Properties

Label 44.2.g.a.35.3
Level $44$
Weight $2$
Character 44.35
Analytic conductor $0.351$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [44,2,Mod(7,44)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(44, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([5, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("44.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 44 = 2^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 44.g (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.351341768894\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5 x^{15} + 13 x^{14} - 25 x^{13} + 35 x^{12} - 30 x^{11} - 2 x^{10} + 60 x^{9} - 116 x^{8} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 35.3
Root \(0.656642 + 1.25253i\) of defining polynomial
Character \(\chi\) \(=\) 44.35
Dual form 44.2.g.a.39.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.656642 + 1.25253i) q^{2} +(0.539857 + 0.743049i) q^{3} +(-1.13764 - 1.64492i) q^{4} +(0.529876 + 1.63079i) q^{5} +(-1.28518 + 0.188268i) q^{6} +(-1.93399 - 1.40513i) q^{7} +(2.80733 - 0.344804i) q^{8} +(0.666375 - 2.05089i) q^{9} +O(q^{10})\) \(q+(-0.656642 + 1.25253i) q^{2} +(0.539857 + 0.743049i) q^{3} +(-1.13764 - 1.64492i) q^{4} +(0.529876 + 1.63079i) q^{5} +(-1.28518 + 0.188268i) q^{6} +(-1.93399 - 1.40513i) q^{7} +(2.80733 - 0.344804i) q^{8} +(0.666375 - 2.05089i) q^{9} +(-2.39055 - 0.407162i) q^{10} +(2.65349 - 1.98973i) q^{11} +(0.608093 - 1.73335i) q^{12} +(-1.52988 - 0.497087i) q^{13} +(3.02990 - 1.49971i) q^{14} +(-0.925700 + 1.27412i) q^{15} +(-1.41153 + 3.74267i) q^{16} +(-5.74986 + 1.86824i) q^{17} +(2.13122 + 2.18135i) q^{18} +(-1.07237 + 0.779122i) q^{19} +(2.07971 - 2.72686i) q^{20} -2.19562i q^{21} +(0.749794 + 4.63010i) q^{22} +7.25726i q^{23} +(1.77176 + 1.89984i) q^{24} +(1.66637 - 1.21069i) q^{25} +(1.62719 - 1.58980i) q^{26} +(4.50418 - 1.46350i) q^{27} +(-0.111131 + 4.77980i) q^{28} +(-0.318958 + 0.439008i) q^{29} +(-0.988012 - 1.99610i) q^{30} +(-7.82777 - 2.54340i) q^{31} +(-3.76092 - 4.22558i) q^{32} +(2.91097 + 0.897503i) q^{33} +(1.43557 - 8.42861i) q^{34} +(1.26669 - 3.89848i) q^{35} +(-4.13165 + 1.23705i) q^{36} +(-0.299076 - 0.217291i) q^{37} +(-0.271708 - 1.85477i) q^{38} +(-0.456554 - 1.40513i) q^{39} +(2.04984 + 4.39547i) q^{40} +(2.99295 + 4.11944i) q^{41} +(2.75007 + 1.44173i) q^{42} +9.45922 q^{43} +(-6.29167 - 2.10118i) q^{44} +3.69767 q^{45} +(-9.08991 - 4.76542i) q^{46} +(-2.35548 - 3.24205i) q^{47} +(-3.54301 + 0.971666i) q^{48} +(-0.397175 - 1.22238i) q^{49} +(0.422212 + 2.88217i) q^{50} +(-4.49229 - 3.26384i) q^{51} +(0.922785 + 3.08203i) q^{52} +(-0.765944 + 2.35733i) q^{53} +(-1.12456 + 6.60259i) q^{54} +(4.65085 + 3.27297i) q^{55} +(-5.91385 - 3.27781i) q^{56} +(-1.15785 - 0.376209i) q^{57} +(-0.340428 - 0.687775i) q^{58} +(-4.14490 + 5.70497i) q^{59} +(3.14894 + 0.0732133i) q^{60} +(9.41156 - 3.05800i) q^{61} +(8.32571 - 8.13438i) q^{62} +(-4.17053 + 3.03007i) q^{63} +(7.76222 - 1.93596i) q^{64} -2.75830i q^{65} +(-3.03561 + 3.05672i) q^{66} +4.79085i q^{67} +(9.61440 + 7.33267i) q^{68} +(-5.39250 + 3.91788i) q^{69} +(4.05119 + 4.14647i) q^{70} +(3.34001 - 1.08524i) q^{71} +(1.16358 - 5.98730i) q^{72} +(-1.23553 + 1.70056i) q^{73} +(0.468549 - 0.231918i) q^{74} +(1.79921 + 0.584598i) q^{75} +(2.50157 + 0.877601i) q^{76} +(-7.92764 + 0.119627i) q^{77} +(2.05975 + 0.350820i) q^{78} +(0.797547 - 2.45460i) q^{79} +(-6.85145 - 0.318767i) q^{80} +(-1.71472 - 1.24581i) q^{81} +(-7.12500 + 1.04375i) q^{82} +(-1.22709 - 3.77660i) q^{83} +(-3.61162 + 2.49783i) q^{84} +(-6.09343 - 8.38688i) q^{85} +(-6.21132 + 11.8479i) q^{86} -0.498396 q^{87} +(6.76315 - 6.50075i) q^{88} -8.45225 q^{89} +(-2.42804 + 4.63143i) q^{90} +(2.26030 + 3.11103i) q^{91} +(11.9376 - 8.25618i) q^{92} +(-2.33600 - 7.18948i) q^{93} +(5.60746 - 0.821443i) q^{94} +(-1.83881 - 1.33597i) q^{95} +(1.10945 - 5.07575i) q^{96} +(-2.57295 + 7.91872i) q^{97} +(1.79186 + 0.305193i) q^{98} +(-2.31249 - 6.76791i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 5 q^{2} - q^{4} - 6 q^{5} - 5 q^{6} - 5 q^{8} - 10 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 16 q - 5 q^{2} - q^{4} - 6 q^{5} - 5 q^{6} - 5 q^{8} - 10 q^{9} - 22 q^{12} - 10 q^{13} + 8 q^{14} + 23 q^{16} - 10 q^{17} + 20 q^{18} + 16 q^{20} + 17 q^{22} + 25 q^{24} + 6 q^{25} - 4 q^{26} + 20 q^{28} - 10 q^{29} - 12 q^{33} - 6 q^{34} - 30 q^{36} + 18 q^{37} - 38 q^{38} - 40 q^{40} + 10 q^{41} - 26 q^{42} - 28 q^{44} + 40 q^{45} - 30 q^{46} - 36 q^{48} + 6 q^{49} - 15 q^{50} - 10 q^{52} + 38 q^{53} - 12 q^{56} + 30 q^{58} + 52 q^{60} - 10 q^{61} + 70 q^{62} + 23 q^{64} + 36 q^{66} + 60 q^{68} - 16 q^{69} + 12 q^{70} + 45 q^{72} - 30 q^{73} + 40 q^{74} + 2 q^{77} + 4 q^{78} - 28 q^{80} - 4 q^{81} - 59 q^{82} - 10 q^{84} - 50 q^{85} - 39 q^{86} - 53 q^{88} - 36 q^{89} - 50 q^{90} + 36 q^{92} - 38 q^{93} - 30 q^{94} - 68 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/44\mathbb{Z}\right)^\times\).

\(n\) \(13\) \(23\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.656642 + 1.25253i −0.464316 + 0.885670i
\(3\) 0.539857 + 0.743049i 0.311686 + 0.428999i 0.935906 0.352249i \(-0.114583\pi\)
−0.624220 + 0.781249i \(0.714583\pi\)
\(4\) −1.13764 1.64492i −0.568822 0.822461i
\(5\) 0.529876 + 1.63079i 0.236968 + 0.729312i 0.996854 + 0.0792561i \(0.0252545\pi\)
−0.759886 + 0.650056i \(0.774746\pi\)
\(6\) −1.28518 + 0.188268i −0.524673 + 0.0768600i
\(7\) −1.93399 1.40513i −0.730981 0.531089i 0.158893 0.987296i \(-0.449208\pi\)
−0.889874 + 0.456207i \(0.849208\pi\)
\(8\) 2.80733 0.344804i 0.992542 0.121907i
\(9\) 0.666375 2.05089i 0.222125 0.683630i
\(10\) −2.39055 0.407162i −0.755957 0.128756i
\(11\) 2.65349 1.98973i 0.800056 0.599925i
\(12\) 0.608093 1.73335i 0.175541 0.500374i
\(13\) −1.52988 0.497087i −0.424311 0.137867i 0.0890746 0.996025i \(-0.471609\pi\)
−0.513386 + 0.858158i \(0.671609\pi\)
\(14\) 3.02990 1.49971i 0.809775 0.400815i
\(15\) −0.925700 + 1.27412i −0.239015 + 0.328976i
\(16\) −1.41153 + 3.74267i −0.352884 + 0.935667i
\(17\) −5.74986 + 1.86824i −1.39455 + 0.453115i −0.907423 0.420218i \(-0.861954\pi\)
−0.487123 + 0.873334i \(0.661954\pi\)
\(18\) 2.13122 + 2.18135i 0.502334 + 0.514149i
\(19\) −1.07237 + 0.779122i −0.246018 + 0.178743i −0.703960 0.710239i \(-0.748587\pi\)
0.457942 + 0.888982i \(0.348587\pi\)
\(20\) 2.07971 2.72686i 0.465038 0.609745i
\(21\) 2.19562i 0.479123i
\(22\) 0.749794 + 4.63010i 0.159857 + 0.987140i
\(23\) 7.25726i 1.51324i 0.653853 + 0.756622i \(0.273152\pi\)
−0.653853 + 0.756622i \(0.726848\pi\)
\(24\) 1.77176 + 1.89984i 0.361660 + 0.387803i
\(25\) 1.66637 1.21069i 0.333275 0.242138i
\(26\) 1.62719 1.58980i 0.319119 0.311786i
\(27\) 4.50418 1.46350i 0.866829 0.281650i
\(28\) −0.111131 + 4.77980i −0.0210018 + 0.903298i
\(29\) −0.318958 + 0.439008i −0.0592291 + 0.0815218i −0.837604 0.546278i \(-0.816044\pi\)
0.778375 + 0.627800i \(0.216044\pi\)
\(30\) −0.988012 1.99610i −0.180385 0.364437i
\(31\) −7.82777 2.54340i −1.40591 0.456807i −0.494812 0.869000i \(-0.664763\pi\)
−0.911097 + 0.412193i \(0.864763\pi\)
\(32\) −3.76092 4.22558i −0.664843 0.746983i
\(33\) 2.91097 + 0.897503i 0.506734 + 0.156235i
\(34\) 1.43557 8.42861i 0.246199 1.44550i
\(35\) 1.26669 3.89848i 0.214110 0.658964i
\(36\) −4.13165 + 1.23705i −0.688608 + 0.206175i
\(37\) −0.299076 0.217291i −0.0491678 0.0357225i 0.562930 0.826505i \(-0.309674\pi\)
−0.612098 + 0.790782i \(0.709674\pi\)
\(38\) −0.271708 1.85477i −0.0440769 0.300884i
\(39\) −0.456554 1.40513i −0.0731071 0.225001i
\(40\) 2.04984 + 4.39547i 0.324108 + 0.694984i
\(41\) 2.99295 + 4.11944i 0.467420 + 0.643348i 0.976027 0.217651i \(-0.0698393\pi\)
−0.508607 + 0.860999i \(0.669839\pi\)
\(42\) 2.75007 + 1.44173i 0.424345 + 0.222465i
\(43\) 9.45922 1.44252 0.721259 0.692666i \(-0.243564\pi\)
0.721259 + 0.692666i \(0.243564\pi\)
\(44\) −6.29167 2.10118i −0.948504 0.316765i
\(45\) 3.69767 0.551216
\(46\) −9.08991 4.76542i −1.34023 0.702623i
\(47\) −2.35548 3.24205i −0.343583 0.472901i 0.601901 0.798571i \(-0.294410\pi\)
−0.945484 + 0.325670i \(0.894410\pi\)
\(48\) −3.54301 + 0.971666i −0.511390 + 0.140248i
\(49\) −0.397175 1.22238i −0.0567393 0.174626i
