Properties

Label 4925.2.a.j.1.6
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: 10.10.21886214112361.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 2x^{9} - 9x^{8} + 16x^{7} + 26x^{6} - 38x^{5} - 27x^{4} + 32x^{3} + 6x^{2} - 7x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.285611\) of defining polynomial
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.285611 q^{2} +1.26844 q^{3} -1.91843 q^{4} +0.362280 q^{6} +2.73433 q^{7} -1.11915 q^{8} -1.39107 q^{9} +3.99518 q^{11} -2.43340 q^{12} -6.64477 q^{13} +0.780956 q^{14} +3.51721 q^{16} -1.76947 q^{17} -0.397305 q^{18} -4.25268 q^{19} +3.46833 q^{21} +1.14107 q^{22} +7.54738 q^{23} -1.41957 q^{24} -1.89782 q^{26} -5.56979 q^{27} -5.24562 q^{28} -0.649084 q^{29} -9.61490 q^{31} +3.24285 q^{32} +5.06763 q^{33} -0.505380 q^{34} +2.66866 q^{36} +9.93994 q^{37} -1.21461 q^{38} -8.42847 q^{39} +5.28489 q^{41} +0.990594 q^{42} +7.01525 q^{43} -7.66446 q^{44} +2.15562 q^{46} -5.51975 q^{47} +4.46136 q^{48} +0.476575 q^{49} -2.24446 q^{51} +12.7475 q^{52} -8.56114 q^{53} -1.59080 q^{54} -3.06012 q^{56} -5.39426 q^{57} -0.185386 q^{58} -14.6857 q^{59} -11.4206 q^{61} -2.74612 q^{62} -3.80364 q^{63} -6.10823 q^{64} +1.44737 q^{66} -7.62193 q^{67} +3.39459 q^{68} +9.57338 q^{69} -2.65014 q^{71} +1.55681 q^{72} -5.54362 q^{73} +2.83896 q^{74} +8.15845 q^{76} +10.9241 q^{77} -2.40727 q^{78} +7.00903 q^{79} -2.89173 q^{81} +1.50942 q^{82} +0.0317081 q^{83} -6.65373 q^{84} +2.00363 q^{86} -0.823322 q^{87} -4.47119 q^{88} +1.24794 q^{89} -18.1690 q^{91} -14.4791 q^{92} -12.1959 q^{93} -1.57650 q^{94} +4.11335 q^{96} +18.6425 q^{97} +0.136115 q^{98} -5.55756 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} + 3 q^{3} + 2 q^{4} - 9 q^{6} + 6 q^{7} + 6 q^{8} - 5 q^{9} - 11 q^{11} + 5 q^{13} - 9 q^{14} - 2 q^{16} + 4 q^{17} - 15 q^{18} - 28 q^{19} - 7 q^{21} + 12 q^{22} + 24 q^{23} - 3 q^{24} + 7 q^{26}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.285611 0.201958 0.100979 0.994889i \(-0.467803\pi\)
0.100979 + 0.994889i \(0.467803\pi\)
\(3\) 1.26844 0.732333 0.366166 0.930549i \(-0.380670\pi\)
0.366166 + 0.930549i \(0.380670\pi\)
\(4\) −1.91843 −0.959213
\(5\) 0 0
\(6\) 0.362280 0.147900
\(7\) 2.73433 1.03348 0.516740 0.856142i \(-0.327145\pi\)
0.516740 + 0.856142i \(0.327145\pi\)
\(8\) −1.11915 −0.395678
\(9\) −1.39107 −0.463689
\(10\) 0 0
\(11\) 3.99518 1.20459 0.602296 0.798273i \(-0.294253\pi\)
0.602296 + 0.798273i \(0.294253\pi\)
\(12\) −2.43340 −0.702463
\(13\) −6.64477 −1.84293 −0.921463 0.388466i \(-0.873005\pi\)
−0.921463 + 0.388466i \(0.873005\pi\)
\(14\) 0.780956 0.208719
\(15\) 0 0
\(16\) 3.51721 0.879303
\(17\) −1.76947 −0.429159 −0.214579 0.976707i \(-0.568838\pi\)
−0.214579 + 0.976707i \(0.568838\pi\)
\(18\) −0.397305 −0.0936456
\(19\) −4.25268 −0.975631 −0.487816 0.872947i \(-0.662206\pi\)
−0.487816 + 0.872947i \(0.662206\pi\)
\(20\) 0 0
\(21\) 3.46833 0.756851
\(22\) 1.14107 0.243277
\(23\) 7.54738 1.57374 0.786869 0.617121i \(-0.211701\pi\)
0.786869 + 0.617121i \(0.211701\pi\)
\(24\) −1.41957 −0.289768
\(25\) 0 0
\(26\) −1.89782 −0.372193
\(27\) −5.56979 −1.07191
\(28\) −5.24562 −0.991328
\(29\) −0.649084 −0.120532 −0.0602659 0.998182i \(-0.519195\pi\)
−0.0602659 + 0.998182i \(0.519195\pi\)
\(30\) 0 0
\(31\) −9.61490 −1.72689 −0.863443 0.504446i \(-0.831697\pi\)
−0.863443 + 0.504446i \(0.831697\pi\)
\(32\) 3.24285 0.573260
\(33\) 5.06763 0.882162
\(34\) −0.505380 −0.0866719
\(35\) 0 0
\(36\) 2.66866 0.444777
\(37\) 9.93994 1.63412 0.817058 0.576555i \(-0.195603\pi\)
0.817058 + 0.576555i \(0.195603\pi\)
\(38\) −1.21461 −0.197036
\(39\) −8.42847 −1.34963
\(40\) 0 0
\(41\) 5.28489 0.825361 0.412681 0.910876i \(-0.364593\pi\)
0.412681 + 0.910876i \(0.364593\pi\)
\(42\) 0.990594 0.152852
\(43\) 7.01525 1.06982 0.534908 0.844910i \(-0.320346\pi\)
0.534908 + 0.844910i \(0.320346\pi\)
\(44\) −7.66446 −1.15546
\(45\) 0 0
\(46\) 2.15562 0.317828
\(47\) −5.51975 −0.805138 −0.402569 0.915390i \(-0.631883\pi\)
−0.402569 + 0.915390i \(0.631883\pi\)
\(48\) 4.46136 0.643942
\(49\) 0.476575 0.0680822
\(50\) 0 0
\(51\) −2.24446 −0.314287
\(52\) 12.7475 1.76776
\(53\) −8.56114 −1.17596 −0.587982 0.808874i \(-0.700077\pi\)
−0.587982 + 0.808874i \(0.700077\pi\)
\(54\) −1.59080 −0.216480
\(55\) 0 0
\(56\) −3.06012 −0.408926
\(57\) −5.39426 −0.714487
\(58\) −0.185386 −0.0243423
\(59\) −14.6857 −1.91192 −0.955961 0.293495i \(-0.905182\pi\)
−0.955961 + 0.293495i \(0.905182\pi\)
\(60\) 0 0
\(61\) −11.4206 −1.46226 −0.731130 0.682238i \(-0.761007\pi\)
−0.731130 + 0.682238i \(0.761007\pi\)
\(62\) −2.74612 −0.348758
\(63\) −3.80364 −0.479214
\(64\) −6.10823 −0.763529
\(65\) 0 0
\(66\) 1.44737 0.178159
\(67\) −7.62193 −0.931167 −0.465583 0.885004i \(-0.654155\pi\)
