Properties

Label 4925.2.a.l.1.4
Level $4925$
Weight $2$
Character 4925.1
Self dual yes
Analytic conductor $39.326$
Analytic rank $1$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4925,2,Mod(1,4925)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4925, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4925.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4925 = 5^{2} \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4925.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.3263229955\)
Analytic rank: \(1\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 985)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(2.22883\) of defining polynomial
Character \(\chi\) \(=\) 4925.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.22883 q^{2} -3.02604 q^{3} +2.96767 q^{4} +6.74452 q^{6} -1.28446 q^{7} -2.15678 q^{8} +6.15690 q^{9} -4.23897 q^{11} -8.98029 q^{12} +0.0326948 q^{13} +2.86284 q^{14} -1.12826 q^{16} -3.18747 q^{17} -13.7227 q^{18} -5.69971 q^{19} +3.88682 q^{21} +9.44795 q^{22} +6.17953 q^{23} +6.52650 q^{24} -0.0728710 q^{26} -9.55291 q^{27} -3.81186 q^{28} +7.19361 q^{29} +2.81208 q^{31} +6.82825 q^{32} +12.8273 q^{33} +7.10433 q^{34} +18.2717 q^{36} +11.8869 q^{37} +12.7037 q^{38} -0.0989356 q^{39} -3.01031 q^{41} -8.66306 q^{42} -11.6220 q^{43} -12.5799 q^{44} -13.7731 q^{46} -9.37541 q^{47} +3.41415 q^{48} -5.35016 q^{49} +9.64541 q^{51} +0.0970274 q^{52} -4.47527 q^{53} +21.2918 q^{54} +2.77030 q^{56} +17.2475 q^{57} -16.0333 q^{58} -6.52124 q^{59} +3.93428 q^{61} -6.26764 q^{62} -7.90829 q^{63} -12.9625 q^{64} -28.5898 q^{66} -3.36275 q^{67} -9.45938 q^{68} -18.6995 q^{69} +3.94676 q^{71} -13.2791 q^{72} +0.394938 q^{73} -26.4938 q^{74} -16.9149 q^{76} +5.44479 q^{77} +0.220510 q^{78} +5.02637 q^{79} +10.4367 q^{81} +6.70945 q^{82} -6.36108 q^{83} +11.5348 q^{84} +25.9035 q^{86} -21.7681 q^{87} +9.14253 q^{88} +8.91236 q^{89} -0.0419951 q^{91} +18.3388 q^{92} -8.50946 q^{93} +20.8962 q^{94} -20.6625 q^{96} +15.6077 q^{97} +11.9246 q^{98} -26.0990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q - 6 q^{2} - 5 q^{3} + 18 q^{4} + 3 q^{6} - 7 q^{7} - 18 q^{8} + 22 q^{9} + 7 q^{11} - 20 q^{12} - 3 q^{13} + 17 q^{14} + 28 q^{16} - 6 q^{17} - 13 q^{18} - 23 q^{19} - q^{21} - 14 q^{22} - 49 q^{23}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.22883 −1.57602 −0.788010 0.615663i \(-0.788888\pi\)
−0.788010 + 0.615663i \(0.788888\pi\)
\(3\) −3.02604 −1.74708 −0.873542 0.486749i \(-0.838183\pi\)
−0.873542 + 0.486749i \(0.838183\pi\)
\(4\) 2.96767 1.48384
\(5\) 0 0
\(6\) 6.74452 2.75344
\(7\) −1.28446 −0.485480 −0.242740 0.970091i \(-0.578046\pi\)
−0.242740 + 0.970091i \(0.578046\pi\)
\(8\) −2.15678 −0.762537
\(9\) 6.15690 2.05230
\(10\) 0 0
\(11\) −4.23897 −1.27810 −0.639050 0.769166i \(-0.720672\pi\)
−0.639050 + 0.769166i \(0.720672\pi\)
\(12\) −8.98029 −2.59239
\(13\) 0.0326948 0.00906790 0.00453395 0.999990i \(-0.498557\pi\)
0.00453395 + 0.999990i \(0.498557\pi\)
\(14\) 2.86284 0.765126
\(15\) 0 0
\(16\) −1.12826 −0.282065
\(17\) −3.18747 −0.773076 −0.386538 0.922274i \(-0.626329\pi\)
−0.386538 + 0.922274i \(0.626329\pi\)
\(18\) −13.7227 −3.23447
\(19\) −5.69971 −1.30760 −0.653801 0.756666i \(-0.726827\pi\)
−0.653801 + 0.756666i \(0.726827\pi\)
\(20\) 0 0
\(21\) 3.88682 0.848174
\(22\) 9.44795 2.01431
\(23\) 6.17953 1.28852 0.644260 0.764806i \(-0.277165\pi\)
0.644260 + 0.764806i \(0.277165\pi\)
\(24\) 6.52650 1.33222
\(25\) 0 0
\(26\) −0.0728710 −0.0142912
\(27\) −9.55291 −1.83846
\(28\) −3.81186 −0.720373
\(29\) 7.19361 1.33582 0.667910 0.744242i \(-0.267189\pi\)
0.667910 + 0.744242i \(0.267189\pi\)
\(30\) 0 0
\(31\) 2.81208 0.505064 0.252532 0.967588i \(-0.418737\pi\)
0.252532 + 0.967588i \(0.418737\pi\)
\(32\) 6.82825 1.20708
\(33\) 12.8273 2.23295
\(34\) 7.10433 1.21838
\(35\) 0 0
\(36\) 18.2717 3.04528
\(37\) 11.8869 1.95419 0.977096 0.212800i \(-0.0682584\pi\)
0.977096 + 0.212800i \(0.0682584\pi\)
\(38\) 12.7037 2.06081
\(39\) −0.0989356 −0.0158424
\(40\) 0 0
\(41\) −3.01031 −0.470131 −0.235065 0.971980i \(-0.575530\pi\)
−0.235065 + 0.971980i \(0.575530\pi\)
\(42\) −8.66306 −1.33674
\(43\) −11.6220 −1.77234 −0.886172 0.463357i \(-0.846645\pi\)
−0.886172 + 0.463357i \(0.846645\pi\)
\(44\) −12.5799 −1.89649
\(45\) 0 0
\(46\) −13.7731 −2.03073
\(47\) −9.37541 −1.36754 −0.683772 0.729695i \(-0.739662\pi\)
−0.683772 + 0.729695i \(0.739662\pi\)
\(48\) 3.41415 0.492790
\(49\) −5.35016 −0.764309
\(50\) 0 0
\(51\) 9.64541 1.35063
\(52\) 0.0970274 0.0134553
\(53\) −4.47527 −0.614726 −0.307363 0.951592i \(-0.599447\pi\)
−0.307363 + 0.951592i \(0.599447\pi\)
\(54\) 21.2918 2.89745
\(55\) 0 0
\(56\) 2.77030 0.370196
\(57\) 17.2475 2.28449
\(58\) −16.0333 −2.10528
\(59\) −6.52124 −0.848993 −0.424497 0.905429i \(-0.639549\pi\)
