Properties

Label 985.2.a.g.1.14
Level $985$
Weight $2$
Character 985.1
Self dual yes
Analytic conductor $7.865$
Analytic rank $0$
Dimension $17$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [985,2,Mod(1,985)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(985, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("985.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 985 = 5 \cdot 197 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 985.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(7.86526459910\)
Analytic rank: \(0\)
Dimension: \(17\)
Coefficient field: \(\mathbb{Q}[x]/(x^{17} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{17} - 6 x^{16} - 8 x^{15} + 106 x^{14} - 60 x^{13} - 698 x^{12} + 877 x^{11} + 2076 x^{10} - 3556 x^{9} + \cdots + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(2.22883\) of defining polynomial
Character \(\chi\) \(=\) 985.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.22883 q^{2} +3.02604 q^{3} +2.96767 q^{4} -1.00000 q^{5} +6.74452 q^{6} +1.28446 q^{7} +2.15678 q^{8} +6.15690 q^{9} -2.22883 q^{10} -4.23897 q^{11} +8.98029 q^{12} -0.0326948 q^{13} +2.86284 q^{14} -3.02604 q^{15} -1.12826 q^{16} +3.18747 q^{17} +13.7227 q^{18} -5.69971 q^{19} -2.96767 q^{20} +3.88682 q^{21} -9.44795 q^{22} -6.17953 q^{23} +6.52650 q^{24} +1.00000 q^{25} -0.0728710 q^{26} +9.55291 q^{27} +3.81186 q^{28} +7.19361 q^{29} -6.74452 q^{30} +2.81208 q^{31} -6.82825 q^{32} -12.8273 q^{33} +7.10433 q^{34} -1.28446 q^{35} +18.2717 q^{36} -11.8869 q^{37} -12.7037 q^{38} -0.0989356 q^{39} -2.15678 q^{40} -3.01031 q^{41} +8.66306 q^{42} +11.6220 q^{43} -12.5799 q^{44} -6.15690 q^{45} -13.7731 q^{46} +9.37541 q^{47} -3.41415 q^{48} -5.35016 q^{49} +2.22883 q^{50} +9.64541 q^{51} -0.0970274 q^{52} +4.47527 q^{53} +21.2918 q^{54} +4.23897 q^{55} +2.77030 q^{56} -17.2475 q^{57} +16.0333 q^{58} -6.52124 q^{59} -8.98029 q^{60} +3.93428 q^{61} +6.26764 q^{62} +7.90829 q^{63} -12.9625 q^{64} +0.0326948 q^{65} -28.5898 q^{66} +3.36275 q^{67} +9.45938 q^{68} -18.6995 q^{69} -2.86284 q^{70} +3.94676 q^{71} +13.2791 q^{72} -0.394938 q^{73} -26.4938 q^{74} +3.02604 q^{75} -16.9149 q^{76} -5.44479 q^{77} -0.220510 q^{78} +5.02637 q^{79} +1.12826 q^{80} +10.4367 q^{81} -6.70945 q^{82} +6.36108 q^{83} +11.5348 q^{84} -3.18747 q^{85} +25.9035 q^{86} +21.7681 q^{87} -9.14253 q^{88} +8.91236 q^{89} -13.7227 q^{90} -0.0419951 q^{91} -18.3388 q^{92} +8.50946 q^{93} +20.8962 q^{94} +5.69971 q^{95} -20.6625 q^{96} -15.6077 q^{97} -11.9246 q^{98} -26.0990 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 17 q + 6 q^{2} + 5 q^{3} + 18 q^{4} - 17 q^{5} + 3 q^{6} + 7 q^{7} + 18 q^{8} + 22 q^{9} - 6 q^{10} + 7 q^{11} + 20 q^{12} + 3 q^{13} + 17 q^{14} - 5 q^{15} + 28 q^{16} + 6 q^{17} + 13 q^{18} - 23 q^{19}+ \cdots - 46 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.22883 1.57602 0.788010 0.615663i \(-0.211112\pi\)
0.788010 + 0.615663i \(0.211112\pi\)
\(3\) 3.02604 1.74708 0.873542 0.486749i \(-0.161817\pi\)
0.873542 + 0.486749i \(0.161817\pi\)
\(4\) 2.96767 1.48384
\(5\) −1.00000 −0.447214
\(6\) 6.74452 2.75344
\(7\) 1.28446 0.485480 0.242740 0.970091i \(-0.421954\pi\)
0.242740 + 0.970091i \(0.421954\pi\)
\(8\) 2.15678 0.762537
\(9\) 6.15690 2.05230
\(10\) −2.22883 −0.704817
\(11\) −4.23897 −1.27810 −0.639050 0.769166i \(-0.720672\pi\)
−0.639050 + 0.769166i \(0.720672\pi\)
\(12\) 8.98029 2.59239
\(13\) −0.0326948 −0.00906790 −0.00453395 0.999990i \(-0.501443\pi\)
−0.00453395 + 0.999990i \(0.501443\pi\)
\(14\) 2.86284 0.765126
\(15\) −3.02604 −0.781320
\(16\) −1.12826 −0.282065
\(17\) 3.18747 0.773076 0.386538 0.922274i \(-0.373671\pi\)
0.386538 + 0.922274i \(0.373671\pi\)
\(18\) 13.7227 3.23447
\(19\) −5.69971 −1.30760 −0.653801 0.756666i \(-0.726827\pi\)
−0.653801 + 0.756666i \(0.726827\pi\)
\(20\) −2.96767 −0.663592
\(21\) 3.88682 0.848174
\(22\) −9.44795 −2.01431
\(23\) −6.17953 −1.28852 −0.644260 0.764806i \(-0.722835\pi\)
−0.644260 + 0.764806i \(0.722835\pi\)
\(24\) 6.52650 1.33222
\(25\) 1.00000 0.200000
\(26\) −0.0728710 −0.0142912
\(27\) 9.55291 1.83846
\(28\) 3.81186 0.720373
\(29\) 7.19361 1.33582 0.667910 0.744242i \(-0.267189\pi\)
0.667910 + 0.744242i \(0.267189\pi\)
\(30\) −6.74452 −1.23137
\(31\) 2.81208 0.505064 0.252532 0.967588i \(-0.418737\pi\)
0.252532 + 0.967588i \(0.418737\pi\)
\(32\) −6.82825 −1.20708
\(33\) −12.8273 −2.23295
\(34\) 7.10433 1.21838
\(35\) −1.28446 −0.217113
\(36\) 18.2717 3.04528
\(37\) −11.8869 −1.95419 −0.977096 0.212800i \(-0.931742\pi\)
−0.977096 + 0.212800i \(0.931742\pi\)
\(38\) −12.7037 −2.06081
\(39\) −0.0989356 −0.0158424
\(40\) −2.15678 −0.341017
\(41\) −3.01031 −0.470131 −0.235065 0.971980i \(-0.575530\pi\)
−0.235065 + 0.971980i \(0.575530\pi\)
\(42\) 8.66306 1.33674
\(43\) 11.6220 1.77234 0.886172 0.463357i \(-0.153355\pi\)
0.886172 + 0.463357i \(0.153355\pi\)
\(44\) −12.5799 −1.89649
\(45\) −6.15690 −0.917817
\(46\) −13.7731 −2.03073
\(47\) 9.37541 1.36754 0.683772 0.729695i \(-0.260338\pi\)
0.683772 + 0.729695i \(0.260338\pi\)
\(48\) −3.41415 −0.492790
\(49\) −5.35016 −0.764309
\(50\) 2.22883 0.315204
\(51\) 9.64541 1.35063
\(52\) −0.0970274 −0.0134553
