Properties

Label 50.7.c.e
Level $50$
Weight $7$
Character orbit 50.c
Analytic conductor $11.503$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [50,7,Mod(7,50)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(50, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 7, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("50.7");
 
S:= CuspForms(chi, 7);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 50 = 2 \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 50.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5027041810\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 4 \beta_{2} - 4) q^{2} + ( - \beta_{3} - 12 \beta_{2} + 12) q^{3} + 32 \beta_{2} q^{4} + (4 \beta_{3} - 4 \beta_1 - 96) q^{6} + (168 \beta_{2} + 44 \beta_1 + 168) q^{7} + ( - 128 \beta_{2} + 128) q^{8}+ \cdots + (55440 \beta_{3} - 631458 \beta_{2} + 55440 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 16 q^{2} + 48 q^{3} - 384 q^{6} + 672 q^{7} + 512 q^{8} - 2652 q^{11} + 1536 q^{12} - 1632 q^{13} - 4096 q^{16} + 18912 q^{17} + 5856 q^{18} + 29328 q^{21} + 10608 q^{22} + 19488 q^{23} + 13056 q^{26}+ \cdots + 1343984 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 5\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 5\nu^{3} ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 5 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 3\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 3\beta_{3} ) / 5 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/50\mathbb{Z}\right)^\times\).

\(n\) \(27\)
\(\chi(n)\) \(\beta_{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
7.1
−1.22474 1.22474i
1.22474 + 1.22474i
−1.22474 + 1.22474i
1.22474 1.22474i
−4.00000 4.00000i 5.87628 5.87628i 32.0000i 0 −47.0102 −101.444 101.444i 128.000 128.000i 659.939i 0
7.2 −4.00000 4.00000i 18.1237 18.1237i 32.0000i 0 −144.990 437.444 + 437.444i 128.000 128.000i 72.0612i 0
43.1 −4.00000 + 4.00000i 5.87628 + 5.87628i 32.0000i 0 −47.0102 −101.444 + 101.444i 128.000 + 128.000i 659.939i 0
43.2 −4.00000 + 4.00000i 18.1237 + 18.1237i 32.0000i 0 −144.990 437.444 437.444i 128.000 + 128.000i 72.0612i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 50.7.c.e 4
3.b odd 2 1 450.7.g.n 4
5.b even 2 1 50.7.c.f yes 4
5.c odd 4 1 inner 50.7.c.e 4
5.c odd 4 1 50.7.c.f yes 4
15.d odd 2 1 450.7.g.e 4
15.e even 4 1 450.7.g.e 4
15.e even 4 1 450.7.g.n 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
50.7.c.e 4 1.a even 1 1 trivial
50.7.c.e 4 5.c odd 4 1 inner
50.7.c.f yes 4 5.b even 2 1
50.7.c.f yes 4 5.c odd 4 1
450.7.g.e 4 15.d odd 2 1
450.7.g.e 4 15.e even 4 1
450.7.g.n 4 3.b odd 2 1
450.7.g.n 4 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 48T_{3}^{3} + 1152T_{3}^{2} - 10224T_{3} + 45369 \) acting on \(S_{7}^{\mathrm{new}}(50, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 8 T + 32)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} - 48 T^{3} + \cdots + 45369 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 7876917504 \) Copy content Toggle raw display
$11$ \( (T^{2} + 1326 T - 1310031)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 1199839818384 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 19\!\cdots\!49 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots + 16\!\cdots\!25 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 32\!\cdots\!24 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( (T^{2} + 14236 T + 12563524)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots + 53\!\cdots\!64 \) Copy content Toggle raw display
$41$ \( (T^{2} + 43566 T - 3121123311)^{2} \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 13\!\cdots\!04 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 60\!\cdots\!84 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 75\!\cdots\!44 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{2} - 100024 T - 9135929456)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 21\!\cdots\!49 \) Copy content Toggle raw display
$71$ \( (T^{2} + 548556 T + 41153643684)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 24\!\cdots\!49 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 84\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots + 45\!\cdots\!89 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 15\!\cdots\!25 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 20\!\cdots\!84 \) Copy content Toggle raw display
show more
show less