−0.424497 + 0.905429i \(0.639549\pi\)
\(60\) 0 0
\(61\) 3.93428 0.503733 0.251867 0.967762i \(-0.418956\pi\)
0.251867 + 0.967762i \(0.418956\pi\)
\(62\) −6.26764 −0.795991
\(63\) −7.90829 −0.996351
\(64\) −12.9625 −1.62031
\(65\) 0 0
\(66\) −28.5898 −3.51917
\(67\) −3.36275 −0.410825 −0.205412 0.978675i \(-0.565854\pi\)
−0.205412 + 0.978675i \(0.565854\pi\)
\(68\) −9.45938 −1.14712
\(69\) −18.6995 −2.25115
\(70\) 0 0
\(71\) 3.94676 0.468394 0.234197 0.972189i \(-0.424754\pi\)
0.234197 + 0.972189i \(0.424754\pi\)
\(72\) −13.2791 −1.56495
\(73\) 0.394938 0.0462240 0.0231120 0.999733i \(-0.492643\pi\)
0.0231120 + 0.999733i \(0.492643\pi\)
\(74\) −26.4938 −3.07984
\(75\) 0 0
\(76\) −16.9149 −1.94027
\(77\) 5.44479 0.620492
\(78\) 0.220510 0.0249679
\(79\) 5.02637 0.565510 0.282755 0.959192i \(-0.408752\pi\)
0.282755 + 0.959192i \(0.408752\pi\)
\(80\) 0 0
\(81\) 10.4367 1.15964
\(82\) 6.70945 0.740935
\(83\) −6.36108 −0.698219 −0.349110 0.937082i \(-0.613516\pi\)
−0.349110 + 0.937082i \(0.613516\pi\)
\(84\) 11.5348 1.25855
\(85\) 0 0
\(86\) 25.9035 2.79325
\(87\) −21.7681 −2.33379
\(88\) 9.14253 0.974597
\(89\) 8.91236 0.944708 0.472354 0.881409i \(-0.343404\pi\)
0.472354 + 0.881409i \(0.343404\pi\)
\(90\) 0 0
\(91\) −0.0419951 −0.00440228
\(92\) 18.3388 1.91195
\(93\) −8.50946 −0.882390
\(94\) 20.8962 2.15528
\(95\) 0 0
\(96\) −20.6625 −2.10886
\(97\) 15.6077 1.58472 0.792361 0.610052i \(-0.208852\pi\)
0.792361 + 0.610052i \(0.208852\pi\)
\(98\) 11.9246 1.20457
\(99\) −26.0990 −2.62304
\(100\) 0 0
\(101\) 16.7632 1.66800 0.834002 0.551762i \(-0.186044\pi\)
0.834002 + 0.551762i \(0.186044\pi\)
\(102\) −21.4980 −2.12862
\(103\) 2.86345 0.282144 0.141072 0.989999i \(-0.454945\pi\)
0.141072 + 0.989999i \(0.454945\pi\)
\(104\) −0.0705154 −0.00691460
\(105\) 0 0
\(106\) 9.97461 0.968820
\(107\) 1.02937 0.0995130 0.0497565 0.998761i \(-0.484155\pi\)
0.0497565 + 0.998761i \(0.484155\pi\)
\(108\) −28.3499 −2.72797
\(109\) −10.2929 −0.985883 −0.492941 0.870063i \(-0.664078\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(110\) 0 0
\(111\) −35.9702 −3.41414
\(112\) 1.44920 0.136937
\(113\) 12.8305 1.20699 0.603495 0.797367i \(-0.293774\pi\)
0.603495 + 0.797367i \(0.293774\pi\)
\(114\) −38.4418 −3.60040
\(115\) 0 0
\(116\) 21.3483 1.98214
\(117\) 0.201298 0.0186101
\(118\) 14.5347 1.33803
\(119\) 4.09418 0.375313
\(120\) 0 0
\(121\) 6.96891 0.633537
\(122\) −8.76884 −0.793893
\(123\) 9.10930 0.821358
\(124\) 8.34534 0.749433
\(125\) 0 0
\(126\) 17.6262 1.57027
\(127\) 13.2366 1.17456 0.587279 0.809385i \(-0.300199\pi\)
0.587279 + 0.809385i \(0.300199\pi\)
\(128\) 15.2346 1.34656
\(129\) 35.1687 3.09643
\(130\) 0 0
\(131\) 10.5920 0.925425 0.462713 0.886508i \(-0.346876\pi\)
0.462713 + 0.886508i \(0.346876\pi\)
\(132\) 38.0672 3.31333
\(133\) 7.32104 0.634815
\(134\) 7.49499 0.647468
\(135\) 0 0
\(136\) 6.87468 0.589499
\(137\) 3.82013 0.326376 0.163188 0.986595i \(-0.447822\pi\)
0.163188 + 0.986595i \(0.447822\pi\)
\(138\) 41.6779 3.54786
\(139\) 3.20940 0.272218 0.136109 0.990694i \(-0.456540\pi\)
0.136109 + 0.990694i \(0.456540\pi\)
\(140\) 0 0
\(141\) 28.3704 2.38921
\(142\) −8.79664 −0.738198
\(143\) −0.138592 −0.0115897
\(144\) −6.94658 −0.578881
\(145\) 0 0
\(146\) −0.880249 −0.0728499
\(147\) 16.1898 1.33531
\(148\) 35.2764 2.89970
\(149\) 11.8165 0.968042 0.484021 0.875056i \(-0.339176\pi\)
0.484021 + 0.875056i \(0.339176\pi\)
\(150\) 0 0
\(151\) −8.86121 −0.721115 −0.360558 0.932737i \(-0.617414\pi\)
−0.360558 + 0.932737i \(0.617414\pi\)
\(152\) 12.2930 0.997095
\(153\) −19.6250 −1.58658
\(154\) −12.1355 −0.977907
\(155\) 0 0
\(156\) −0.293609 −0.0235075
\(157\) 0.0926825 0.00739687 0.00369843 0.999993i \(-0.498823\pi\)
0.00369843 + 0.999993i \(0.498823\pi\)
\(158\) −11.2029 −0.891255
\(159\) 13.5423 1.07398
\(160\) 0 0
\(161\) −7.93735 −0.625551
\(162\) −23.2617 −1.82761
\(163\) −5.54121 −0.434021 −0.217010 0.976169i \(-0.569631\pi\)
−0.217010 + 0.976169i \(0.569631\pi\)
\(164\) −8.93361 −0.697598
\(165\) 0 0
\(166\) 14.1778 1.10041
\(167\) 22.8426 1.76761 0.883806 0.467854i \(-0.154973\pi\)
0.883806 + 0.467854i \(0.154973\pi\)
\(168\) −8.38302 −0.646764
\(169\) −12.9989 −0.999918
\(170\) 0 0
\(171\) −35.0925 −2.68359
\(172\) −34.4904 −2.62987
\(173\) −19.4621 −1.47968 −0.739840 0.672783i \(-0.765099\pi\)
−0.739840 + 0.672783i \(0.765099\pi\)
\(174\) 48.5174 3.67810
\(175\) 0 0
\(176\) 4.78266 0.360506
\(177\) 19.7335 1.48326
\(178\) −19.8641 −1.48888
\(179\) 1.50622 0.112580 0.0562902 0.998414i \(-0.482073\pi\)
0.0562902 + 0.998414i \(0.482073\pi\)
\(180\) 0 0
\(181\) −13.5177 −1.00476 −0.502380 0.864647i \(-0.667542\pi\)
−0.502380 + 0.864647i \(0.667542\pi\)
\(182\) 0.0935998 0.00693808
\(183\) −11.9053 −0.880064