\(53\) 4.47527 0.614726 0.307363 0.951592i \(-0.400553\pi\)
0.307363 + 0.951592i \(0.400553\pi\)
\(54\) 21.2918 2.89745
\(55\) 4.23897 0.571583
\(56\) 2.77030 0.370196
\(57\) −17.2475 −2.28449
\(58\) 16.0333 2.10528
\(59\) −6.52124 −0.848993 −0.424497 0.905429i \(-0.639549\pi\)
−0.424497 + 0.905429i \(0.639549\pi\)
\(60\) −8.98029 −1.15935
\(61\) 3.93428 0.503733 0.251867 0.967762i \(-0.418956\pi\)
0.251867 + 0.967762i \(0.418956\pi\)
\(62\) 6.26764 0.795991
\(63\) 7.90829 0.996351
\(64\) −12.9625 −1.62031
\(65\) 0.0326948 0.00405529
\(66\) −28.5898 −3.51917
\(67\) 3.36275 0.410825 0.205412 0.978675i \(-0.434146\pi\)
0.205412 + 0.978675i \(0.434146\pi\)
\(68\) 9.45938 1.14712
\(69\) −18.6995 −2.25115
\(70\) −2.86284 −0.342175
\(71\) 3.94676 0.468394 0.234197 0.972189i \(-0.424754\pi\)
0.234197 + 0.972189i \(0.424754\pi\)
\(72\) 13.2791 1.56495
\(73\) −0.394938 −0.0462240 −0.0231120 0.999733i \(-0.507357\pi\)
−0.0231120 + 0.999733i \(0.507357\pi\)
\(74\) −26.4938 −3.07984
\(75\) 3.02604 0.349417
\(76\) −16.9149 −1.94027
\(77\) −5.44479 −0.620492
\(78\) −0.220510 −0.0249679
\(79\) 5.02637 0.565510 0.282755 0.959192i \(-0.408752\pi\)
0.282755 + 0.959192i \(0.408752\pi\)
\(80\) 1.12826 0.126143
\(81\) 10.4367 1.15964
\(82\) −6.70945 −0.740935
\(83\) 6.36108 0.698219 0.349110 0.937082i \(-0.386484\pi\)
0.349110 + 0.937082i \(0.386484\pi\)
\(84\) 11.5348 1.25855
\(85\) −3.18747 −0.345730
\(86\) 25.9035 2.79325
\(87\) 21.7681 2.33379
\(88\) −9.14253 −0.974597
\(89\) 8.91236 0.944708 0.472354 0.881409i \(-0.343404\pi\)
0.472354 + 0.881409i \(0.343404\pi\)
\(90\) −13.7227 −1.44650
\(91\) −0.0419951 −0.00440228
\(92\) −18.3388 −1.91195
\(93\) 8.50946 0.882390
\(94\) 20.8962 2.15528
\(95\) 5.69971 0.584777
\(96\) −20.6625 −2.10886
\(97\) −15.6077 −1.58472 −0.792361 0.610052i \(-0.791148\pi\)
−0.792361 + 0.610052i \(0.791148\pi\)
\(98\) −11.9246 −1.20457
\(99\) −26.0990 −2.62304
\(100\) 2.96767 0.296767
\(101\) 16.7632 1.66800 0.834002 0.551762i \(-0.186044\pi\)
0.834002 + 0.551762i \(0.186044\pi\)
\(102\) 21.4980 2.12862
\(103\) −2.86345 −0.282144 −0.141072 0.989999i \(-0.545055\pi\)
−0.141072 + 0.989999i \(0.545055\pi\)
\(104\) −0.0705154 −0.00691460
\(105\) −3.88682 −0.379315
\(106\) 9.97461 0.968820
\(107\) −1.02937 −0.0995130 −0.0497565 0.998761i \(-0.515845\pi\)
−0.0497565 + 0.998761i \(0.515845\pi\)
\(108\) 28.3499 2.72797
\(109\) −10.2929 −0.985883 −0.492941 0.870063i \(-0.664078\pi\)
−0.492941 + 0.870063i \(0.664078\pi\)
\(110\) 9.44795 0.900826
\(111\) −35.9702 −3.41414
\(112\) −1.44920 −0.136937
\(113\) −12.8305 −1.20699 −0.603495 0.797367i \(-0.706226\pi\)
−0.603495 + 0.797367i \(0.706226\pi\)
\(114\) −38.4418 −3.60040
\(115\) 6.17953 0.576244
\(116\) 21.3483 1.98214
\(117\) −0.201298 −0.0186101
\(118\) −14.5347 −1.33803
\(119\) 4.09418 0.375313
\(120\) −6.52650 −0.595785
\(121\) 6.96891 0.633537
\(122\) 8.76884 0.793893
\(123\) −9.10930 −0.821358
\(124\) 8.34534 0.749433
\(125\) −1.00000 −0.0894427
\(126\) 17.6262 1.57027
\(127\) −13.2366 −1.17456 −0.587279 0.809385i \(-0.699801\pi\)
−0.587279 + 0.809385i \(0.699801\pi\)
\(128\) −15.2346 −1.34656
\(129\) 35.1687 3.09643
\(130\) 0.0728710 0.00639121
\(131\) 10.5920 0.925425 0.462713 0.886508i \(-0.346876\pi\)
0.462713 + 0.886508i \(0.346876\pi\)
\(132\) −38.0672 −3.31333
\(133\) −7.32104 −0.634815
\(134\) 7.49499 0.647468
\(135\) −9.55291 −0.822183
\(136\) 6.87468 0.589499
\(137\) −3.82013 −0.326376 −0.163188 0.986595i \(-0.552178\pi\)
−0.163188 + 0.986595i \(0.552178\pi\)
\(138\) −41.6779 −3.54786
\(139\) 3.20940 0.272218 0.136109 0.990694i \(-0.456540\pi\)
0.136109 + 0.990694i \(0.456540\pi\)
\(140\) −3.81186 −0.322161
\(141\) 28.3704 2.38921
\(142\) 8.79664 0.738198
\(143\) 0.138592 0.0115897
\(144\) −6.94658 −0.578881
\(145\) −7.19361 −0.597397
\(146\) −0.880249 −0.0728499
\(147\) −16.1898 −1.33531
\(148\) −35.2764 −2.89970
\(149\) 11.8165 0.968042 0.484021 0.875056i \(-0.339176\pi\)
0.484021 + 0.875056i \(0.339176\pi\)
\(150\) 6.74452 0.550688
\(151\) −8.86121 −0.721115 −0.360558 0.932737i \(-0.617414\pi\)
−0.360558 + 0.932737i \(0.617414\pi\)
\(152\) −12.2930 −0.997095
\(153\) 19.6250 1.58658
\(154\) −12.1355 −0.977907
\(155\) −2.81208 −0.225872
\(156\) −0.293609 −0.0235075
\(157\) −0.0926825 −0.00739687 −0.00369843 0.999993i \(-0.501177\pi\)
−0.00369843 + 0.999993i \(0.501177\pi\)
\(158\) 11.2029 0.891255
\(159\) 13.5423 1.07398
\(160\) 6.82825 0.539821
\(161\) −7.93735 −0.625551
\(162\) 23.2617 1.82761
\(163\) 5.54121 0.434021 0.217010 0.976169i \(-0.430369\pi\)
0.217010 + 0.976169i \(0.430369\pi\)
\(164\) −8.93361 −0.697598
\(165\) 12.8273 0.998604
\(166\) 14.1778 1.10041
\(167\) −22.8426 −1.76761 −0.883806 0.467854i \(-0.845027\pi\)
−0.883806 + 0.467854i \(0.845027\pi\)
\(168\) 8.38302 0.646764
\(169\) −12.9989 −0.999918
\(170\) −7.10433 −0.544877
\(171\) −35.0925 −2.68359
\(172\) 34.4904 2.62987
\(173\) 19.4621 1.47968 0.739840 0.672783i \(-0.234901\pi\)
0.739840 + 0.672783i \(0.234901\pi\)
\(174\) 48.5174 3.67810
\(175\) 1.28446 0.0970960
\(176\) 4.78266 0.360506
\(177\) −19.7335 −1.48326
\(178\) 19.8641 1.48888
\(179\) 1.50622 0.112580 0.0562902 0.998414i \(-0.482073\pi\)
0.0562902 + 0.998414i \(0.482073\pi\)