−0.465583 + 0.885004i \(0.654155\pi\)
\(68\) 3.39459 0.411655
\(69\) 9.57338 1.15250
\(70\) 0 0
\(71\) −2.65014 −0.314514 −0.157257 0.987558i \(-0.550265\pi\)
−0.157257 + 0.987558i \(0.550265\pi\)
\(72\) 1.55681 0.183472
\(73\) −5.54362 −0.648831 −0.324416 0.945915i \(-0.605168\pi\)
−0.324416 + 0.945915i \(0.605168\pi\)
\(74\) 2.83896 0.330022
\(75\) 0 0
\(76\) 8.15845 0.935838
\(77\) 10.9241 1.24492
\(78\) −2.40727 −0.272569
\(79\) 7.00903 0.788578 0.394289 0.918987i \(-0.370991\pi\)
0.394289 + 0.918987i \(0.370991\pi\)
\(80\) 0 0
\(81\) −2.89173 −0.321303
\(82\) 1.50942 0.166688
\(83\) 0.0317081 0.00348041 0.00174021 0.999998i \(-0.499446\pi\)
0.00174021 + 0.999998i \(0.499446\pi\)
\(84\) −6.65373 −0.725982
\(85\) 0 0
\(86\) 2.00363 0.216057
\(87\) −0.823322 −0.0882694
\(88\) −4.47119 −0.476631
\(89\) 1.24794 0.132282 0.0661408 0.997810i \(-0.478931\pi\)
0.0661408 + 0.997810i \(0.478931\pi\)
\(90\) 0 0
\(91\) −18.1690 −1.90463
\(92\) −14.4791 −1.50955
\(93\) −12.1959 −1.26466
\(94\) −1.57650 −0.162604
\(95\) 0 0
\(96\) 4.11335 0.419817
\(97\) 18.6425 1.89286 0.946430 0.322910i \(-0.104661\pi\)
0.946430 + 0.322910i \(0.104661\pi\)
\(98\) 0.136115 0.0137497
\(99\) −5.55756 −0.558556
\(100\) 0 0
\(101\) −19.0353 −1.89408 −0.947041 0.321111i \(-0.895944\pi\)
−0.947041 + 0.321111i \(0.895944\pi\)
\(102\) −0.641042 −0.0634726
\(103\) 10.0537 0.990624 0.495312 0.868715i \(-0.335054\pi\)
0.495312 + 0.868715i \(0.335054\pi\)
\(104\) 7.43647 0.729206
\(105\) 0 0
\(106\) −2.44516 −0.237495
\(107\) −6.01815 −0.581797 −0.290898 0.956754i \(-0.593954\pi\)
−0.290898 + 0.956754i \(0.593954\pi\)
\(108\) 10.6852 1.02819
\(109\) −13.6223 −1.30478 −0.652392 0.757882i \(-0.726234\pi\)
−0.652392 + 0.757882i \(0.726234\pi\)
\(110\) 0 0
\(111\) 12.6082 1.19672
\(112\) 9.61723 0.908742
\(113\) −11.7108 −1.10166 −0.550830 0.834617i \(-0.685689\pi\)
−0.550830 + 0.834617i \(0.685689\pi\)
\(114\) −1.54066 −0.144296
\(115\) 0 0
\(116\) 1.24522 0.115616
\(117\) 9.24332 0.854545
\(118\) −4.19441 −0.386127
\(119\) −4.83831 −0.443527
\(120\) 0 0
\(121\) 4.96146 0.451041
\(122\) −3.26186 −0.295315
\(123\) 6.70355 0.604439
\(124\) 18.4455 1.65645
\(125\) 0 0
\(126\) −1.08636 −0.0967809
\(127\) 16.0949 1.42819 0.714097 0.700047i \(-0.246838\pi\)
0.714097 + 0.700047i \(0.246838\pi\)
\(128\) −8.23028 −0.727461
\(129\) 8.89840 0.783461
\(130\) 0 0
\(131\) −0.0711362 −0.00621520 −0.00310760 0.999995i \(-0.500989\pi\)
−0.00310760 + 0.999995i \(0.500989\pi\)
\(132\) −9.72188 −0.846181
\(133\) −11.6282 −1.00830
\(134\) −2.17691 −0.188056
\(135\) 0 0
\(136\) 1.98029 0.169809
\(137\) −3.92717 −0.335521 −0.167760 0.985828i \(-0.553654\pi\)
−0.167760 + 0.985828i \(0.553654\pi\)
\(138\) 2.73426 0.232756
\(139\) 1.18876 0.100829 0.0504146 0.998728i \(-0.483946\pi\)
0.0504146 + 0.998728i \(0.483946\pi\)
\(140\) 0 0
\(141\) −7.00145 −0.589629
\(142\) −0.756911 −0.0635185
\(143\) −26.5470 −2.21997
\(144\) −4.89268 −0.407723
\(145\) 0 0
\(146\) −1.58332 −0.131036
\(147\) 0.604506 0.0498588
\(148\) −19.0690 −1.56747
\(149\) −16.2732 −1.33315 −0.666577 0.745436i \(-0.732241\pi\)
−0.666577 + 0.745436i \(0.732241\pi\)
\(150\) 0 0
\(151\) 15.9502 1.29800 0.649002 0.760786i \(-0.275186\pi\)
0.649002 + 0.760786i \(0.275186\pi\)
\(152\) 4.75937 0.386036
\(153\) 2.46145 0.198996
\(154\) 3.12006 0.251422
\(155\) 0 0
\(156\) 16.1694 1.29459
\(157\) −15.9697 −1.27452 −0.637260 0.770649i \(-0.719932\pi\)
−0.637260 + 0.770649i \(0.719932\pi\)
\(158\) 2.00186 0.159259
\(159\) −10.8593 −0.861196
\(160\) 0 0
\(161\) 20.6370 1.62643
\(162\) −0.825911 −0.0648897
\(163\) −3.02367 −0.236832 −0.118416 0.992964i \(-0.537782\pi\)
−0.118416 + 0.992964i \(0.537782\pi\)
\(164\) −10.1387 −0.791697
\(165\) 0 0
\(166\) 0.00905618 0.000702896 0
\(167\) 13.1045 1.01405 0.507026 0.861931i \(-0.330745\pi\)
0.507026 + 0.861931i \(0.330745\pi\)
\(168\) −3.88157 −0.299470
\(169\) 31.1529 2.39638
\(170\) 0 0
\(171\) 5.91576 0.452390
\(172\) −13.4582 −1.02618
\(173\) 4.14632 0.315239 0.157619 0.987500i \(-0.449618\pi\)
0.157619 + 0.987500i \(0.449618\pi\)
\(174\) −0.235150 −0.0178267
\(175\) 0 0
\(176\) 14.0519 1.05920
\(177\) −18.6279 −1.40016
\(178\) 0.356427 0.0267153
\(179\) −11.2236 −0.838892 −0.419446 0.907780i \(-0.637776\pi\)
−0.419446 + 0.907780i \(0.637776\pi\)
\(180\) 0 0
\(181\) −1.42131 −0.105645 −0.0528225 0.998604i \(-0.516822\pi\)
−0.0528225 + 0.998604i \(0.516822\pi\)
\(182\) −5.18927 −0.384654
\(183\) −14.4863 −1.07086
\(184\) −8.44662 −0.622693
\(185\) 0 0
\(186\) −3.48329 −0.255407
\(187\) −7.06933 −0.516961
\(188\) 10.5892 0.772299
\(189\) −15.2297 −1.10780
\(190\) 0 0
\(191\) −12.2250 −0.884569 −0.442285 0.896875i \(-0.645832\pi\)
−0.442285 + 0.896875i \(0.645832\pi\)
\(192\) −7.74790 −0.559157