\(184\) −13.3279 −0.982544
\(185\) 0 0
\(186\) 18.9661 1.39066
\(187\) 13.5116 0.988067
\(188\) −27.8232 −2.02921
\(189\) 12.2703 0.892535
\(190\) 0 0
\(191\) 26.7463 1.93529 0.967646 0.252310i \(-0.0811904\pi\)
0.967646 + 0.252310i \(0.0811904\pi\)
\(192\) 39.2250 2.83082
\(193\) −19.6630 −1.41538 −0.707688 0.706525i \(-0.750262\pi\)
−0.707688 + 0.706525i \(0.750262\pi\)
\(194\) −34.7869 −2.49755
\(195\) 0 0
\(196\) −15.8775 −1.13411
\(197\) −1.00000 −0.0712470
\(198\) 58.1701 4.13397
\(199\) 19.4206 1.37669 0.688345 0.725383i \(-0.258338\pi\)
0.688345 + 0.725383i \(0.258338\pi\)
\(200\) 0 0
\(201\) 10.1758 0.717746
\(202\) −37.3624 −2.62881
\(203\) −9.23990 −0.648514
\(204\) 28.6244 2.00411
\(205\) 0 0
\(206\) −6.38214 −0.444665
\(207\) 38.0468 2.64443
\(208\) −0.0368881 −0.00255773
\(209\) 24.1609 1.67124
\(210\) 0 0
\(211\) 9.62672 0.662731 0.331365 0.943502i \(-0.392491\pi\)
0.331365 + 0.943502i \(0.392491\pi\)
\(212\) −13.2812 −0.912153
\(213\) −11.9430 −0.818323
\(214\) −2.29429 −0.156834
\(215\) 0 0
\(216\) 20.6035 1.40189
\(217\) −3.61200 −0.245199
\(218\) 22.9411 1.55377
\(219\) −1.19510 −0.0807572
\(220\) 0 0
\(221\) −0.104214 −0.00701017
\(222\) 80.1713 5.38074
\(223\) −27.1858 −1.82050 −0.910249 0.414061i \(-0.864110\pi\)
−0.910249 + 0.414061i \(0.864110\pi\)
\(224\) −8.77061 −0.586011
\(225\) 0 0
\(226\) −28.5969 −1.90224
\(227\) 20.7178 1.37509 0.687543 0.726144i \(-0.258689\pi\)
0.687543 + 0.726144i \(0.258689\pi\)
\(228\) 51.1850 3.38981
\(229\) −16.6170 −1.09808 −0.549042 0.835795i \(-0.685007\pi\)
−0.549042 + 0.835795i \(0.685007\pi\)
\(230\) 0 0
\(231\) −16.4761 −1.08405
\(232\) −15.5150 −1.01861
\(233\) 0.693861 0.0454563 0.0227282 0.999742i \(-0.492765\pi\)
0.0227282 + 0.999742i \(0.492765\pi\)
\(234\) −0.448660 −0.0293298
\(235\) 0 0
\(236\) −19.3529 −1.25977
\(237\) −15.2100 −0.987994
\(238\) −9.12522 −0.591500
\(239\) 29.2959 1.89500 0.947498 0.319763i \(-0.103603\pi\)
0.947498 + 0.319763i \(0.103603\pi\)
\(240\) 0 0
\(241\) −2.16835 −0.139676 −0.0698378 0.997558i \(-0.522248\pi\)
−0.0698378 + 0.997558i \(0.522248\pi\)
\(242\) −15.5325 −0.998467
\(243\) −2.92326 −0.187528
\(244\) 11.6757 0.747458
\(245\) 0 0
\(246\) −20.3031 −1.29448
\(247\) −0.186351 −0.0118572
\(248\) −6.06504 −0.385130
\(249\) 19.2489 1.21985
\(250\) 0 0
\(251\) −14.5046 −0.915521 −0.457760 0.889076i \(-0.651348\pi\)
−0.457760 + 0.889076i \(0.651348\pi\)
\(252\) −23.4692 −1.47842
\(253\) −26.1949 −1.64686
\(254\) −29.5021 −1.85113
\(255\) 0 0
\(256\) −8.03043 −0.501902
\(257\) −9.76616 −0.609196 −0.304598 0.952481i \(-0.598522\pi\)
−0.304598 + 0.952481i \(0.598522\pi\)
\(258\) −78.3850 −4.88004
\(259\) −15.2682 −0.948721
\(260\) 0 0
\(261\) 44.2903 2.74150
\(262\) −23.6077 −1.45849
\(263\) −6.64141 −0.409527 −0.204764 0.978811i \(-0.565643\pi\)
−0.204764 + 0.978811i \(0.565643\pi\)
\(264\) −27.6656 −1.70270
\(265\) 0 0
\(266\) −16.3173 −1.00048
\(267\) −26.9691 −1.65048
\(268\) −9.97954 −0.609597
\(269\) 5.15503 0.314308 0.157154 0.987574i \(-0.449768\pi\)
0.157154 + 0.987574i \(0.449768\pi\)
\(270\) 0 0
\(271\) −1.63478 −0.0993061 −0.0496530 0.998767i \(-0.515812\pi\)
−0.0496530 + 0.998767i \(0.515812\pi\)
\(272\) 3.59629 0.218057
\(273\) 0.127079 0.00769115
\(274\) −8.51442 −0.514375
\(275\) 0 0
\(276\) −55.4940 −3.34034
\(277\) 10.2128 0.613629 0.306814 0.951769i \(-0.400737\pi\)
0.306814 + 0.951769i \(0.400737\pi\)
\(278\) −7.15320 −0.429020
\(279\) 17.3137 1.03654
\(280\) 0 0
\(281\) −15.4518 −0.921779 −0.460890 0.887457i \(-0.652470\pi\)
−0.460890 + 0.887457i \(0.652470\pi\)
\(282\) −63.2326 −3.76545
\(283\) 12.8317 0.762765 0.381383 0.924417i \(-0.375448\pi\)
0.381383 + 0.924417i \(0.375448\pi\)
\(284\) 11.7127 0.695020
\(285\) 0 0
\(286\) 0.308898 0.0182655
\(287\) 3.86662 0.228239
\(288\) 42.0409 2.47728
\(289\) −6.84001 −0.402354
\(290\) 0 0
\(291\) −47.2295 −2.76864
\(292\) 1.17205 0.0685889
\(293\) 13.1558 0.768571 0.384285 0.923214i \(-0.374448\pi\)
0.384285 + 0.923214i \(0.374448\pi\)
\(294\) −36.0843 −2.10448
\(295\) 0 0
\(296\) −25.6374 −1.49014
\(297\) 40.4945 2.34973
\(298\) −26.3369 −1.52565
\(299\) 0.202038 0.0116842
\(300\) 0 0
\(301\) 14.9280 0.860437
\(302\) 19.7501 1.13649
\(303\) −50.7262 −2.91414
\(304\) 6.43074 0.368828
\(305\) 0 0
\(306\) 43.7407 2.50049
\(307\) 5.07199 0.289474 0.144737 0.989470i \(-0.453766\pi\)
0.144737 + 0.989470i \(0.453766\pi\)
\(308\) 16.1584 0.920708
\(309\) −8.66491 −0.492929
\(310\) 0 0
\(311\) 5.96977 0.338515 0.169257 0.985572i \(-0.445863\pi\)
0.169257 + 0.985572i \(0.445863\pi\)
\(312\) 0.213382 0.0120804
\(313\) 14.9712 0.846224 0.423112 0.906077i \(-0.360938\pi\)
0.423112 + 0.906077i \(0.360938\pi\)
\(314\) −0.206573 −0.0116576
\(315\) 0 0
\(316\) 14.9166 0.839125
