.0333353i
\(371\) −4.79369 3.48282i −0.248876 0.180819i
\(372\) 0 0
\(373\) 9.95150i 0.515269i 0.966242 + 0.257635i \(0.0829430\pi\)
−0.966242 + 0.257635i \(0.917057\pi\)
\(374\) 12.9614 25.2216i 0.670216 1.30418i
\(375\) 0 0
\(376\) −7.73050 + 8.28932i −0.398670 + 0.427489i
\(377\) −0.706192 0.513078i −0.0363707 0.0264249i
\(378\) 0 0
\(379\) 19.1280 + 6.21508i 0.982541 + 0.319247i 0.755868 0.654724i \(-0.227215\pi\)
0.226673 + 0.973971i \(0.427215\pi\)
\(380\) 0.105662 + 4.54456i 0.00542032 + 0.233131i
\(381\) 0 0
\(382\) 4.46917 9.02916i 0.228663 0.461972i
\(383\) 9.77842 3.17720i 0.499654 0.162347i −0.0483380 0.998831i \(-0.515392\pi\)
0.547992 + 0.836484i \(0.315392\pi\)
\(384\) 0 0
\(385\) −4.39576 + 12.8649i −0.224029 + 0.655658i
\(386\) −4.00402 23.5086i −0.203799 1.19656i
\(387\) 0 0
\(388\) 15.9528 + 4.77638i 0.809880 + 0.242484i
\(389\) −15.5977 + 11.3324i −0.790836 + 0.574576i −0.908212 0.418511i \(-0.862552\pi\)
0.117375 + 0.993088i \(0.462552\pi\)
\(390\) 0 0
\(391\) −13.5583 + 41.7282i −0.685674 + 2.11029i
\(392\) 1.53648 3.29467i 0.0776041 0.166406i
\(393\) 0 0
\(394\) 30.9203 16.2101i 1.55774 0.816651i
\(395\) −4.42554 −0.222673
\(396\) 0 0
\(397\) 38.1030 1.91233 0.956167 0.292823i \(-0.0945945\pi\)
0.956167 + 0.292823i \(0.0945945\pi\)
\(398\) −19.7393 + 10.3484i −0.989440 + 0.518718i
\(399\) 0 0
\(400\) 2.17907 7.94562i 0.108954 0.397281i
\(401\) 1.28297 3.94858i 0.0640685 0.197183i −0.913898 0.405943i \(-0.866943\pi\)
0.977967 + 0.208761i \(0.0669430\pi\)
\(402\) 0 0
\(403\) 10.7112 7.78216i 0.533564 0.387657i
\(404\) 5.18000 17.3008i 0.257715 0.860748i
\(405\) 0 0
\(406\) −0.308026 1.80850i −0.0152871 0.0897542i
\(407\) 1.22594 + 0.0184994i 0.0607678 + 0.000916979i
\(408\) 0 0
\(409\) 10.7679 3.49869i 0.532437 0.172999i −0.0304453 0.999536i \(-0.509693\pi\)
0.562882 + 0.826537i \(0.309693\pi\)
\(410\) 5.47750 11.0663i 0.270515 0.546527i
\(411\) 0 0
\(412\) −17.9833 + 0.418115i −0.885975 + 0.0205990i
\(413\) −16.0324 5.20925i −0.788904 0.256331i
\(414\) 0 0
\(415\) 5.50864 + 4.00226i 0.270409 + 0.196463i
\(416\) −3.65326 + 8.33411i −0.179116 + 0.408613i
\(417\) 0 0
\(418\) −4.41147 + 4.38099i −0.215772 + 0.214281i
\(419\) 21.2095i 1.03615i 0.855335 + 0.518075i \(0.173351\pi\)
−0.855335 + 0.518075i \(0.826649\pi\)
\(420\) 0 0
\(421\) −20.0502 14.5673i −0.977185 0.709966i −0.0201071 0.999798i \(-0.506401\pi\)
−0.957078 + 0.289832i \(0.906401\pi\)
\(422\) 23.6143 24.1697i 1.14953 1.17656i
\(423\) 0 0
\(424\) −1.33744 6.88192i −0.0649518 0.334215i
\(425\) 7.31955 + 10.0745i 0.355050 + 0.488685i
\(426\) 0 0
\(427\) −22.4988 + 7.31030i −1.08879 + 0.353770i
\(428\) −5.81840 + 2.04121i −0.281243 + 0.0986657i
\(429\) 0 0
\(430\) −22.6127 + 3.85143i −1.09048 + 0.185732i
\(431\) 0.546129 + 1.68081i 0.0263061 + 0.0809619i 0.963348 0.268256i \(-0.0864473\pi\)
−0.937042 + 0.349218i \(0.886447\pi\)
\(432\) 0 0
\(433\) 26.6582 19.3684i 1.28111 0.930784i 0.281528 0.959553i \(-0.409159\pi\)
0.999586 + 0.0287696i \(0.00915892\pi\)
\(434\) 27.5317 + 4.03316i 1.32156 + 0.193598i
\(435\) 0 0
\(436\) 15.9370 + 11.0222i 0.763245 + 0.527868i
\(437\) 5.65429 7.78247i 0.270482 0.372286i
\(438\) 0 0
\(439\) 27.3520 1.30544 0.652719 0.757600i \(-0.273628\pi\)
0.652719 + 0.757600i \(0.273628\pi\)
\(440\) −14.1850 + 7.58469i −0.676243 + 0.361586i
\(441\) 0 0
\(442\) −6.38600 12.1811i −0.303751 0.579397i
\(443\) 0.996488 1.37155i 0.0473446 0.0651642i −0.784688 0.619890i \(-0.787177\pi\)
0.832033 + 0.554726i \(0.187177\pi\)
\(444\) 0 0
\(445\) −4.47865 + 13.7839i −0.212308 + 0.653418i
\(446\) −26.3993 3.86727i −1.25004 0.183121i
\(447\) 0 0
\(448\) −17.7324 + 7.16278i −0.837775 + 0.338410i
\(449\) 5.72704 + 17.6260i 0.270276 + 0.831823i 0.990431 + 0.138010i \(0.0440705\pi\)
−0.720155 + 0.693813i \(0.755929\pi\)
\(450\) 0 0
\(451\) 16.1383 4.97573i 0.759923 0.234298i