\(193\) −2.35887 −0.169795 −0.0848975 0.996390i \(-0.527056\pi\)
−0.0848975 + 0.996390i \(0.527056\pi\)
\(194\) 5.32451 0.382277
\(195\) 0 0
\(196\) −0.914274 −0.0653053
\(197\) −1.00000 −0.0712470
\(198\) −1.58730 −0.112805
\(199\) 20.0757 1.42313 0.711566 0.702620i \(-0.247986\pi\)
0.711566 + 0.702620i \(0.247986\pi\)
\(200\) 0 0
\(201\) −9.66794 −0.681924
\(202\) −5.43670 −0.382525
\(203\) −1.77481 −0.124567
\(204\) 4.30582 0.301468
\(205\) 0 0
\(206\) 2.87146 0.200064
\(207\) −10.4989 −0.729725
\(208\) −23.3710 −1.62049
\(209\) −16.9902 −1.17524
\(210\) 0 0
\(211\) 1.16375 0.0801161 0.0400581 0.999197i \(-0.487246\pi\)
0.0400581 + 0.999197i \(0.487246\pi\)
\(212\) 16.4239 1.12800
\(213\) −3.36154 −0.230329
\(214\) −1.71885 −0.117498
\(215\) 0 0
\(216\) 6.23342 0.424130
\(217\) −26.2903 −1.78470
\(218\) −3.89070 −0.263511
\(219\) −7.03173 −0.475160
\(220\) 0 0
\(221\) 11.7577 0.790908
\(222\) 3.60104 0.241686
\(223\) −6.55642 −0.439050 −0.219525 0.975607i \(-0.570451\pi\)
−0.219525 + 0.975607i \(0.570451\pi\)
\(224\) 8.86703 0.592453
\(225\) 0 0
\(226\) −3.34474 −0.222489
\(227\) −13.3074 −0.883243 −0.441622 0.897201i \(-0.645597\pi\)
−0.441622 + 0.897201i \(0.645597\pi\)
\(228\) 10.3485 0.685345
\(229\) −5.36545 −0.354559 −0.177279 0.984161i \(-0.556730\pi\)
−0.177279 + 0.984161i \(0.556730\pi\)
\(230\) 0 0
\(231\) 13.8566 0.911697
\(232\) 0.726420 0.0476918
\(233\) 12.0023 0.786295 0.393148 0.919475i \(-0.371386\pi\)
0.393148 + 0.919475i \(0.371386\pi\)
\(234\) 2.64000 0.172582
\(235\) 0 0
\(236\) 28.1735 1.83394
\(237\) 8.89052 0.577501
\(238\) −1.38188 −0.0895737
\(239\) −5.98330 −0.387028 −0.193514 0.981098i \(-0.561988\pi\)
−0.193514 + 0.981098i \(0.561988\pi\)
\(240\) 0 0
\(241\) −14.8072 −0.953818 −0.476909 0.878953i \(-0.658243\pi\)
−0.476909 + 0.878953i \(0.658243\pi\)
\(242\) 1.41705 0.0910913
\(243\) 13.0414 0.836606
\(244\) 21.9096 1.40262
\(245\) 0 0
\(246\) 1.91461 0.122071
\(247\) 28.2581 1.79802
\(248\) 10.7605 0.683291
\(249\) 0.0402197 0.00254882
\(250\) 0 0
\(251\) −24.7192 −1.56026 −0.780130 0.625618i \(-0.784847\pi\)
−0.780130 + 0.625618i \(0.784847\pi\)
\(252\) 7.29700 0.459668
\(253\) 30.1531 1.89571
\(254\) 4.59689 0.288435
\(255\) 0 0
\(256\) 9.86580 0.616612
\(257\) −5.56346 −0.347039 −0.173519 0.984830i \(-0.555514\pi\)
−0.173519 + 0.984830i \(0.555514\pi\)
\(258\) 2.54148 0.158226
\(259\) 27.1791 1.68883
\(260\) 0 0
\(261\) 0.902919 0.0558893
\(262\) −0.0203173 −0.00125521
\(263\) 21.0618 1.29873 0.649363 0.760479i \(-0.275036\pi\)
0.649363 + 0.760479i \(0.275036\pi\)
\(264\) −5.67143 −0.349052
\(265\) 0 0
\(266\) −3.32116 −0.203633
\(267\) 1.58294 0.0968742
\(268\) 14.6221 0.893187
\(269\) −2.82590 −0.172298 −0.0861490 0.996282i \(-0.527456\pi\)
−0.0861490 + 0.996282i \(0.527456\pi\)
\(270\) 0 0
\(271\) −6.32775 −0.384384 −0.192192 0.981357i \(-0.561560\pi\)
−0.192192 + 0.981357i \(0.561560\pi\)
\(272\) −6.22359 −0.377360
\(273\) −23.0462 −1.39482
\(274\) −1.12164 −0.0677610
\(275\) 0 0
\(276\) −18.3658 −1.10549
\(277\) −23.9716 −1.44031 −0.720156 0.693812i \(-0.755930\pi\)
−0.720156 + 0.693812i \(0.755930\pi\)
\(278\) 0.339523 0.0203632
\(279\) 13.3750 0.800739
\(280\) 0 0
\(281\) −12.8708 −0.767806 −0.383903 0.923373i \(-0.625420\pi\)
−0.383903 + 0.923373i \(0.625420\pi\)
\(282\) −1.99969 −0.119080
\(283\) 18.7422 1.11411 0.557054 0.830476i \(-0.311932\pi\)
0.557054 + 0.830476i \(0.311932\pi\)
\(284\) 5.08410 0.301686
\(285\) 0 0
\(286\) −7.58213 −0.448341
\(287\) 14.4506 0.852995
\(288\) −4.51102 −0.265814
\(289\) −13.8690 −0.815823
\(290\) 0 0
\(291\) 23.6468 1.38620
\(292\) 10.6350 0.622368
\(293\) −17.6868 −1.03328 −0.516638 0.856204i \(-0.672817\pi\)
−0.516638 + 0.856204i \(0.672817\pi\)
\(294\) 0.172654 0.0100694
\(295\) 0 0
\(296\) −11.1243 −0.646584
\(297\) −22.2523 −1.29121
\(298\) −4.64781 −0.269241
\(299\) −50.1506 −2.90028
\(300\) 0 0
\(301\) 19.1820 1.10563
\(302\) 4.55554 0.262142
\(303\) −24.1451 −1.38710
\(304\) −14.9576 −0.857875
\(305\) 0 0
\(306\) 0.703017 0.0401888
\(307\) −28.8607 −1.64717 −0.823584 0.567194i \(-0.808029\pi\)
−0.823584 + 0.567194i \(0.808029\pi\)
\(308\) −20.9572 −1.19415
\(309\) 12.7525 0.725466
\(310\) 0 0
\(311\) 17.7931 1.00896 0.504478 0.863424i \(-0.331685\pi\)
0.504478 + 0.863424i \(0.331685\pi\)
\(312\) 9.43269 0.534021
\(313\) −19.7809 −1.11808 −0.559042 0.829140i \(-0.688831\pi\)
−0.559042 + 0.829140i \(0.688831\pi\)
\(314\) −4.56113 −0.257399
\(315\) 0 0
\(316\) −13.4463 −0.756414
\(317\) −8.49694 −0.477236 −0.238618 0.971114i \(-0.576694\pi\)
−0.238618 + 0.971114i \(0.576694\pi\)
\(318\) −3.10153 −0.173925
\(319\) −2.59321 −0.145192
\(320\) 0 0
\(321\) −7.63365 −0.426069
\(322\) 5.89417 0.328469
\(323\) 7.52497 0.418701
\(324\) 5.54757 0.308198