\(317\) 10.8677 0.610388 0.305194 0.952290i \(-0.401279\pi\)
0.305194 + 0.952290i \(0.401279\pi\)
\(318\) −30.1836 −1.69261
\(319\) −30.4935 −1.70731
\(320\) 0 0
\(321\) −3.11491 −0.173857
\(322\) 17.6910 0.985880
\(323\) 18.1677 1.01088
\(324\) 30.9729 1.72071
\(325\) 0 0
\(326\) 12.3504 0.684025
\(327\) 31.1468 1.72242
\(328\) 6.49257 0.358492
\(329\) 12.0423 0.663916
\(330\) 0 0
\(331\) 25.5182 1.40261 0.701304 0.712862i \(-0.252602\pi\)
0.701304 + 0.712862i \(0.252602\pi\)
\(332\) −18.8776 −1.03604
\(333\) 73.1864 4.01059
\(334\) −50.9122 −2.78579
\(335\) 0 0
\(336\) −4.38534 −0.239240
\(337\) 26.3413 1.43490 0.717450 0.696610i \(-0.245309\pi\)
0.717450 + 0.696610i \(0.245309\pi\)
\(338\) 28.9724 1.57589
\(339\) −38.8255 −2.10871
\(340\) 0 0
\(341\) −11.9203 −0.645522
\(342\) 78.2152 4.22939
\(343\) 15.8633 0.856537
\(344\) 25.0662 1.35148
\(345\) 0 0
\(346\) 43.3778 2.33200
\(347\) 11.8578 0.636562 0.318281 0.947996i \(-0.396894\pi\)
0.318281 + 0.947996i \(0.396894\pi\)
\(348\) −64.6007 −3.46296
\(349\) −8.47396 −0.453601 −0.226800 0.973941i \(-0.572826\pi\)
−0.226800 + 0.973941i \(0.572826\pi\)
\(350\) 0 0
\(351\) −0.312330 −0.0166709
\(352\) −28.9448 −1.54276
\(353\) −17.4148 −0.926894 −0.463447 0.886125i \(-0.653388\pi\)
−0.463447 + 0.886125i \(0.653388\pi\)
\(354\) −43.9826 −2.33765
\(355\) 0 0
\(356\) 26.4490 1.40179
\(357\) −12.3891 −0.655703
\(358\) −3.35711 −0.177429
\(359\) 10.3720 0.547413 0.273706 0.961813i \(-0.411750\pi\)
0.273706 + 0.961813i \(0.411750\pi\)
\(360\) 0 0
\(361\) 13.4866 0.709823
\(362\) 30.1286 1.58352
\(363\) −21.0882 −1.10684
\(364\) −0.124628 −0.00653227
\(365\) 0 0
\(366\) 26.5348 1.38700
\(367\) −33.3869 −1.74278 −0.871392 0.490588i \(-0.836782\pi\)
−0.871392 + 0.490588i \(0.836782\pi\)
\(368\) −6.97210 −0.363446
\(369\) −18.5342 −0.964850
\(370\) 0 0
\(371\) 5.74831 0.298437
\(372\) −25.2533 −1.30932
\(373\) 22.5229 1.16619 0.583096 0.812403i \(-0.301841\pi\)
0.583096 + 0.812403i \(0.301841\pi\)
\(374\) −30.1151 −1.55721
\(375\) 0 0
\(376\) 20.2207 1.04280
\(377\) 0.235193 0.0121131
\(378\) −27.3484 −1.40665
\(379\) −9.58707 −0.492455 −0.246227 0.969212i \(-0.579191\pi\)
−0.246227 + 0.969212i \(0.579191\pi\)
\(380\) 0 0
\(381\) −40.0544 −2.05205
\(382\) −59.6129 −3.05006
\(383\) 3.52599 0.180170 0.0900848 0.995934i \(-0.471286\pi\)
0.0900848 + 0.995934i \(0.471286\pi\)
\(384\) −46.1006 −2.35256
\(385\) 0 0
\(386\) 43.8255 2.23066
\(387\) −71.5557 −3.63738
\(388\) 46.3186 2.35147
\(389\) −9.44773 −0.479019 −0.239509 0.970894i \(-0.576987\pi\)
−0.239509 + 0.970894i \(0.576987\pi\)
\(390\) 0 0
\(391\) −19.6971 −0.996124
\(392\) 11.5391 0.582814
\(393\) −32.0517 −1.61680
\(394\) 2.22883 0.112287
\(395\) 0 0
\(396\) −77.4532 −3.89217
\(397\) −21.3370 −1.07087 −0.535437 0.844575i \(-0.679853\pi\)
−0.535437 + 0.844575i \(0.679853\pi\)
\(398\) −43.2852 −2.16969
\(399\) −22.1537 −1.10907
\(400\) 0 0
\(401\) 35.9093 1.79322 0.896611 0.442819i \(-0.146021\pi\)
0.896611 + 0.442819i \(0.146021\pi\)
\(402\) −22.6801 −1.13118
\(403\) 0.0919403 0.00457987
\(404\) 49.7478 2.47505
\(405\) 0 0
\(406\) 20.5941 1.02207
\(407\) −50.3882 −2.49765
\(408\) −20.8030 −1.02990
\(409\) −8.75900 −0.433105 −0.216552 0.976271i \(-0.569481\pi\)
−0.216552 + 0.976271i \(0.569481\pi\)
\(410\) 0 0
\(411\) −11.5599 −0.570206
\(412\) 8.49779 0.418656
\(413\) 8.37627 0.412169
\(414\) −84.7997 −4.16768
\(415\) 0 0
\(416\) 0.223248 0.0109456
\(417\) −9.71176 −0.475587
\(418\) −53.8505 −2.63391
\(419\) −39.8981 −1.94915 −0.974575 0.224063i \(-0.928068\pi\)
−0.974575 + 0.224063i \(0.928068\pi\)
\(420\) 0 0
\(421\) −1.39340 −0.0679103 −0.0339552 0.999423i \(-0.510810\pi\)
−0.0339552 + 0.999423i \(0.510810\pi\)
\(422\) −21.4563 −1.04448
\(423\) −57.7235 −2.80661
\(424\) 9.65218 0.468751
\(425\) 0 0
\(426\) 26.6190 1.28969
\(427\) −5.05342 −0.244552
\(428\) 3.05484 0.147661
\(429\) 0.419385 0.0202481
\(430\) 0 0
\(431\) 28.4874 1.37219 0.686094 0.727513i \(-0.259324\pi\)
0.686094 + 0.727513i \(0.259324\pi\)
\(432\) 10.7781 0.518564
\(433\) −4.19554 −0.201625 −0.100812 0.994905i \(-0.532144\pi\)
−0.100812 + 0.994905i \(0.532144\pi\)
\(434\) 8.05053 0.386438
\(435\) 0 0
\(436\) −30.5460 −1.46289
\(437\) −35.2215 −1.68487
\(438\) 2.66367 0.127275
\(439\) −0.288756 −0.0137816 −0.00689079 0.999976i \(-0.502193\pi\)
−0.00689079 + 0.999976i \(0.502193\pi\)
\(440\) 0 0
\(441\) −32.9404 −1.56859
\(442\) 0.232274 0.0110482
\(443\) −2.51971 −0.119715 −0.0598576 0.998207i \(-0.519065\pi\)
−0.0598576 + 0.998207i \(0.519065\pi\)
\(444\) −106.748 −5.06602
\(445\) 0 0
\(446\) 60.5926 2.86914
\(447\) −35.7571 −1.69125
\(448\) 16.6498 0.786628
\(449\) 11.0944 0.523579 0.261790 0.965125i \(-0.415687\pi\)
0.261790 + 0.965125i \(0.415687\pi\)
\(450\) 0 0
\(451\) 12.7606 0.600874