\(452\) 20.2985 7.12111i 0.954759 0.334949i
\(453\) 0 0
\(454\) −14.2822 7.06927i −0.670297 0.331777i
\(455\) 3.87577 + 5.33454i 0.181699 + 0.250087i
\(456\) 0 0
\(457\) 10.3504 + 3.36303i 0.484169 + 0.157316i 0.540923 0.841072i \(-0.318075\pi\)
−0.0567538 + 0.998388i \(0.518075\pi\)
\(458\) −21.5963 + 22.1043i −1.00913 + 1.03287i
\(459\) 0 0
\(460\) 19.7896 15.0930i 0.922693 0.703716i
\(461\) 13.8278i 0.644024i 0.946736 + 0.322012i \(0.104359\pi\)
−0.946736 + 0.322012i \(0.895641\pi\)
\(462\) 0 0
\(463\) 37.3657i 1.73653i −0.496099 0.868266i \(-0.665235\pi\)
0.496099 0.868266i \(-0.334765\pi\)
\(464\) 1.19284 1.81343i 0.0553763 0.0841864i
\(465\) 0 0
\(466\) −6.42661 6.27893i −0.297707 0.290866i
\(467\) −13.1201 4.26296i −0.607124 0.197266i −0.0107086 0.999943i \(-0.503409\pi\)
−0.596415 + 0.802676i \(0.703409\pi\)
\(468\) 0 0
\(469\) 6.73176 + 9.26547i 0.310844 + 0.427840i
\(470\) −4.31086 + 8.70933i −0.198845 + 0.401731i
\(471\) 0 0
\(472\) −9.66902 17.4449i −0.445053 0.802968i
\(473\) −25.0999 18.8213i −1.15410 0.865402i
\(474\) 0 0
\(475\) −0.843692 2.59662i −0.0387113 0.119141i
\(476\) 8.29084 27.6908i 0.380010 1.26921i
\(477\) 0 0
\(478\) −3.06554 + 20.9264i −0.140214 + 0.957152i
\(479\) −4.17392 + 12.8460i −0.190711 + 0.586949i −1.00000 0.000462487i \(-0.999853\pi\)
0.809289 + 0.587411i \(0.199853\pi\)
\(480\) 0 0
\(481\) 0.349536 0.481095i 0.0159375 0.0219361i
\(482\) 0.572862 0.300325i 0.0260931 0.0136794i
\(483\) 0 0
\(484\) −20.8756 6.94324i −0.948892 0.315602i
\(485\) 14.2771 0.648291
\(486\) 0 0
\(487\) −21.0066 + 28.9132i −0.951902 + 1.31018i −0.00122483 + 0.999999i \(0.500390\pi\)
−0.950677 + 0.310182i \(0.899610\pi\)
\(488\) −25.3670 11.8300i −1.14831 0.535518i
\(489\) 0 0
\(490\) 0.451760 3.08387i 0.0204084 0.139315i
\(491\) 32.6427 23.7163i 1.47314 1.07030i 0.493455 0.869771i \(-0.335734\pi\)
0.979688 0.200530i \(-0.0642663\pi\)
\(492\) 0 0
\(493\) 1.01379 + 3.12013i 0.0456588 + 0.140523i
\(494\) 0.506304 + 2.97264i 0.0227797 + 0.133745i
\(495\) 0 0
\(496\) 20.5683 + 25.7067i 0.923542 + 1.15426i
\(497\) 7.98446 2.59431i 0.358152 0.116371i
\(498\) 0 0
\(499\) 2.39243 + 3.29289i 0.107100 + 0.147410i 0.859202 0.511636i \(-0.170960\pi\)
−0.752103 + 0.659046i \(0.770960\pi\)
\(500\) −0.562755 24.2044i −0.0251672 1.08245i
\(501\) 0 0
\(502\) −12.8628 12.5672i −0.574094 0.560901i
\(503\) 15.7894 + 11.4717i 0.704013 + 0.511496i 0.881237 0.472675i \(-0.156712\pi\)
−0.177223 + 0.984171i \(0.556712\pi\)
\(504\) 0 0
\(505\) 15.4836i 0.689010i
\(506\) 33.6018 + 5.44145i 1.49378 + 0.241902i
\(507\) 0 0
\(508\) −0.395916 0.519114i −0.0175659 0.0230320i
\(509\) 18.9874 + 13.7952i 0.841602 + 0.611459i 0.922818 0.385237i \(-0.125880\pi\)
−0.0812160 + 0.996697i \(0.525880\pi\)
\(510\) 0 0
\(511\) 4.77900 + 1.55279i 0.211410 + 0.0686914i
\(512\) −21.1236 8.11133i −0.933540 0.358473i
\(513\) 0 0
\(514\) −1.88969 0.935339i −0.0833505 0.0412560i
\(515\) −14.6675 + 4.76576i −0.646327 + 0.210004i
\(516\) 0 0
\(517\) −12.7010 + 3.91596i −0.558591 + 0.172224i
\(518\) 1.23204 0.209844i 0.0541329 0.00922000i
\(519\) 0 0
\(520\) −0.951075 + 7.74347i −0.0417074 + 0.339574i
\(521\) 16.5556 12.0284i 0.725315 0.526972i −0.162763 0.986665i \(-0.552041\pi\)
0.888078 + 0.459693i \(0.152041\pi\)
\(522\) 0 0
\(523\) −2.54447 + 7.83107i −0.111262 + 0.342429i −0.991149 0.132754i \(-0.957618\pi\)
0.879887 + 0.475183i \(0.157618\pi\)
\(524\) −12.3275 + 17.8244i −0.538529 + 0.778660i
\(525\) 0 0
\(526\) 9.69071 + 18.4848i 0.422535 + 0.805974i
\(527\) −49.7602 −2.16759
\(528\) 0 0
\(529\) −29.6679 −1.28991
\(530\) −2.79084 5.32345i −0.121226 0.231236i
\(531\) 0 0
\(532\) −3.60488 + 5.21230i −0.156291 + 0.225982i
\(533\) 2.53112 7.78999i 0.109635 0.337422i
\(534\) 0 0
\(535\) −4.27688 + 3.10734i −0.184906 + 0.134342i
\(536\) −1.65191 + 13.4495i −0.0713515 + 0.580930i
\(537\) 0 0