\(50\) 0.422212 + 2.88217i 0.0597099 + 0.407600i
\(51\) −4.49229 3.26384i −0.629047 0.457029i
\(52\) 0.922785 + 3.08203i 0.127967 + 0.427401i
\(53\) −0.765944 + 2.35733i −0.105211 + 0.323805i −0.989780 0.142604i \(-0.954452\pi\)
0.884569 + 0.466409i \(0.154452\pi\)
\(54\) −1.12456 + 6.60259i −0.153034 + 0.898499i
\(55\) 4.65085 + 3.27297i 0.627120 + 0.441328i
\(56\) −5.91385 3.27781i −0.790272 0.438016i
\(57\) −1.15785 0.376209i −0.153361 0.0498301i
\(58\) −0.340428 0.687775i −0.0447004 0.0903092i
\(59\) −4.14490 + 5.70497i −0.539620 + 0.742724i −0.988558 0.150839i \(-0.951802\pi\)
0.448938 + 0.893563i \(0.351802\pi\)
\(60\) 3.14894 + 0.0732133i 0.406526 + 0.00945179i
\(61\) 9.41156 3.05800i 1.20503 0.391537i 0.363419 0.931626i \(-0.381609\pi\)
0.841608 + 0.540089i \(0.181609\pi\)
\(62\) 8.32571 8.13438i 1.05737 1.03307i
\(63\) −4.17053 + 3.03007i −0.525437 + 0.381752i
\(64\) 7.76222 1.93596i 0.970277 0.241995i
\(65\) 2.75830i 0.342125i
\(66\) −3.03561 + 3.05672i −0.373657 + 0.376257i
\(67\) 4.79085i 0.585296i 0.956220 + 0.292648i \(0.0945364\pi\)
−0.956220 + 0.292648i \(0.905464\pi\)
\(68\) 9.61440 + 7.33267i 1.16592 + 0.889217i
\(69\) −5.39250 + 3.91788i −0.649181 + 0.471658i
\(70\) 4.05119 + 4.14647i 0.484210 + 0.495598i
\(71\) 3.34001 1.08524i 0.396387 0.128794i −0.104039 0.994573i \(-0.533177\pi\)
0.500426 + 0.865779i \(0.333177\pi\)
\(72\) 1.16358 5.98730i 0.137129 0.705610i
\(73\) −1.23553 + 1.70056i −0.144607 + 0.199035i −0.875177 0.483804i \(-0.839255\pi\)
0.730569 + 0.682839i \(0.239255\pi\)
\(74\) 0.468549 0.231918i 0.0544677 0.0269599i
\(75\) 1.79921 + 0.584598i 0.207754 + 0.0675035i
\(76\) 2.50157 + 0.877601i 0.286950 + 0.100668i
\(77\) −7.92764 + 0.119627i −0.903439 + 0.0136328i
\(78\) 2.05975 + 0.350820i 0.233221 + 0.0397226i
\(79\) 0.797547 2.45460i 0.0897311 0.276164i −0.896114 0.443825i \(-0.853621\pi\)
0.985845 + 0.167661i \(0.0536213\pi\)
\(80\) −6.85145 0.318767i −0.766015 0.0356392i
\(81\) −1.71472 1.24581i −0.190524 0.138424i
\(82\) −7.12500 + 1.04375i −0.786824 + 0.115263i
\(83\) −1.22709 3.77660i −0.134691 0.414536i 0.860851 0.508857i \(-0.169932\pi\)
−0.995542 + 0.0943213i \(0.969932\pi\)
\(84\) −3.61162 + 2.49783i −0.394060 + 0.272536i
\(85\) −6.09343 8.38688i −0.660925 0.909685i
\(86\) −6.21132 + 11.8479i −0.669784 + 1.27759i
\(87\) −0.498396 −0.0534337
\(88\) 6.76315 6.50075i 0.720954 0.692983i
\(89\) −8.45225 −0.895937 −0.447969 0.894049i \(-0.647852\pi\)
−0.447969 + 0.894049i \(0.647852\pi\)
\(90\) −2.42804 + 4.63143i −0.255938 + 0.488195i
\(91\) 2.26030 + 3.11103i 0.236944 + 0.326125i
\(92\) 11.9376 8.25618i 1.24458 0.860766i
\(93\) −2.33600 7.18948i −0.242232 0.745515i
\(94\) 5.60746 0.821443i 0.578365 0.0847254i
\(95\) −1.83881 1.33597i −0.188658 0.137068i
\(96\) 1.10945 5.07575i 0.113233 0.518042i
\(97\) −2.57295 + 7.91872i −0.261243 + 0.804024i 0.731292 + 0.682065i \(0.238918\pi\)
−0.992535 + 0.121960i \(0.961082\pi\)
\(98\) 1.79186 + 0.305193i 0.181005 + 0.0308291i
\(99\) −2.31249 6.76791i −0.232414 0.680201i
\(100\) −3.88723 1.36372i −0.388723 0.136372i
\(101\) 8.58788 + 2.79037i 0.854526 + 0.277652i 0.703340 0.710853i \(-0.251691\pi\)
0.151185 + 0.988505i \(0.451691\pi\)
\(102\) 7.03788 3.48354i 0.696854 0.344922i
\(103\) 5.28660 7.27638i 0.520904 0.716963i −0.464806 0.885412i \(-0.653876\pi\)
0.985710 + 0.168450i \(0.0538760\pi\)
\(104\) −4.46627 0.867980i −0.437954 0.0851124i
\(105\) 3.58060 1.16341i 0.349430 0.113537i
\(106\) −2.44967 2.50729i −0.237933 0.243529i
\(107\) −2.49422 + 1.81216i −0.241126 + 0.175188i −0.701785 0.712389i \(-0.747613\pi\)
0.460659 + 0.887577i \(0.347613\pi\)
\(108\) −7.53148 5.74408i −0.724717 0.552725i
\(109\) 9.68863i 0.928002i 0.885835 + 0.464001i \(0.153587\pi\)
−0.885835 + 0.464001i \(0.846413\pi\)
\(110\) −7.15342 + 3.67614i −0.682052 + 0.350506i
\(111\) 0.339534i 0.0322271i
\(112\) 7.98883 5.25491i 0.754873 0.496542i
\(113\) 8.70152 6.32202i 0.818570 0.594726i −0.0977325 0.995213i \(-0.531159\pi\)
0.916303 + 0.400487i \(0.131159\pi\)
\(114\) 1.23150 1.20320i 0.115341 0.112690i
\(115\) −11.8351 + 3.84545i −1.10363 + 0.358590i
\(116\) 1.08500 + 0.0252263i 0.100739 + 0.00234220i
\(117\) −2.03894 + 2.80636i −0.188500 + 0.259448i
\(118\) −4.42391 8.93772i −0.407254 0.822784i
\(119\) 13.7453 + 4.46612i 1.26003 + 0.409409i
\(120\) −2.15943 + 3.89605i −0.197128 + 0.355659i
\(121\) 3.08198 10.5594i 0.280180 0.959947i
\(122\) −2.34980 + 13.7962i −0.212740 + 1.24905i
\(123\) −1.44518 + 4.44781i −0.130308 + 0.401046i
\(124\) 4.72152 + 15.7695i 0.424005 + 1.41615i
\(125\) 9.79353 + 7.11541i 0.875960 + 0.636422i
\(126\) −1.05669 7.21336i −0.0941378 0.642617i
\(127\) −0.100873 0.310454i −0.00895101 0.0275484i 0.946481 0.322759i \(-0.104610\pi\)
−0.955432 + 0.295210i \(0.904610\pi\)
\(128\) −2.67216 + 10.9936i −0.236187 + 0.971708i
\(129\) 5.10662 + 7.02866i 0.449613 + 0.618839i
\(130\) 3.45485 + 1.81122i 0.303010 + 0.158854i
\(131\) −10.8360 −0.946745 −0.473372 0.880862i \(-0.656963\pi\)
−0.473372 + 0.880862i \(0.656963\pi\)
\(132\) −1.83532 5.80935i −0.159744 0.505639i
\(133\) 3.16872 0.274763
\(134\) −6.00067 3.14587i −0.518379 0.271762i
\(135\) 4.77331 + 6.56990i 0.410821 + 0.565447i
\(136\) −15.4976 + 7.22735i −1.32891 + 0.619740i
\(137\) −0.390122 1.20067i −0.0333304 0.102580i 0.933007 0.359857i \(-0.117175\pi\)
−0.966338 + 0.257277i \(0.917175\pi\)
\(138\) −1.36631 9.32689i −0.116308 0.793958i
\(139\) 8.13031 + 5.90702i 0.689604 + 0.501026i 0.876530 0.481347i \(-0.159852\pi\)
−0.186926 + 0.982374i \(0.559852\pi\)
\(140\) −7.85374 + 2.35147i −0.663763 + 0.198736i
\(141\) 1.13737 3.50048i 0.0957842 0.294794i
\(142\) −0.833905 + 4.89606i −0.0699797 + 0.410869i
\(143\) −5.04857 + 1.72502i −0.422183 + 0.144253i
\(144\) 6.73519 + 5.38892i 0.561266 + 0.449077i
\(145\) −0.884939 0.287534i −0.0734902 0.0238784i
\(146\) −1.31869 2.66418i −0.109136 0.220490i
\(147\) 0.693870 0.955029i 0.0572294 0.0787695i
\(148\) −0.0171855 + 0.739156i −0.00141264 + 0.0607583i
\(149\) 2.24743 0.730233i 0.184116 0.0598230i −0.215508 0.976502i \(-0.569141\pi\)
0.399624 + 0.916679i \(0.369141\pi\)
\(150\) −1.91366 + 1.86968i −0.156249 + 0.152659i
\(151\) 15.4539 11.2279i 1.25762 0.913713i 0.258980 0.965883i \(-0.416614\pi\)
0.998638 + 0.0521699i \(0.0166137\pi\)
\(152\) −2.74185 + 2.55701i −0.222394 + 0.207401i
\(153\) 13.0373i 1.05400i
\(154\) 5.05579 10.0081i 0.407407 0.806479i
\(155\) 14.1131i 1.13359i
\(156\) −1.79193 + 2.34953i −0.143469 + 0.188113i
\(157\) −7.93699 + 5.76656i −0.633441 + 0.460222i −0.857591 0.514333i \(-0.828040\pi\)
0.224150 + 0.974555i \(0.428040\pi\)
\(158\) 2.55075 + 2.61074i 0.202926 + 0.207699i
\(159\) −2.16511 + 0.703488i −0.171705 + 0.0557902i
\(160\) 4.89821 8.37230i 0.387237 0.661889i
\(161\) 10.1974 14.0355i 0.803667 1.10615i
\(162\) 2.68637 1.32967i 0.211061 0.104469i
\(163\) −13.5498 4.40261i −1.06130 0.344839i −0.274209 0.961670i \(-0.588416\pi\)
−0.787096 + 0.616831i \(0.788416\pi\)
\(164\) 3.37125 9.60962i 0.263250 0.750385i
\(165\) 0.0788107 + 5.22274i 0.00613540 + 0.406590i
\(166\) 5.53605 + 0.942909i 0.429681 + 0.0731839i
\(167\) 0.0216699 0.0666932i 0.00167687 0.00516088i −0.950215 0.311596i \(-0.899136\pi\)
0.951891 + 0.306435i \(0.0991364\pi\)
\(168\) −0.757059 6.16383i −0.0584084 0.475550i
\(169\) −8.42380 6.12025i −0.647984 0.470788i
\(170\) 14.5060 2.12500i 1.11256 0.162980i
\(171\) 0.883294 + 2.71850i 0.0675472 + 0.207889i
\(172\) −10.7612 15.5597i −0.820535 1.18641i
\(173\) −11.6546 16.0412i −0.886086 1.21959i −0.974698 0.223527i \(-0.928243\pi\)
0.0886112 0.996066i \(-0.471757\pi\)
\(174\) 0.327268 0.624254i 0.0248101 0.0473246i
\(175\) −4.92393 −0.372214
\(176\) 3.70140 + 12.7397i 0.279003 + 0.960290i
\(177\) −6.47672 −0.486820
\(178\) 5.55010 10.5867i 0.415998 0.793504i
\(179\) −2.02535 2.78765i −0.151382 0.208359i 0.726590 0.687071i \(-0.241104\pi\)
−0.877972 + 0.478712i \(0.841104\pi\)
\(180\) −4.20663 6.08238i −0.313544 0.453353i
\(181\) 4.87022 + 14.9890i 0.362001 + 1.11412i 0.951838 + 0.306601i \(0.0991918\pi\)
−0.589837 + 0.807522i \(0.700808\pi\)
\(182\) −5.38086 + 0.788249i −0.398856 + 0.0584289i
\(183\) 7.35314 + 5.34237i 0.543560 + 0.394919i