\(452\) 38.0767 1.79098
\(453\) 26.8144 1.25985
\(454\) −46.1763 −2.16716
\(455\) 0 0
\(456\) −37.1991 −1.74201
\(457\) −11.7408 −0.549211 −0.274606 0.961557i \(-0.588547\pi\)
−0.274606 + 0.961557i \(0.588547\pi\)
\(458\) 37.0365 1.73060
\(459\) 30.4496 1.42127
\(460\) 0 0
\(461\) −22.3702 −1.04188 −0.520941 0.853593i \(-0.674419\pi\)
−0.520941 + 0.853593i \(0.674419\pi\)
\(462\) 36.7225 1.70848
\(463\) −33.4077 −1.55259 −0.776294 0.630371i \(-0.782903\pi\)
−0.776294 + 0.630371i \(0.782903\pi\)
\(464\) −8.11625 −0.376787
\(465\) 0 0
\(466\) −1.54650 −0.0716400
\(467\) 19.6617 0.909837 0.454919 0.890533i \(-0.349668\pi\)
0.454919 + 0.890533i \(0.349668\pi\)
\(468\) 0.597388 0.0276143
\(469\) 4.31931 0.199447
\(470\) 0 0
\(471\) −0.280461 −0.0129229
\(472\) 14.0649 0.647389
\(473\) 49.2655 2.26523
\(474\) 33.9004 1.55710
\(475\) 0 0
\(476\) 12.1502 0.556903
\(477\) −27.5538 −1.26160
\(478\) −65.2956 −2.98655
\(479\) −39.2770 −1.79461 −0.897306 0.441410i \(-0.854479\pi\)
−0.897306 + 0.441410i \(0.854479\pi\)
\(480\) 0 0
\(481\) 0.388639 0.0177204
\(482\) 4.83288 0.220131
\(483\) 24.0187 1.09289
\(484\) 20.6814 0.940066
\(485\) 0 0
\(486\) 6.51545 0.295547
\(487\) −7.76387 −0.351815 −0.175907 0.984407i \(-0.556286\pi\)
−0.175907 + 0.984407i \(0.556286\pi\)
\(488\) −8.48538 −0.384115
\(489\) 16.7679 0.758271
\(490\) 0 0
\(491\) −35.9660 −1.62312 −0.811562 0.584267i \(-0.801382\pi\)
−0.811562 + 0.584267i \(0.801382\pi\)
\(492\) 27.0334 1.21876
\(493\) −22.9294 −1.03269
\(494\) 0.415343 0.0186872
\(495\) 0 0
\(496\) −3.17275 −0.142461
\(497\) −5.06945 −0.227396
\(498\) −42.9024 −1.92250
\(499\) −12.6195 −0.564926 −0.282463 0.959278i \(-0.591151\pi\)
−0.282463 + 0.959278i \(0.591151\pi\)
\(500\) 0 0
\(501\) −69.1225 −3.08816
\(502\) 32.3282 1.44288
\(503\) −41.7449 −1.86131 −0.930656 0.365895i \(-0.880763\pi\)
−0.930656 + 0.365895i \(0.880763\pi\)
\(504\) 17.0564 0.759754
\(505\) 0 0
\(506\) 58.3838 2.59548
\(507\) 39.3353 1.74694
\(508\) 39.2819 1.74285
\(509\) −9.54868 −0.423238 −0.211619 0.977352i \(-0.567874\pi\)
−0.211619 + 0.977352i \(0.567874\pi\)
\(510\) 0 0
\(511\) −0.507282 −0.0224408
\(512\) −12.5708 −0.555558
\(513\) 54.4488 2.40397
\(514\) 21.7671 0.960105
\(515\) 0 0
\(516\) 104.369 4.59460
\(517\) 39.7421 1.74786
\(518\) 34.0302 1.49520
\(519\) 58.8932 2.58512
\(520\) 0 0
\(521\) 9.48197 0.415412 0.207706 0.978191i \(-0.433400\pi\)
0.207706 + 0.978191i \(0.433400\pi\)
\(522\) −98.7156 −4.32066
\(523\) −21.5237 −0.941164 −0.470582 0.882356i \(-0.655956\pi\)
−0.470582 + 0.882356i \(0.655956\pi\)
\(524\) 31.4335 1.37318
\(525\) 0 0
\(526\) 14.8026 0.645423
\(527\) −8.96343 −0.390453
\(528\) −14.4725 −0.629835
\(529\) 15.1866 0.660285
\(530\) 0 0
\(531\) −40.1507 −1.74239
\(532\) 21.7265 0.941962
\(533\) −0.0984212 −0.00426310
\(534\) 60.1096 2.60120
\(535\) 0 0
\(536\) 7.25270 0.313269
\(537\) −4.55788 −0.196687
\(538\) −11.4897 −0.495355
\(539\) 22.6792 0.976863
\(540\) 0 0
\(541\) 5.18867 0.223078 0.111539 0.993760i \(-0.464422\pi\)
0.111539 + 0.993760i \(0.464422\pi\)
\(542\) 3.64365 0.156508
\(543\) 40.9050 1.75540
\(544\) −21.7649 −0.933161
\(545\) 0 0
\(546\) −0.283237 −0.0121214
\(547\) −5.82831 −0.249201 −0.124600 0.992207i \(-0.539765\pi\)
−0.124600 + 0.992207i \(0.539765\pi\)
\(548\) 11.3369 0.484289
\(549\) 24.2230 1.03381
\(550\) 0 0
\(551\) −41.0014 −1.74672
\(552\) 40.3307 1.71659
\(553\) −6.45616 −0.274544
\(554\) −22.7626 −0.967090
\(555\) 0 0
\(556\) 9.52445 0.403927
\(557\) 7.89296 0.334435 0.167218 0.985920i \(-0.446522\pi\)
0.167218 + 0.985920i \(0.446522\pi\)
\(558\) −38.5893 −1.63361
\(559\) −0.379980 −0.0160714
\(560\) 0 0
\(561\) −40.8867 −1.72624
\(562\) 34.4395 1.45274
\(563\) 30.1329 1.26995 0.634974 0.772533i \(-0.281011\pi\)
0.634974 + 0.772533i \(0.281011\pi\)
\(564\) 84.1940 3.54521
\(565\) 0 0
\(566\) −28.5997 −1.20213
\(567\) −13.4056 −0.562981
\(568\) −8.51228 −0.357167
\(569\) −0.652674 −0.0273615 −0.0136808 0.999906i \(-0.504355\pi\)
−0.0136808 + 0.999906i \(0.504355\pi\)
\(570\) 0 0
\(571\) 8.64196 0.361655 0.180827 0.983515i \(-0.442122\pi\)
0.180827 + 0.983515i \(0.442122\pi\)
\(572\) −0.411297 −0.0171972
\(573\) −80.9352 −3.38112
\(574\) −8.61802 −0.359709
\(575\) 0 0
\(576\) −79.8088 −3.32536
\(577\) −39.1576 −1.63015 −0.815076 0.579354i \(-0.803305\pi\)
−0.815076 + 0.579354i \(0.803305\pi\)
\(578\) 15.2452 0.634117
\(579\) 59.5011 2.47278
\(580\) 0 0
\(581\) 8.17055 0.338972
\(582\) 105.266 4.36343
\(583\) 18.9706 0.785681
\(584\) −0.851794 −0.0352475
\(585\) 0 0
\(586\) −29.3220 −1.21128
\(587\) 19.2485 0.794472 0.397236 0.917716i \(-0.369969\pi\)
0.397236 + 0.917716i \(0.369969\pi\)
\(588\) 48.0460 1.98139
\(589\) −16.0280 −0.660423
\(590\) 0 0
\(591\) 3.02604 0.124475
\(592\) −13.4115 −0.551208