\(180\) −18.2717 −1.36189
\(181\) −13.5177 −1.00476 −0.502380 0.864647i \(-0.667542\pi\)
−0.502380 + 0.864647i \(0.667542\pi\)
\(182\) −0.0935998 −0.00693808
\(183\) 11.9053 0.880064
\(184\) −13.3279 −0.982544
\(185\) 11.8869 0.873941
\(186\) 18.9661 1.39066
\(187\) −13.5116 −0.988067
\(188\) 27.8232 2.02921
\(189\) 12.2703 0.892535
\(190\) 12.7037 0.921621
\(191\) 26.7463 1.93529 0.967646 0.252310i \(-0.0811904\pi\)
0.967646 + 0.252310i \(0.0811904\pi\)
\(192\) −39.2250 −2.83082
\(193\) 19.6630 1.41538 0.707688 0.706525i \(-0.249738\pi\)
0.707688 + 0.706525i \(0.249738\pi\)
\(194\) −34.7869 −2.49755
\(195\) 0.0989356 0.00708492
\(196\) −15.8775 −1.13411
\(197\) 1.00000 0.0712470
\(198\) −58.1701 −4.13397
\(199\) 19.4206 1.37669 0.688345 0.725383i \(-0.258338\pi\)
0.688345 + 0.725383i \(0.258338\pi\)
\(200\) 2.15678 0.152507
\(201\) 10.1758 0.717746
\(202\) 37.3624 2.62881
\(203\) 9.23990 0.648514
\(204\) 28.6244 2.00411
\(205\) 3.01031 0.210249
\(206\) −6.38214 −0.444665
\(207\) −38.0468 −2.64443
\(208\) 0.0368881 0.00255773
\(209\) 24.1609 1.67124
\(210\) −8.66306 −0.597808
\(211\) 9.62672 0.662731 0.331365 0.943502i \(-0.392491\pi\)
0.331365 + 0.943502i \(0.392491\pi\)
\(212\) 13.2812 0.912153
\(213\) 11.9430 0.818323
\(214\) −2.29429 −0.156834
\(215\) −11.6220 −0.792616
\(216\) 20.6035 1.40189
\(217\) 3.61200 0.245199
\(218\) −22.9411 −1.55377
\(219\) −1.19510 −0.0807572
\(220\) 12.5799 0.848136
\(221\) −0.104214 −0.00701017
\(222\) −80.1713 −5.38074
\(223\) 27.1858 1.82050 0.910249 0.414061i \(-0.135890\pi\)
0.910249 + 0.414061i \(0.135890\pi\)
\(224\) −8.77061 −0.586011
\(225\) 6.15690 0.410460
\(226\) −28.5969 −1.90224
\(227\) −20.7178 −1.37509 −0.687543 0.726144i \(-0.741311\pi\)
−0.687543 + 0.726144i \(0.741311\pi\)
\(228\) −51.1850 −3.38981
\(229\) −16.6170 −1.09808 −0.549042 0.835795i \(-0.685007\pi\)
−0.549042 + 0.835795i \(0.685007\pi\)
\(230\) 13.7731 0.908172
\(231\) −16.4761 −1.08405
\(232\) 15.5150 1.01861
\(233\) −0.693861 −0.0454563 −0.0227282 0.999742i \(-0.507235\pi\)
−0.0227282 + 0.999742i \(0.507235\pi\)
\(234\) −0.448660 −0.0293298
\(235\) −9.37541 −0.611585
\(236\) −19.3529 −1.25977
\(237\) 15.2100 0.987994
\(238\) 9.12522 0.591500
\(239\) 29.2959 1.89500 0.947498 0.319763i \(-0.103603\pi\)
0.947498 + 0.319763i \(0.103603\pi\)
\(240\) 3.41415 0.220383
\(241\) −2.16835 −0.139676 −0.0698378 0.997558i \(-0.522248\pi\)
−0.0698378 + 0.997558i \(0.522248\pi\)
\(242\) 15.5325 0.998467
\(243\) 2.92326 0.187528
\(244\) 11.6757 0.747458
\(245\) 5.35016 0.341809
\(246\) −20.3031 −1.29448
\(247\) 0.186351 0.0118572
\(248\) 6.06504 0.385130
\(249\) 19.2489 1.21985
\(250\) −2.22883 −0.140963
\(251\) −14.5046 −0.915521 −0.457760 0.889076i \(-0.651348\pi\)
−0.457760 + 0.889076i \(0.651348\pi\)
\(252\) 23.4692 1.47842
\(253\) 26.1949 1.64686
\(254\) −29.5021 −1.85113
\(255\) −9.64541 −0.604019
\(256\) −8.03043 −0.501902
\(257\) 9.76616 0.609196 0.304598 0.952481i \(-0.401478\pi\)
0.304598 + 0.952481i \(0.401478\pi\)
\(258\) 78.3850 4.88004
\(259\) −15.2682 −0.948721
\(260\) 0.0970274 0.00601738
\(261\) 44.2903 2.74150
\(262\) 23.6077 1.45849
\(263\) 6.64141 0.409527 0.204764 0.978811i \(-0.434357\pi\)
0.204764 + 0.978811i \(0.434357\pi\)
\(264\) −27.6656 −1.70270
\(265\) −4.47527 −0.274914
\(266\) −16.3173 −1.00048
\(267\) 26.9691 1.65048
\(268\) 9.97954 0.609597
\(269\) 5.15503 0.314308 0.157154 0.987574i \(-0.449768\pi\)
0.157154 + 0.987574i \(0.449768\pi\)
\(270\) −21.2918 −1.29578
\(271\) −1.63478 −0.0993061 −0.0496530 0.998767i \(-0.515812\pi\)
−0.0496530 + 0.998767i \(0.515812\pi\)
\(272\) −3.59629 −0.218057
\(273\) −0.127079 −0.00769115
\(274\) −8.51442 −0.514375
\(275\) −4.23897 −0.255620
\(276\) −55.4940 −3.34034
\(277\) −10.2128 −0.613629 −0.306814 0.951769i \(-0.599263\pi\)
−0.306814 + 0.951769i \(0.599263\pi\)
\(278\) 7.15320 0.429020
\(279\) 17.3137 1.03654
\(280\) −2.77030 −0.165557
\(281\) −15.4518 −0.921779 −0.460890 0.887457i \(-0.652470\pi\)
−0.460890 + 0.887457i \(0.652470\pi\)
\(282\) 63.2326 3.76545
\(283\) −12.8317 −0.762765 −0.381383 0.924417i \(-0.624552\pi\)
−0.381383 + 0.924417i \(0.624552\pi\)
\(284\) 11.7127 0.695020
\(285\) 17.2475 1.02166
\(286\) 0.308898 0.0182655
\(287\) −3.86662 −0.228239
\(288\) −42.0409 −2.47728
\(289\) −6.84001 −0.402354
\(290\) −16.0333 −0.941509
\(291\) −47.2295 −2.76864
\(292\) −1.17205 −0.0685889
\(293\) −13.1558 −0.768571 −0.384285 0.923214i \(-0.625552\pi\)
−0.384285 + 0.923214i \(0.625552\pi\)
\(294\) −36.0843 −2.10448
\(295\) 6.52124 0.379681
\(296\) −25.6374 −1.49014
\(297\) −40.4945 −2.34973
\(298\) 26.3369 1.52565
\(299\) 0.202038 0.0116842
\(300\) 8.98029 0.518477
\(301\) 14.9280 0.860437
\(302\) −19.7501 −1.13649
\(303\) 50.7262 2.91414
\(304\) 6.43074 0.368828
\(305\) −3.93428 −0.225276
\(306\) 43.7407 2.50049
\(307\) −5.07199 −0.289474 −0.144737 0.989470i \(-0.546234\pi\)
−0.144737 + 0.989470i \(0.546234\pi\)
\(308\) −16.1584 −0.920708
\(309\) −8.66491 −0.492929
\(310\) −6.26764 −0.355978
\(311\) 5.96977 0.338515 0.169257 0.985572i \(-0.445863\pi\)
0.169257 + 0.985572i \(0.445863\pi\)
\(312\) −0.213382 −0.0120804
\(313\) −14.9712 −0.846224 −0.423112 0.906077i \(-0.639062\pi\)