\(538\) −18.3247 + 3.12110i −0.790035 + 0.134560i
\(539\) 3.48610 2.45330i 0.150157 0.105671i
\(540\) 0 0
\(541\) −20.9142 + 6.79544i −0.899172 + 0.292159i −0.721895 0.692002i \(-0.756729\pi\)
−0.177277 + 0.984161i \(0.556729\pi\)
\(542\) 14.3256 + 7.09076i 0.615339 + 0.304574i
\(543\) 0 0
\(544\) 29.5192 17.2702i 1.26562 0.740452i
\(545\) 15.8001 + 5.13377i 0.676803 + 0.219907i
\(546\) 0 0
\(547\) −20.5153 14.9052i −0.877170 0.637301i 0.0553316 0.998468i \(-0.482378\pi\)
−0.932501 + 0.361167i \(0.882378\pi\)
\(548\) 1.53119 + 2.00766i 0.0654093 + 0.0857629i
\(549\) 0 0
\(550\) 6.85506 6.80771i 0.292301 0.290282i
\(551\) 0.719286i 0.0306426i
\(552\) 0 0
\(553\) −4.99148 3.62652i −0.212259 0.154215i
\(554\) −1.59990 1.56314i −0.0679734 0.0664113i
\(555\) 0 0
\(556\) 0.467184 + 20.0938i 0.0198130 + 0.852167i
\(557\) −2.66116 3.66277i −0.112757 0.155197i 0.748908 0.662673i \(-0.230578\pi\)
−0.861665 + 0.507477i \(0.830578\pi\)
\(558\) 0 0
\(559\) −14.4714 + 4.70205i −0.612076 + 0.198876i
\(560\) −12.8027 + 10.2437i −0.541015 + 0.432874i
\(561\) 0 0
\(562\) 2.09315 + 12.2894i 0.0882940 + 0.518396i
\(563\) −12.0512 37.0897i −0.507896 1.56314i −0.795847 0.605498i \(-0.792974\pi\)
0.287951 0.957645i \(-0.407026\pi\)
\(564\) 0 0
\(565\) 14.9206 10.8405i 0.627715 0.456062i
\(566\) −4.15667 + 28.3749i −0.174718 + 1.19269i
\(567\) 0 0
\(568\) 9.00233 + 4.19827i 0.377729 + 0.176155i
\(569\) −20.6897 + 28.4769i −0.867357 + 1.19381i 0.112408 + 0.993662i \(0.464144\pi\)
−0.979765 + 0.200152i \(0.935856\pi\)
\(570\) 0 0
\(571\) −28.8320 −1.20658 −0.603291 0.797521i \(-0.706144\pi\)
−0.603291 + 0.797521i \(0.706144\pi\)
\(572\) −8.58100 + 6.34205i −0.358790 + 0.265174i
\(573\) 0 0
\(574\) 15.2463 7.99293i 0.636368 0.333619i
\(575\) −8.78631 + 12.0933i −0.366414 + 0.504326i
\(576\) 0 0
\(577\) −1.76215 + 5.42333i −0.0733591 + 0.225776i −0.981013 0.193944i \(-0.937872\pi\)
0.907653 + 0.419720i \(0.137872\pi\)
\(578\) −4.00765 + 27.3576i −0.166696 + 1.13793i
\(579\) 0 0
\(580\) 0.533774 1.78277i 0.0221638 0.0740254i
\(581\) 2.93342 + 9.02814i 0.121699 + 0.374551i
\(582\) 0 0
\(583\) 2.65803 7.77917i 0.110084 0.322180i
\(584\) 2.88217 + 5.20004i 0.119265 + 0.215179i
\(585\) 0 0
\(586\) −8.75265 + 17.6832i −0.361569 + 0.730485i
\(587\) 24.8378 + 34.1864i 1.02517 + 1.41102i 0.908517 + 0.417849i \(0.137216\pi\)
0.116651 + 0.993173i \(0.462784\pi\)
\(588\) 0 0
\(589\) 10.3759 + 3.37133i 0.427530 + 0.138913i
\(590\) −12.2314 11.9504i −0.503560 0.491988i
\(591\) 0 0
\(592\) 1.23540 + 0.812627i 0.0507748 + 0.0333988i
\(593\) 21.6694i 0.889855i −0.895567 0.444927i \(-0.853229\pi\)
0.895567 0.444927i \(-0.146771\pi\)
\(594\) 0 0
\(595\) 24.7822i 1.01597i
\(596\) 3.75795 2.86610i 0.153932 0.117400i
\(597\) 0 0
\(598\) 11.5376 11.8090i 0.471808 0.482905i
\(599\) −17.9158 5.82121i −0.732021 0.237848i −0.0807939 0.996731i \(-0.525746\pi\)
−0.651227 + 0.758883i \(0.725746\pi\)
\(600\) 0 0
\(601\) 8.90397 + 12.2553i 0.363200 + 0.499902i 0.951037 0.309077i \(-0.100020\pi\)
−0.587837 + 0.808980i \(0.700020\pi\)
\(602\) −28.6605 14.1861i −1.16811 0.578182i
\(603\) 0 0
\(604\) −36.0500 + 12.6471i −1.46685 + 0.514602i
\(605\) −18.8533 0.569118i −0.766495 0.0231379i
\(606\) 0 0
\(607\) −2.09788 6.45662i −0.0851505 0.262066i 0.899411 0.437103i \(-0.143996\pi\)
−0.984562 + 0.175037i \(0.943996\pi\)
\(608\) −7.32533 + 1.60116i −0.297081 + 0.0649358i
\(609\) 0 0
\(610\) −23.7439 3.47827i −0.961361 0.140831i
\(611\) −1.99202 + 6.13081i −0.0805885 + 0.248026i
\(612\) 0 0
\(613\) −5.26974 + 7.25318i −0.212843 + 0.292953i −0.902068 0.431594i \(-0.857951\pi\)
0.689225 + 0.724547i \(0.257951\pi\)
\(614\) 3.86650 + 7.37524i 0.156039 + 0.297640i
\(615\) 0 0
\(616\) −22.2143 3.06932i −0.895039 0.123666i
\(617\) −41.7476 −1.68069 −0.840347 0.542049i \(-0.817649\pi\)
−0.840347 + 0.542049i \(0.817649\pi\)