\(184\) 2.50234 + 20.3735i 0.184475 + 1.50196i
\(185\) 0.195884 0.602867i 0.0144016 0.0443237i
\(186\) 10.5389 + 1.79501i 0.772752 + 0.131616i
\(187\) −11.5399 + 16.3980i −0.843880 + 1.19914i
\(188\) −2.65321 + 7.56288i −0.193505 + 0.551580i
\(189\) −10.7674 3.49856i −0.783217 0.254482i
\(190\) 2.88078 1.42590i 0.208994 0.103446i
\(191\) 4.18731 5.76334i 0.302983 0.417020i −0.630194 0.776438i \(-0.717025\pi\)
0.933177 + 0.359417i \(0.117025\pi\)
\(192\) 5.62900 + 4.72257i 0.406238 + 0.340822i
\(193\) −16.0372 + 5.21080i −1.15438 + 0.375081i −0.822792 0.568342i \(-0.807585\pi\)
−0.331590 + 0.943424i \(0.607585\pi\)
\(194\) −8.22890 8.42245i −0.590801 0.604697i
\(195\) 2.04955 1.48909i 0.146772 0.106636i
\(196\) −1.55887 + 2.04395i −0.111348 + 0.145997i
\(197\) 24.6863i 1.75883i −0.476058 0.879414i \(-0.657935\pi\)
0.476058 0.879414i \(-0.342065\pi\)
\(198\) 9.99547 + 1.54763i 0.710347 + 0.109986i
\(199\) 15.7596i 1.11717i −0.829449 0.558583i \(-0.811345\pi\)
0.829449 0.558583i \(-0.188655\pi\)
\(200\) 4.26061 3.97339i 0.301271 0.280961i
\(201\) −3.55984 + 2.58637i −0.251092 + 0.182429i
\(202\) −9.13417 + 8.92427i −0.642678 + 0.627909i
\(203\) 1.23373 0.400862i 0.0865906 0.0281350i
\(204\) −0.258136 + 11.1026i −0.0180731 + 0.777335i
\(205\) −5.13205 + 7.06366i −0.358438 + 0.493348i
\(206\) 5.64245 + 11.3996i 0.393128 + 0.794246i
\(207\) 14.8838 + 4.83606i 1.03450 + 0.336129i
\(208\) 4.01990 5.02416i 0.278730 0.348363i
\(209\) −1.29528 + 4.20111i −0.0895963 + 0.290597i
\(210\) −0.893972 + 5.24873i −0.0616899 + 0.362197i
\(211\) −7.38354 + 22.7242i −0.508304 + 1.56440i 0.286841 + 0.957978i \(0.407395\pi\)
−0.795145 + 0.606419i \(0.792605\pi\)
\(212\) 4.74900 1.42189i 0.326163 0.0976556i
\(213\) 2.60951 + 1.89592i 0.178801 + 0.129906i
\(214\) −0.631966 4.31402i −0.0432003 0.294900i
\(215\) 5.01221 + 15.4260i 0.341830 + 1.05205i
\(216\) 12.1401 5.66158i 0.826029 0.385222i
\(217\) 11.5651 + 15.9179i 0.785087 + 1.08058i
\(218\) −12.1353 6.36196i −0.821904 0.430886i
\(219\) −1.93060 −0.130458
\(220\) 0.0927799 11.3738i 0.00625522 0.766818i
\(221\) 9.72525 0.654191
\(222\) 0.425275 + 0.222952i 0.0285426 + 0.0149636i
\(223\) −11.0894 15.2632i −0.742600 1.02210i −0.998465 0.0553883i \(-0.982360\pi\)
0.255865 0.966712i \(-0.417640\pi\)
\(224\) 1.33611 + 13.4568i 0.0892729 + 0.899121i
\(225\) −1.37257 4.22433i −0.0915044 0.281622i
\(226\) 2.20472 + 15.0502i 0.146656 + 1.00112i
\(227\) 9.11637 + 6.62343i 0.605075 + 0.439612i 0.847676 0.530514i \(-0.178001\pi\)
−0.242602 + 0.970126i \(0.578001\pi\)
\(228\) 0.698388 + 2.33257i 0.0462519 + 0.154478i
\(229\) 6.75257 20.7823i 0.446223 1.37333i −0.434915 0.900472i \(-0.643222\pi\)
0.881137 0.472860i \(-0.156778\pi\)
\(230\) 2.95488 17.3488i 0.194839 1.14395i
\(231\) −4.36868 5.82605i −0.287438 0.383326i
\(232\) −0.744050 + 1.34242i −0.0488492 + 0.0881342i
\(233\) 6.04225 + 1.96325i 0.395841 + 0.128617i 0.500172 0.865926i \(-0.333270\pi\)
−0.104331 + 0.994543i \(0.533270\pi\)
\(234\) −2.17619 4.39660i −0.142262 0.287415i
\(235\) 4.03898 5.55919i 0.263474 0.362641i
\(236\) 14.0997 + 0.327819i 0.917809 + 0.0213392i
\(237\) 2.25445 0.732514i 0.146442 0.0475819i
\(238\) −14.6197 + 14.2837i −0.947653 + 0.925876i
\(239\) −12.0990 + 8.79041i −0.782617 + 0.568605i −0.905763 0.423784i \(-0.860702\pi\)
0.123146 + 0.992389i \(0.460702\pi\)
\(240\) −3.46194 5.26305i −0.223467 0.339728i
\(241\) 0.457365i 0.0294615i 0.999891 + 0.0147307i \(0.00468911\pi\)
−0.999891 + 0.0147307i \(0.995311\pi\)
\(242\) 11.2022 + 10.7940i 0.720104 + 0.693866i
\(243\) 16.1546i 1.03632i
\(244\) −15.7372 12.0024i −1.00747 0.768373i
\(245\) 1.78299 1.29542i 0.113911 0.0827612i
\(246\) −4.62203 4.73075i −0.294690 0.301621i
\(247\) 2.02788 0.658899i 0.129031 0.0419248i
\(248\) −22.8521 4.44111i −1.45111 0.282011i
\(249\) 2.14375 2.95061i 0.135854 0.186987i
\(250\) −15.3431 + 7.59437i −0.970381 + 0.480310i
\(251\) 12.0935 + 3.92941i 0.763334 + 0.248022i 0.664709 0.747103i \(-0.268556\pi\)
0.0986249 + 0.995125i \(0.468556\pi\)
\(252\) 9.72879 + 3.41306i 0.612856 + 0.215002i
\(253\) 14.4400 + 19.2571i 0.907833 + 1.21068i
\(254\) 0.455090 + 0.0775115i 0.0285549 + 0.00486351i
\(255\) 2.94229 9.05543i 0.184253 0.567073i
\(256\) −12.0151 10.5658i −0.750946 0.660363i
\(257\) 1.20619 + 0.876350i 0.0752402 + 0.0546652i 0.624770 0.780809i \(-0.285193\pi\)
−0.549529 + 0.835474i \(0.685193\pi\)
\(258\) −12.1568 + 1.78087i −0.756850 + 0.110872i
\(259\) 0.273088 + 0.840480i 0.0169689 + 0.0522249i
\(260\) −4.53719 + 3.13797i −0.281385 + 0.194608i
\(261\) 0.687812 + 0.946692i 0.0425745 + 0.0585988i
\(262\) 7.11536 13.5724i 0.439589 0.838503i
\(263\) −14.7580 −0.910017 −0.455008 0.890487i \(-0.650364\pi\)
−0.455008 + 0.890487i \(0.650364\pi\)
\(264\) 8.48151 + 1.51588i 0.522001 + 0.0932957i
\(265\) −4.25017 −0.261086
\(266\) −2.08071 + 3.96891i −0.127577 + 0.243349i
\(267\) −4.56300 6.28044i −0.279251 0.384357i
\(268\) 7.88058 5.45028i 0.481383 0.332929i
\(269\) 4.06176 + 12.5008i 0.247650 + 0.762189i 0.995189 + 0.0979710i \(0.0312352\pi\)
−0.747539 + 0.664218i \(0.768765\pi\)
\(270\) −11.3633 + 1.66463i −0.691550 + 0.101306i
\(271\) 9.14409 + 6.64357i 0.555464 + 0.403568i 0.829796 0.558067i \(-0.188457\pi\)
−0.274332 + 0.961635i \(0.588457\pi\)
\(272\) 1.12391 24.1569i 0.0681471 1.46473i
\(273\) −1.09141 + 3.35903i −0.0660553 + 0.203297i
\(274\) 1.76004 + 0.299773i 0.106328 + 0.0181100i
\(275\) 2.01276 6.52818i 0.121374 0.393664i
\(276\) 12.5794 + 4.41309i 0.757188 + 0.265637i
\(277\) −1.50422 0.488750i −0.0903796 0.0293661i 0.263478 0.964665i \(-0.415130\pi\)
−0.353858 + 0.935299i \(0.615130\pi\)
\(278\) −12.7374 + 6.30463i −0.763938 + 0.378127i
\(279\) −10.4325 + 14.3590i −0.624574 + 0.859653i
\(280\) 2.21182 11.3811i 0.132181 0.680150i
\(281\) −8.38361 + 2.72400i −0.500124 + 0.162500i −0.548206 0.836343i \(-0.684689\pi\)
0.0480820 + 0.998843i \(0.484689\pi\)
\(282\) 3.63759 + 3.72315i 0.216616 + 0.221711i
\(283\) 16.4054 11.9192i 0.975201 0.708525i 0.0185704 0.999828i \(-0.494089\pi\)
0.956631 + 0.291302i \(0.0940885\pi\)
\(284\) −5.58487 4.25945i −0.331401 0.252752i
\(285\) 2.08756i 0.123656i
\(286\) 1.15447 7.45619i 0.0682652 0.440894i
\(287\) 12.1724i 0.718516i
\(288\) −11.1724 + 4.89741i −0.658338 + 0.288583i
\(289\) 15.8173 11.4919i 0.930427 0.675995i
\(290\) 0.941232 0.919603i 0.0552710 0.0540009i
\(291\) −7.27302 + 2.36315i −0.426352 + 0.138530i
\(292\) 4.20287 + 0.0977173i 0.245954 + 0.00571847i
\(293\) −8.20064 + 11.2872i −0.479087 + 0.659406i −0.978329 0.207056i \(-0.933612\pi\)
0.499242 + 0.866462i \(0.333612\pi\)
\(294\) 0.740576 + 1.49620i 0.0431913 + 0.0872603i
\(295\) −11.4999 3.73654i −0.669550 0.217550i
\(296\) −0.914528 0.506886i −0.0531558 0.0294621i
\(297\) 9.03982 12.8454i 0.524543 0.745368i
\(298\) −0.561118 + 3.29446i −0.0325047 + 0.190843i
\(299\) 3.60749 11.1027i 0.208627 0.642087i
\(300\) −1.08524 3.62462i −0.0626563 0.209267i
\(301\) −18.2941 13.2914i −1.05445 0.766105i
\(302\) 3.91558 + 26.7291i 0.225316 + 1.53809i
\(303\) 2.56284 + 7.88761i 0.147231 + 0.453131i
\(304\) −1.40231 5.11328i −0.0804280 0.293267i
\(305\) 9.97392 + 13.7279i 0.571105 + 0.786059i
\(306\) −16.3295 8.56082i −0.933497 0.489389i
\(307\) 5.88829 0.336062 0.168031 0.985782i \(-0.446259\pi\)
0.168031 + 0.985782i \(0.446259\pi\)
\(308\) 9.21561 + 12.9043i 0.525108 + 0.735289i
\(309\) 8.26071 0.469935
\(310\) 17.6771 + 9.26727i 1.00399 + 0.526346i
\(311\) 15.4196 + 21.2233i 0.874366 + 1.20346i 0.977950 + 0.208840i \(0.0669689\pi\)
−0.103584 + 0.994621i \(0.533031\pi\)
\(312\) −1.76619 3.78724i −0.0999909 0.214410i
\(313\) −5.29404 16.2934i −0.299237 0.920955i −0.981765 0.190097i \(-0.939120\pi\)
0.682529 0.730859i \(-0.260880\pi\)
\(314\) −2.01101 13.7279i −0.113488 0.774708i
\(315\) −7.15127 5.19570i −0.402928 0.292744i
\(316\) −4.94495 + 1.48056i −0.278175 + 0.0832877i
\(317\) 0.246344 0.758169i 0.0138361 0.0425830i −0.943900 0.330231i \(-0.892873\pi\)
0.957736 + 0.287648i \(0.0928733\pi\)
\(318\) 0.540567 3.17380i 0.0303135 0.177978i
\(319\) 0.0271549 + 1.79954i 0.00152038 + 0.100755i
\(320\) 7.27016 + 11.6327i 0.406414 + 0.650290i