−0.423112 + 0.906077i \(0.639062\pi\)
\(314\) −0.206573 −0.0116576
\(315\) −7.90829 −0.445582
\(316\) 14.9166 0.839125
\(317\) −10.8677 −0.610388 −0.305194 0.952290i \(-0.598721\pi\)
−0.305194 + 0.952290i \(0.598721\pi\)
\(318\) 30.1836 1.69261
\(319\) −30.4935 −1.70731
\(320\) 12.9625 0.724625
\(321\) −3.11491 −0.173857
\(322\) −17.6910 −0.985880
\(323\) −18.1677 −1.01088
\(324\) 30.9729 1.72071
\(325\) −0.0326948 −0.00181358
\(326\) 12.3504 0.684025
\(327\) −31.1468 −1.72242
\(328\) −6.49257 −0.358492
\(329\) 12.0423 0.663916
\(330\) 28.5898 1.57382
\(331\) 25.5182 1.40261 0.701304 0.712862i \(-0.252602\pi\)
0.701304 + 0.712862i \(0.252602\pi\)
\(332\) 18.8776 1.03604
\(333\) −73.1864 −4.01059
\(334\) −50.9122 −2.78579
\(335\) −3.36275 −0.183727
\(336\) −4.38534 −0.239240
\(337\) −26.3413 −1.43490 −0.717450 0.696610i \(-0.754691\pi\)
−0.717450 + 0.696610i \(0.754691\pi\)
\(338\) −28.9724 −1.57589
\(339\) −38.8255 −2.10871
\(340\) −9.45938 −0.513007
\(341\) −11.9203 −0.645522
\(342\) −78.2152 −4.22939
\(343\) −15.8633 −0.856537
\(344\) 25.0662 1.35148
\(345\) 18.6995 1.00675
\(346\) 43.3778 2.33200
\(347\) −11.8578 −0.636562 −0.318281 0.947996i \(-0.603106\pi\)
−0.318281 + 0.947996i \(0.603106\pi\)
\(348\) 64.6007 3.46296
\(349\) −8.47396 −0.453601 −0.226800 0.973941i \(-0.572826\pi\)
−0.226800 + 0.973941i \(0.572826\pi\)
\(350\) 2.86284 0.153025
\(351\) −0.312330 −0.0166709
\(352\) 28.9448 1.54276
\(353\) 17.4148 0.926894 0.463447 0.886125i \(-0.346612\pi\)
0.463447 + 0.886125i \(0.346612\pi\)
\(354\) −43.9826 −2.33765
\(355\) −3.94676 −0.209472
\(356\) 26.4490 1.40179
\(357\) 12.3891 0.655703
\(358\) 3.35711 0.177429
\(359\) 10.3720 0.547413 0.273706 0.961813i \(-0.411750\pi\)
0.273706 + 0.961813i \(0.411750\pi\)
\(360\) −13.2791 −0.699869
\(361\) 13.4866 0.709823
\(362\) −30.1286 −1.58352
\(363\) 21.0882 1.10684
\(364\) −0.124628 −0.00653227
\(365\) 0.394938 0.0206720
\(366\) 26.5348 1.38700
\(367\) 33.3869 1.74278 0.871392 0.490588i \(-0.163218\pi\)
0.871392 + 0.490588i \(0.163218\pi\)
\(368\) 6.97210 0.363446
\(369\) −18.5342 −0.964850
\(370\) 26.4938 1.37735
\(371\) 5.74831 0.298437
\(372\) 25.2533 1.30932
\(373\) −22.5229 −1.16619 −0.583096 0.812403i \(-0.698159\pi\)
−0.583096 + 0.812403i \(0.698159\pi\)
\(374\) −30.1151 −1.55721
\(375\) −3.02604 −0.156264
\(376\) 20.2207 1.04280
\(377\) −0.235193 −0.0121131
\(378\) 27.3484 1.40665
\(379\) −9.58707 −0.492455 −0.246227 0.969212i \(-0.579191\pi\)
−0.246227 + 0.969212i \(0.579191\pi\)
\(380\) 16.9149 0.867714
\(381\) −40.0544 −2.05205
\(382\) 59.6129 3.05006
\(383\) −3.52599 −0.180170 −0.0900848 0.995934i \(-0.528714\pi\)
−0.0900848 + 0.995934i \(0.528714\pi\)
\(384\) −46.1006 −2.35256
\(385\) 5.44479 0.277492
\(386\) 43.8255 2.23066
\(387\) 71.5557 3.63738
\(388\) −46.3186 −2.35147
\(389\) −9.44773 −0.479019 −0.239509 0.970894i \(-0.576987\pi\)
−0.239509 + 0.970894i \(0.576987\pi\)
\(390\) 0.220510 0.0111660
\(391\) −19.6971 −0.996124
\(392\) −11.5391 −0.582814
\(393\) 32.0517 1.61680
\(394\) 2.22883 0.112287
\(395\) −5.02637 −0.252904
\(396\) −77.4532 −3.89217
\(397\) 21.3370 1.07087 0.535437 0.844575i \(-0.320147\pi\)
0.535437 + 0.844575i \(0.320147\pi\)
\(398\) 43.2852 2.16969
\(399\) −22.1537 −1.10907
\(400\) −1.12826 −0.0564129
\(401\) 35.9093 1.79322 0.896611 0.442819i \(-0.146021\pi\)
0.896611 + 0.442819i \(0.146021\pi\)
\(402\) 22.6801 1.13118
\(403\) −0.0919403 −0.00457987
\(404\) 49.7478 2.47505
\(405\) −10.4367 −0.518606
\(406\) 20.5941 1.02207
\(407\) 50.3882 2.49765
\(408\) 20.8030 1.02990
\(409\) −8.75900 −0.433105 −0.216552 0.976271i \(-0.569481\pi\)
−0.216552 + 0.976271i \(0.569481\pi\)
\(410\) 6.70945 0.331356
\(411\) −11.5599 −0.570206
\(412\) −8.49779 −0.418656
\(413\) −8.37627 −0.412169
\(414\) −84.7997 −4.16768
\(415\) −6.36108 −0.312253
\(416\) 0.223248 0.0109456
\(417\) 9.71176 0.475587
\(418\) 53.8505 2.63391
\(419\) −39.8981 −1.94915 −0.974575 0.224063i \(-0.928068\pi\)
−0.974575 + 0.224063i \(0.928068\pi\)
\(420\) −11.5348 −0.562842
\(421\) −1.39340 −0.0679103 −0.0339552 0.999423i \(-0.510810\pi\)
−0.0339552 + 0.999423i \(0.510810\pi\)
\(422\) 21.4563 1.04448
\(423\) 57.7235 2.80661
\(424\) 9.65218 0.468751
\(425\) 3.18747 0.154615
\(426\) 26.6190 1.28969
\(427\) 5.05342 0.244552
\(428\) −3.05484 −0.147661
\(429\) 0.419385 0.0202481
\(430\) −25.9035 −1.24918
\(431\) 28.4874 1.37219 0.686094 0.727513i \(-0.259324\pi\)
0.686094 + 0.727513i \(0.259324\pi\)
\(432\) −10.7781 −0.518564
\(433\) 4.19554 0.201625 0.100812 0.994905i \(-0.467856\pi\)
0.100812 + 0.994905i \(0.467856\pi\)
\(434\) 8.05053 0.386438
\(435\) −21.7681 −1.04370
\(436\) −30.5460 −1.46289
\(437\) 35.2215 1.68487
\(438\) −2.66367 −0.127275
\(439\) −0.288756 −0.0137816 −0.00689079 0.999976i \(-0.502193\pi\)
−0.00689079 + 0.999976i \(0.502193\pi\)
\(440\) 9.14253 0.435853
\(441\) −32.9404 −1.56859
\(442\) −0.232274 −0.0110482
\(443\) 2.51971 0.119715 0.0598576 0.998207i \(-0.480935\pi\)
0.0598576 + 0.998207i \(0.480935\pi\)
\(444\) −106.748 −5.06602
\(445\) −8.91236 −0.422486
\(446\) 60.5926 2.86914
\(447\) 35.7571 1.69125
\(448\) −16.6498 −0.786628
\(449\) 11.0944 0.523579 0.261790 0.965125i \(-0.415687\pi\)