\(618\) 0 0
\(619\) −3.56169 + 4.90225i −0.143157 + 0.197038i −0.874574 0.484892i \(-0.838859\pi\)
0.731418 + 0.681930i \(0.238859\pi\)
\(620\) 23.2150 + 16.0557i 0.932337 + 0.644813i
\(621\) 0 0
\(622\) −36.7079 5.37738i −1.47185 0.215613i
\(623\) −16.3466 + 11.8765i −0.654913 + 0.475822i
\(624\) 0 0
\(625\) −3.23190 9.94678i −0.129276 0.397871i
\(626\) −23.8841 + 4.06798i −0.954603 + 0.162589i
\(627\) 0 0
\(628\) 18.5150 6.49544i 0.738829 0.259196i
\(629\) −2.12560 + 0.690648i −0.0847531 + 0.0275379i
\(630\) 0 0
\(631\) 9.43855 + 12.9911i 0.375743 + 0.517166i 0.954450 0.298369i \(-0.0964427\pi\)
−0.578708 + 0.815535i \(0.696443\pi\)
\(632\) −1.39262 7.16587i −0.0553956 0.285043i
\(633\) 0 0
\(634\) 0.787867 0.806397i 0.0312902 0.0320261i
\(635\) −0.452836 0.329005i −0.0179703 0.0130562i
\(636\) 0 0
\(637\) 2.06752i 0.0819181i
\(638\) 2.27180 1.14764i 0.0899416 0.0454356i
\(639\) 0 0
\(640\) −19.3442 1.46753i −0.764647 0.0580090i
\(641\) −16.2489 11.8055i −0.641793 0.466290i 0.218673 0.975798i \(-0.429827\pi\)
−0.860466 + 0.509508i \(0.829827\pi\)
\(642\) 0 0
\(643\) 4.15001 + 1.34842i 0.163660 + 0.0531764i 0.389701 0.920941i \(-0.372578\pi\)
−0.226041 + 0.974118i \(0.572578\pi\)
\(644\) 34.6883 0.806507i 1.36691 0.0317808i
\(645\) 0 0
\(646\) 5.02745 10.1571i 0.197802 0.399625i
\(647\) 9.16047 2.97642i 0.360135 0.117015i −0.123360 0.992362i \(-0.539367\pi\)
0.483495 + 0.875347i \(0.339367\pi\)
\(648\) 0 0
\(649\) 0.352882 23.3853i 0.0138518 0.917953i
\(650\) −0.786755 4.61924i −0.0308591 0.181181i
\(651\) 0 0
\(652\) 8.17294 27.2970i 0.320077 1.06903i
\(653\) 14.7817 10.7396i 0.578454 0.420272i −0.259712 0.965686i \(-0.583628\pi\)
0.838167 + 0.545414i \(0.183628\pi\)
\(654\) 0 0
\(655\) −5.74173 + 17.6712i −0.224348 + 0.690472i
\(656\) 19.6423 + 5.38688i 0.766905 + 0.210322i
\(657\) 0 0
\(658\) −11.9990 + 6.29053i −0.467770 + 0.245230i
\(659\) 17.9779 0.700318 0.350159 0.936690i \(-0.386128\pi\)
0.350159 + 0.936690i \(0.386128\pi\)
\(660\) 0 0
\(661\) 2.57645 0.100212 0.0501062 0.998744i \(-0.484044\pi\)
0.0501062 + 0.998744i \(0.484044\pi\)
\(662\) 26.6761 13.9851i 1.03680 0.543545i
\(663\) 0 0
\(664\) −4.74704 + 10.1791i −0.184221 + 0.395024i
\(665\) −1.67903 + 5.16752i −0.0651100 + 0.200388i
\(666\) 0 0
\(667\) −3.18600 + 2.31476i −0.123362 + 0.0896280i
\(668\) 0.134358 + 0.0402278i 0.00519846 + 0.00155646i
\(669\) 0 0
\(670\) 1.95065 + 11.4528i 0.0753602 + 0.442459i
\(671\) −18.8889 26.8408i −0.729196 1.03618i
\(672\) 0 0
\(673\) 32.6554 10.6104i 1.25878 0.409001i 0.397717 0.917508i \(-0.369802\pi\)
0.861058 + 0.508507i \(0.169802\pi\)
\(674\) −6.82298 + 13.7846i −0.262812 + 0.530964i
\(675\) 0 0
\(676\) −0.484048 20.8191i −0.0186172 0.800736i
\(677\) −16.4156 5.33375i −0.630902 0.204993i −0.0239275 0.999714i \(-0.507617\pi\)
−0.606975 + 0.794721i \(0.707617\pi\)
\(678\) 0 0
\(679\) 16.1029 + 11.6994i 0.617972 + 0.448983i
\(680\) 19.9981 21.4437i 0.766892 0.822329i
\(681\) 0 0
\(682\) 5.90696 + 38.1504i 0.226189 + 1.46085i
\(683\) 0.254052i 0.00972104i −0.999988 0.00486052i \(-0.998453\pi\)
0.999988 0.00486052i \(-0.00154716\pi\)
\(684\) 0 0
\(685\) 1.75133 + 1.27242i 0.0669148 + 0.0486165i
\(686\) 19.5748 20.0352i 0.747370 0.764949i
\(687\) 0 0
\(688\) −13.3520 35.4027i −0.509041 1.34972i
\(689\) −2.34360 3.22569i −0.0892840 0.122889i
\(690\) 0 0
\(691\) −9.02104 + 2.93111i −0.343176 + 0.111505i −0.475534 0.879697i \(-0.657745\pi\)
0.132358 + 0.991202i \(0.457745\pi\)
\(692\) 13.1278 + 37.4202i 0.499043 + 1.42250i
\(693\) 0 0
\(694\) −0.897175 + 0.152808i −0.0340563 + 0.00580052i
\(695\) 5.32505 + 16.3888i 0.201991 + 0.621663i
\(696\) 0 0
\(697\) −24.9051 + 18.0946i −0.943349 + 0.685383i
\(698\) −24.1791 3.54203i −0.915193 0.134068i
\(699\) 0 0
\(700\) 5.60168 8.09949i 0.211724 0.306132i
\(701\) 5.04306 6.94118i 0.190474 0.262165i −0.703090 0.711101i \(-0.748197\pi\)