\(321\) −2.69305 0.875024i −0.150311 0.0488391i
\(322\) 10.8838 + 21.9888i 0.606530 + 1.22539i
\(323\) 4.71038 6.48329i 0.262093 0.360740i
\(324\) −0.0985309 + 4.23786i −0.00547394 + 0.235437i
\(325\) −3.15117 + 1.02388i −0.174795 + 0.0567944i
\(326\) 14.4118 14.0806i 0.798194 0.779852i
\(327\) −7.19912 + 5.23047i −0.398112 + 0.289246i
\(328\) 9.82259 + 10.5326i 0.542362 + 0.581568i
\(329\) 9.57985i 0.528154i
\(330\) −6.59337 3.33076i −0.362953 0.183352i
\(331\) 21.2979i 1.17064i 0.810803 + 0.585319i \(0.199031\pi\)
−0.810803 + 0.585319i \(0.800969\pi\)
\(332\) −4.81622 + 6.31490i −0.264324 + 0.346575i
\(333\) −0.644937 + 0.468574i −0.0353423 + 0.0256777i
\(334\) 0.0693056 + 0.0709357i 0.00379223 + 0.00388143i
\(335\) −7.81288 + 2.53856i −0.426863 + 0.138696i
\(336\) 8.21748 + 3.09919i 0.448300 + 0.169075i
\(337\) 6.39268 8.79876i 0.348231 0.479299i −0.598592 0.801054i \(-0.704273\pi\)
0.946823 + 0.321755i \(0.104273\pi\)
\(338\) 13.1972 6.53222i 0.717832 0.355306i
\(339\) 9.39514 + 3.05267i 0.510274 + 0.165798i
\(340\) −6.86362 + 19.5645i −0.372232 + 1.06103i
\(341\) −25.8315 + 8.82625i −1.39886 + 0.477968i
\(342\) −3.98500 0.678731i −0.215484 0.0367016i
\(343\) −6.12050 + 18.8370i −0.330476 + 1.01710i
\(344\) 26.5552 3.26158i 1.43176 0.175853i
\(345\) −9.24660 6.71805i −0.497820 0.361688i
\(346\) 27.7450 4.06440i 1.49158 0.218504i
\(347\) 0.198863 + 0.612038i 0.0106755 + 0.0328559i 0.956252 0.292543i \(-0.0945014\pi\)
−0.945577 + 0.325399i \(0.894501\pi\)
\(348\) 0.566997 + 0.819823i 0.0303943 + 0.0439471i
\(349\) −10.1567 13.9796i −0.543678 0.748309i 0.445459 0.895302i \(-0.353040\pi\)
−0.989137 + 0.146993i \(0.953040\pi\)
\(350\) 3.23326 6.16736i 0.172825 0.329659i
\(351\) −7.61832 −0.406636
\(352\) −18.3873 3.72931i −0.980046 0.198773i
\(353\) −28.3825 −1.51065 −0.755324 0.655352i \(-0.772520\pi\)
−0.755324 + 0.655352i \(0.772520\pi\)
\(354\) 4.25289 8.11227i 0.226038 0.431162i
\(355\) 3.53959 + 4.87182i 0.187862 + 0.258569i
\(356\) 9.61565 + 13.9033i 0.509629 + 0.736873i
\(357\) 4.10195 + 12.6245i 0.217098 + 0.668159i
\(358\) 4.82154 0.706313i 0.254826 0.0373298i
\(359\) −23.1001 16.7832i −1.21918 0.885785i −0.223147 0.974785i \(-0.571633\pi\)
−0.996032 + 0.0889996i \(0.971633\pi\)
\(360\) 10.3806 1.27497i 0.547105 0.0671969i
\(361\) −5.32838 + 16.3991i −0.280441 + 0.863108i
\(362\) −21.9721 3.74232i −1.15483 0.196692i
\(363\) 9.50999 3.41051i 0.499145 0.179005i
\(364\) 2.54599 7.25726i 0.133446 0.380384i
\(365\) −3.42793 1.11380i −0.179426 0.0582990i
\(366\) −11.5198 + 5.70198i −0.602151 + 0.298047i
\(367\) 0.228900 0.315054i 0.0119485 0.0164457i −0.803001 0.595978i \(-0.796765\pi\)
0.814949 + 0.579532i \(0.196765\pi\)
\(368\) −27.1615 10.2439i −1.41589 0.533999i
\(369\) 10.4429 3.39312i 0.543638 0.176639i
\(370\) 0.626482 + 0.641217i 0.0325692 + 0.0333353i
\(371\) 4.79369 3.48282i 0.248876 0.180819i
\(372\) −9.16860 + 12.0216i −0.475370 + 0.623292i
\(373\) 9.95150i 0.515269i −0.966242 0.257635i \(-0.917057\pi\)
0.966242 0.257635i \(-0.0829430\pi\)
\(374\) −12.9614 25.2216i −0.670216 1.30418i
\(375\) 11.1184i 0.574150i
\(376\) −7.73050 8.28932i −0.398670 0.427489i
\(377\) 0.706192 0.513078i 0.0363707 0.0264249i
\(378\) 11.4524 11.1892i 0.589047 0.575511i
\(379\) 19.1280 6.21508i 0.982541 0.319247i 0.226673 0.973971i \(-0.427215\pi\)
0.755868 + 0.654724i \(0.227215\pi\)
\(380\) −0.105662 + 4.54456i −0.00542032 + 0.233131i
\(381\) 0.176226 0.242554i 0.00902833 0.0124264i
\(382\) 4.46917 + 9.02916i 0.228663 + 0.461972i
\(383\) −9.77842 3.17720i −0.499654 0.162347i 0.0483380 0.998831i \(-0.484608\pi\)
−0.547992 + 0.836484i \(0.684608\pi\)
\(384\) −9.61137 + 3.94943i −0.490478 + 0.201544i
\(385\) −4.39576 12.8649i −0.224029 0.655658i
\(386\) 4.00402 23.5086i 0.203799 1.19656i
\(387\) 6.30338 19.3998i 0.320419 0.986148i
\(388\) 15.9528 4.77638i 0.809880 0.242484i
\(389\) 15.5977 + 11.3324i 0.790836 + 0.574576i 0.908212 0.418511i \(-0.137448\pi\)
−0.117375 + 0.993088i \(0.537448\pi\)
\(390\) 0.519299 + 3.54492i 0.0262957 + 0.179504i
\(391\) −13.5583 41.7282i −0.685674 2.11029i
\(392\) −1.53648 3.29467i −0.0776041 0.166406i
\(393\) −5.84988 8.05167i −0.295087 0.406153i
\(394\) 30.9203 + 16.2101i 1.55774 + 0.816651i
\(395\) 4.42554 0.222673
\(396\) −8.50189 + 11.5033i −0.427236 + 0.578065i
\(397\) 38.1030 1.91233 0.956167 0.292823i \(-0.0945945\pi\)
0.956167 + 0.292823i \(0.0945945\pi\)
\(398\) 19.7393 + 10.3484i 0.989440 + 0.518718i
\(399\) 1.71066 + 2.35451i 0.0856399 + 0.117873i
\(400\) 2.17907 + 7.94562i 0.108954 + 0.397281i
\(401\) −1.28297 3.94858i −0.0640685 0.197183i 0.913898 0.405943i \(-0.133057\pi\)
−0.977967 + 0.208761i \(0.933057\pi\)
\(402\) −0.901963 6.15711i −0.0449858 0.307089i
\(403\) 10.7112 + 7.78216i 0.533564 + 0.387657i
\(404\) −5.18000 17.3008i −0.257715 0.860748i
\(405\) 1.12307 3.45647i 0.0558060 0.171753i
\(406\) −0.308026 + 1.80850i −0.0152871 + 0.0897542i
\(407\) −1.22594 + 0.0184994i −0.0607678 + 0.000916979i
\(408\) −13.7367 7.61373i −0.680070 0.376936i
\(409\) 10.7679 + 3.49869i 0.532437 + 0.172999i 0.562882 0.826537i \(-0.309693\pi\)
−0.0304453 + 0.999536i \(0.509693\pi\)
\(410\) −5.47750 11.0663i −0.270515 0.546527i
\(411\) 0.681548 0.938071i 0.0336183 0.0462716i
\(412\) −17.9833 0.418115i −0.885975 0.0205990i
\(413\) 16.0324 5.20925i 0.788904 0.256331i
\(414\) −15.8306 + 15.4669i −0.778034 + 0.760154i
\(415\) 5.50864 4.00226i 0.270409 0.196463i
\(416\) 3.65326 + 8.33411i 0.179116 + 0.408613i
\(417\) 9.23016i 0.452003i
\(418\) −4.41147 4.38099i −0.215772 0.214281i
\(419\) 21.2095i 1.03615i 0.855335 + 0.518075i \(0.173351\pi\)
−0.855335 + 0.518075i \(0.826649\pi\)
\(420\) −5.98715 4.56626i −0.292143 0.222811i
\(421\) −20.0502 + 14.5673i −0.977185 + 0.709966i −0.957078 0.289832i \(-0.906401\pi\)
−0.0201071 + 0.999798i \(0.506401\pi\)
\(422\) −23.6143 24.1697i −1.14953 1.17656i
\(423\) −8.21871 + 2.67042i −0.399608 + 0.129840i
\(424\) −1.33744 + 6.88192i −0.0649518 + 0.334215i
\(425\) −7.31955 + 10.0745i −0.355050 + 0.488685i
\(426\) −4.08820 + 2.02354i −0.198074 + 0.0980408i
\(427\) −22.4988 7.31030i −1.08879 0.353770i
\(428\) 5.81840 + 2.04121i 0.281243 + 0.0986657i
\(429\) −4.00728 2.82007i −0.193473 0.136154i
\(430\) −22.6127 3.85143i −1.09048 0.185732i
\(431\) −0.546129 + 1.68081i −0.0263061 + 0.0809619i −0.963348 0.268256i \(-0.913553\pi\)
0.937042 + 0.349218i \(0.113553\pi\)
\(432\) −0.880420 + 18.9234i −0.0423592 + 0.910453i
\(433\) 26.6582 + 19.3684i 1.28111 + 0.930784i 0.999586 0.0287696i \(-0.00915892\pi\)
0.281528 + 0.959553i \(0.409159\pi\)
\(434\) −27.5317 + 4.03316i −1.32156 + 0.193598i
\(435\) −0.264088 0.812780i −0.0126621 0.0389698i
\(436\) 15.9370 11.0222i 0.763245 0.527868i
\(437\) −5.65429 7.78247i −0.270482 0.372286i
\(438\) 1.26771 2.41813i 0.0605737 0.115543i
\(439\) 27.3520 1.30544 0.652719 0.757600i \(-0.273628\pi\)
0.652719 + 0.757600i \(0.273628\pi\)
\(440\) 14.1850 + 7.58469i 0.676243 + 0.361586i
\(441\) −2.77163 −0.131982
\(442\) −6.38600 + 12.1811i −0.303751 + 0.579397i
\(443\) −0.996488 1.37155i −0.0473446 0.0651642i 0.784688 0.619890i \(-0.212823\pi\)
−0.832033 + 0.554726i \(0.812823\pi\)
\(444\) −0.558507 + 0.386269i −0.0265056 + 0.0183315i
\(445\) −4.47865 13.7839i −0.212308 0.653418i
\(446\) 26.3993 3.86727i 1.25004 0.183121i
\(447\) 1.75589 + 1.27573i 0.0830506 + 0.0603398i
\(448\) −17.7324 7.16278i −0.837775 0.338410i
\(449\) −5.72704 + 17.6260i −0.270276 + 0.831823i 0.720155 + 0.693813i \(0.244071\pi\)
−0.990431 + 0.138010i \(0.955929\pi\)
\(450\) 6.19236 + 1.05469i 0.291911 + 0.0497187i
\(451\) 16.1383 + 4.97573i 0.759923 + 0.234298i
\(452\) −20.2985 7.12111i −0.954759 0.334949i
\(453\) 16.6857 + 5.42153i 0.783965 + 0.254726i
\(454\) −14.2822 + 7.06927i −0.670297 + 0.331777i
\(455\) −3.87577 + 5.33454i −0.181699 + 0.250087i
\(456\) −3.38019 0.656910i −0.158292 0.0307626i
\(457\) 10.3504 3.36303i 0.484169 0.157316i −0.0567538 0.998388i \(-0.518075\pi\)
0.540923 + 0.841072i \(0.318075\pi\)
\(458\) 21.5963 + 22.1043i 1.00913 + 1.03287i
\(459\) −23.1642 + 16.8298i −1.08121 + 0.785547i
\(460\) 19.7896 + 15.0930i 0.922693 + 0.703716i
\(461\) 13.8278i 0.644024i 0.946736 + 0.322012i \(0.104359\pi\)
