Properties

Label 504.2.cc.a.293.1
Level $504$
Weight $2$
Character 504.293
Analytic conductor $4.024$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(293,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{12} + 19x^{8} + 810x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 293.1
Root \(-0.475594 + 1.66548i\) of defining polynomial
Character \(\chi\) \(=\) 504.293
Dual form 504.2.cc.a.461.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(-1.68014 - 0.420861i) q^{3} +(1.00000 - 1.73205i) q^{4} +(3.32070 + 1.91721i) q^{5} +(2.35534 - 0.672592i) q^{6} +(1.32288 + 2.29129i) q^{7} +2.82843i q^{8} +(2.64575 + 1.41421i) q^{9} +O(q^{10})\) \(q+(-1.22474 + 0.707107i) q^{2} +(-1.68014 - 0.420861i) q^{3} +(1.00000 - 1.73205i) q^{4} +(3.32070 + 1.91721i) q^{5} +(2.35534 - 0.672592i) q^{6} +(1.32288 + 2.29129i) q^{7} +2.82843i q^{8} +(2.64575 + 1.41421i) q^{9} -5.42268 q^{10} +(-2.40909 + 2.48923i) q^{12} +(2.27533 - 3.94099i) q^{13} +(-3.24037 - 1.87083i) q^{14} +(-4.77237 - 4.61873i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(-4.24037 + 0.138778i) q^{18} -7.01226 q^{19} +(6.64140 - 3.83441i) q^{20} +(-1.25830 - 4.40644i) q^{21} +(7.74037 + 4.46890i) q^{23} +(1.19038 - 4.75216i) q^{24} +(4.85136 + 8.40280i) q^{25} +6.43560i q^{26} +(-3.85005 - 3.48957i) q^{27} +5.29150 q^{28} +(9.11087 + 2.28220i) q^{30} +(4.89898 + 2.82843i) q^{32} +10.1449i q^{35} +(5.09524 - 3.16836i) q^{36} +(8.58823 - 4.95842i) q^{38} +(-5.48148 + 5.66382i) q^{39} +(-5.42268 + 9.39235i) q^{40} +(4.65692 + 4.50700i) q^{42} +(6.07440 + 9.76863i) q^{45} -12.6400 q^{46} +(1.90238 + 6.66190i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(-11.8834 - 6.86086i) q^{50} +(-4.55066 - 7.88197i) q^{52} +(7.18283 + 1.55144i) q^{54} +(-6.48074 + 3.74166i) q^{56} +(11.7816 + 2.95119i) q^{57} +(4.58621 + 2.64785i) q^{59} +(-12.7722 + 3.64725i) q^{60} +(3.66740 + 6.35212i) q^{61} +(0.259630 + 7.93301i) q^{63} -8.00000 q^{64} +(15.1114 - 8.72455i) q^{65} +(-11.1241 - 10.7660i) q^{69} +(-7.17353 - 12.4249i) q^{70} +10.9193i q^{71} +(-4.00000 + 7.48331i) q^{72} +(-4.61456 - 16.1596i) q^{75} +(-7.01226 + 12.1456i) q^{76} +(2.70850 - 10.8127i) q^{78} +(-8.67134 - 15.0192i) q^{79} -15.3376i q^{80} +(5.00000 + 7.48331i) q^{81} +(15.7330 - 9.08345i) q^{83} +(-8.89047 - 2.22699i) q^{84} +(-14.3471 - 7.66882i) q^{90} +12.0399 q^{91} +(15.4807 - 8.93781i) q^{92} +(-23.2856 - 13.4439i) q^{95} +(-7.04060 - 6.81395i) q^{96} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 16 q^{4} - 16 q^{15} - 32 q^{16} - 16 q^{18} + 72 q^{23} + 40 q^{25} + 32 q^{30} - 40 q^{39} - 56 q^{49} - 144 q^{50} + 8 q^{57} - 16 q^{60} + 56 q^{63} - 128 q^{64} - 72 q^{65} - 64 q^{72} + 128 q^{78} + 80 q^{81} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.866025 + 0.500000i
\(3\) −1.68014 0.420861i −0.970030 0.242984i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 3.32070 + 1.91721i 1.48506 + 0.857401i 0.999856 0.0169992i \(-0.00541128\pi\)
0.485206 + 0.874400i \(0.338745\pi\)
\(6\) 2.35534 0.672592i 0.961563 0.274584i
\(7\) 1.32288 + 2.29129i 0.500000 + 0.866025i
\(8\) 2.82843i 1.00000i
\(9\) 2.64575 + 1.41421i 0.881917 + 0.471405i
\(10\) −5.42268 −1.71480
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) −2.40909 + 2.48923i −0.695446 + 0.718579i
\(13\) 2.27533 3.94099i 0.631063 1.09303i −0.356272 0.934382i \(-0.615952\pi\)
0.987335 0.158651i \(-0.0507143\pi\)
\(14\) −3.24037 1.87083i −0.866025 0.500000i
\(15\) −4.77237 4.61873i −1.23222 1.19255i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) −4.24037 + 0.138778i −0.999465 + 0.0327103i
\(19\) −7.01226 −1.60872 −0.804361 0.594140i \(-0.797492\pi\)
−0.804361 + 0.594140i \(0.797492\pi\)
\(20\) 6.64140 3.83441i 1.48506 0.857401i
\(21\) −1.25830 4.40644i −0.274584 0.961563i
\(22\) 0 0
\(23\) 7.74037 + 4.46890i 1.61398 + 0.931831i 0.988436 + 0.151642i \(0.0484560\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 1.19038 4.75216i 0.242984 0.970030i
\(25\) 4.85136 + 8.40280i 0.970272 + 1.68056i