0.893564 + 0.448936i \(0.148197\pi\)
\(702\) 0 0
\(703\) 0.490016 0.0184813
\(704\) −16.7449 20.5817i −0.631098 0.775703i
\(705\) 0 0
\(706\) 18.6371 + 35.5498i 0.701417 + 1.33793i
\(707\) 12.6881 17.4636i 0.477184 0.656787i
\(708\) 0 0
\(709\) 2.13737 6.57816i 0.0802708 0.247048i −0.902865 0.429924i \(-0.858541\pi\)
0.983136 + 0.182875i \(0.0585405\pi\)
\(710\) 8.42632 + 1.23438i 0.316234 + 0.0463256i
\(711\) 0 0
\(712\) −23.7283 2.91437i −0.889255 0.109221i
\(713\) −18.4581 56.8082i −0.691261 2.12748i
\(714\) 0 0
\(715\) −5.48827 + 7.31912i −0.205250 + 0.273720i
\(716\) 2.28135 + 6.50290i 0.0852580 + 0.243025i
\(717\) 0 0
\(718\) 36.1900 + 17.9130i 1.35060 + 0.668506i
\(719\) −11.1867 15.3972i −0.417195 0.574219i 0.547760 0.836636i \(-0.315481\pi\)
−0.964955 + 0.262416i \(0.915481\pi\)
\(720\) 0 0
\(721\) −20.4485 6.64412i −0.761542 0.247440i
\(722\) 17.0414 17.4422i 0.634216 0.649133i
\(723\) 0 0
\(724\) 19.1151 + 25.0633i 0.710409 + 0.931469i
\(725\) 1.11771i 0.0415108i
\(726\) 0 0
\(727\) 19.7014i 0.730685i 0.930873 + 0.365342i \(0.119048\pi\)
−0.930873 + 0.365342i \(0.880952\pi\)
\(728\) −7.41811 + 7.95435i −0.274933 + 0.294808i
\(729\) 0 0
\(730\) 3.64598 + 3.56220i 0.134944 + 0.131843i
\(731\) 54.3892 + 17.6721i 2.01166 + 0.653627i
\(732\) 0 0
\(733\) −29.2902 40.3146i −1.08186 1.48905i −0.857457 0.514556i \(-0.827957\pi\)
−0.224403 0.974496i \(-0.572043\pi\)
\(734\) −0.244308 + 0.493582i −0.00901759 + 0.0182184i
\(735\) 0 0
\(736\) 30.6661 + 27.2940i 1.13037 + 1.00607i
\(737\) −9.53248 + 12.7125i −0.351133 + 0.468270i
\(738\) 0 0
\(739\) −5.07527 15.6201i −0.186697 0.574593i 0.813277 0.581877i \(-0.197682\pi\)
−0.999973 + 0.00728362i \(0.997682\pi\)
\(740\) 1.21452 + 0.363635i 0.0446465 + 0.0133675i
\(741\) 0 0
\(742\) 1.21459 8.29118i 0.0445888 0.304379i
\(743\) 0.924280 2.84464i 0.0339086 0.104360i −0.932670 0.360731i \(-0.882527\pi\)
0.966578 + 0.256372i \(0.0825271\pi\)
\(744\) 0 0
\(745\) 2.38172 3.27815i 0.0872593 0.120102i
\(746\) −12.4645 + 6.53457i −0.456358 + 0.239248i
\(747\) 0 0
\(748\) 40.1017 0.327124i 1.46626 0.0119609i
\(749\) −7.37013 −0.269299
\(750\) 0 0
\(751\) 24.4608 33.6674i 0.892587 1.22854i −0.0801854 0.996780i \(-0.525551\pi\)
0.972773 0.231761i \(-0.0744488\pi\)
\(752\) −15.4588 4.23954i −0.563723 0.154600i
\(753\) 0 0
\(754\) 0.178929 1.22143i 0.00651622 0.0444819i
\(755\) −26.4990 + 19.2526i −0.964397 + 0.700675i
\(756\) 0 0
\(757\) −7.07412 21.7719i −0.257113 0.791313i −0.993406 0.114650i \(-0.963425\pi\)
0.736293 0.676663i \(-0.236575\pi\)
\(758\) 4.77572 + 28.0394i 0.173462 + 1.01844i
\(759\) 0 0
\(760\) −5.62279 + 3.11649i −0.203960 + 0.113047i
\(761\) 45.5970 14.8154i 1.65289 0.537056i 0.673526 0.739163i \(-0.264779\pi\)
0.979363 + 0.202107i \(0.0647789\pi\)
\(762\) 0 0
\(763\) 13.6138 + 18.7377i 0.492851 + 0.678352i
\(764\) 14.2439 0.331173i 0.515326 0.0119814i
\(765\) 0 0
\(766\) 10.4004 + 10.1614i 0.375783 + 0.367148i
\(767\) −9.17705 6.66752i −0.331364 0.240750i
\(768\) 0 0
\(769\) 43.0718i 1.55321i 0.629989 + 0.776604i \(0.283059\pi\)
−0.629989 + 0.776604i \(0.716941\pi\)
\(770\) −19.0001 + 2.94186i −0.684717 + 0.106017i
\(771\) 0 0
\(772\) 26.8160 20.4519i 0.965127 0.736080i
\(773\) −10.3986 7.55502i −0.374011 0.271735i 0.384861 0.922975i \(-0.374249\pi\)
−0.758872 + 0.651239i \(0.774249\pi\)
\(774\) 0 0
\(775\) −16.1233 5.23877i −0.579165 0.188182i
\(776\) 4.49271 + 23.1176i 0.161279 + 0.829875i
\(777\) 0 0
\(778\) −24.4363 12.0952i −0.876083 0.433635i
\(779\) 6.41909 2.08569i 0.229988 0.0747276i
\(780\) 0 0
\(781\) 6.70336 + 9.52537i 0.239865 + 0.340844i
\(782\) −61.1687 + 10.4183i −2.18739 + 0.372559i
\(783\) 0 0
\(784\) 5.13558 0.238935i 0.183414 0.00853340i
\(785\) 13.6097 9.88801i 0.485750 0.352918i
\(786\) 0 0
\(787\) 12.3196 37.9159i 0.439147 1.35156i −0.449629 0.893215i \(-0.648444\pi\)