\(593\) 44.9942 1.84769 0.923845 0.382768i \(-0.125029\pi\)
0.923845 + 0.382768i \(0.125029\pi\)
\(594\) −90.2554 −3.70322
\(595\) 0 0
\(596\) 35.0674 1.43642
\(597\) −58.7675 −2.40519
\(598\) −0.450308 −0.0184145
\(599\) 36.4837 1.49068 0.745342 0.666682i \(-0.232286\pi\)
0.745342 + 0.666682i \(0.232286\pi\)
\(600\) 0 0
\(601\) 36.7049 1.49722 0.748612 0.663008i \(-0.230720\pi\)
0.748612 + 0.663008i \(0.230720\pi\)
\(602\) −33.2720 −1.35607
\(603\) −20.7041 −0.843137
\(604\) −26.2972 −1.07002
\(605\) 0 0
\(606\) 113.060 4.59274
\(607\) −5.22622 −0.212126 −0.106063 0.994359i \(-0.533824\pi\)
−0.106063 + 0.994359i \(0.533824\pi\)
\(608\) −38.9190 −1.57837
\(609\) 27.9603 1.13301
\(610\) 0 0
\(611\) −0.306527 −0.0124008
\(612\) −58.2405 −2.35423
\(613\) −2.54201 −0.102671 −0.0513353 0.998681i \(-0.516348\pi\)
−0.0513353 + 0.998681i \(0.516348\pi\)
\(614\) −11.3046 −0.456216
\(615\) 0 0
\(616\) −11.7432 −0.473148
\(617\) 22.4800 0.905011 0.452506 0.891762i \(-0.350530\pi\)
0.452506 + 0.891762i \(0.350530\pi\)
\(618\) 19.3126 0.776866
\(619\) 13.4275 0.539696 0.269848 0.962903i \(-0.413026\pi\)
0.269848 + 0.962903i \(0.413026\pi\)
\(620\) 0 0
\(621\) −59.0325 −2.36889
\(622\) −13.3056 −0.533506
\(623\) −11.4476 −0.458637
\(624\) 0.111625 0.00446857
\(625\) 0 0
\(626\) −33.3683 −1.33367
\(627\) −73.1118 −2.91980
\(628\) 0.275051 0.0109757
\(629\) −37.8891 −1.51074
\(630\) 0 0
\(631\) −32.2619 −1.28433 −0.642163 0.766568i \(-0.721963\pi\)
−0.642163 + 0.766568i \(0.721963\pi\)
\(632\) −10.8408 −0.431222
\(633\) −29.1308 −1.15785
\(634\) −24.2221 −0.961984
\(635\) 0 0
\(636\) 40.1893 1.59361
\(637\) −0.174922 −0.00693068
\(638\) 67.9648 2.69075
\(639\) 24.2998 0.961285
\(640\) 0 0
\(641\) 9.71139 0.383577 0.191788 0.981436i \(-0.438571\pi\)
0.191788 + 0.981436i \(0.438571\pi\)
\(642\) 6.94260 0.274003
\(643\) 11.3068 0.445897 0.222949 0.974830i \(-0.428432\pi\)
0.222949 + 0.974830i \(0.428432\pi\)
\(644\) −23.5555 −0.928216
\(645\) 0 0
\(646\) −40.4926 −1.59316
\(647\) −33.4004 −1.31311 −0.656553 0.754280i \(-0.727986\pi\)
−0.656553 + 0.754280i \(0.727986\pi\)
\(648\) −22.5098 −0.884267
\(649\) 27.6434 1.08510
\(650\) 0 0
\(651\) 10.9301 0.428383
\(652\) −16.4445 −0.644016
\(653\) −39.2091 −1.53437 −0.767185 0.641426i \(-0.778343\pi\)
−0.767185 + 0.641426i \(0.778343\pi\)
\(654\) −69.4208 −2.71457
\(655\) 0 0
\(656\) 3.39640 0.132607
\(657\) 2.43159 0.0948655
\(658\) −26.8403 −1.04634
\(659\) 13.5095 0.526254 0.263127 0.964761i \(-0.415246\pi\)
0.263127 + 0.964761i \(0.415246\pi\)
\(660\) 0 0
\(661\) −33.2439 −1.29304 −0.646519 0.762898i \(-0.723776\pi\)
−0.646519 + 0.762898i \(0.723776\pi\)
\(662\) −56.8757 −2.21054
\(663\) 0.315355 0.0122474
\(664\) 13.7194 0.532418
\(665\) 0 0
\(666\) −163.120 −6.32077
\(667\) 44.4531 1.72123
\(668\) 67.7893 2.62285
\(669\) 82.2654 3.18056
\(670\) 0 0
\(671\) −16.6773 −0.643821
\(672\) 26.5402 1.02381
\(673\) −17.3913 −0.670386 −0.335193 0.942149i \(-0.608802\pi\)
−0.335193 + 0.942149i \(0.608802\pi\)
\(674\) −58.7102 −2.26143
\(675\) 0 0
\(676\) −38.5766 −1.48372
\(677\) 1.49868 0.0575991 0.0287995 0.999585i \(-0.490832\pi\)
0.0287995 + 0.999585i \(0.490832\pi\)
\(678\) 86.5354 3.32337
\(679\) −20.0475 −0.769351
\(680\) 0 0
\(681\) −62.6927 −2.40239
\(682\) 26.5684 1.01736
\(683\) −38.8528 −1.48666 −0.743331 0.668924i \(-0.766755\pi\)
−0.743331 + 0.668924i \(0.766755\pi\)
\(684\) −104.143 −3.98202
\(685\) 0 0
\(686\) −35.3565 −1.34992
\(687\) 50.2837 1.91844
\(688\) 13.1127 0.499915
\(689\) −0.146318 −0.00557427
\(690\) 0 0
\(691\) −31.4387 −1.19598 −0.597992 0.801502i \(-0.704035\pi\)
−0.597992 + 0.801502i \(0.704035\pi\)
\(692\) −57.7573 −2.19560
\(693\) 33.5231 1.27344
\(694\) −26.4291 −1.00323
\(695\) 0 0
\(696\) 46.9490 1.77960
\(697\) 9.59527 0.363447
\(698\) 18.8870 0.714883
\(699\) −2.09965 −0.0794160
\(700\) 0 0
\(701\) −14.6371 −0.552835 −0.276418 0.961038i \(-0.589147\pi\)
−0.276418 + 0.961038i \(0.589147\pi\)
\(702\) 0.696130 0.0262737
\(703\) −67.7517 −2.55530
\(704\) 54.9476 2.07092
\(705\) 0 0
\(706\) 38.8145 1.46080
\(707\) −21.5317 −0.809783
\(708\) 58.5627 2.20092
\(709\) 3.84602 0.144440 0.0722201 0.997389i \(-0.476992\pi\)
0.0722201 + 0.997389i \(0.476992\pi\)
\(710\) 0 0
\(711\) 30.9468 1.16060
\(712\) −19.2220 −0.720375
\(713\) 17.3773 0.650786
\(714\) 27.6133 1.03340
\(715\) 0 0
\(716\) 4.46998 0.167051
\(717\) −88.6505 −3.31072
\(718\) −23.1174 −0.862733
\(719\) −43.8516 −1.63539 −0.817693 0.575654i \(-0.804748\pi\)
−0.817693 + 0.575654i \(0.804748\pi\)
\(720\) 0 0
\(721\) −3.67798 −0.136975
\(722\) −30.0594 −1.11870
\(723\) 6.56150 0.244025
\(724\) −40.1160 −1.49090
\(725\) 0 0
\(726\) 47.0019 1.74440
\(727\) 35.0618 1.30037 0.650186 0.759775i \(-0.274691\pi\)
0.650186 + 0.759775i \(0.274691\pi\)