\(325\) 0 0
\(326\) −0.863593 −0.0478300
\(327\) −17.2791 −0.955536
\(328\) −5.91457 −0.326577
\(329\) −15.0928 −0.832094
\(330\) 0 0
\(331\) 0.830686 0.0456586 0.0228293 0.999739i \(-0.492733\pi\)
0.0228293 + 0.999739i \(0.492733\pi\)
\(332\) −0.0608296 −0.00333846
\(333\) −13.8271 −0.757722
\(334\) 3.74278 0.204796
\(335\) 0 0
\(336\) 12.1988 0.665502
\(337\) −16.1561 −0.880080 −0.440040 0.897978i \(-0.645036\pi\)
−0.440040 + 0.897978i \(0.645036\pi\)
\(338\) 8.89762 0.483967
\(339\) −14.8544 −0.806782
\(340\) 0 0
\(341\) −38.4132 −2.08019
\(342\) 1.68961 0.0913636
\(343\) −17.8372 −0.963119
\(344\) −7.85109 −0.423303
\(345\) 0 0
\(346\) 1.18424 0.0636649
\(347\) 25.5274 1.37038 0.685192 0.728362i \(-0.259718\pi\)
0.685192 + 0.728362i \(0.259718\pi\)
\(348\) 1.57948 0.0846692
\(349\) −34.5894 −1.85153 −0.925764 0.378101i \(-0.876577\pi\)
−0.925764 + 0.378101i \(0.876577\pi\)
\(350\) 0 0
\(351\) 37.0100 1.97545
\(352\) 12.9558 0.690544
\(353\) −28.4853 −1.51612 −0.758059 0.652186i \(-0.773852\pi\)
−0.758059 + 0.652186i \(0.773852\pi\)
\(354\) −5.32035 −0.282773
\(355\) 0 0
\(356\) −2.39409 −0.126886
\(357\) −6.13709 −0.324809
\(358\) −3.20559 −0.169421
\(359\) −0.149001 −0.00786397 −0.00393198 0.999992i \(-0.501252\pi\)
−0.00393198 + 0.999992i \(0.501252\pi\)
\(360\) 0 0
\(361\) −0.914725 −0.0481434
\(362\) −0.405942 −0.0213358
\(363\) 6.29329 0.330312
\(364\) 34.8559 1.82694
\(365\) 0 0
\(366\) −4.13746 −0.216269
\(367\) −4.91740 −0.256686 −0.128343 0.991730i \(-0.540966\pi\)
−0.128343 + 0.991730i \(0.540966\pi\)
\(368\) 26.5457 1.38379
\(369\) −7.35164 −0.382711
\(370\) 0 0
\(371\) −23.4090 −1.21534
\(372\) 23.3969 1.21307
\(373\) 11.4854 0.594694 0.297347 0.954769i \(-0.403898\pi\)
0.297347 + 0.954769i \(0.403898\pi\)
\(374\) −2.01908 −0.104404
\(375\) 0 0
\(376\) 6.17741 0.318576
\(377\) 4.31301 0.222131
\(378\) −4.34977 −0.223728
\(379\) −11.6098 −0.596355 −0.298177 0.954511i \(-0.596379\pi\)
−0.298177 + 0.954511i \(0.596379\pi\)
\(380\) 0 0
\(381\) 20.4154 1.04591
\(382\) −3.49160 −0.178646
\(383\) 23.7069 1.21137 0.605684 0.795705i \(-0.292900\pi\)
0.605684 + 0.795705i \(0.292900\pi\)
\(384\) −10.4396 −0.532743
\(385\) 0 0
\(386\) −0.673720 −0.0342914
\(387\) −9.75868 −0.496062
\(388\) −35.7643 −1.81566
\(389\) −0.0130692 −0.000662637 0 −0.000331318 1.00000i \(-0.500105\pi\)
−0.000331318 1.00000i \(0.500105\pi\)
\(390\) 0 0
\(391\) −13.3548 −0.675383
\(392\) −0.533358 −0.0269386
\(393\) −0.0902318 −0.00455159
\(394\) −0.285611 −0.0143889
\(395\) 0 0
\(396\) 10.6618 0.535774
\(397\) 0.543246 0.0272648 0.0136324 0.999907i \(-0.495661\pi\)
0.0136324 + 0.999907i \(0.495661\pi\)
\(398\) 5.73386 0.287412
\(399\) −14.7497 −0.738408
\(400\) 0 0
\(401\) 12.1782 0.608148 0.304074 0.952648i \(-0.401653\pi\)
0.304074 + 0.952648i \(0.401653\pi\)
\(402\) −2.76127 −0.137720
\(403\) 63.8887 3.18253
\(404\) 36.5178 1.81683
\(405\) 0 0
\(406\) −0.506906 −0.0251573
\(407\) 39.7119 1.96844
\(408\) 2.51188 0.124356
\(409\) −18.0409 −0.892063 −0.446032 0.895017i \(-0.647163\pi\)
−0.446032 + 0.895017i \(0.647163\pi\)
\(410\) 0 0
\(411\) −4.98137 −0.245713
\(412\) −19.2873 −0.950220
\(413\) −40.1557 −1.97593
\(414\) −2.99861 −0.147374
\(415\) 0 0
\(416\) −21.5480 −1.05648
\(417\) 1.50787 0.0738405
\(418\) −4.85260 −0.237348
\(419\) 16.8784 0.824565 0.412282 0.911056i \(-0.364732\pi\)
0.412282 + 0.911056i \(0.364732\pi\)
\(420\) 0 0
\(421\) 15.4061 0.750847 0.375423 0.926853i \(-0.377497\pi\)
0.375423 + 0.926853i \(0.377497\pi\)
\(422\) 0.332381 0.0161801
\(423\) 7.67834 0.373334
\(424\) 9.58118 0.465303
\(425\) 0 0
\(426\) −0.960093 −0.0465167
\(427\) −31.2278 −1.51122
\(428\) 11.5454 0.558067
\(429\) −33.6732 −1.62576
\(430\) 0 0
\(431\) −10.3040 −0.496325 −0.248162 0.968718i \(-0.579827\pi\)
−0.248162 + 0.968718i \(0.579827\pi\)
\(432\) −19.5901 −0.942531
\(433\) 1.47200 0.0707397 0.0353698 0.999374i \(-0.488739\pi\)
0.0353698 + 0.999374i \(0.488739\pi\)
\(434\) −7.50882 −0.360435
\(435\) 0 0
\(436\) 26.1335 1.25157
\(437\) −32.0966 −1.53539
\(438\) −2.00834 −0.0959623
\(439\) 0.161040 0.00768601 0.00384301 0.999993i \(-0.498777\pi\)
0.00384301 + 0.999993i \(0.498777\pi\)
\(440\) 0 0
\(441\) −0.662948 −0.0315690
\(442\) 3.35813 0.159730
\(443\) 26.8949 1.27781 0.638906 0.769284i \(-0.279387\pi\)
0.638906 + 0.769284i \(0.279387\pi\)
\(444\) −24.1879 −1.14791
\(445\) 0 0
\(446\) −1.87259 −0.0886696
\(447\) −20.6415 −0.976312
\(448\) −16.7019 −0.789092
\(449\) 40.2914 1.90147 0.950734 0.310007i \(-0.100331\pi\)
0.950734 + 0.310007i \(0.100331\pi\)
\(450\) 0 0
\(451\) 21.1141 0.994223
\(452\) 22.4663 1.05673
\(453\) 20.2318 0.950571
\(454\) −3.80074 −0.178378
\(455\) 0 0
\(456\) 6.03696 0.282707
\(457\) −20.6919 −0.967925 −0.483963 0.875089i \(-0.660803\pi\)