−0.946736 + 0.322012i \(0.895641\pi\)
\(462\) 10.1659 1.64626i 0.472962 0.0765910i
\(463\) 37.3657i 1.73653i 0.496099 + 0.868266i \(0.334765\pi\)
−0.496099 + 0.868266i \(0.665235\pi\)
\(464\) −1.19284 1.81343i −0.0553763 0.0841864i
\(465\) 10.4868 7.61907i 0.486311 0.353326i
\(466\) −6.42661 + 6.27893i −0.297707 + 0.290866i
\(467\) 13.1201 4.26296i 0.607124 0.197266i 0.0107086 0.999943i \(-0.496591\pi\)
0.596415 + 0.802676i \(0.296591\pi\)
\(468\) 6.93583 + 0.161259i 0.320609 + 0.00745420i
\(469\) 6.73176 9.26547i 0.310844 0.427840i
\(470\) 4.31086 + 8.70933i 0.198845 + 0.401731i
\(471\) −8.56968 2.78446i −0.394870 0.128301i
\(472\) −9.66902 + 17.4449i −0.445053 + 0.802968i
\(473\) 25.0999 18.8213i 1.15410 0.865402i
\(474\) −0.562871 + 3.30475i −0.0258535 + 0.151792i
\(475\) −0.843692 + 2.59662i −0.0387113 + 0.119141i
\(476\) −8.29084 27.6908i −0.380010 1.26921i
\(477\) 4.32423 + 3.14173i 0.197993 + 0.143850i
\(478\) −3.06554 20.9264i −0.140214 0.957152i
\(479\) 4.17392 + 12.8460i 0.190711 + 0.586949i 1.00000 0.000462487i \(-0.000147214\pi\)
−0.809289 + 0.587411i \(0.800147\pi\)
\(480\) 8.86536 0.880234i 0.404647 0.0401770i
\(481\) 0.349536 + 0.481095i 0.0159375 + 0.0219361i
\(482\) −0.572862 0.300325i −0.0260931 0.0136794i
\(483\) 15.9342 0.725031
\(484\) −20.8756 + 6.94324i −0.948892 + 0.315602i
\(485\) −14.2771 −0.648291
\(486\) 20.2341 + 10.6078i 0.917835 + 0.481179i
\(487\) −21.0066 28.9132i −0.951902 1.31018i −0.950677 0.310182i \(-0.899610\pi\)
−0.00122483 0.999999i \(-0.500390\pi\)
\(488\) 25.3670 11.8300i 1.14831 0.535518i
\(489\) −4.04361 12.4450i −0.182859 0.562781i
\(490\) 0.451760 + 3.08387i 0.0204084 + 0.139315i
\(491\) −32.6427 23.7163i −1.47314 1.07030i −0.979688 0.200530i \(-0.935734\pi\)
−0.493455 0.869771i \(-0.664266\pi\)
\(492\) 8.96040 2.68281i 0.403966 0.120951i
\(493\) 1.01379 3.12013i 0.0456588 0.140523i
\(494\) −0.506304 + 2.97264i −0.0227797 + 0.133745i
\(495\) 9.81171 7.35735i 0.441004 0.330688i
\(496\) 20.5683 25.7067i 0.923542 1.15426i
\(497\) −7.98446 2.59431i −0.358152 0.116371i
\(498\) 2.28805 + 4.62259i 0.102530 + 0.207143i
\(499\) 2.39243 3.29289i 0.107100 0.147410i −0.752103 0.659046i \(-0.770960\pi\)
0.859202 + 0.511636i \(0.170960\pi\)
\(500\) 0.562755 24.2044i 0.0251672 1.08245i
\(501\) 0.0612550 0.0199029i 0.00273667 0.000889198i
\(502\) −12.8628 + 12.5672i −0.574094 + 0.560901i
\(503\) −15.7894 + 11.4717i −0.704013 + 0.511496i −0.881237 0.472675i \(-0.843288\pi\)
0.177223 + 0.984171i \(0.443288\pi\)
\(504\) −10.6633 + 9.94441i −0.474980 + 0.442959i
\(505\) 15.4836i 0.689010i
\(506\) −33.6018 + 5.44145i −1.49378 + 0.241902i
\(507\) 9.56335i 0.424723i
\(508\) −0.395916 + 0.519114i −0.0175659 + 0.0230320i
\(509\) −18.9874 + 13.7952i −0.841602 + 0.611459i −0.922818 0.385237i \(-0.874120\pi\)
0.0812160 + 0.996697i \(0.474120\pi\)
\(510\) 9.41013 + 9.63146i 0.416688 + 0.426488i
\(511\) 4.77900 1.55279i 0.211410 0.0686914i
\(512\) 21.1236 8.11133i 0.933540 0.358473i
\(513\) −3.68990 + 5.07871i −0.162913 + 0.224231i
\(514\) −1.88969 + 0.935339i −0.0833505 + 0.0412560i
\(515\) 14.6675 + 4.76576i 0.646327 + 0.210004i
\(516\) 5.75208 16.3961i 0.253221 0.721798i
\(517\) −12.7010 3.91596i −0.558591 0.172224i
\(518\) −1.23204 0.209844i −0.0541329 0.00922000i
\(519\) 5.62759 17.3199i 0.247024 0.760261i
\(520\) −0.951075 7.74347i −0.0417074 0.339574i
\(521\) −16.5556 12.0284i −0.725315 0.526972i 0.162763 0.986665i \(-0.447959\pi\)
−0.888078 + 0.459693i \(0.847959\pi\)
\(522\) −1.63740 + 0.239865i −0.0716672 + 0.0104986i
\(523\) −2.54447 7.83107i −0.111262 0.342429i 0.879887 0.475183i \(-0.157618\pi\)
−0.991149 + 0.132754i \(0.957618\pi\)
\(524\) 12.3275 + 17.8244i 0.538529 + 0.778660i
\(525\) −2.65822 3.65872i −0.116014 0.159680i
\(526\) 9.69071 18.4848i 0.422535 0.805974i
\(527\) 49.7602 2.16759
\(528\) −7.46799 + 9.62792i −0.325002 + 0.419002i
\(529\) −29.6679 −1.28991
\(530\) 2.79084 5.32345i 0.121226 0.231236i
\(531\) 8.93821 + 12.3024i 0.387885 + 0.533878i
\(532\) −3.60488 5.21230i −0.156291 0.225982i
\(533\) −2.53112 7.78999i −0.109635 0.337422i
\(534\) 10.8627 1.59129i 0.470074 0.0688617i
\(535\) −4.27688 3.10734i −0.184906 0.134342i
\(536\) 1.65191 + 13.4495i 0.0713515 + 0.580930i
\(537\) 0.977965 3.00987i 0.0422023 0.129885i
\(538\) −18.3247 3.12110i −0.790035 0.134560i
\(539\) −3.48610 2.45330i −0.150157 0.105671i
\(540\) 5.37664 15.3259i 0.231374 0.659523i
\(541\) −20.9142 6.79544i −0.899172 0.292159i −0.177277 0.984161i \(-0.556729\pi\)
−0.721895 + 0.692002i \(0.756729\pi\)
\(542\) −14.3256 + 7.09076i −0.615339 + 0.304574i
\(543\) −8.50834 + 11.7107i −0.365128 + 0.502555i
\(544\) 29.5192 + 17.2702i 1.26562 + 0.740452i
\(545\) −15.8001 + 5.13377i −0.676803 + 0.219907i
\(546\) −3.49060 3.57270i −0.149384 0.152897i
\(547\) −20.5153 + 14.9052i −0.877170 + 0.637301i −0.932501 0.361167i \(-0.882378\pi\)
0.0553316 + 0.998468i \(0.482378\pi\)
\(548\) −1.53119 + 2.00766i −0.0654093 + 0.0857629i
\(549\) 21.3398i 0.910762i
\(550\) 6.85506 + 6.80771i 0.292301 + 0.290282i
\(551\) 0.719286i 0.0306426i
\(552\) −13.7876 + 12.8581i −0.586841 + 0.547279i
\(553\) −4.99148 + 3.62652i −0.212259 + 0.154215i
\(554\) 1.59990 1.56314i 0.0679734 0.0664113i
\(555\) 0.553709 0.179911i 0.0235036 0.00763679i
\(556\) 0.467184 20.0938i 0.0198130 0.852167i
\(557\) 2.66116 3.66277i 0.112757 0.155197i −0.748908 0.662673i \(-0.769422\pi\)
0.861665 + 0.507477i \(0.169422\pi\)
\(558\) −11.1347 22.4957i −0.471369 0.952317i
\(559\) −14.4714 4.70205i −0.612076 0.198876i
\(560\) 12.8027 + 10.2437i 0.541015 + 0.432874i
\(561\) −18.4144 + 0.277871i −0.777456 + 0.0117317i
\(562\) 2.09315 12.2894i 0.0882940 0.518396i
\(563\) 12.0512 37.0897i 0.507896 1.56314i −0.287951 0.957645i \(-0.592974\pi\)
0.795847 0.605498i \(-0.207026\pi\)
\(564\) −7.05194 + 2.11141i −0.296940 + 0.0889062i
\(565\) 14.9206 + 10.8405i 0.627715 + 0.456062i
\(566\) 4.15667 + 28.3749i 0.174718 + 1.19269i
\(567\) 1.56572 + 4.81879i 0.0657540 + 0.202370i
\(568\) 9.00233 4.19827i 0.377729 0.176155i
\(569\) 20.6897 + 28.4769i 0.867357 + 1.19381i 0.979765 + 0.200152i \(0.0641436\pi\)
−0.112408 + 0.993662i \(0.535856\pi\)
\(570\) 2.61472 + 1.37078i 0.109519 + 0.0574155i
\(571\) −28.8320 −1.20658 −0.603291 0.797521i \(-0.706144\pi\)
−0.603291 + 0.797521i \(0.706144\pi\)
\(572\) 8.58100 + 6.34205i 0.358790 + 0.265174i
\(573\) 6.54299 0.273337
\(574\) 15.2463 + 7.99293i 0.636368 + 0.333619i
\(575\) 8.78631 + 12.0933i 0.366414 + 0.504326i
\(576\) 1.20211 17.2095i 0.0500877 0.717064i
\(577\) −1.76215 5.42333i −0.0733591 0.225776i 0.907653 0.419720i \(-0.137872\pi\)
−0.981013 + 0.193944i \(0.937872\pi\)
\(578\) 4.00765 + 27.3576i 0.166696 + 1.13793i
\(579\) −12.5297 9.10333i −0.520715 0.378321i
\(580\) 0.533774 + 1.78277i 0.0221638 + 0.0740254i
\(581\) −2.93342 + 9.02814i −0.121699 + 0.374551i
\(582\) 1.81586 10.6614i 0.0752700 0.441929i
\(583\) 2.65803 + 7.77917i 0.110084 + 0.322180i
\(584\) −2.88217 + 5.20004i −0.119265 + 0.215179i
\(585\) −5.65697 1.83806i −0.233887 0.0759945i
\(586\) −8.75265 17.6832i −0.361569 0.730485i
\(587\) −24.8378 + 34.1864i −1.02517 + 1.41102i −0.116651 + 0.993173i \(0.537216\pi\)
−0.908517 + 0.417849i \(0.862784\pi\)
\(588\) −2.36032 0.0548779i −0.0973382 0.00226313i
\(589\) 10.3759 3.37133i 0.427530 0.138913i
\(590\) 12.2314 11.9504i 0.503560 0.491988i
\(591\) 18.3431 13.3271i 0.754536 0.548202i
\(592\) 1.23540 0.812627i 0.0507748 0.0333988i
\(593\) 21.6694i 0.889855i −0.895567 0.444927i \(-0.853229\pi\)
0.895567 0.444927i \(-0.146771\pi\)
\(594\) 10.1533 + 19.7575i 0.416596 + 0.810658i
\(595\) 24.7822i 1.01597i
\(596\) −3.75795 2.86610i −0.153932 0.117400i
\(597\) 11.7101 8.50790i 0.479264 0.348205i
\(598\) 11.5376 + 11.8090i 0.471808 + 0.482905i
\(599\) 17.9158 5.82121i 0.732021 0.237848i 0.0807939 0.996731i \(-0.474254\pi\)
0.651227 + 0.758883i \(0.274254\pi\)
\(600\) 5.25254 + 1.02079i 0.214434 + 0.0416734i
\(601\) 8.90397 12.2553i 0.363200 0.499902i −0.587837 0.808980i \(-0.700020\pi\)
0.951037 + 0.309077i \(0.100020\pi\)
\(602\) 28.6605 14.1861i 1.16811 0.578182i
\(603\) 9.82551 + 3.19250i 0.400126 + 0.130009i
\(604\) −36.0500 12.6471i −1.46685 0.514602i