0.888777 0.458341i \(-0.151556\pi\)
\(788\) 40.6071 + 28.0842i 1.44657 + 1.00046i
\(789\) 0 0
\(790\) −2.90599 5.54310i −0.103391 0.197215i
\(791\) 25.7119 0.914211
\(792\) 0 0
\(793\) −15.9186 −0.565287
\(794\) 25.0200 + 47.7250i 0.887927 + 1.69370i
\(795\) 0 0
\(796\) −25.9232 17.9288i −0.918825 0.635468i
\(797\) 8.31012 25.5759i 0.294360 0.905946i −0.689076 0.724689i \(-0.741984\pi\)
0.983436 0.181257i \(-0.0580165\pi\)
\(798\) 0 0
\(799\) 19.6006 14.2407i 0.693420 0.503799i
\(800\) 11.3830 2.48808i 0.402449 0.0879668i
\(801\) 0 0
\(802\) 5.78815 0.985846i 0.204387 0.0348114i
\(803\) −0.105188 + 6.97076i −0.00371201 + 0.245993i
\(804\) 0 0
\(805\) 28.2923 9.19273i 0.997173 0.324001i
\(806\) 16.7808 + 8.30600i 0.591078 + 0.292566i
\(807\) 0 0
\(808\) 25.0711 4.87236i 0.882000 0.171409i
\(809\) 11.0316 + 3.58440i 0.387852 + 0.126021i 0.496451 0.868065i \(-0.334636\pi\)
−0.108599 + 0.994086i \(0.534636\pi\)
\(810\) 0 0
\(811\) 29.6177 + 21.5185i 1.04002 + 0.755616i 0.970289 0.241950i \(-0.0777869\pi\)
0.0697279 + 0.997566i \(0.477787\pi\)
\(812\) 2.06293 1.57334i 0.0723945 0.0552136i
\(813\) 0 0
\(814\) 0.781835 + 1.54767i 0.0274033 + 0.0542459i
\(815\) 24.4298i 0.855738i
\(816\) 0 0
\(817\) −10.1438 7.36989i −0.354886 0.257840i
\(818\) 11.4528 + 11.1896i 0.400439 + 0.391237i
\(819\) 0 0
\(820\) 17.4576 0.405892i 0.609646 0.0141744i
\(821\) −18.6399 25.6556i −0.650536 0.895386i 0.348586 0.937277i \(-0.386662\pi\)
−0.999122 + 0.0418907i \(0.986662\pi\)
\(822\) 0 0
\(823\) 17.5566 5.70447i 0.611983 0.198845i 0.0134055 0.999910i \(-0.495733\pi\)
0.598578 + 0.801065i \(0.295733\pi\)
\(824\) −12.3323 22.2500i −0.429616 0.775117i
\(825\) 0 0
\(826\) −4.00284 23.5016i −0.139276 0.817727i
\(827\) 5.85114 + 18.0080i 0.203464 + 0.626199i 0.999773 + 0.0213081i \(0.00678310\pi\)
−0.796309 + 0.604890i \(0.793217\pi\)
\(828\) 0 0
\(829\) −6.62707 + 4.81485i −0.230168 + 0.167227i −0.696892 0.717176i \(-0.745434\pi\)
0.466724 + 0.884403i \(0.345434\pi\)
\(830\) −1.39573 + 9.52777i −0.0484467 + 0.330714i
\(831\) 0 0
\(832\) −12.8376 + 0.896719i −0.445063 + 0.0310881i
\(833\) −4.56740 + 6.28649i −0.158251 + 0.217814i
\(834\) 0 0
\(835\) 0.120245 0.00416125
\(836\) −8.38406 2.64873i −0.289969 0.0916084i
\(837\) 0 0
\(838\) −26.5654 + 13.9270i −0.917687 + 0.481101i
\(839\) 21.3596 29.3990i 0.737416 1.01497i −0.261347 0.965245i \(-0.584167\pi\)
0.998763 0.0497210i \(-0.0158332\pi\)
\(840\) 0 0
\(841\) 8.87050 27.3006i 0.305879 0.941400i
\(842\) 5.08015 34.6788i 0.175073 1.19511i
\(843\) 0 0
\(844\) 45.7793 + 13.7067i 1.57579 + 0.471804i
\(845\) −5.51727 16.9804i −0.189800 0.584144i
\(846\) 0 0
\(847\) −20.7979 16.0913i −0.714623 0.552903i
\(848\) 7.74156 6.19413i 0.265846 0.212707i
\(849\) 0 0
\(850\) −7.81225 + 15.7833i −0.267958 + 0.541362i
\(851\) −1.57694 2.17047i −0.0540568 0.0744028i
\(852\) 0 0
\(853\) −11.3089 3.67449i −0.387210 0.125812i 0.108941 0.994048i \(-0.465254\pi\)
−0.496152 + 0.868236i \(0.665254\pi\)
\(854\) −23.9300 23.3801i −0.818867 0.800049i
\(855\) 0 0
\(856\) −6.37728 5.94735i −0.217971 0.203276i
\(857\) 35.7039i 1.21962i 0.792547 + 0.609811i \(0.208755\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(858\) 0 0
\(859\) 40.2518i 1.37337i 0.726953 + 0.686687i \(0.240936\pi\)
−0.726953 + 0.686687i \(0.759064\pi\)
\(860\) −19.6725 25.7940i −0.670825 0.879568i
\(861\) 0 0
\(862\) −1.74665 + 1.78773i −0.0594911 + 0.0608904i
\(863\) 17.2998 + 5.62104i 0.588891 + 0.191342i 0.588280 0.808657i \(-0.299805\pi\)
0.000611565 1.00000i \(0.499805\pi\)
\(864\) 0 0
\(865\) 19.9844 + 27.5062i 0.679490 + 0.935238i
\(866\) 41.7643 + 20.6721i 1.41921 + 0.702466i
\(867\) 0 0
\(868\) 13.0268 + 37.1325i 0.442160 + 1.26036i
\(869\) 2.76770 8.10014i 0.0938877 0.274779i
\(870\) 0 0
\(871\) 2.38147 + 7.32941i 0.0806930 + 0.248348i
\(872\) −3.34068 + 27.1992i −0.113130 + 0.921081i