−0.483963 + 0.875089i \(0.660803\pi\)
\(458\) −1.53243 −0.0716059
\(459\) 9.85556 0.460018
\(460\) 0 0
\(461\) 27.8487 1.29704 0.648522 0.761196i \(-0.275388\pi\)
0.648522 + 0.761196i \(0.275388\pi\)
\(462\) 3.95760 0.184124
\(463\) 19.6045 0.911099 0.455550 0.890210i \(-0.349443\pi\)
0.455550 + 0.890210i \(0.349443\pi\)
\(464\) −2.28297 −0.105984
\(465\) 0 0
\(466\) 3.42799 0.158798
\(467\) 32.8789 1.52146 0.760728 0.649071i \(-0.224842\pi\)
0.760728 + 0.649071i \(0.224842\pi\)
\(468\) −17.7326 −0.819691
\(469\) −20.8409 −0.962343
\(470\) 0 0
\(471\) −20.2566 −0.933373
\(472\) 16.4355 0.756505
\(473\) 28.0272 1.28869
\(474\) 2.53923 0.116631
\(475\) 0 0
\(476\) 9.28194 0.425437
\(477\) 11.9091 0.545281
\(478\) −1.70890 −0.0781632
\(479\) 6.51052 0.297473 0.148737 0.988877i \(-0.452479\pi\)
0.148737 + 0.988877i \(0.452479\pi\)
\(480\) 0 0
\(481\) −66.0486 −3.01156
\(482\) −4.22912 −0.192631
\(483\) 26.1768 1.19109
\(484\) −9.51819 −0.432645
\(485\) 0 0
\(486\) 3.72477 0.168959
\(487\) −14.3214 −0.648965 −0.324482 0.945892i \(-0.605190\pi\)
−0.324482 + 0.945892i \(0.605190\pi\)
\(488\) 12.7813 0.578584
\(489\) −3.83533 −0.173440
\(490\) 0 0
\(491\) 12.1320 0.547509 0.273754 0.961800i \(-0.411734\pi\)
0.273754 + 0.961800i \(0.411734\pi\)
\(492\) −12.8603 −0.579786
\(493\) 1.14853 0.0517273
\(494\) 8.07082 0.363123
\(495\) 0 0
\(496\) −33.8176 −1.51846
\(497\) −7.24637 −0.325044
\(498\) 0.0114872 0.000514754 0
\(499\) 25.0458 1.12120 0.560601 0.828086i \(-0.310570\pi\)
0.560601 + 0.828086i \(0.310570\pi\)
\(500\) 0 0
\(501\) 16.6222 0.742624
\(502\) −7.06007 −0.315106
\(503\) 2.63461 0.117471 0.0587356 0.998274i \(-0.481293\pi\)
0.0587356 + 0.998274i \(0.481293\pi\)
\(504\) 4.25683 0.189614
\(505\) 0 0
\(506\) 8.61207 0.382853
\(507\) 39.5155 1.75495
\(508\) −30.8769 −1.36994
\(509\) 36.9906 1.63958 0.819791 0.572663i \(-0.194090\pi\)
0.819791 + 0.572663i \(0.194090\pi\)
\(510\) 0 0
\(511\) −15.1581 −0.670555
\(512\) 19.2783 0.851990
\(513\) 23.6865 1.04579
\(514\) −1.58899 −0.0700872
\(515\) 0 0
\(516\) −17.0709 −0.751506
\(517\) −22.0524 −0.969863
\(518\) 7.76266 0.341072
\(519\) 5.25934 0.230860
\(520\) 0 0
\(521\) −26.6209 −1.16628 −0.583141 0.812371i \(-0.698177\pi\)
−0.583141 + 0.812371i \(0.698177\pi\)
\(522\) 0.257884 0.0112873
\(523\) −9.11852 −0.398725 −0.199362 0.979926i \(-0.563887\pi\)
−0.199362 + 0.979926i \(0.563887\pi\)
\(524\) 0.136470 0.00596170
\(525\) 0 0
\(526\) 6.01549 0.262288
\(527\) 17.0132 0.741108
\(528\) 17.8239 0.775687
\(529\) 33.9629 1.47665
\(530\) 0 0
\(531\) 20.4289 0.886537
\(532\) 22.3079 0.967171
\(533\) −35.1169 −1.52108
\(534\) 0.452105 0.0195645
\(535\) 0 0
\(536\) 8.53006 0.368442
\(537\) −14.2364 −0.614348
\(538\) −0.807108 −0.0347969
\(539\) 1.90400 0.0820112
\(540\) 0 0
\(541\) −10.5060 −0.451687 −0.225844 0.974164i \(-0.572514\pi\)
−0.225844 + 0.974164i \(0.572514\pi\)
\(542\) −1.80728 −0.0776292
\(543\) −1.80284 −0.0773673
\(544\) −5.73811 −0.246020
\(545\) 0 0
\(546\) −6.58227 −0.281695
\(547\) −10.9285 −0.467268 −0.233634 0.972325i \(-0.575062\pi\)
−0.233634 + 0.972325i \(0.575062\pi\)
\(548\) 7.53399 0.321836
\(549\) 15.8868 0.678034
\(550\) 0 0
\(551\) 2.76035 0.117595
\(552\) −10.7140 −0.456019
\(553\) 19.1650 0.814980
\(554\) −6.84655 −0.290882
\(555\) 0 0
\(556\) −2.28055 −0.0967167
\(557\) 23.5988 0.999914 0.499957 0.866050i \(-0.333349\pi\)
0.499957 + 0.866050i \(0.333349\pi\)
\(558\) 3.82004 0.161715
\(559\) −46.6147 −1.97159
\(560\) 0 0
\(561\) −8.96701 −0.378587
\(562\) −3.67604 −0.155064
\(563\) 9.18846 0.387247 0.193624 0.981076i \(-0.437976\pi\)
0.193624 + 0.981076i \(0.437976\pi\)
\(564\) 13.4318 0.565580
\(565\) 0 0
\(566\) 5.35298 0.225003
\(567\) −7.90695 −0.332061
\(568\) 2.96590 0.124446
\(569\) −11.3862 −0.477333 −0.238667 0.971102i \(-0.576710\pi\)
−0.238667 + 0.971102i \(0.576710\pi\)
\(570\) 0 0
\(571\) 20.3067 0.849808 0.424904 0.905238i \(-0.360308\pi\)
0.424904 + 0.905238i \(0.360308\pi\)
\(572\) 50.9285 2.12943
\(573\) −15.5066 −0.647799
\(574\) 4.12727 0.172269
\(575\) 0 0
\(576\) 8.49696 0.354040
\(577\) 27.7811 1.15654 0.578272 0.815844i \(-0.303727\pi\)
0.578272 + 0.815844i \(0.303727\pi\)
\(578\) −3.96114 −0.164762
\(579\) −2.99208 −0.124346
\(580\) 0 0
\(581\) 0.0867004 0.00359694
\(582\) 6.75381 0.279954
\(583\) −34.2033 −1.41656
\(584\) 6.20412 0.256728
\(585\) 0 0
\(586\) −5.05156 −0.208678
\(587\) 38.1125 1.57307 0.786536 0.617544i \(-0.211872\pi\)
0.786536 + 0.617544i \(0.211872\pi\)
\(588\) −1.15970 −0.0478252
\(589\) 40.8891 1.68480
\(590\) 0 0
\(591\) −1.26844 −0.0521765
\(592\) 34.9609 1.43688
\(593\) 40.7949 1.67524 0.837622 0.546250i \(-0.183945\pi\)
0.837622 + 0.546250i \(0.183945\pi\)
\(594\) −6.35551 −0.260770
\(595\) 0 0