\(605\) 18.8533 0.569118i 0.766495 0.0231379i
\(606\) −11.5623 1.96931i −0.469687 0.0799977i
\(607\) −2.09788 + 6.45662i −0.0851505 + 0.262066i −0.984562 0.175037i \(-0.943996\pi\)
0.899411 + 0.437103i \(0.143996\pi\)
\(608\) 7.32533 + 1.60116i 0.297081 + 0.0649358i
\(609\) 0.963895 + 0.700311i 0.0390590 + 0.0283780i
\(610\) −23.7439 + 3.47827i −0.961361 + 0.140831i
\(611\) 1.99202 + 6.13081i 0.0805885 + 0.248026i
\(612\) 21.4453 14.8318i 0.866875 0.599539i
\(613\) −5.26974 7.25318i −0.212843 0.292953i 0.689225 0.724547i \(-0.257951\pi\)
−0.902068 + 0.431594i \(0.857951\pi\)
\(614\) −3.86650 + 7.37524i −0.156039 + 0.297640i
\(615\) −8.01922 −0.323366
\(616\) −22.2143 + 3.06932i −0.895039 + 0.123666i
\(617\) 41.7476 1.68069 0.840347 0.542049i \(-0.182351\pi\)
0.840347 + 0.542049i \(0.182351\pi\)
\(618\) −5.42433 + 10.3468i −0.218198 + 0.416207i
\(619\) −3.56169 4.90225i −0.143157 0.197038i 0.731418 0.681930i \(-0.238859\pi\)
−0.874574 + 0.484892i \(0.838859\pi\)
\(620\) −23.2150 + 16.0557i −0.932337 + 0.644813i
\(621\) 10.6210 + 32.6880i 0.426205 + 1.31172i
\(622\) −36.7079 + 5.37738i −1.47185 + 0.215613i
\(623\) 16.3466 + 11.8765i 0.654913 + 0.475822i
\(624\) 5.90337 + 0.274657i 0.236324 + 0.0109951i
\(625\) −3.23190 + 9.94678i −0.129276 + 0.397871i
\(626\) 23.8841 + 4.06798i 0.954603 + 0.162589i
\(627\) −3.82090 + 1.30554i −0.152592 + 0.0521383i
\(628\) 18.5150 + 6.49544i 0.738829 + 0.259196i
\(629\) 2.12560 + 0.690648i 0.0847531 + 0.0275379i
\(630\) 11.2036 5.54544i 0.446361 0.220935i
\(631\) 9.43855 12.9911i 0.375743 0.517166i −0.578708 0.815535i \(-0.696443\pi\)
0.954450 + 0.298369i \(0.0964427\pi\)
\(632\) 1.39262 7.16587i 0.0553956 0.285043i
\(633\) −20.8712 + 6.78147i −0.829557 + 0.269539i
\(634\) 0.787867 + 0.806397i 0.0312902 + 0.0320261i
\(635\) 0.452836 0.329005i 0.0179703 0.0130562i
\(636\) 3.62031 + 2.76112i 0.143555 + 0.109486i
\(637\) 2.06752i 0.0819181i
\(638\) −2.27180 1.14764i −0.0899416 0.0454356i
\(639\) 7.57317i 0.299590i
\(640\) −19.3442 + 1.46753i −0.764647 + 0.0580090i
\(641\) 16.2489 11.8055i 0.641793 0.466290i −0.218673 0.975798i \(-0.570173\pi\)
0.860466 + 0.509508i \(0.170173\pi\)
\(642\) 2.86436 2.79854i 0.113047 0.110449i
\(643\) 4.15001 1.34842i 0.163660 0.0531764i −0.226041 0.974118i \(-0.572578\pi\)
0.389701 + 0.920941i \(0.372578\pi\)
\(644\) −34.6883 0.806507i −1.36691 0.0317808i
\(645\) −8.75640 + 12.0522i −0.344783 + 0.474553i
\(646\) 5.02745 + 10.1571i 0.197802 + 0.399625i
\(647\) −9.16047 2.97642i −0.360135 0.117015i 0.123360 0.992362i \(-0.460633\pi\)
−0.483495 + 0.875347i \(0.660633\pi\)
\(648\) −5.24334 2.90617i −0.205978 0.114165i
\(649\) 0.352882 + 23.3853i 0.0138518 + 0.917953i
\(650\) 0.786755 4.61924i 0.0308591 0.181181i
\(651\) −5.58433 + 17.1868i −0.218867 + 0.673604i
\(652\) 8.17294 + 27.2970i 0.320077 + 1.06903i
\(653\) −14.7817 10.7396i −0.578454 0.420272i 0.259712 0.965686i \(-0.416372\pi\)
−0.838167 + 0.545414i \(0.816372\pi\)
\(654\) −1.82406 12.4516i −0.0713262 0.486897i
\(655\) −5.74173 17.6712i −0.224348 0.690472i
\(656\) −19.6423 + 5.38688i −0.766905 + 0.210322i
\(657\) 2.66433 + 3.66714i 0.103945 + 0.143069i
\(658\) −11.9990 6.29053i −0.467770 0.245230i
\(659\) −17.9779 −0.700318 −0.350159 0.936690i \(-0.613872\pi\)
−0.350159 + 0.936690i \(0.613872\pi\)
\(660\) 8.50134 6.07126i 0.330914 0.236323i
\(661\) 2.57645 0.100212 0.0501062 0.998744i \(-0.484044\pi\)
0.0501062 + 0.998744i \(0.484044\pi\)
\(662\) −26.6761 13.9851i −1.03680 0.543545i
\(663\) 5.25024 + 7.22634i 0.203902 + 0.280648i
\(664\) −4.74704 10.1791i −0.184221 0.395024i
\(665\) 1.67903 + 5.16752i 0.0651100 + 0.200388i
\(666\) −0.163409 1.11549i −0.00633197 0.0432242i
\(667\) −3.18600 2.31476i −0.123362 0.0896280i
\(668\) −0.134358 + 0.0402278i −0.00519846 + 0.00155646i
\(669\) 5.35464 16.4799i 0.207022 0.637150i
\(670\) 1.95065 11.4528i 0.0753602 0.442459i
\(671\) 18.8889 26.8408i 0.729196 1.03618i
\(672\) −9.27776 + 8.25754i −0.357897 + 0.318542i
\(673\) 32.6554 + 10.6104i 1.25878 + 0.409001i 0.861058 0.508507i \(-0.169802\pi\)
0.397717 + 0.917508i \(0.369802\pi\)
\(674\) 6.82298 + 13.7846i 0.262812 + 0.530964i
\(675\) 5.73380 7.89190i 0.220694 0.303759i
\(676\) −0.484048 + 20.8191i −0.0186172 + 0.800736i
\(677\) 16.4156 5.33375i 0.630902 0.204993i 0.0239275 0.999714i \(-0.492383\pi\)
0.606975 + 0.794721i \(0.292383\pi\)
\(678\) −9.99279 + 9.76316i −0.383771 + 0.374952i
\(679\) 16.1029 11.6994i 0.617972 0.448983i
\(680\) −19.9981 21.4437i −0.766892 0.822329i
\(681\) 10.3496i 0.396598i
\(682\) 5.90696 38.1504i 0.226189 1.46085i
\(683\) 0.254052i 0.00972104i −0.999988 0.00486052i \(-0.998453\pi\)
0.999988 0.00486052i \(-0.00154716\pi\)
\(684\) 3.46684 4.54563i 0.132558 0.173807i
\(685\) 1.75133 1.27242i 0.0669148 0.0486165i
\(686\) −19.5748 20.0352i −0.747370 0.764949i
\(687\) 19.0877 6.20196i 0.728240 0.236620i
\(688\) −13.3520 + 35.4027i −0.509041 + 1.34972i
\(689\) 2.34360 3.22569i 0.0892840 0.122889i
\(690\) 14.4862 7.17026i 0.551482 0.272967i
\(691\) −9.02104 2.93111i −0.343176 0.111505i 0.132358 0.991202i \(-0.457745\pi\)
−0.475534 + 0.879697i \(0.657745\pi\)
\(692\) −13.1278 + 37.4202i −0.499043 + 1.42250i
\(693\) −5.03744 + 16.3384i −0.191356 + 0.620646i
\(694\) −0.897175 0.152808i −0.0340563 0.00580052i
\(695\) −5.32505 + 16.3888i −0.201991 + 0.621663i
\(696\) −1.39916 + 0.171849i −0.0530352 + 0.00651393i
\(697\) −24.9051 18.0946i −0.943349 0.685383i
\(698\) 24.1791 3.54203i 0.915193 0.134068i
\(699\) 1.80316 + 5.54956i 0.0682018 + 0.209904i
\(700\) 5.60168 + 8.09949i 0.211724 + 0.306132i
\(701\) −5.04306 6.94118i −0.190474 0.262165i 0.703090 0.711101i \(-0.251803\pi\)
−0.893564 + 0.448936i \(0.851803\pi\)
\(702\) 5.00250 9.54214i 0.188807 0.360145i
\(703\) 0.490016 0.0184813
\(704\) 16.7449 20.5817i 0.631098 0.775703i
\(705\) 6.31122 0.237694
\(706\) 18.6371 35.5498i 0.701417 1.33793i
\(707\) −12.6881 17.4636i −0.477184 0.656787i
\(708\) 7.36820 + 10.6537i 0.276914 + 0.400391i
\(709\) 2.13737 + 6.57816i 0.0802708 + 0.247048i 0.983136 0.182875i \(-0.0585405\pi\)
−0.902865 + 0.429924i \(0.858541\pi\)
\(710\) −8.42632 + 1.23438i −0.316234 + 0.0463256i
\(711\) −4.50265 3.27136i −0.168862 0.122686i
\(712\) −23.7283 + 2.91437i −0.889255 + 0.109221i
\(713\) 18.4581 56.8082i 0.691261 2.12748i
\(714\) −18.5060 3.15197i −0.692571 0.117960i
\(715\) −5.48827 7.31912i −0.205250 0.273720i
\(716\) −2.28135 + 6.50290i −0.0852580 + 0.243025i
\(717\) −13.0634 4.24456i −0.487862 0.158516i
\(718\) 36.1900 17.9130i 1.35060 0.668506i
\(719\) 11.1867 15.3972i 0.417195 0.574219i −0.547760 0.836636i \(-0.684519\pi\)
0.964955 + 0.262416i \(0.0845193\pi\)
\(720\) −5.21939 + 13.8391i −0.194515 + 0.515755i
\(721\) −20.4485 + 6.64412i −0.761542 + 0.247440i
\(722\) −17.0414 17.4422i −0.634216 0.649133i
\(723\) −0.339845 + 0.246912i −0.0126390 + 0.00918274i
\(724\) 19.1151 25.0633i 0.710409 0.931469i
\(725\) 1.11771i 0.0415108i
\(726\) −1.97290 + 14.1510i −0.0732213 + 0.525193i
\(727\) 19.7014i 0.730685i −0.930873 0.365342i \(-0.880952\pi\)
0.930873 0.365342i \(-0.119048\pi\)
\(728\) 7.41811 + 7.95435i 0.274933 + 0.294808i
\(729\) 6.85951 4.98372i 0.254056 0.184582i
\(730\) 3.64598 3.56220i 0.134944 0.131843i
\(731\) −54.3892 + 17.6721i −2.01166 + 0.653627i
\(732\) 0.422526 18.1730i 0.0156170 0.671695i
\(733\) −29.2902 + 40.3146i −1.08186 + 1.48905i −0.224403 + 0.974496i \(0.572043\pi\)
−0.857457 + 0.514556i \(0.827957\pi\)
\(734\) 0.244308 + 0.493582i 0.00901759 + 0.0182184i
\(735\) 1.92512 + 0.625509i 0.0710091 + 0.0230722i
\(736\) 30.6661 27.2940i 1.13037 1.00607i
\(737\) 9.53248 + 12.7125i 0.351133 + 0.468270i
\(738\) −2.60730 + 15.3081i −0.0959761 + 0.563500i
\(739\) −5.07527 + 15.6201i −0.186697 + 0.574593i −0.999973 0.00728362i \(-0.997682\pi\)
0.813277 + 0.581877i \(0.197682\pi\)
\(740\) −1.21452 + 0.363635i −0.0446465 + 0.0133675i
\(741\) 1.58436 + 1.15111i 0.0582029 + 0.0422869i
\(742\) 1.21459 + 8.29118i 0.0445888 + 0.304379i
\(743\) −0.924280 2.84464i −0.0339086 0.104360i 0.932670 0.360731i \(-0.117473\pi\)
−0.966578 + 0.256372i \(0.917473\pi\)
\(744\) −9.03690 19.3778i −0.331309 0.710425i
\(745\) 2.38172 + 3.27815i 0.0872593 + 0.120102i