\(873\) 0 0
\(874\) 13.4606 + 1.97186i 0.455311 + 0.0666991i
\(875\) 8.94254 27.5223i 0.302313 0.930424i
\(876\) 0 0
\(877\) 23.4777 32.3142i 0.792784 1.09117i −0.200971 0.979597i \(-0.564410\pi\)
0.993756 0.111577i \(-0.0355902\pi\)
\(878\) 17.9604 + 34.2591i 0.606135 + 1.15619i
\(879\) 0 0
\(880\) −18.8145 12.7867i −0.634236 0.431038i
\(881\) −21.8173 −0.735045 −0.367522 0.930015i \(-0.619794\pi\)
−0.367522 + 0.930015i \(0.619794\pi\)
\(882\) 0 0
\(883\) −9.07011 + 12.4839i −0.305234 + 0.420118i −0.933887 0.357567i \(-0.883606\pi\)
0.628654 + 0.777685i \(0.283606\pi\)
\(884\) 11.0639 15.9973i 0.372118 0.538047i
\(885\) 0 0
\(886\) 2.37223 + 0.347512i 0.0796968 + 0.0116749i
\(887\) −13.7001 + 9.95369i −0.460004 + 0.334212i −0.793533 0.608528i \(-0.791760\pi\)
0.333529 + 0.942740i \(0.391760\pi\)
\(888\) 0 0
\(889\) −0.241141 0.742156i −0.00808761 0.0248911i
\(890\) −20.2055 + 3.44143i −0.677290 + 0.115357i
\(891\) 0 0
\(892\) −12.4910 35.6053i −0.418231 1.19215i
\(893\) −5.05190 + 1.64146i −0.169055 + 0.0549294i
\(894\) 0 0
\(895\) 3.47290 + 4.78003i 0.116086 + 0.159779i
\(896\) −20.6154 17.5069i −0.688711 0.584863i
\(897\) 0 0
\(898\) −18.3164 + 18.7472i −0.611227 + 0.625603i
\(899\) −3.61330 2.62522i −0.120510 0.0875559i
\(900\) 0 0
\(901\) 14.9853i 0.499233i
\(902\) 16.8293 + 16.9464i 0.560355 + 0.564252i
\(903\) 0 0
\(904\) 22.2482 + 20.7483i 0.739964 + 0.690079i
\(905\) 21.8633 + 15.8846i 0.726761 + 0.528023i
\(906\) 0 0
\(907\) 23.7227 + 7.70798i 0.787700 + 0.255939i 0.675124 0.737704i \(-0.264090\pi\)
0.112576 + 0.993643i \(0.464090\pi\)
\(908\) −0.523844 22.5308i −0.0173844 0.747711i
\(909\) 0 0
\(910\) −4.13666 + 8.35738i −0.137129 + 0.277045i
\(911\) −42.2349 + 13.7229i −1.39930 + 0.454662i −0.908966 0.416871i \(-0.863127\pi\)
−0.490338 + 0.871532i \(0.663127\pi\)
\(912\) 0 0
\(913\) −10.7705 + 7.57958i −0.356451 + 0.250848i
\(914\) 2.58419 + 15.1724i 0.0854773 + 0.501858i
\(915\) 0 0
\(916\) −41.8672 12.5354i −1.38333 0.414180i
\(917\) −20.9567 + 15.2260i −0.692052 + 0.502805i
\(918\) 0 0
\(919\) 14.9742 46.0859i 0.493954 1.52023i −0.324626 0.945842i \(-0.605239\pi\)
0.818580 0.574392i \(-0.194761\pi\)
\(920\) 31.8991 + 14.8762i 1.05168 + 0.490455i
\(921\) 0 0
\(922\) −17.3197 + 9.07990i −0.570393 + 0.299031i
\(923\) 5.64926 0.185948
\(924\) 0 0
\(925\) −0.761445 −0.0250362
\(926\) 46.8015 24.5359i 1.53799 0.806299i
\(927\) 0 0
\(928\) 3.05464 + 0.303292i 0.100273 + 0.00995606i
\(929\) −6.91854 + 21.2931i −0.226990 + 0.698603i 0.771094 + 0.636722i \(0.219710\pi\)
−0.998084 + 0.0618814i \(0.980290\pi\)
\(930\) 0 0
\(931\) 1.37830 1.00139i 0.0451720 0.0328194i
\(932\) 3.64454 12.1725i 0.119381 0.398723i
\(933\) 0 0
\(934\) −3.27570 19.2324i −0.107184 0.629305i
\(935\) 32.8564 10.1302i 1.07452 0.331294i
\(936\) 0 0
\(937\) −34.2110 + 11.1158i −1.11762 + 0.363138i −0.808860 0.588001i \(-0.799915\pi\)
−0.308763 + 0.951139i \(0.599915\pi\)
\(938\) −7.18489 + 14.5158i −0.234595 + 0.473958i
\(939\) 0 0
\(940\) −13.7393 + 0.319442i −0.448128 + 0.0104190i
\(941\) −47.1567 15.3221i −1.53726 0.499487i −0.586644 0.809845i \(-0.699551\pi\)
−0.950620 + 0.310357i \(0.899551\pi\)
\(942\) 0 0
\(943\) −29.8959 21.7206i −0.973543 0.707320i
\(944\) 15.5011 23.5658i 0.504519 0.767000i
\(945\) 0 0
\(946\) 7.09247 43.7971i 0.230596 1.42397i
\(947\) 45.1846i 1.46830i −0.678985 0.734152i \(-0.737580\pi\)
0.678985 0.734152i \(-0.262420\pi\)
\(948\) 0 0
\(949\) 2.73553 + 1.98748i 0.0887989 + 0.0645162i
\(950\) 2.69833 2.76179i 0.0875453 0.0896044i
\(951\) 0 0
\(952\) 40.1276 7.79844i 1.30054 0.252749i
\(953\) 17.5119 + 24.1030i 0.567265 + 0.780774i 0.992227 0.124437i \(-0.0397126\pi\)
−0.424962 + 0.905211i \(0.639713\pi\)
\(954\) 0 0
\(955\) 11.6176 3.77477i 0.375935 0.122149i
\(956\) −28.2239 + 9.90149i −0.912825 + 0.320237i
\(957\) 0 0