\(596\) 31.2190 1.27878
\(597\) 25.4648 1.04221
\(598\) −14.3236 −0.585734
\(599\) −4.03027 −0.164673 −0.0823363 0.996605i \(-0.526238\pi\)
−0.0823363 + 0.996605i \(0.526238\pi\)
\(600\) 0 0
\(601\) 41.3797 1.68791 0.843956 0.536412i \(-0.180221\pi\)
0.843956 + 0.536412i \(0.180221\pi\)
\(602\) 5.47860 0.223291
\(603\) 10.6026 0.431772
\(604\) −30.5992 −1.24506
\(605\) 0 0
\(606\) −6.89611 −0.280135
\(607\) 37.8690 1.53706 0.768528 0.639817i \(-0.220990\pi\)
0.768528 + 0.639817i \(0.220990\pi\)
\(608\) −13.7908 −0.559291
\(609\) −2.25124 −0.0912247
\(610\) 0 0
\(611\) 36.6774 1.48381
\(612\) −4.72210 −0.190880
\(613\) −0.263324 −0.0106356 −0.00531778 0.999986i \(-0.501693\pi\)
−0.00531778 + 0.999986i \(0.501693\pi\)
\(614\) −8.24295 −0.332658
\(615\) 0 0
\(616\) −12.2257 −0.492589
\(617\) 1.40544 0.0565808 0.0282904 0.999600i \(-0.490994\pi\)
0.0282904 + 0.999600i \(0.490994\pi\)
\(618\) 3.64227 0.146513
\(619\) 34.5556 1.38891 0.694453 0.719538i \(-0.255647\pi\)
0.694453 + 0.719538i \(0.255647\pi\)
\(620\) 0 0
\(621\) −42.0373 −1.68690
\(622\) 5.08192 0.203767
\(623\) 3.41229 0.136711
\(624\) −29.6447 −1.18674
\(625\) 0 0
\(626\) −5.64965 −0.225806
\(627\) −21.5510 −0.860665
\(628\) 30.6367 1.22254
\(629\) −17.5884 −0.701295
\(630\) 0 0
\(631\) −11.8111 −0.470191 −0.235096 0.971972i \(-0.575540\pi\)
−0.235096 + 0.971972i \(0.575540\pi\)
\(632\) −7.84414 −0.312023
\(633\) 1.47615 0.0586716
\(634\) −2.42682 −0.0963814
\(635\) 0 0
\(636\) 20.8327 0.826071
\(637\) −3.16673 −0.125470
\(638\) −0.740649 −0.0293226
\(639\) 3.68653 0.145837
\(640\) 0 0
\(641\) 21.2055 0.837569 0.418784 0.908086i \(-0.362456\pi\)
0.418784 + 0.908086i \(0.362456\pi\)
\(642\) −2.18026 −0.0860479
\(643\) −12.3809 −0.488254 −0.244127 0.969743i \(-0.578501\pi\)
−0.244127 + 0.969743i \(0.578501\pi\)
\(644\) −39.5906 −1.56009
\(645\) 0 0
\(646\) 2.14922 0.0845598
\(647\) −7.87708 −0.309680 −0.154840 0.987940i \(-0.549486\pi\)
−0.154840 + 0.987940i \(0.549486\pi\)
\(648\) 3.23627 0.127133
\(649\) −58.6722 −2.30308
\(650\) 0 0
\(651\) −33.3476 −1.30700
\(652\) 5.80068 0.227172
\(653\) −17.3244 −0.677955 −0.338977 0.940794i \(-0.610081\pi\)
−0.338977 + 0.940794i \(0.610081\pi\)
\(654\) −4.93510 −0.192978
\(655\) 0 0
\(656\) 18.5881 0.725742
\(657\) 7.71154 0.300856
\(658\) −4.31068 −0.168048
\(659\) 18.1979 0.708890 0.354445 0.935077i \(-0.384670\pi\)
0.354445 + 0.935077i \(0.384670\pi\)
\(660\) 0 0
\(661\) 21.3092 0.828831 0.414415 0.910088i \(-0.363986\pi\)
0.414415 + 0.910088i \(0.363986\pi\)
\(662\) 0.237253 0.00922111
\(663\) 14.9139 0.579207
\(664\) −0.0354860 −0.00137712
\(665\) 0 0
\(666\) −3.94918 −0.153028
\(667\) −4.89888 −0.189685
\(668\) −25.1399 −0.972693
\(669\) −8.31641 −0.321531
\(670\) 0 0
\(671\) −45.6274 −1.76143
\(672\) 11.2473 0.433873
\(673\) 11.9703 0.461420 0.230710 0.973023i \(-0.425895\pi\)
0.230710 + 0.973023i \(0.425895\pi\)
\(674\) −4.61437 −0.177739
\(675\) 0 0
\(676\) −59.7646 −2.29864
\(677\) −33.6112 −1.29178 −0.645891 0.763430i \(-0.723514\pi\)
−0.645891 + 0.763430i \(0.723514\pi\)
\(678\) −4.24259 −0.162936
\(679\) 50.9748 1.95623
\(680\) 0 0
\(681\) −16.8796 −0.646828
\(682\) −10.9713 −0.420111
\(683\) −23.7259 −0.907845 −0.453923 0.891041i \(-0.649976\pi\)
−0.453923 + 0.891041i \(0.649976\pi\)
\(684\) −11.3490 −0.433938
\(685\) 0 0
\(686\) −5.09451 −0.194509
\(687\) −6.80574 −0.259655
\(688\) 24.6741 0.940692
\(689\) 56.8868 2.16721
\(690\) 0 0
\(691\) −5.76655 −0.219370 −0.109685 0.993966i \(-0.534984\pi\)
−0.109685 + 0.993966i \(0.534984\pi\)
\(692\) −7.95441 −0.302381
\(693\) −15.1962 −0.577257
\(694\) 7.29093 0.276760
\(695\) 0 0
\(696\) 0.921419 0.0349263
\(697\) −9.35143 −0.354211
\(698\) −9.87913 −0.373930
\(699\) 15.2241 0.575830
\(700\) 0 0
\(701\) 41.2611 1.55841 0.779206 0.626768i \(-0.215623\pi\)
0.779206 + 0.626768i \(0.215623\pi\)
\(702\) 10.5705 0.398957
\(703\) −42.2714 −1.59430
\(704\) −24.4035 −0.919740
\(705\) 0 0
\(706\) −8.13571 −0.306192
\(707\) −52.0488 −1.95750
\(708\) 35.7363 1.34305
\(709\) −47.7296 −1.79252 −0.896262 0.443525i \(-0.853728\pi\)
−0.896262 + 0.443525i \(0.853728\pi\)
\(710\) 0 0
\(711\) −9.75003 −0.365655
\(712\) −1.39663 −0.0523410
\(713\) −72.5673 −2.71767
\(714\) −1.75282 −0.0655977
\(715\) 0 0
\(716\) 21.5317 0.804676
\(717\) −7.58944 −0.283433
\(718\) −0.0425563 −0.00158819
\(719\) 15.0241 0.560305 0.280152 0.959956i \(-0.409615\pi\)
0.280152 + 0.959956i \(0.409615\pi\)
\(720\) 0 0
\(721\) 27.4903 1.02379
\(722\) −0.261256 −0.00972293
\(723\) −18.7821 −0.698512
\(724\) 2.72668 0.101336
\(725\) 0 0
\(726\) 1.79744 0.0667091
\(727\) −14.4682 −0.536597 −0.268298 0.963336i \(-0.586461\pi\)
−0.268298 + 0.963336i \(0.586461\pi\)
\(728\) 20.3338 0.753620
\(729\) 25.2174 0.933977