\(728\) 0.0905741 0.00335690
\(729\) −22.4643 −0.832012
\(730\) 0 0
\(731\) 37.0449 1.37016
\(732\) −35.3310 −1.30587
\(733\) 17.3916 0.642375 0.321187 0.947016i \(-0.395918\pi\)
0.321187 + 0.947016i \(0.395918\pi\)
\(734\) 74.4137 2.74666
\(735\) 0 0
\(736\) 42.1954 1.55534
\(737\) 14.2546 0.525075
\(738\) 41.3095 1.52062
\(739\) −35.9634 −1.32293 −0.661467 0.749974i \(-0.730066\pi\)
−0.661467 + 0.749974i \(0.730066\pi\)
\(740\) 0 0
\(741\) 0.563904 0.0207155
\(742\) −12.8120 −0.470343
\(743\) −7.32782 −0.268832 −0.134416 0.990925i \(-0.542916\pi\)
−0.134416 + 0.990925i \(0.542916\pi\)
\(744\) 18.3530 0.672855
\(745\) 0 0
\(746\) −50.1997 −1.83794
\(747\) −39.1646 −1.43296
\(748\) 40.0981 1.46613
\(749\) −1.32218 −0.0483116
\(750\) 0 0
\(751\) −4.38020 −0.159836 −0.0799179 0.996801i \(-0.525466\pi\)
−0.0799179 + 0.996801i \(0.525466\pi\)
\(752\) 10.5779 0.385736
\(753\) 43.8914 1.59949
\(754\) −0.524205 −0.0190904
\(755\) 0 0
\(756\) 36.4143 1.32438
\(757\) −14.6109 −0.531042 −0.265521 0.964105i \(-0.585544\pi\)
−0.265521 + 0.964105i \(0.585544\pi\)
\(758\) 21.3679 0.776118
\(759\) 79.2666 2.87720
\(760\) 0 0
\(761\) 25.1421 0.911401 0.455700 0.890133i \(-0.349389\pi\)
0.455700 + 0.890133i \(0.349389\pi\)
\(762\) 89.2745 3.23407
\(763\) 13.2208 0.478626
\(764\) 79.3742 2.87166
\(765\) 0 0
\(766\) −7.85883 −0.283951
\(767\) −0.213210 −0.00769858
\(768\) 24.3004 0.876864
\(769\) −8.07722 −0.291272 −0.145636 0.989338i \(-0.546523\pi\)
−0.145636 + 0.989338i \(0.546523\pi\)
\(770\) 0 0
\(771\) 29.5528 1.06432
\(772\) −58.3535 −2.10019
\(773\) −35.4654 −1.27560 −0.637802 0.770201i \(-0.720156\pi\)
−0.637802 + 0.770201i \(0.720156\pi\)
\(774\) 159.485 5.73258
\(775\) 0 0
\(776\) −33.6624 −1.20841
\(777\) 46.2022 1.65749
\(778\) 21.0574 0.754943
\(779\) 17.1579 0.614744
\(780\) 0 0
\(781\) −16.7302 −0.598654
\(782\) 43.9014 1.56991
\(783\) −68.7199 −2.45585
\(784\) 6.03637 0.215585
\(785\) 0 0
\(786\) 71.4378 2.54810
\(787\) −36.2547 −1.29234 −0.646171 0.763193i \(-0.723631\pi\)
−0.646171 + 0.763193i \(0.723631\pi\)
\(788\) −2.96767 −0.105719
\(789\) 20.0972 0.715478
\(790\) 0 0
\(791\) −16.4802 −0.585969
\(792\) 56.2897 2.00017
\(793\) 0.128630 0.00456780
\(794\) 47.5566 1.68772
\(795\) 0 0
\(796\) 57.6340 2.04278
\(797\) −37.6915 −1.33510 −0.667551 0.744565i \(-0.732657\pi\)
−0.667551 + 0.744565i \(0.732657\pi\)
\(798\) 49.3769 1.74792
\(799\) 29.8839 1.05722
\(800\) 0 0
\(801\) 54.8725 1.93883
\(802\) −80.0355 −2.82615
\(803\) −1.67413 −0.0590788
\(804\) 30.1985 1.06502
\(805\) 0 0
\(806\) −0.204919 −0.00721797
\(807\) −15.5993 −0.549122
\(808\) −36.1546 −1.27191
\(809\) −40.7120 −1.43136 −0.715678 0.698430i \(-0.753882\pi\)
−0.715678 + 0.698430i \(0.753882\pi\)
\(810\) 0 0
\(811\) −50.3877 −1.76935 −0.884676 0.466207i \(-0.845620\pi\)
−0.884676 + 0.466207i \(0.845620\pi\)
\(812\) −27.4210 −0.962289
\(813\) 4.94692 0.173496
\(814\) 112.307 3.93634
\(815\) 0 0
\(816\) −10.8825 −0.380964
\(817\) 66.2421 2.31752
\(818\) 19.5223 0.682581
\(819\) −0.258560 −0.00903481
\(820\) 0 0
\(821\) 27.4410 0.957697 0.478849 0.877897i \(-0.341054\pi\)
0.478849 + 0.877897i \(0.341054\pi\)
\(822\) 25.7650 0.898656
\(823\) 35.1356 1.22475 0.612375 0.790567i \(-0.290214\pi\)
0.612375 + 0.790567i \(0.290214\pi\)
\(824\) −6.17583 −0.215145
\(825\) 0 0
\(826\) −18.6693 −0.649587
\(827\) −6.76979 −0.235409 −0.117704 0.993049i \(-0.537553\pi\)
−0.117704 + 0.993049i \(0.537553\pi\)
\(828\) 112.910 3.92391
\(829\) −37.4923 −1.30216 −0.651080 0.759009i \(-0.725684\pi\)
−0.651080 + 0.759009i \(0.725684\pi\)
\(830\) 0 0
\(831\) −30.9044 −1.07206
\(832\) −0.423805 −0.0146928
\(833\) 17.0535 0.590869
\(834\) 21.6458 0.749534
\(835\) 0 0
\(836\) 71.7017 2.47986
\(837\) −26.8635 −0.928540
\(838\) 88.9260 3.07190
\(839\) 39.5332 1.36484 0.682419 0.730961i \(-0.260928\pi\)
0.682419 + 0.730961i \(0.260928\pi\)
\(840\) 0 0
\(841\) 22.7480 0.784413
\(842\) 3.10566 0.107028
\(843\) 46.7578 1.61043
\(844\) 28.5690 0.983385
\(845\) 0 0
\(846\) 128.656 4.42328
\(847\) −8.95128 −0.307570
\(848\) 5.04926 0.173392
\(849\) −38.8292 −1.33261
\(850\) 0 0
\(851\) 73.4553 2.51802
\(852\) −35.4430 −1.21426
\(853\) 48.5066 1.66084 0.830418 0.557141i \(-0.188102\pi\)
0.830418 + 0.557141i \(0.188102\pi\)
\(854\) 11.2632 0.385419
\(855\) 0 0
\(856\) −2.22012 −0.0758823
\(857\) 23.5135 0.803205 0.401602 0.915814i \(-0.368453\pi\)
0.401602 + 0.915814i \(0.368453\pi\)
\(858\) −0.934738 −0.0319114
\(859\) −53.5959 −1.82867 −0.914335 0.404959i \(-0.867286\pi\)
−0.914335 + 0.404959i \(0.867286\pi\)
\(860\) 0 0
\(861\) −11.7005 −0.398753
\(862\) −63.4935 −2.16260
\(863\) −21.5279 −0.732819 −0.366409 0.930454i \(-0.619413\pi\)
−0.366409 + 0.930454i \(0.619413\pi\)
\(864\) −65.2297 −2.21916
\(865\) 0 0