0.261790 + 0.965125i \(0.415687\pi\)
\(450\) 13.7227 0.646893
\(451\) 12.7606 0.600874
\(452\) −38.0767 −1.79098
\(453\) −26.8144 −1.25985
\(454\) −46.1763 −2.16716
\(455\) 0.0419951 0.00196876
\(456\) −37.1991 −1.74201
\(457\) 11.7408 0.549211 0.274606 0.961557i \(-0.411453\pi\)
0.274606 + 0.961557i \(0.411453\pi\)
\(458\) −37.0365 −1.73060
\(459\) 30.4496 1.42127
\(460\) 18.3388 0.855052
\(461\) −22.3702 −1.04188 −0.520941 0.853593i \(-0.674419\pi\)
−0.520941 + 0.853593i \(0.674419\pi\)
\(462\) −36.7225 −1.70848
\(463\) 33.4077 1.55259 0.776294 0.630371i \(-0.217097\pi\)
0.776294 + 0.630371i \(0.217097\pi\)
\(464\) −8.11625 −0.376787
\(465\) −8.50946 −0.394617
\(466\) −1.54650 −0.0716400
\(467\) −19.6617 −0.909837 −0.454919 0.890533i \(-0.650332\pi\)
−0.454919 + 0.890533i \(0.650332\pi\)
\(468\) −0.597388 −0.0276143
\(469\) 4.31931 0.199447
\(470\) −20.8962 −0.963869
\(471\) −0.280461 −0.0129229
\(472\) −14.0649 −0.647389
\(473\) −49.2655 −2.26523
\(474\) 33.9004 1.55710
\(475\) −5.69971 −0.261520
\(476\) 12.1502 0.556903
\(477\) 27.5538 1.26160
\(478\) 65.2956 2.98655
\(479\) −39.2770 −1.79461 −0.897306 0.441410i \(-0.854479\pi\)
−0.897306 + 0.441410i \(0.854479\pi\)
\(480\) 20.6625 0.943112
\(481\) 0.388639 0.0177204
\(482\) −4.83288 −0.220131
\(483\) −24.0187 −1.09289
\(484\) 20.6814 0.940066
\(485\) 15.6077 0.708709
\(486\) 6.51545 0.295547
\(487\) 7.76387 0.351815 0.175907 0.984407i \(-0.443714\pi\)
0.175907 + 0.984407i \(0.443714\pi\)
\(488\) 8.48538 0.384115
\(489\) 16.7679 0.758271
\(490\) 11.9246 0.538698
\(491\) −35.9660 −1.62312 −0.811562 0.584267i \(-0.801382\pi\)
−0.811562 + 0.584267i \(0.801382\pi\)
\(492\) −27.0334 −1.21876
\(493\) 22.9294 1.03269
\(494\) 0.415343 0.0186872
\(495\) 26.0990 1.17306
\(496\) −3.17275 −0.142461
\(497\) 5.06945 0.227396
\(498\) 42.9024 1.92250
\(499\) −12.6195 −0.564926 −0.282463 0.959278i \(-0.591151\pi\)
−0.282463 + 0.959278i \(0.591151\pi\)
\(500\) −2.96767 −0.132718
\(501\) −69.1225 −3.08816
\(502\) −32.3282 −1.44288
\(503\) 41.7449 1.86131 0.930656 0.365895i \(-0.119237\pi\)
0.930656 + 0.365895i \(0.119237\pi\)
\(504\) 17.0564 0.759754
\(505\) −16.7632 −0.745954
\(506\) 58.3838 2.59548
\(507\) −39.3353 −1.74694
\(508\) −39.2819 −1.74285
\(509\) −9.54868 −0.423238 −0.211619 0.977352i \(-0.567874\pi\)
−0.211619 + 0.977352i \(0.567874\pi\)
\(510\) −21.4980 −0.951946
\(511\) −0.507282 −0.0224408
\(512\) 12.5708 0.555558
\(513\) −54.4488 −2.40397
\(514\) 21.7671 0.960105
\(515\) 2.86345 0.126179
\(516\) 104.369 4.59460
\(517\) −39.7421 −1.74786
\(518\) −34.0302 −1.49520
\(519\) 58.8932 2.58512
\(520\) 0.0705154 0.00309230
\(521\) 9.48197 0.415412 0.207706 0.978191i \(-0.433400\pi\)
0.207706 + 0.978191i \(0.433400\pi\)
\(522\) 98.7156 4.32066
\(523\) 21.5237 0.941164 0.470582 0.882356i \(-0.344044\pi\)
0.470582 + 0.882356i \(0.344044\pi\)
\(524\) 31.4335 1.37318
\(525\) 3.88682 0.169635
\(526\) 14.8026 0.645423
\(527\) 8.96343 0.390453
\(528\) 14.4725 0.629835
\(529\) 15.1866 0.660285
\(530\) −9.97461 −0.433270
\(531\) −40.1507 −1.74239
\(532\) −21.7265 −0.941962
\(533\) 0.0984212 0.00426310
\(534\) 60.1096 2.60120
\(535\) 1.02937 0.0445036
\(536\) 7.25270 0.313269
\(537\) 4.55788 0.196687
\(538\) 11.4897 0.495355
\(539\) 22.6792 0.976863
\(540\) −28.3499 −1.21999
\(541\) 5.18867 0.223078 0.111539 0.993760i \(-0.464422\pi\)
0.111539 + 0.993760i \(0.464422\pi\)
\(542\) −3.64365 −0.156508
\(543\) −40.9050 −1.75540
\(544\) −21.7649 −0.933161
\(545\) 10.2929 0.440900
\(546\) −0.283237 −0.0121214
\(547\) 5.82831 0.249201 0.124600 0.992207i \(-0.460235\pi\)
0.124600 + 0.992207i \(0.460235\pi\)
\(548\) −11.3369 −0.484289
\(549\) 24.2230 1.03381
\(550\) −9.44795 −0.402862
\(551\) −41.0014 −1.74672
\(552\) −40.3307 −1.71659
\(553\) 6.45616 0.274544
\(554\) −22.7626 −0.967090
\(555\) 35.9702 1.52685
\(556\) 9.52445 0.403927
\(557\) −7.89296 −0.334435 −0.167218 0.985920i \(-0.553478\pi\)
−0.167218 + 0.985920i \(0.553478\pi\)
\(558\) 38.5893 1.63361
\(559\) −0.379980 −0.0160714
\(560\) 1.44920 0.0612400
\(561\) −40.8867 −1.72624
\(562\) −34.4395 −1.45274
\(563\) −30.1329 −1.26995 −0.634974 0.772533i \(-0.718989\pi\)
−0.634974 + 0.772533i \(0.718989\pi\)
\(564\) 84.1940 3.54521
\(565\) 12.8305 0.539782
\(566\) −28.5997 −1.20213
\(567\) 13.4056 0.562981
\(568\) 8.51228 0.357167
\(569\) −0.652674 −0.0273615 −0.0136808 0.999906i \(-0.504355\pi\)
−0.0136808 + 0.999906i \(0.504355\pi\)
\(570\) 38.4418 1.61015
\(571\) 8.64196 0.361655 0.180827 0.983515i \(-0.442122\pi\)
0.180827 + 0.983515i \(0.442122\pi\)
\(572\) 0.411297 0.0171972
\(573\) 80.9352 3.38112
\(574\) −8.61802 −0.359709
\(575\) −6.17953 −0.257704
\(576\) −79.8088 −3.32536
\(577\) 39.1576 1.63015 0.815076 0.579354i \(-0.196695\pi\)
0.815076 + 0.579354i \(0.196695\pi\)
\(578\) −15.2452 −0.634117
\(579\) 59.5011 2.47278
\(580\) −21.3483 −0.886439
\(581\) 8.17055 0.338972
\(582\) −105.266 −4.36343
\(583\) −18.9706 −0.785681
\(584\) −0.851794 −0.0352475
\(585\) 0.201298 0.00832267
\(586\) −29.3220 −1.21128
\(587\) −19.2485 −0.794472 −0.397236 0.917716i \(-0.630031\pi\)
−0.397236 + 0.917716i \(0.630031\pi\)
\(588\) −48.0460 −1.98139