\(746\) 12.4645 + 6.53457i 0.456358 + 0.239248i
\(747\) −8.56310 −0.313307
\(748\) 40.1017 + 0.327124i 1.46626 + 0.0119609i
\(749\) 7.37013 0.269299
\(750\) −13.9260 7.30078i −0.508507 0.266587i
\(751\) 24.4608 + 33.6674i 0.892587 + 1.22854i 0.972773 + 0.231761i \(0.0744488\pi\)
−0.0801854 + 0.996780i \(0.525551\pi\)
\(752\) 15.4588 4.23954i 0.563723 0.154600i
\(753\) 3.60900 + 11.1074i 0.131519 + 0.404775i
\(754\) 0.178929 + 1.22143i 0.00651622 + 0.0444819i
\(755\) 26.4990 + 19.2526i 0.964397 + 0.700675i
\(756\) 6.49467 + 21.6917i 0.236209 + 0.788920i
\(757\) −7.07412 + 21.7719i −0.257113 + 0.791313i 0.736293 + 0.676663i \(0.236575\pi\)
−0.993406 + 0.114650i \(0.963425\pi\)
\(758\) −4.77572 + 28.0394i −0.173462 + 1.01844i
\(759\) −6.51342 + 21.1256i −0.236422 + 0.766812i
\(760\) −5.62279 3.11649i −0.203960 0.113047i
\(761\) −45.5970 14.8154i −1.65289 0.537056i −0.673526 0.739163i \(-0.735221\pi\)
−0.979363 + 0.202107i \(0.935221\pi\)
\(762\) 0.188088 + 0.379999i 0.00681372 + 0.0137659i
\(763\) 13.6138 18.7377i 0.492851 0.678352i
\(764\) −14.2439 0.331173i −0.515326 0.0119814i
\(765\) −21.2611 + 6.90814i −0.768696 + 0.249764i
\(766\) 10.4004 10.1614i 0.375783 0.367148i
\(767\) 9.17705 6.66752i 0.331364 0.240750i
\(768\) 1.36446 14.6319i 0.0492357 0.527982i
\(769\) 43.0718i 1.55321i −0.629989 0.776604i \(-0.716941\pi\)
0.629989 0.776604i \(-0.283059\pi\)
\(770\) 19.0001 + 2.94186i 0.684717 + 0.106017i
\(771\) 1.36936i 0.0493164i
\(772\) 26.8160 + 20.4519i 0.965127 + 0.736080i
\(773\) 10.3986 7.55502i 0.374011 0.271735i −0.384861 0.922975i \(-0.625751\pi\)
0.758872 + 0.651239i \(0.225751\pi\)
\(774\) 20.1597 + 20.6339i 0.724626 + 0.741670i
\(775\) −16.1233 + 5.23877i −0.579165 + 0.188182i
\(776\) −4.49271 + 23.1176i −0.161279 + 0.829875i
\(777\) −0.477089 + 0.656656i −0.0171155 + 0.0235574i
\(778\) −24.4363 + 12.0952i −0.876083 + 0.433635i
\(779\) −6.41909 2.08569i −0.229988 0.0747276i
\(780\) −4.78109 1.67730i −0.171191 0.0600571i
\(781\) 6.70336 9.52537i 0.239865 0.340844i
\(782\) 61.1687 + 10.4183i 2.18739 + 0.372559i
\(783\) −0.794157 + 2.44417i −0.0283809 + 0.0873473i
\(784\) 5.13558 + 0.238935i 0.183414 + 0.00853340i
\(785\) −13.6097 9.88801i −0.485750 0.352918i
\(786\) 13.9262 2.04007i 0.496731 0.0727668i
\(787\) 12.3196 + 37.9159i 0.439147 + 1.35156i 0.888777 + 0.458341i \(0.151556\pi\)
−0.449629 + 0.893215i \(0.648444\pi\)
\(788\) −40.6071 + 28.0842i −1.44657 + 1.00046i
\(789\) −7.96720 10.9659i −0.283640 0.390397i
\(790\) −2.90599 + 5.54310i −0.103391 + 0.197215i
\(791\) −25.7119 −0.914211
\(792\) −8.82554 18.2024i −0.313602 0.646795i
\(793\) −15.9186 −0.565287
\(794\) −25.0200 + 47.7250i −0.887927 + 1.69370i
\(795\) −2.29448 3.15809i −0.0813770 0.112006i
\(796\) −25.9232 + 17.9288i −0.918825 + 0.635468i
\(797\) −8.31012 25.5759i −0.294360 0.905946i −0.983436 0.181257i \(-0.941984\pi\)
0.689076 0.724689i \(-0.258016\pi\)
\(798\) −4.07238 + 0.596568i −0.144161 + 0.0211183i
\(799\) 19.6006 + 14.2407i 0.693420 + 0.503799i
\(800\) −11.3830 2.48808i −0.402449 0.0879668i
\(801\) −5.63237 + 17.3346i −0.199010 + 0.612489i
\(802\) 5.78815 + 0.985846i 0.204387 + 0.0348114i
\(803\) 0.105188 + 6.97076i 0.00371201 + 0.245993i
\(804\) 8.30421 + 2.91328i 0.292867 + 0.102744i
\(805\) 28.2923 + 9.19273i 0.997173 + 0.324001i
\(806\) −16.7808 + 8.30600i −0.591078 + 0.292566i
\(807\) −7.09595 + 9.76674i −0.249789 + 0.343806i
\(808\) 25.0711 + 4.87236i 0.882000 + 0.171409i
\(809\) −11.0316 + 3.58440i −0.387852 + 0.126021i −0.496451 0.868065i \(-0.665364\pi\)
0.108599 + 0.994086i \(0.465364\pi\)
\(810\) 3.59186 + 3.67634i 0.126205 + 0.129173i
\(811\) 29.6177 21.5185i 1.04002 0.755616i 0.0697279 0.997566i \(-0.477787\pi\)
0.970289 + 0.241950i \(0.0777869\pi\)
\(812\) −2.06293 1.57334i −0.0723945 0.0552136i
\(813\) 10.3811i 0.364080i
\(814\) 0.781835 1.54767i 0.0274033 0.0542459i
\(815\) 24.4298i 0.855738i
\(816\) 18.5565 12.2061i 0.649608 0.427301i
\(817\) −10.1438 + 7.36989i −0.354886 + 0.257840i
\(818\) −11.4528 + 11.1896i −0.400439 + 0.391237i
\(819\) 7.88660 2.56251i 0.275580 0.0895414i
\(820\) 17.4576 + 0.405892i 0.609646 + 0.0141744i
\(821\) 18.6399 25.6556i 0.650536 0.895386i −0.348586 0.937277i \(-0.613338\pi\)
0.999122 + 0.0418907i \(0.0133381\pi\)
\(822\) 0.727425 + 1.46963i 0.0253719 + 0.0512593i
\(823\) 17.5566 + 5.70447i 0.611983 + 0.198845i 0.598578 0.801065i \(-0.295733\pi\)
0.0134055 + 0.999910i \(0.495733\pi\)
\(824\) 12.3323 22.2500i 0.429616 0.775117i
\(825\) 5.93736 2.02871i 0.206712 0.0706305i
\(826\) −4.00284 + 23.5016i −0.139276 + 0.817727i
\(827\) −5.85114 + 18.0080i −0.203464 + 0.626199i 0.796309 + 0.604890i \(0.206783\pi\)
−0.999773 + 0.0213081i \(0.993217\pi\)
\(828\) −8.97758 29.9845i −0.311993 1.04203i
\(829\) −6.62707 4.81485i −0.230168 0.167227i 0.466724 0.884403i \(-0.345434\pi\)
−0.696892 + 0.717176i \(0.745434\pi\)
\(830\) 1.39573 + 9.52777i 0.0484467 + 0.330714i
\(831\) −0.448896 1.38156i −0.0155720 0.0479258i
\(832\) −12.8376 0.896719i −0.445063 0.0310881i
\(833\) 4.56740 + 6.28649i 0.158251 + 0.217814i
\(834\) −11.5610 6.06091i −0.400325 0.209872i
\(835\) 0.120245 0.00416125
\(836\) 8.38406 2.64873i 0.289969 0.0916084i
\(837\) −38.9799 −1.34734
\(838\) −26.5654 13.9270i −0.917687 0.481101i
\(839\) −21.3596 29.3990i −0.737416 1.01497i −0.998763 0.0497210i \(-0.984167\pi\)
0.261347 0.965245i \(-0.415833\pi\)
\(840\) 9.65077 4.50067i 0.332983 0.155288i
\(841\) 8.87050 + 27.3006i 0.305879 + 0.941400i
\(842\) −5.08015 34.6788i −0.175073 1.19511i
\(843\) −6.55001 4.75886i −0.225594 0.163904i
\(844\) 45.7793 13.7067i 1.57579 0.471804i
\(845\) 5.51727 16.9804i 0.189800 0.584144i
\(846\) 2.05198 12.0477i 0.0705484 0.414207i
\(847\) −20.7979 + 16.0913i −0.714623 + 0.552903i
\(848\) −7.74156 6.19413i −0.265846 0.212707i
\(849\) 17.7132 + 5.75535i 0.607914 + 0.197523i
\(850\) −7.81225 15.7833i −0.267958 0.541362i
\(851\) 1.57694 2.17047i 0.0540568 0.0744028i
\(852\) 0.149948 6.44932i 0.00513712 0.220950i
\(853\) −11.3089 + 3.67449i −0.387210 + 0.125812i −0.496152 0.868236i \(-0.665254\pi\)
0.108941 + 0.994048i \(0.465254\pi\)
\(854\) 23.9300 23.3801i 0.818867 0.800049i
\(855\) −3.96527 + 2.88093i −0.135609 + 0.0985259i
\(856\) −6.37728 + 5.94735i −0.217971 + 0.203276i
\(857\) 35.7039i 1.21962i 0.792547 + 0.609811i \(0.208755\pi\)
−0.792547 + 0.609811i \(0.791245\pi\)
\(858\) 6.16356 3.16745i 0.210420 0.108135i
\(859\) 40.2518i 1.37337i −0.726953 0.686687i \(-0.759064\pi\)
0.726953 0.686687i \(-0.240936\pi\)
\(860\) 19.6725 25.7940i 0.670825 0.879568i
\(861\) 9.04472 6.57137i 0.308243 0.223952i
\(862\) −1.74665 1.78773i −0.0594911 0.0608904i
\(863\) −17.2998 + 5.62104i −0.588891 + 0.191342i −0.588280 0.808657i \(-0.700195\pi\)
−0.000611565 1.00000i \(0.500195\pi\)
\(864\) −23.1240 13.5287i −0.786693 0.460254i
\(865\) 19.9844 27.5062i 0.679490 0.935238i
\(866\) −41.7643 + 20.6721i −1.41921 + 0.702466i
\(867\) 17.0781 + 5.54901i 0.580003 + 0.188454i
\(868\) 13.0268 37.1325i 0.442160 1.26036i
\(869\) −2.76770 8.10014i −0.0938877 0.274779i
\(870\) 1.19144 + 0.202928i 0.0403936 + 0.00687990i
\(871\) 2.38147 7.32941i 0.0806930 0.248348i
\(872\) 3.34068 + 27.1992i 0.113130 + 0.921081i
\(873\) 14.5259 + 10.5537i 0.491627 + 0.357188i
\(874\) 13.4606 1.97186i 0.455311 0.0666991i
\(875\) −8.94254 27.5223i −0.302313 0.930424i
\(876\) 2.19634 + 3.17569i 0.0742074 + 0.107297i
\(877\) 23.4777 + 32.3142i 0.792784 + 1.09117i 0.993756 + 0.111577i \(0.0355902\pi\)
−0.200971 + 0.979597i \(0.564410\pi\)
\(878\) −17.9604 + 34.2591i −0.606135 + 1.15619i
\(879\) −12.8141 −0.432210
\(880\) −18.8145 + 12.7867i −0.634236 + 0.431038i
\(881\) 21.8173 0.735045 0.367522 0.930015i \(-0.380206\pi\)
0.367522 + 0.930015i \(0.380206\pi\)
\(882\) 1.81997 3.47154i 0.0612815 0.116893i
\(883\) −9.07011 12.4839i −0.305234 0.420118i 0.628654 0.777685i \(-0.283606\pi\)
−0.933887 + 0.357567i \(0.883606\pi\)
\(884\) −11.0639 15.9973i −0.372118 0.538047i
\(885\) −3.43186 10.5622i −0.115361 0.355044i
\(886\) 2.37223 0.347512i 0.0796968 0.0116749i
\(887\) 13.7001 + 9.95369i 0.460004 + 0.334212i 0.793533 0.608528i \(-0.208240\pi\)
−0.333529 + 0.942740i \(0.608240\pi\)