\(866\) 9.35113 0.317764
\(867\) 20.6981 0.702946
\(868\) −10.7192 −0.363835
\(869\) −21.3066 −0.722778
\(870\) 0 0
\(871\) −0.109944 −0.00372532
\(872\) 22.1996 0.751772
\(873\) 96.0951 3.25233
\(874\) 78.5026 2.65539
\(875\) 0 0
\(876\) −3.54666 −0.119830
\(877\) −7.08676 −0.239303 −0.119651 0.992816i \(-0.538178\pi\)
−0.119651 + 0.992816i \(0.538178\pi\)
\(878\) 0.643588 0.0217200
\(879\) −39.8100 −1.34276
\(880\) 0 0
\(881\) −38.2223 −1.28774 −0.643871 0.765134i \(-0.722673\pi\)
−0.643871 + 0.765134i \(0.722673\pi\)
\(882\) 73.4186 2.47213
\(883\) −58.3397 −1.96329 −0.981644 0.190723i \(-0.938917\pi\)
−0.981644 + 0.190723i \(0.938917\pi\)
\(884\) −0.309272 −0.0104020
\(885\) 0 0
\(886\) 5.61601 0.188673
\(887\) −25.8682 −0.868570 −0.434285 0.900776i \(-0.642999\pi\)
−0.434285 + 0.900776i \(0.642999\pi\)
\(888\) 77.5797 2.60340
\(889\) −17.0019 −0.570224
\(890\) 0 0
\(891\) −44.2411 −1.48213
\(892\) −80.6787 −2.70132
\(893\) 53.4371 1.78820
\(894\) 79.6963 2.66544
\(895\) 0 0
\(896\) −19.5683 −0.653730
\(897\) −0.611375 −0.0204132
\(898\) −24.7276 −0.825171
\(899\) 20.2290 0.674675
\(900\) 0 0
\(901\) 14.2648 0.475230
\(902\) −28.4412 −0.946989
\(903\) −45.1728 −1.50326
\(904\) −27.6725 −0.920374
\(905\) 0 0
\(906\) −59.7646 −1.98555
\(907\) 34.0342 1.13009 0.565043 0.825061i \(-0.308860\pi\)
0.565043 + 0.825061i \(0.308860\pi\)
\(908\) 61.4835 2.04040
\(909\) 103.210 3.42325
\(910\) 0 0
\(911\) −38.9474 −1.29039 −0.645193 0.764020i \(-0.723223\pi\)
−0.645193 + 0.764020i \(0.723223\pi\)
\(912\) −19.4597 −0.644374
\(913\) 26.9645 0.892394
\(914\) 26.1682 0.865568
\(915\) 0 0
\(916\) −49.3139 −1.62938
\(917\) −13.6050 −0.449276
\(918\) −67.8670 −2.23994
\(919\) 5.14400 0.169685 0.0848424 0.996394i \(-0.472961\pi\)
0.0848424 + 0.996394i \(0.472961\pi\)
\(920\) 0 0
\(921\) −15.3480 −0.505735
\(922\) 49.8592 1.64203
\(923\) 0.129038 0.00424735
\(924\) −48.8958 −1.60855
\(925\) 0 0
\(926\) 74.4601 2.44691
\(927\) 17.6300 0.579045
\(928\) 49.1198 1.61244
\(929\) 44.9253 1.47395 0.736976 0.675919i \(-0.236253\pi\)
0.736976 + 0.675919i \(0.236253\pi\)
\(930\) 0 0
\(931\) 30.4944 0.999412
\(932\) 2.05915 0.0674498
\(933\) −18.0647 −0.591413
\(934\) −43.8227 −1.43392
\(935\) 0 0
\(936\) −0.434156 −0.0141908
\(937\) 32.4004 1.05848 0.529238 0.848473i \(-0.322478\pi\)
0.529238 + 0.848473i \(0.322478\pi\)
\(938\) −9.62700 −0.314333
\(939\) −45.3035 −1.47842
\(940\) 0 0
\(941\) −14.0427 −0.457777 −0.228889 0.973453i \(-0.573509\pi\)
−0.228889 + 0.973453i \(0.573509\pi\)
\(942\) 0.625098 0.0203668
\(943\) −18.6023 −0.605773
\(944\) 7.35765 0.239471
\(945\) 0 0
\(946\) −109.804 −3.57005
\(947\) −15.7483 −0.511751 −0.255876 0.966710i \(-0.582364\pi\)
−0.255876 + 0.966710i \(0.582364\pi\)
\(948\) −45.1382 −1.46602
\(949\) 0.0129124 0.000419154 0
\(950\) 0 0
\(951\) −32.8859 −1.06640
\(952\) −8.83024 −0.286190
\(953\) −7.73667 −0.250615 −0.125308 0.992118i \(-0.539992\pi\)
−0.125308 + 0.992118i \(0.539992\pi\)
\(954\) 61.4127 1.98831
\(955\) 0 0
\(956\) 86.9407 2.81186
\(957\) 92.2745 2.98281
\(958\) 87.5417 2.82834
\(959\) −4.90681 −0.158449
\(960\) 0 0
\(961\) −23.0922 −0.744910
\(962\) −0.866209 −0.0279277
\(963\) 6.33773 0.204231
\(964\) −6.43495 −0.207256
\(965\) 0 0
\(966\) −53.5336 −1.72242
\(967\) 31.6140 1.01664 0.508319 0.861169i \(-0.330267\pi\)
0.508319 + 0.861169i \(0.330267\pi\)
\(968\) −15.0304 −0.483095
\(969\) −54.9760 −1.76608
\(970\) 0 0
\(971\) −35.4323 −1.13708 −0.568539 0.822657i \(-0.692491\pi\)
−0.568539 + 0.822657i \(0.692491\pi\)
\(972\) −8.67530 −0.278260
\(973\) −4.12234 −0.132156
\(974\) 17.3043 0.554467
\(975\) 0 0
\(976\) −4.43889 −0.142085
\(977\) −55.8056 −1.78538 −0.892690 0.450671i \(-0.851185\pi\)
−0.892690 + 0.450671i \(0.851185\pi\)
\(978\) −37.3728 −1.19505
\(979\) −37.7793 −1.20743
\(980\) 0 0
\(981\) −63.3725 −2.02333
\(982\) 80.1620 2.55807
\(983\) 29.2455 0.932787 0.466393 0.884577i \(-0.345553\pi\)
0.466393 + 0.884577i \(0.345553\pi\)
\(984\) −19.6467 −0.626315
\(985\) 0 0
\(986\) 51.1058 1.62754
\(987\) −36.4406 −1.15992
\(988\) −0.553028 −0.0175942
\(989\) −71.8187 −2.28370
\(990\) 0 0
\(991\) −15.9250 −0.505875 −0.252937 0.967483i \(-0.581397\pi\)
−0.252937 + 0.967483i \(0.581397\pi\)
\(992\) 19.2016 0.609651
\(993\) −77.2191 −2.45047
\(994\) 11.2989 0.358380
\(995\) 0 0
\(996\) 57.1244 1.81006
\(997\) −7.45247 −0.236022 −0.118011 0.993012i \(-0.537652\pi\)
−0.118011 + 0.993012i \(0.537652\pi\)
\(998\) 28.1267 0.890334
\(999\) −113.554 −3.59270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4925.2.a.l.1.4 17
5.4 even 2 985.2.a.g.1.14 17
15.14 odd 2 8865.2.a.z.1.4 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.g.1.14 17 5.4 even 2
4925.2.a.l.1.4 17 1.1 even 1 trivial
8865.2.a.z.1.4 17 15.14 odd 2