\(730\) 0 0
\(731\) −12.4132 −0.459120
\(732\) 27.7910 1.02718
\(733\) 30.6712 1.13287 0.566434 0.824107i \(-0.308323\pi\)
0.566434 + 0.824107i \(0.308323\pi\)
\(734\) −1.40447 −0.0518398
\(735\) 0 0
\(736\) 24.4750 0.902161
\(737\) −30.4510 −1.12168
\(738\) −2.09971 −0.0772914
\(739\) 41.3433 1.52084 0.760418 0.649434i \(-0.224994\pi\)
0.760418 + 0.649434i \(0.224994\pi\)
\(740\) 0 0
\(741\) 35.8436 1.31675
\(742\) −6.68588 −0.245446
\(743\) −23.0461 −0.845480 −0.422740 0.906251i \(-0.638932\pi\)
−0.422740 + 0.906251i \(0.638932\pi\)
\(744\) 13.6490 0.500397
\(745\) 0 0
\(746\) 3.28037 0.120103
\(747\) −0.0441080 −0.00161383
\(748\) 13.5620 0.495876
\(749\) −16.4556 −0.601276
\(750\) 0 0
\(751\) 26.5531 0.968935 0.484468 0.874809i \(-0.339013\pi\)
0.484468 + 0.874809i \(0.339013\pi\)
\(752\) −19.4141 −0.707960
\(753\) −31.3547 −1.14263
\(754\) 1.23184 0.0448611
\(755\) 0 0
\(756\) 29.2170 1.06261
\(757\) 6.96437 0.253124 0.126562 0.991959i \(-0.459606\pi\)
0.126562 + 0.991959i \(0.459606\pi\)
\(758\) −3.31589 −0.120438
\(759\) 38.2473 1.38829
\(760\) 0 0
\(761\) −28.6154 −1.03731 −0.518654 0.854984i \(-0.673567\pi\)
−0.518654 + 0.854984i \(0.673567\pi\)
\(762\) 5.83087 0.211230
\(763\) −37.2480 −1.34847
\(764\) 23.4527 0.848491
\(765\) 0 0
\(766\) 6.77097 0.244645
\(767\) 97.5833 3.52353
\(768\) 12.5141 0.451565
\(769\) 15.3002 0.551739 0.275870 0.961195i \(-0.411034\pi\)
0.275870 + 0.961195i \(0.411034\pi\)
\(770\) 0 0
\(771\) −7.05690 −0.254148
\(772\) 4.52531 0.162870
\(773\) 23.6016 0.848891 0.424446 0.905453i \(-0.360469\pi\)
0.424446 + 0.905453i \(0.360469\pi\)
\(774\) −2.78719 −0.100183
\(775\) 0 0
\(776\) −20.8637 −0.748963
\(777\) 34.4750 1.23678
\(778\) −0.00373272 −0.000133825 0
\(779\) −22.4749 −0.805248
\(780\) 0 0
\(781\) −10.5878 −0.378861
\(782\) −3.81429 −0.136399
\(783\) 3.61526 0.129199
\(784\) 1.67622 0.0598648
\(785\) 0 0
\(786\) −0.0257712 −0.000919229 0
\(787\) −10.6041 −0.377994 −0.188997 0.981978i \(-0.560524\pi\)
−0.188997 + 0.981978i \(0.560524\pi\)
\(788\) 1.91843 0.0683411
\(789\) 26.7156 0.951099
\(790\) 0 0
\(791\) −32.0213 −1.13855
\(792\) 6.21973 0.221008
\(793\) 75.8873 2.69484
\(794\) 0.155157 0.00550633
\(795\) 0 0
\(796\) −38.5138 −1.36509
\(797\) 24.6779 0.874137 0.437069 0.899428i \(-0.356017\pi\)
0.437069 + 0.899428i \(0.356017\pi\)
\(798\) −4.21268 −0.149127
\(799\) 9.76701 0.345532
\(800\) 0 0
\(801\) −1.73597 −0.0613376
\(802\) 3.47822 0.122820
\(803\) −22.1477 −0.781577
\(804\) 18.5472 0.654110
\(805\) 0 0
\(806\) 18.2473 0.642735
\(807\) −3.58447 −0.126179
\(808\) 21.3033 0.749447
\(809\) −43.2934 −1.52211 −0.761057 0.648685i \(-0.775319\pi\)
−0.761057 + 0.648685i \(0.775319\pi\)
\(810\) 0 0
\(811\) −8.96333 −0.314745 −0.157373 0.987539i \(-0.550302\pi\)
−0.157373 + 0.987539i \(0.550302\pi\)
\(812\) 3.40485 0.119487
\(813\) −8.02636 −0.281497
\(814\) 11.3422 0.397542
\(815\) 0 0
\(816\) −7.89423 −0.276353
\(817\) −29.8336 −1.04375
\(818\) −5.15268 −0.180159
\(819\) 25.2743 0.883156
\(820\) 0 0
\(821\) −23.3168 −0.813762 −0.406881 0.913481i \(-0.633384\pi\)
−0.406881 + 0.913481i \(0.633384\pi\)
\(822\) −1.42274 −0.0496236
\(823\) −44.7664 −1.56046 −0.780229 0.625495i \(-0.784897\pi\)
−0.780229 + 0.625495i \(0.784897\pi\)
\(824\) −11.2516 −0.391968
\(825\) 0 0
\(826\) −11.4689 −0.399055
\(827\) 21.1244 0.734568 0.367284 0.930109i \(-0.380288\pi\)
0.367284 + 0.930109i \(0.380288\pi\)
\(828\) 20.1414 0.699962
\(829\) 4.23189 0.146980 0.0734899 0.997296i \(-0.476586\pi\)
0.0734899 + 0.997296i \(0.476586\pi\)
\(830\) 0 0
\(831\) −30.4064 −1.05479
\(832\) 40.5877 1.40713
\(833\) −0.843284 −0.0292180
\(834\) 0.430664 0.0149127
\(835\) 0 0
\(836\) 32.5945 1.12730
\(837\) 53.5530 1.85106
\(838\) 4.82067 0.166527
\(839\) 47.2870 1.63253 0.816265 0.577678i \(-0.196041\pi\)
0.816265 + 0.577678i \(0.196041\pi\)
\(840\) 0 0
\(841\) −28.5787 −0.985472
\(842\) 4.40015 0.151639
\(843\) −16.3258 −0.562289
\(844\) −2.23258 −0.0768484
\(845\) 0 0
\(846\) 2.19302 0.0753976
\(847\) 13.5663 0.466143
\(848\) −30.1114 −1.03403
\(849\) 23.7733 0.815898
\(850\) 0 0
\(851\) 75.0205 2.57167
\(852\) 6.44886 0.220934
\(853\) −27.7277 −0.949380 −0.474690 0.880153i \(-0.657440\pi\)
−0.474690 + 0.880153i \(0.657440\pi\)
\(854\) −8.91900 −0.305202
\(855\) 0 0
\(856\) 6.73520 0.230204
\(857\) 9.63331 0.329068 0.164534 0.986371i \(-0.447388\pi\)
0.164534 + 0.986371i \(0.447388\pi\)
\(858\) −9.61746 −0.328335
\(859\) −5.78218 −0.197285 −0.0986427 0.995123i \(-0.531450\pi\)
−0.0986427 + 0.995123i \(0.531450\pi\)
\(860\) 0 0
\(861\) 18.3297 0.624676
\(862\) −2.94293 −0.100237
\(863\) 10.7342 0.365397 0.182698 0.983169i \(-0.441517\pi\)
0.182698 + 0.983169i \(0.441517\pi\)
\(864\) −18.0620 −0.614482
\(865\) 0 0
\(866\) 0.420419 0.0142864