\(589\) −16.0280 −0.660423
\(590\) 14.5347 0.598385
\(591\) 3.02604 0.124475
\(592\) 13.4115 0.551208
\(593\) −44.9942 −1.84769 −0.923845 0.382768i \(-0.874971\pi\)
−0.923845 + 0.382768i \(0.874971\pi\)
\(594\) −90.2554 −3.70322
\(595\) −4.09418 −0.167845
\(596\) 35.0674 1.43642
\(597\) 58.7675 2.40519
\(598\) 0.450308 0.0184145
\(599\) 36.4837 1.49068 0.745342 0.666682i \(-0.232286\pi\)
0.745342 + 0.666682i \(0.232286\pi\)
\(600\) 6.52650 0.266443
\(601\) 36.7049 1.49722 0.748612 0.663008i \(-0.230720\pi\)
0.748612 + 0.663008i \(0.230720\pi\)
\(602\) 33.2720 1.35607
\(603\) 20.7041 0.843137
\(604\) −26.2972 −1.07002
\(605\) −6.96891 −0.283326
\(606\) 113.060 4.59274
\(607\) 5.22622 0.212126 0.106063 0.994359i \(-0.466176\pi\)
0.106063 + 0.994359i \(0.466176\pi\)
\(608\) 38.9190 1.57837
\(609\) 27.9603 1.13301
\(610\) −8.76884 −0.355040
\(611\) −0.306527 −0.0124008
\(612\) 58.2405 2.35423
\(613\) 2.54201 0.102671 0.0513353 0.998681i \(-0.483652\pi\)
0.0513353 + 0.998681i \(0.483652\pi\)
\(614\) −11.3046 −0.456216
\(615\) 9.10930 0.367322
\(616\) −11.7432 −0.473148
\(617\) −22.4800 −0.905011 −0.452506 0.891762i \(-0.649470\pi\)
−0.452506 + 0.891762i \(0.649470\pi\)
\(618\) −19.3126 −0.776866
\(619\) 13.4275 0.539696 0.269848 0.962903i \(-0.413026\pi\)
0.269848 + 0.962903i \(0.413026\pi\)
\(620\) −8.34534 −0.335157
\(621\) −59.0325 −2.36889
\(622\) 13.3056 0.533506
\(623\) 11.4476 0.458637
\(624\) 0.111625 0.00446857
\(625\) 1.00000 0.0400000
\(626\) −33.3683 −1.33367
\(627\) 73.1118 2.91980
\(628\) −0.275051 −0.0109757
\(629\) −37.8891 −1.51074
\(630\) −17.6262 −0.702245
\(631\) −32.2619 −1.28433 −0.642163 0.766568i \(-0.721963\pi\)
−0.642163 + 0.766568i \(0.721963\pi\)
\(632\) 10.8408 0.431222
\(633\) 29.1308 1.15785
\(634\) −24.2221 −0.961984
\(635\) 13.2366 0.525278
\(636\) 40.1893 1.59361
\(637\) 0.174922 0.00693068
\(638\) −67.9648 −2.69075
\(639\) 24.2998 0.961285
\(640\) 15.2346 0.602202
\(641\) 9.71139 0.383577 0.191788 0.981436i \(-0.438571\pi\)
0.191788 + 0.981436i \(0.438571\pi\)
\(642\) −6.94260 −0.274003
\(643\) −11.3068 −0.445897 −0.222949 0.974830i \(-0.571568\pi\)
−0.222949 + 0.974830i \(0.571568\pi\)
\(644\) −23.5555 −0.928216
\(645\) −35.1687 −1.38477
\(646\) −40.4926 −1.59316
\(647\) 33.4004 1.31311 0.656553 0.754280i \(-0.272014\pi\)
0.656553 + 0.754280i \(0.272014\pi\)
\(648\) 22.5098 0.884267
\(649\) 27.6434 1.08510
\(650\) −0.0728710 −0.00285824
\(651\) 10.9301 0.428383
\(652\) 16.4445 0.644016
\(653\) 39.2091 1.53437 0.767185 0.641426i \(-0.221657\pi\)
0.767185 + 0.641426i \(0.221657\pi\)
\(654\) −69.4208 −2.71457
\(655\) −10.5920 −0.413863
\(656\) 3.39640 0.132607
\(657\) −2.43159 −0.0948655
\(658\) 26.8403 1.04634
\(659\) 13.5095 0.526254 0.263127 0.964761i \(-0.415246\pi\)
0.263127 + 0.964761i \(0.415246\pi\)
\(660\) 38.0672 1.48177
\(661\) −33.2439 −1.29304 −0.646519 0.762898i \(-0.723776\pi\)
−0.646519 + 0.762898i \(0.723776\pi\)
\(662\) 56.8757 2.21054
\(663\) −0.315355 −0.0122474
\(664\) 13.7194 0.532418
\(665\) 7.32104 0.283898
\(666\) −163.120 −6.32077
\(667\) −44.4531 −1.72123
\(668\) −67.7893 −2.62285
\(669\) 82.2654 3.18056
\(670\) −7.49499 −0.289557
\(671\) −16.6773 −0.643821
\(672\) −26.5402 −1.02381
\(673\) 17.3913 0.670386 0.335193 0.942149i \(-0.391198\pi\)
0.335193 + 0.942149i \(0.391198\pi\)
\(674\) −58.7102 −2.26143
\(675\) 9.55291 0.367692
\(676\) −38.5766 −1.48372
\(677\) −1.49868 −0.0575991 −0.0287995 0.999585i \(-0.509168\pi\)
−0.0287995 + 0.999585i \(0.509168\pi\)
\(678\) −86.5354 −3.32337
\(679\) −20.0475 −0.769351
\(680\) −6.87468 −0.263632
\(681\) −62.6927 −2.40239
\(682\) −26.5684 −1.01736
\(683\) 38.8528 1.48666 0.743331 0.668924i \(-0.233245\pi\)
0.743331 + 0.668924i \(0.233245\pi\)
\(684\) −104.143 −3.98202
\(685\) 3.82013 0.145960
\(686\) −35.3565 −1.34992
\(687\) −50.2837 −1.91844
\(688\) −13.1127 −0.499915
\(689\) −0.146318 −0.00557427
\(690\) 41.6779 1.58665
\(691\) −31.4387 −1.19598 −0.597992 0.801502i \(-0.704035\pi\)
−0.597992 + 0.801502i \(0.704035\pi\)
\(692\) 57.7573 2.19560
\(693\) −33.5231 −1.27344
\(694\) −26.4291 −1.00323
\(695\) −3.20940 −0.121739
\(696\) 46.9490 1.77960
\(697\) −9.59527 −0.363447
\(698\) −18.8870 −0.714883
\(699\) −2.09965 −0.0794160
\(700\) 3.81186 0.144075
\(701\) −14.6371 −0.552835 −0.276418 0.961038i \(-0.589147\pi\)
−0.276418 + 0.961038i \(0.589147\pi\)
\(702\) −0.696130 −0.0262737
\(703\) 67.7517 2.55530
\(704\) 54.9476 2.07092
\(705\) −28.3704 −1.06849
\(706\) 38.8145 1.46080
\(707\) 21.5317 0.809783
\(708\) −58.5627 −2.20092
\(709\) 3.84602 0.144440 0.0722201 0.997389i \(-0.476992\pi\)
0.0722201 + 0.997389i \(0.476992\pi\)
\(710\) −8.79664 −0.330132
\(711\) 30.9468 1.16060
\(712\) 19.2220 0.720375
\(713\) −17.3773 −0.650786
\(714\) 27.6133 1.03340
\(715\) −0.138592 −0.00518306
\(716\) 4.46998 0.167051
\(717\) 88.6505 3.31072
\(718\) 23.1174 0.862733
\(719\) −43.8516 −1.63539 −0.817693 0.575654i \(-0.804748\pi\)
−0.817693 + 0.575654i \(0.804748\pi\)
\(720\) 6.94658 0.258884
\(721\) −3.67798 −0.136975
\(722\) 30.0594 1.11870
\(723\) −6.56150 −0.244025
\(724\) −40.1160 −1.49090
\(725\) 7.19361 0.267164
\(726\) 47.0019 1.74440
\(727\) −35.0618 −1.30037 −0.650186 0.759775i \(-0.725309\pi\)