\(888\) −0.117073 0.953184i −0.00392871 0.0319868i
\(889\) −0.241141 + 0.742156i −0.00808761 + 0.0248911i
\(890\) 20.2055 + 3.44143i 0.677290 + 0.115357i
\(891\) −7.02880 + 0.106064i −0.235474 + 0.00355327i
\(892\) −12.4910 + 35.6053i −0.418231 + 1.19215i
\(893\) 5.05190 + 1.64146i 0.169055 + 0.0549294i
\(894\) −2.75087 + 1.36160i −0.0920029 + 0.0455387i
\(895\) 3.47290 4.78003i 0.116086 0.159779i
\(896\) 20.6154 17.5069i 0.688711 0.584863i
\(897\) 10.1974 3.31333i 0.340481 0.110629i
\(898\) −18.3164 18.7472i −0.611227 0.625603i
\(899\) 3.61330 2.62522i 0.120510 0.0875559i
\(900\) −5.38719 + 7.06354i −0.179573 + 0.235451i
\(901\) 14.9853i 0.499233i
\(902\) −16.8293 + 16.9464i −0.560355 + 0.564252i
\(903\) 20.7688i 0.691144i
\(904\) 22.2482 20.7483i 0.739964 0.690079i
\(905\) −21.8633 + 15.8846i −0.726761 + 0.528023i
\(906\) −17.7472 + 17.3393i −0.589610 + 0.576061i
\(907\) 23.7227 7.70798i 0.787700 0.255939i 0.112576 0.993643i \(-0.464090\pi\)
0.675124 + 0.737704i \(0.264090\pi\)
\(908\) 0.523844 22.5308i 0.0173844 0.747711i
\(909\) 11.4455 15.7534i 0.379623 0.522506i
\(910\) −4.13666 8.35738i −0.137129 0.277045i
\(911\) 42.2349 + 13.7229i 1.39930 + 0.454662i 0.908966 0.416871i \(-0.136873\pi\)
0.490338 + 0.871532i \(0.336873\pi\)
\(912\) 3.04237 3.80242i 0.100743 0.125911i
\(913\) −10.7705 7.57958i −0.356451 0.250848i
\(914\) −2.58419 + 15.1724i −0.0854773 + 0.501858i
\(915\) −4.81603 + 14.8222i −0.159213 + 0.490008i
\(916\) −41.8672 + 12.5354i −1.38333 + 0.414180i
\(917\) 20.9567 + 15.2260i 0.692052 + 0.502805i
\(918\) −5.86916 40.0649i −0.193711 1.32234i
\(919\) 14.9742 + 46.0859i 0.493954 + 1.52023i 0.818580 + 0.574392i \(0.194761\pi\)
−0.324626 + 0.945842i \(0.605239\pi\)
\(920\) −31.8991 + 14.8762i −1.05168 + 0.490455i
\(921\) 3.17883 + 4.37529i 0.104746 + 0.144171i
\(922\) −17.3197 9.07990i −0.570393 0.299031i
\(923\) −5.64926 −0.185948
\(924\) −4.61339 + 13.8141i −0.151769 + 0.454451i
\(925\) −0.761445 −0.0250362
\(926\) −46.8015 24.5359i −1.53799 0.806299i
\(927\) −11.4002 15.6910i −0.374432 0.515361i
\(928\) 3.05464 0.303292i 0.100273 0.00995606i
\(929\) 6.91854 + 21.2931i 0.226990 + 0.698603i 0.998084 + 0.0618814i \(0.0197100\pi\)
−0.771094 + 0.636722i \(0.780290\pi\)
\(930\) 2.65705 + 18.1379i 0.0871280 + 0.594766i
\(931\) 1.37830 + 1.00139i 0.0451720 + 0.0328194i
\(932\) −3.64454 12.1725i −0.119381 0.398723i
\(933\) −7.44555 + 22.9150i −0.243756 + 0.750205i
\(934\) −3.27570 + 19.2324i −0.107184 + 0.629305i
\(935\) −32.8564 10.1302i −1.07452 0.331294i
\(936\) −4.75634 + 8.58142i −0.155466 + 0.280493i
\(937\) −34.2110 11.1158i −1.11762 0.363138i −0.308763 0.951139i \(-0.599915\pi\)
−0.808860 + 0.588001i \(0.799915\pi\)
\(938\) 7.18489 + 14.5158i 0.234595 + 0.473958i
\(939\) 9.24875 12.7298i 0.301821 0.415422i
\(940\) −13.7393 0.319442i −0.448128 0.0104190i
\(941\) 47.1567 15.3221i 1.53726 0.499487i 0.586644 0.809845i \(-0.300449\pi\)
0.950620 + 0.310357i \(0.100449\pi\)
\(942\) 9.11481 8.90535i 0.296977 0.290152i
\(943\) −29.8959 + 21.7206i −0.973543 + 0.707320i
\(944\) −15.5011 23.5658i −0.504519 0.767000i
\(945\) 19.4133i 0.631513i
\(946\) 7.09247 + 43.7971i 0.230596 + 1.42397i
\(947\) 45.1846i 1.46830i −0.678985 0.734152i \(-0.737580\pi\)
0.678985 0.734152i \(-0.262420\pi\)
\(948\) −3.76969 2.87505i −0.122434 0.0933773i
\(949\) 2.73553 1.98748i 0.0887989 0.0645162i
\(950\) −2.69833 2.76179i −0.0875453 0.0896044i
\(951\) 0.696347 0.226257i 0.0225806 0.00733688i
\(952\) 40.1276 + 7.79844i 1.30054 + 0.252749i
\(953\) −17.5119 + 24.1030i −0.567265 + 0.780774i −0.992227 0.124437i \(-0.960287\pi\)
0.424962 + 0.905211i \(0.360287\pi\)
\(954\) −6.77457 + 3.35321i −0.219335 + 0.108564i
\(955\) 11.6176 + 3.77477i 0.375935 + 0.122149i
\(956\) 28.2239 + 9.90149i 0.912825 + 0.320237i
\(957\) −1.32249 + 0.991672i −0.0427500 + 0.0320562i
\(958\) −18.8307 3.20728i −0.608393 0.103622i
\(959\) −0.932605 + 2.87026i −0.0301154 + 0.0926856i
\(960\) −4.71885 + 11.6821i −0.152300 + 0.377038i
\(961\) 29.7256 + 21.5969i 0.958889 + 0.696674i
\(962\) −0.832105 + 0.121896i −0.0268281 + 0.00393009i
\(963\) 2.05445 + 6.32296i 0.0662038 + 0.203754i
\(964\) 0.752330 0.520319i 0.0242309 0.0167583i
\(965\) −16.9954 23.3922i −0.547103 0.753022i
\(966\) −10.4631 + 19.9580i −0.336643 + 0.642138i
\(967\) 2.10906 0.0678227 0.0339113 0.999425i \(-0.489204\pi\)
0.0339113 + 0.999425i \(0.489204\pi\)
\(968\) 5.01121 30.7065i 0.161066 0.986944i
\(969\) 7.36033 0.236448
\(970\) 9.37496 17.8825i 0.301012 0.574172i
\(971\) 33.7588 + 46.4651i 1.08337 + 1.49113i 0.855753 + 0.517385i \(0.173094\pi\)
0.227620 + 0.973750i \(0.426906\pi\)
\(972\) −26.5730 + 18.3782i −0.852331 + 0.589480i
\(973\) −7.42385 22.8483i −0.237998 0.732481i
\(974\) 50.0083 7.32579i 1.60237 0.234733i
\(975\) −2.46197 1.78872i −0.0788461 0.0572850i
\(976\) −1.83965 + 39.5408i −0.0588859 + 1.26567i
\(977\) 1.61602 4.97360i 0.0517011 0.159120i −0.921872 0.387494i \(-0.873341\pi\)
0.973573 + 0.228374i \(0.0733409\pi\)
\(978\) 18.2429 + 3.10715i 0.583342 + 0.0993557i
\(979\) −22.4279 + 16.8177i −0.716800 + 0.537495i
\(980\) −4.15927 1.45916i −0.132863 0.0466110i
\(981\) 19.8703 + 6.45625i 0.634410 + 0.206132i
\(982\) 51.1398 25.3127i 1.63194 0.807760i
\(983\) −16.7859 + 23.1038i −0.535386 + 0.736896i −0.987939 0.154841i \(-0.950513\pi\)
0.452553 + 0.891738i \(0.350513\pi\)
\(984\) −2.52348 + 12.9848i −0.0804456 + 0.413940i
\(985\) 40.2582 13.0807i 1.28273 0.416785i
\(986\) 3.24234 + 3.31861i 0.103257 + 0.105686i
\(987\) −7.11830 + 5.17175i −0.226578 + 0.164619i
\(988\) −3.39085 2.58612i −0.107877 0.0822753i
\(989\) 68.6481i 2.18288i
\(990\) 2.77249 + 17.1206i 0.0881155 + 0.544127i
\(991\) 0.537995i 0.0170900i −0.999963 0.00854499i \(-0.997280\pi\)
0.999963 0.00854499i \(-0.00271999\pi\)
\(992\) 18.6923 + 42.6423i 0.593481 + 1.35390i
\(993\) −15.8254 + 11.4978i −0.502203 + 0.364872i
\(994\) 8.49236 8.29721i 0.269361 0.263172i
\(995\) 25.7006 8.35062i 0.814762 0.264732i
\(996\) −7.29235 0.169548i −0.231067 0.00537233i
\(997\) 14.2814 19.6567i 0.452297 0.622534i −0.520592 0.853806i \(-0.674289\pi\)
0.972889 + 0.231272i \(0.0742887\pi\)
\(998\) 2.55347 + 5.15883i 0.0808286 + 0.163300i
\(999\) −1.66509 0.541022i −0.0526813 0.0171172i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 44.2.g.a.35.3 16
3.2 odd 2 396.2.r.a.343.2 16
4.3 odd 2 inner 44.2.g.a.35.4 yes 16
8.3 odd 2 704.2.u.c.255.3 16
8.5 even 2 704.2.u.c.255.2 16
11.2 odd 10 484.2.g.f.239.1 16
11.3 even 5 484.2.g.f.403.4 16
11.4 even 5 484.2.c.d.483.1 16
11.5 even 5 484.2.g.i.215.1 16
11.6 odd 10 inner 44.2.g.a.39.4 yes 16
11.7 odd 10 484.2.c.d.483.16 16
11.8 odd 10 484.2.g.j.403.1 16
11.9 even 5 484.2.g.j.239.4 16
11.10 odd 2 484.2.g.i.475.2 16
12.11 even 2 396.2.r.a.343.1 16
33.17 even 10 396.2.r.a.127.1 16
44.3 odd 10 484.2.g.f.403.1 16
44.7 even 10 484.2.c.d.483.2 16
44.15 odd 10 484.2.c.d.483.15 16
44.19 even 10 484.2.g.j.403.4 16
44.27 odd 10 484.2.g.i.215.2 16
44.31 odd 10 484.2.g.j.239.1 16
44.35 even 10 484.2.g.f.239.4 16
44.39 even 10 inner 44.2.g.a.39.3 yes 16
44.43 even 2 484.2.g.i.475.1 16
88.61 odd 10 704.2.u.c.127.3 16
88.83 even 10 704.2.u.c.127.2 16
132.83 odd 10 396.2.r.a.127.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.2.g.a.35.3 16 1.1 even 1 trivial
44.2.g.a.35.4 yes 16 4.3 odd 2 inner
44.2.g.a.39.3 yes 16 44.39 even 10 inner
44.2.g.a.39.4 yes 16 11.6 odd 10 inner
396.2.r.a.127.1 16 33.17 even 10
396.2.r.a.127.2 16 132.83 odd 10
396.2.r.a.343.1 16 12.11 even 2
396.2.r.a.343.2 16 3.2 odd 2
484.2.c.d.483.1 16 11.4 even 5
484.2.c.d.483.2 16 44.7 even 10
484.2.c.d.483.15 16 44.15 odd 10
484.2.c.d.483.16 16 11.7 odd 10
484.2.g.f.239.1 16 11.2 odd 10
484.2.g.f.239.4 16 44.35 even 10
484.2.g.f.403.1 16 44.3 odd 10
484.2.g.f.403.4 16 11.3 even 5
484.2.g.i.215.1 16 11.5 even 5
484.2.g.i.215.2 16 44.27 odd 10
484.2.g.i.475.1 16 44.43 even 2
484.2.g.i.475.2 16 11.10 odd 2
484.2.g.j.239.1 16 44.31 odd 10
484.2.g.j.239.4 16 11.9 even 5
484.2.g.j.403.1 16 11.8 odd 10
484.2.g.j.403.4 16 44.19 even 10
704.2.u.c.127.2 16 88.83 even 10
704.2.u.c.127.3 16 88.61 odd 10
704.2.u.c.255.2 16 8.5 even 2
704.2.u.c.255.3 16 8.3 odd 2