\(867\) −17.5919 −0.597454
\(868\) 50.4361 1.71191
\(869\) 28.0023 0.949914
\(870\) 0 0
\(871\) 50.6459 1.71607
\(872\) 15.2454 0.516275
\(873\) −25.9330 −0.877698
\(874\) −9.16714 −0.310083
\(875\) 0 0
\(876\) 13.4899 0.455780
\(877\) −19.2178 −0.648939 −0.324470 0.945896i \(-0.605186\pi\)
−0.324470 + 0.945896i \(0.605186\pi\)
\(878\) 0.0459948 0.00155225
\(879\) −22.4346 −0.756701
\(880\) 0 0
\(881\) −44.0829 −1.48519 −0.742596 0.669740i \(-0.766405\pi\)
−0.742596 + 0.669740i \(0.766405\pi\)
\(882\) −0.189345 −0.00637559
\(883\) 22.3382 0.751742 0.375871 0.926672i \(-0.377344\pi\)
0.375871 + 0.926672i \(0.377344\pi\)
\(884\) −22.5563 −0.758649
\(885\) 0 0
\(886\) 7.68147 0.258064
\(887\) −35.1042 −1.17868 −0.589342 0.807884i \(-0.700613\pi\)
−0.589342 + 0.807884i \(0.700613\pi\)
\(888\) −14.1104 −0.473515
\(889\) 44.0089 1.47601
\(890\) 0 0
\(891\) −11.5530 −0.387039
\(892\) 12.5780 0.421143
\(893\) 23.4737 0.785518
\(894\) −5.89546 −0.197174
\(895\) 0 0
\(896\) −22.5043 −0.751816
\(897\) −63.6128 −2.12397
\(898\) 11.5077 0.384016
\(899\) 6.24088 0.208145
\(900\) 0 0
\(901\) 15.1487 0.504675
\(902\) 6.03042 0.200791
\(903\) 24.3312 0.809691
\(904\) 13.1061 0.435903
\(905\) 0 0
\(906\) 5.77842 0.191975
\(907\) −5.31596 −0.176513 −0.0882567 0.996098i \(-0.528130\pi\)
−0.0882567 + 0.996098i \(0.528130\pi\)
\(908\) 25.5293 0.847218
\(909\) 26.4794 0.878266
\(910\) 0 0
\(911\) −19.9370 −0.660541 −0.330271 0.943886i \(-0.607140\pi\)
−0.330271 + 0.943886i \(0.607140\pi\)
\(912\) −18.9727 −0.628250
\(913\) 0.126679 0.00419248
\(914\) −5.90984 −0.195480
\(915\) 0 0
\(916\) 10.2932 0.340098
\(917\) −0.194510 −0.00642329
\(918\) 2.81486 0.0929042
\(919\) 23.3818 0.771294 0.385647 0.922646i \(-0.373978\pi\)
0.385647 + 0.922646i \(0.373978\pi\)
\(920\) 0 0
\(921\) −36.6080 −1.20628
\(922\) 7.95390 0.261948
\(923\) 17.6096 0.579626
\(924\) −26.5829 −0.874512
\(925\) 0 0
\(926\) 5.59927 0.184004
\(927\) −13.9854 −0.459342
\(928\) −2.10488 −0.0690961
\(929\) −1.14512 −0.0375700 −0.0187850 0.999824i \(-0.505980\pi\)
−0.0187850 + 0.999824i \(0.505980\pi\)
\(930\) 0 0
\(931\) −2.02672 −0.0664231
\(932\) −23.0255 −0.754225
\(933\) 22.5695 0.738892
\(934\) 9.39059 0.307270
\(935\) 0 0
\(936\) −10.3446 −0.338125
\(937\) −41.4063 −1.35268 −0.676342 0.736588i \(-0.736436\pi\)
−0.676342 + 0.736588i \(0.736436\pi\)
\(938\) −5.95239 −0.194353
\(939\) −25.0908 −0.818809
\(940\) 0 0
\(941\) −26.6383 −0.868383 −0.434191 0.900821i \(-0.642966\pi\)
−0.434191 + 0.900821i \(0.642966\pi\)
\(942\) −5.78550 −0.188502
\(943\) 39.8871 1.29890
\(944\) −51.6529 −1.68116
\(945\) 0 0
\(946\) 8.00488 0.260261
\(947\) −31.7820 −1.03278 −0.516389 0.856354i \(-0.672724\pi\)
−0.516389 + 0.856354i \(0.672724\pi\)
\(948\) −17.0558 −0.553947
\(949\) 36.8360 1.19575
\(950\) 0 0
\(951\) −10.7778 −0.349495
\(952\) 5.41478 0.175494
\(953\) 28.7458 0.931168 0.465584 0.885004i \(-0.345844\pi\)
0.465584 + 0.885004i \(0.345844\pi\)
\(954\) 3.40138 0.110124
\(955\) 0 0
\(956\) 11.4785 0.371242
\(957\) −3.28932 −0.106329
\(958\) 1.85948 0.0600770
\(959\) −10.7382 −0.346754
\(960\) 0 0
\(961\) 61.4463 1.98214
\(962\) −18.8642 −0.608207
\(963\) 8.37166 0.269773
\(964\) 28.4066 0.914915
\(965\) 0 0
\(966\) 7.47639 0.240549
\(967\) 39.3136 1.26424 0.632120 0.774870i \(-0.282185\pi\)
0.632120 + 0.774870i \(0.282185\pi\)
\(968\) −5.55260 −0.178467
\(969\) 9.54495 0.306628
\(970\) 0 0
\(971\) 49.7035 1.59506 0.797531 0.603278i \(-0.206139\pi\)
0.797531 + 0.603278i \(0.206139\pi\)
\(972\) −25.0190 −0.802484
\(973\) 3.25046 0.104205
\(974\) −4.09036 −0.131063
\(975\) 0 0
\(976\) −40.1687 −1.28577
\(977\) 7.36078 0.235492 0.117746 0.993044i \(-0.462433\pi\)
0.117746 + 0.993044i \(0.462433\pi\)
\(978\) −1.09541 −0.0350275
\(979\) 4.98576 0.159345
\(980\) 0 0
\(981\) 18.9496 0.605014
\(982\) 3.46503 0.110574
\(983\) 17.8926 0.570685 0.285343 0.958426i \(-0.407893\pi\)
0.285343 + 0.958426i \(0.407893\pi\)
\(984\) −7.50226 −0.239163
\(985\) 0 0
\(986\) 0.328034 0.0104467
\(987\) −19.1443 −0.609370
\(988\) −54.2110 −1.72468
\(989\) 52.9467 1.68361
\(990\) 0 0
\(991\) −43.9817 −1.39713 −0.698563 0.715548i \(-0.746177\pi\)
−0.698563 + 0.715548i \(0.746177\pi\)
\(992\) −31.1797 −0.989955
\(993\) 1.05367 0.0334373
\(994\) −2.06965 −0.0656452
\(995\) 0 0
\(996\) −0.0771585 −0.00244486
\(997\) −4.13475 −0.130949 −0.0654745 0.997854i \(-0.520856\pi\)
−0.0654745 + 0.997854i \(0.520856\pi\)
\(998\) 7.15336 0.226436
\(999\) −55.3634 −1.75162
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.j.1.6 10
5.4 even 2 985.2.a.e.1.5 10
15.14 odd 2 8865.2.a.t.1.6 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.e.1.5 10 5.4 even 2
4925.2.a.j.1.6 10 1.1 even 1 trivial
8865.2.a.t.1.6 10 15.14 odd 2