−0.650186 + 0.759775i \(0.725309\pi\)
\(728\) −0.0905741 −0.00335690
\(729\) −22.4643 −0.832012
\(730\) 0.880249 0.0325795
\(731\) 37.0449 1.37016
\(732\) 35.3310 1.30587
\(733\) −17.3916 −0.642375 −0.321187 0.947016i \(-0.604082\pi\)
−0.321187 + 0.947016i \(0.604082\pi\)
\(734\) 74.4137 2.74666
\(735\) 16.1898 0.597170
\(736\) 42.1954 1.55534
\(737\) −14.2546 −0.525075
\(738\) −41.3095 −1.52062
\(739\) −35.9634 −1.32293 −0.661467 0.749974i \(-0.730066\pi\)
−0.661467 + 0.749974i \(0.730066\pi\)
\(740\) 35.2764 1.29679
\(741\) 0.563904 0.0207155
\(742\) 12.8120 0.470343
\(743\) 7.32782 0.268832 0.134416 0.990925i \(-0.457084\pi\)
0.134416 + 0.990925i \(0.457084\pi\)
\(744\) 18.3530 0.672855
\(745\) −11.8165 −0.432922
\(746\) −50.1997 −1.83794
\(747\) 39.1646 1.43296
\(748\) −40.0981 −1.46613
\(749\) −1.32218 −0.0483116
\(750\) −6.74452 −0.246275
\(751\) −4.38020 −0.159836 −0.0799179 0.996801i \(-0.525466\pi\)
−0.0799179 + 0.996801i \(0.525466\pi\)
\(752\) −10.5779 −0.385736
\(753\) −43.8914 −1.59949
\(754\) −0.524205 −0.0190904
\(755\) 8.86121 0.322493
\(756\) 36.4143 1.32438
\(757\) 14.6109 0.531042 0.265521 0.964105i \(-0.414456\pi\)
0.265521 + 0.964105i \(0.414456\pi\)
\(758\) −21.3679 −0.776118
\(759\) 79.2666 2.87720
\(760\) 12.2930 0.445914
\(761\) 25.1421 0.911401 0.455700 0.890133i \(-0.349389\pi\)
0.455700 + 0.890133i \(0.349389\pi\)
\(762\) −89.2745 −3.23407
\(763\) −13.2208 −0.478626
\(764\) 79.3742 2.87166
\(765\) −19.6250 −0.709542
\(766\) −7.85883 −0.283951
\(767\) 0.213210 0.00769858
\(768\) −24.3004 −0.876864
\(769\) −8.07722 −0.291272 −0.145636 0.989338i \(-0.546523\pi\)
−0.145636 + 0.989338i \(0.546523\pi\)
\(770\) 12.1355 0.437333
\(771\) 29.5528 1.06432
\(772\) 58.3535 2.10019
\(773\) 35.4654 1.27560 0.637802 0.770201i \(-0.279844\pi\)
0.637802 + 0.770201i \(0.279844\pi\)
\(774\) 159.485 5.73258
\(775\) 2.81208 0.101013
\(776\) −33.6624 −1.20841
\(777\) −46.2022 −1.65749
\(778\) −21.0574 −0.754943
\(779\) 17.1579 0.614744
\(780\) 0.293609 0.0105129
\(781\) −16.7302 −0.598654
\(782\) −43.9014 −1.56991
\(783\) 68.7199 2.45585
\(784\) 6.03637 0.215585
\(785\) 0.0926825 0.00330798
\(786\) 71.4378 2.54810
\(787\) 36.2547 1.29234 0.646171 0.763193i \(-0.276369\pi\)
0.646171 + 0.763193i \(0.276369\pi\)
\(788\) 2.96767 0.105719
\(789\) 20.0972 0.715478
\(790\) −11.2029 −0.398581
\(791\) −16.4802 −0.585969
\(792\) −56.2897 −2.00017
\(793\) −0.128630 −0.00456780
\(794\) 47.5566 1.68772
\(795\) −13.5423 −0.480297
\(796\) 57.6340 2.04278
\(797\) 37.6915 1.33510 0.667551 0.744565i \(-0.267343\pi\)
0.667551 + 0.744565i \(0.267343\pi\)
\(798\) −49.3769 −1.74792
\(799\) 29.8839 1.05722
\(800\) −6.82825 −0.241415
\(801\) 54.8725 1.93883
\(802\) 80.0355 2.82615
\(803\) 1.67413 0.0590788
\(804\) 30.1985 1.06502
\(805\) 7.93735 0.279755
\(806\) −0.204919 −0.00721797
\(807\) 15.5993 0.549122
\(808\) 36.1546 1.27191
\(809\) −40.7120 −1.43136 −0.715678 0.698430i \(-0.753882\pi\)
−0.715678 + 0.698430i \(0.753882\pi\)
\(810\) −23.2617 −0.817333
\(811\) −50.3877 −1.76935 −0.884676 0.466207i \(-0.845620\pi\)
−0.884676 + 0.466207i \(0.845620\pi\)
\(812\) 27.4210 0.962289
\(813\) −4.94692 −0.173496
\(814\) 112.307 3.93634
\(815\) −5.54121 −0.194100
\(816\) −10.8825 −0.380964
\(817\) −66.2421 −2.31752
\(818\) −19.5223 −0.682581
\(819\) −0.258560 −0.00903481
\(820\) 8.93361 0.311975
\(821\) 27.4410 0.957697 0.478849 0.877897i \(-0.341054\pi\)
0.478849 + 0.877897i \(0.341054\pi\)
\(822\) −25.7650 −0.898656
\(823\) −35.1356 −1.22475 −0.612375 0.790567i \(-0.709786\pi\)
−0.612375 + 0.790567i \(0.709786\pi\)
\(824\) −6.17583 −0.215145
\(825\) −12.8273 −0.446589
\(826\) −18.6693 −0.649587
\(827\) 6.76979 0.235409 0.117704 0.993049i \(-0.462447\pi\)
0.117704 + 0.993049i \(0.462447\pi\)
\(828\) −112.910 −3.92391
\(829\) −37.4923 −1.30216 −0.651080 0.759009i \(-0.725684\pi\)
−0.651080 + 0.759009i \(0.725684\pi\)
\(830\) −14.1778 −0.492117
\(831\) −30.9044 −1.07206
\(832\) 0.423805 0.0146928
\(833\) −17.0535 −0.590869
\(834\) 21.6458 0.749534
\(835\) 22.8426 0.790500
\(836\) 71.7017 2.47986
\(837\) 26.8635 0.928540
\(838\) −88.9260 −3.07190
\(839\) 39.5332 1.36484 0.682419 0.730961i \(-0.260928\pi\)
0.682419 + 0.730961i \(0.260928\pi\)
\(840\) −8.38302 −0.289242
\(841\) 22.7480 0.784413
\(842\) −3.10566 −0.107028
\(843\) −46.7578 −1.61043
\(844\) 28.5690 0.983385
\(845\) 12.9989 0.447177
\(846\) 128.656 4.42328
\(847\) 8.95128 0.307570
\(848\) −5.04926 −0.173392
\(849\) −38.8292 −1.33261
\(850\) 7.10433 0.243677
\(851\) 73.4553 2.51802
\(852\) 35.4430 1.21426
\(853\) −48.5066 −1.66084 −0.830418 0.557141i \(-0.811898\pi\)
−0.830418 + 0.557141i \(0.811898\pi\)
\(854\) 11.2632 0.385419
\(855\) 35.0925 1.20014
\(856\) −2.22012 −0.0758823
\(857\) −23.5135 −0.803205 −0.401602 0.915814i \(-0.631547\pi\)
−0.401602 + 0.915814i \(0.631547\pi\)
\(858\) 0.934738 0.0319114
\(859\) −53.5959 −1.82867 −0.914335 0.404959i \(-0.867286\pi\)
−0.914335 + 0.404959i \(0.867286\pi\)
\(860\) −34.4904 −1.17611
\(861\) −11.7005 −0.398753
\(862\) 63.4935 2.16260
\(863\) 21.5279 0.732819 0.366409 0.930454i \(-0.380587\pi\)
0.366409 + 0.930454i \(0.380587\pi\)