\(958\) −18.8307 + 3.20728i −0.608393 + 0.103622i
\(959\) 0.932605 + 2.87026i 0.0301154 + 0.0926856i
\(960\) 0 0
\(961\) 29.7256 21.5969i 0.958889 0.696674i
\(962\) 0.832105 + 0.121896i 0.0268281 + 0.00393009i
\(963\) 0 0
\(964\) 0.752330 + 0.520319i 0.0242309 + 0.0167583i
\(965\) 16.9954 23.3922i 0.547103 0.753022i
\(966\) 0 0
\(967\) 2.10906 0.0678227 0.0339113 0.999425i \(-0.489204\pi\)
0.0339113 + 0.999425i \(0.489204\pi\)
\(968\) −5.01121 30.7065i −0.161066 0.986944i
\(969\) 0 0
\(970\) 9.37496 + 17.8825i 0.301012 + 0.574172i
\(971\) −33.7588 + 46.4651i −1.08337 + 1.49113i −0.227620 + 0.973750i \(0.573094\pi\)
−0.855753 + 0.517385i \(0.826906\pi\)
\(972\) 0 0
\(973\) −7.42385 + 22.8483i −0.237998 + 0.732481i
\(974\) −50.0083 7.32579i −1.60237 0.234733i
\(975\) 0 0
\(976\) −1.83965 39.5408i −0.0588859 1.26567i
\(977\) −1.61602 4.97360i −0.0517011 0.159120i 0.921872 0.387494i \(-0.126659\pi\)
−0.973573 + 0.228374i \(0.926659\pi\)
\(978\) 0 0
\(979\) −22.4279 16.8177i −0.716800 0.537495i
\(980\) 4.15927 1.45916i 0.132863 0.0466110i
\(981\) 0 0
\(982\) 51.1398 + 25.3127i 1.63194 + 0.807760i
\(983\) 16.7859 + 23.1038i 0.535386 + 0.736896i 0.987939 0.154841i \(-0.0494867\pi\)
−0.452553 + 0.891738i \(0.649487\pi\)
\(984\) 0 0
\(985\) 40.2582 + 13.0807i 1.28273 + 0.416785i
\(986\) −3.24234 + 3.31861i −0.103257 + 0.105686i
\(987\) 0 0
\(988\) −3.39085 + 2.58612i −0.107877 + 0.0822753i
\(989\) 68.6481i 2.18288i
\(990\) 0 0
\(991\) 0.537995i 0.0170900i 0.999963 + 0.00854499i \(0.00271999\pi\)
−0.999963 + 0.00854499i \(0.997280\pi\)
\(992\) −18.6923 + 42.6423i −0.593481 + 1.35390i
\(993\) 0 0
\(994\) 8.49236 + 8.29721i 0.269361 + 0.263172i
\(995\) −25.7006 8.35062i −0.814762 0.264732i
\(996\) 0 0
\(997\) 14.2814 + 19.6567i 0.452297 + 0.622534i 0.972889 0.231272i \(-0.0742887\pi\)
−0.520592 + 0.853806i \(0.674289\pi\)
\(998\) −2.55347 + 5.15883i −0.0808286 + 0.163300i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 396.2.r.a.127.2 16
3.2 odd 2 44.2.g.a.39.3 yes 16
4.3 odd 2 inner 396.2.r.a.127.1 16
11.2 odd 10 inner 396.2.r.a.343.1 16
12.11 even 2 44.2.g.a.39.4 yes 16
24.5 odd 2 704.2.u.c.127.2 16
24.11 even 2 704.2.u.c.127.3 16
33.2 even 10 44.2.g.a.35.4 yes 16
33.5 odd 10 484.2.g.j.403.4 16
33.8 even 10 484.2.c.d.483.15 16
33.14 odd 10 484.2.c.d.483.2 16
33.17 even 10 484.2.g.f.403.1 16
33.20 odd 10 484.2.g.i.475.1 16
33.26 odd 10 484.2.g.f.239.4 16
33.29 even 10 484.2.g.j.239.1 16
33.32 even 2 484.2.g.i.215.2 16
44.35 even 10 inner 396.2.r.a.343.2 16
132.35 odd 10 44.2.g.a.35.3 16
132.47 even 10 484.2.c.d.483.16 16
132.59 even 10 484.2.g.f.239.1 16
132.71 even 10 484.2.g.j.403.1 16
132.83 odd 10 484.2.g.f.403.4 16
132.95 odd 10 484.2.g.j.239.4 16
132.107 odd 10 484.2.c.d.483.1 16
132.119 even 10 484.2.g.i.475.2 16
132.131 odd 2 484.2.g.i.215.1 16
264.35 odd 10 704.2.u.c.255.2 16
264.101 even 10 704.2.u.c.255.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.35.3 16 132.35 odd 10
44.2.g.a.35.4 yes 16 33.2 even 10
44.2.g.a.39.3 yes 16 3.2 odd 2
44.2.g.a.39.4 yes 16 12.11 even 2
396.2.r.a.127.1 16 4.3 odd 2 inner
396.2.r.a.127.2 16 1.1 even 1 trivial
396.2.r.a.343.1 16 11.2 odd 10 inner
396.2.r.a.343.2 16 44.35 even 10 inner
484.2.c.d.483.1 16 132.107 odd 10
484.2.c.d.483.2 16 33.14 odd 10
484.2.c.d.483.15 16 33.8 even 10
484.2.c.d.483.16 16 132.47 even 10
484.2.g.f.239.1 16 132.59 even 10
484.2.g.f.239.4 16 33.26 odd 10
484.2.g.f.403.1 16 33.17 even 10
484.2.g.f.403.4 16 132.83 odd 10
484.2.g.i.215.1 16 132.131 odd 2
484.2.g.i.215.2 16 33.32 even 2
484.2.g.i.475.1 16 33.20 odd 10
484.2.g.i.475.2 16 132.119 even 10
484.2.g.j.239.1 16 33.29 even 10
484.2.g.j.239.4 16 132.95 odd 10
484.2.g.j.403.1 16 132.71 even 10
484.2.g.j.403.4 16 33.5 odd 10
704.2.u.c.127.2 16 24.5 odd 2
704.2.u.c.127.3 16 24.11 even 2
704.2.u.c.255.2 16 264.35 odd 10
704.2.u.c.255.3 16 264.101 even 10