\(864\) −65.2297 −2.21916
\(865\) −19.4621 −0.661733
\(866\) 9.35113 0.317764
\(867\) −20.6981 −0.702946
\(868\) 10.7192 0.363835
\(869\) −21.3066 −0.722778
\(870\) −48.5174 −1.64489
\(871\) −0.109944 −0.00372532
\(872\) −22.1996 −0.751772
\(873\) −96.0951 −3.25233
\(874\) 78.5026 2.65539
\(875\) −1.28446 −0.0434227
\(876\) −3.54666 −0.119830
\(877\) 7.08676 0.239303 0.119651 0.992816i \(-0.461822\pi\)
0.119651 + 0.992816i \(0.461822\pi\)
\(878\) −0.643588 −0.0217200
\(879\) −39.8100 −1.34276
\(880\) −4.78266 −0.161223
\(881\) −38.2223 −1.28774 −0.643871 0.765134i \(-0.722673\pi\)
−0.643871 + 0.765134i \(0.722673\pi\)
\(882\) −73.4186 −2.47213
\(883\) 58.3397 1.96329 0.981644 0.190723i \(-0.0610832\pi\)
0.981644 + 0.190723i \(0.0610832\pi\)
\(884\) −0.309272 −0.0104020
\(885\) 19.7335 0.663335
\(886\) 5.61601 0.188673
\(887\) 25.8682 0.868570 0.434285 0.900776i \(-0.357001\pi\)
0.434285 + 0.900776i \(0.357001\pi\)
\(888\) −77.5797 −2.60340
\(889\) −17.0019 −0.570224
\(890\) −19.8641 −0.665847
\(891\) −44.2411 −1.48213
\(892\) 80.6787 2.70132
\(893\) −53.4371 −1.78820
\(894\) 79.6963 2.66544
\(895\) −1.50622 −0.0503475
\(896\) −19.5683 −0.653730
\(897\) 0.611375 0.0204132
\(898\) 24.7276 0.825171
\(899\) 20.2290 0.674675
\(900\) 18.2717 0.609056
\(901\) 14.2648 0.475230
\(902\) 28.4412 0.946989
\(903\) 45.1728 1.50326
\(904\) −27.6725 −0.920374
\(905\) 13.5177 0.449342
\(906\) −59.7646 −1.98555
\(907\) −34.0342 −1.13009 −0.565043 0.825061i \(-0.691140\pi\)
−0.565043 + 0.825061i \(0.691140\pi\)
\(908\) −61.4835 −2.04040
\(909\) 103.210 3.42325
\(910\) 0.0935998 0.00310280
\(911\) −38.9474 −1.29039 −0.645193 0.764020i \(-0.723223\pi\)
−0.645193 + 0.764020i \(0.723223\pi\)
\(912\) 19.4597 0.644374
\(913\) −26.9645 −0.892394
\(914\) 26.1682 0.865568
\(915\) −11.9053 −0.393576
\(916\) −49.3139 −1.62938
\(917\) 13.6050 0.449276
\(918\) 67.8670 2.23994
\(919\) 5.14400 0.169685 0.0848424 0.996394i \(-0.472961\pi\)
0.0848424 + 0.996394i \(0.472961\pi\)
\(920\) 13.3279 0.439407
\(921\) −15.3480 −0.505735
\(922\) −49.8592 −1.64203
\(923\) −0.129038 −0.00424735
\(924\) −48.8958 −1.60855
\(925\) −11.8869 −0.390838
\(926\) 74.4601 2.44691
\(927\) −17.6300 −0.579045
\(928\) −49.1198 −1.61244
\(929\) 44.9253 1.47395 0.736976 0.675919i \(-0.236253\pi\)
0.736976 + 0.675919i \(0.236253\pi\)
\(930\) −18.9661 −0.621924
\(931\) 30.4944 0.999412
\(932\) −2.05915 −0.0674498
\(933\) 18.0647 0.591413
\(934\) −43.8227 −1.43392
\(935\) 13.5116 0.441877
\(936\) −0.434156 −0.0141908
\(937\) −32.4004 −1.05848 −0.529238 0.848473i \(-0.677522\pi\)
−0.529238 + 0.848473i \(0.677522\pi\)
\(938\) 9.62700 0.314333
\(939\) −45.3035 −1.47842
\(940\) −27.8232 −0.907492
\(941\) −14.0427 −0.457777 −0.228889 0.973453i \(-0.573509\pi\)
−0.228889 + 0.973453i \(0.573509\pi\)
\(942\) −0.625098 −0.0203668
\(943\) 18.6023 0.605773
\(944\) 7.35765 0.239471
\(945\) −12.2703 −0.399154
\(946\) −109.804 −3.57005
\(947\) 15.7483 0.511751 0.255876 0.966710i \(-0.417636\pi\)
0.255876 + 0.966710i \(0.417636\pi\)
\(948\) 45.1382 1.46602
\(949\) 0.0129124 0.000419154 0
\(950\) −12.7037 −0.412161
\(951\) −32.8859 −1.06640
\(952\) 8.83024 0.286190
\(953\) 7.73667 0.250615 0.125308 0.992118i \(-0.460008\pi\)
0.125308 + 0.992118i \(0.460008\pi\)
\(954\) 61.4127 1.98831
\(955\) −26.7463 −0.865489
\(956\) 86.9407 2.81186
\(957\) −92.2745 −2.98281
\(958\) −87.5417 −2.82834
\(959\) −4.90681 −0.158449
\(960\) 39.2250 1.26598
\(961\) −23.0922 −0.744910
\(962\) 0.866209 0.0279277
\(963\) −6.33773 −0.204231
\(964\) −6.43495 −0.207256
\(965\) −19.6630 −0.632975
\(966\) −53.5336 −1.72242
\(967\) −31.6140 −1.01664 −0.508319 0.861169i \(-0.669733\pi\)
−0.508319 + 0.861169i \(0.669733\pi\)
\(968\) 15.0304 0.483095
\(969\) −54.9760 −1.76608
\(970\) 34.7869 1.11694
\(971\) −35.4323 −1.13708 −0.568539 0.822657i \(-0.692491\pi\)
−0.568539 + 0.822657i \(0.692491\pi\)
\(972\) 8.67530 0.278260
\(973\) 4.12234 0.132156
\(974\) 17.3043 0.554467
\(975\) −0.0989356 −0.00316847
\(976\) −4.43889 −0.142085
\(977\) 55.8056 1.78538 0.892690 0.450671i \(-0.148815\pi\)
0.892690 + 0.450671i \(0.148815\pi\)
\(978\) 37.3728 1.19505
\(979\) −37.7793 −1.20743
\(980\) 15.8775 0.507190
\(981\) −63.3725 −2.02333
\(982\) −80.1620 −2.55807
\(983\) −29.2455 −0.932787 −0.466393 0.884577i \(-0.654447\pi\)
−0.466393 + 0.884577i \(0.654447\pi\)
\(984\) −19.6467 −0.626315
\(985\) −1.00000 −0.0318626
\(986\) 51.1058 1.62754
\(987\) 36.4406 1.15992
\(988\) 0.553028 0.0175942
\(989\) −71.8187 −2.28370
\(990\) 58.1701 1.84877
\(991\) −15.9250 −0.505875 −0.252937 0.967483i \(-0.581397\pi\)
−0.252937 + 0.967483i \(0.581397\pi\)
\(992\) −19.2016 −0.609651
\(993\) 77.2191 2.45047
\(994\) 11.2989 0.358380
\(995\) −19.4206 −0.615674
\(996\) 57.1244 1.81006
\(997\) 7.45247 0.236022 0.118011 0.993012i \(-0.462348\pi\)
0.118011 + 0.993012i \(0.462348\pi\)
\(998\) −28.1267 −0.890334
\(999\) −113.554 −3.59270
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 985.2.a.g.1.14 17
3.2 odd 2 8865.2.a.z.1.4 17
5.4 even 2 4925.2.a.l.1.4 17
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
985.2.a.g.1.14 17 1.1 even 1 trivial
4925.2.a.l.1.4 17 5.4 even 2
8865.2.a.z.1.4 17 3.2 odd 2