\(26\) 6.43560i 1.26213i
\(27\) −3.85005 3.48957i −0.740942 0.671569i
\(28\) 5.29150 1.00000
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 9.11087 + 2.28220i 1.66341 + 0.416670i
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 4.89898 + 2.82843i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) 0 0
\(35\) 10.1449i 1.71480i
\(36\) 5.09524 3.16836i 0.849207 0.528060i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 8.58823 4.95842i 1.39319 0.804361i
\(39\) −5.48148 + 5.66382i −0.877740 + 0.906936i
\(40\) −5.42268 + 9.39235i −0.857401 + 1.48506i
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 4.65692 + 4.50700i 0.718579 + 0.695446i
\(43\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) 0 0
\(45\) 6.07440 + 9.76863i 0.905519 + 1.45622i
\(46\) −12.6400 −1.86366
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 1.90238 + 6.66190i 0.274584 + 0.961563i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) −11.8834 6.86086i −1.68056 0.970272i
\(51\) 0 0
\(52\) −4.55066 7.88197i −0.631063 1.09303i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 7.18283 + 1.55144i 0.977459 + 0.211124i
\(55\) 0 0
\(56\) −6.48074 + 3.74166i −0.866025 + 0.500000i
\(57\) 11.7816 + 2.95119i 1.56051 + 0.390895i
\(58\) 0 0
\(59\) 4.58621 + 2.64785i 0.597074 + 0.344721i 0.767890 0.640582i \(-0.221307\pi\)
−0.170816 + 0.985303i \(0.554640\pi\)
\(60\) −12.7722 + 3.64725i −1.64889 + 0.470858i
\(61\) 3.66740 + 6.35212i 0.469562 + 0.813306i 0.999394 0.0347968i \(-0.0110784\pi\)
−0.529832 + 0.848103i \(0.677745\pi\)
\(62\) 0 0
\(63\) 0.259630 + 7.93301i 0.0327103 + 0.999465i
\(64\) −8.00000 −1.00000
\(65\) 15.1114 8.72455i 1.87433 1.08215i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) −11.1241 10.7660i −1.33919 1.29608i
\(70\) −7.17353 12.4249i −0.857401 1.48506i
\(71\) 10.9193i 1.29588i 0.761690 + 0.647941i \(0.224370\pi\)
−0.761690 + 0.647941i \(0.775630\pi\)
\(72\) −4.00000 + 7.48331i −0.471405 + 0.881917i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −4.61456 16.1596i −0.532843 1.86595i
\(76\) −7.01226 + 12.1456i −0.804361 + 1.39319i
\(77\) 0 0
\(78\) 2.70850 10.8127i 0.306677 1.22430i
\(79\) −8.67134 15.0192i −0.975603 1.68979i −0.677932 0.735124i \(-0.737124\pi\)
−0.297670 0.954669i \(-0.596210\pi\)
\(80\) 15.3376i 1.71480i
\(81\) 5.00000 + 7.48331i 0.555556 + 0.831479i
\(82\) 0 0
\(83\) 15.7330 9.08345i 1.72692 0.997039i 0.825010 0.565118i \(-0.191170\pi\)
0.901912 0.431920i \(-0.142164\pi\)
\(84\) −8.89047 2.22699i −0.970030 0.242984i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) −14.3471 7.66882i −1.51231 0.808365i
\(91\) 12.0399 1.26213
\(92\) 15.4807 8.93781i 1.61398 0.931831i
\(93\) 0 0
\(94\) 0 0
\(95\) −23.2856 13.4439i −2.38905 1.37932i
\(96\) −7.04060 6.81395i −0.718579 0.695446i
\(97\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) 19.4054 1.94054
\(101\) −17.3740 + 10.0309i −1.72877 + 0.998109i −0.833650 + 0.552294i \(0.813753\pi\)
−0.895125 + 0.445815i \(0.852914\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) 11.1468 + 6.43560i 1.09303 + 0.631063i
\(105\) 4.26960 17.0449i 0.416670 1.66341i
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −9.89417 + 3.17891i −0.952067 + 0.305890i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 5.29150 9.16515i 0.500000 0.866025i
\(113\) −5.78216 3.33833i −0.543940 0.314044i 0.202735 0.979234i \(-0.435017\pi\)
−0.746674 + 0.665190i \(0.768350\pi\)
\(114\) −16.5162 + 4.71639i −1.54689 + 0.441730i
\(115\) 17.1356 + 29.6798i 1.59791 + 2.76765i
\(116\) 0 0
\(117\) 11.5934 7.20907i 1.07181 0.666479i
\(118\) −7.48925 −0.689442
\(119\) 0 0
\(120\) 13.0637 13.4983i 1.19255 1.23222i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) −8.98326 5.18648i −0.813306 0.469562i
\(123\) 0 0
\(124\) 0 0
\(125\) 18.0322i 1.61285i
\(126\) −5.92746 9.53232i −0.528060 0.849207i
\(127\) 18.4422 1.63648 0.818241 0.574875i \(-0.194949\pi\)
0.818241 + 0.574875i \(0.194949\pi\)
\(128\) 9.79796 5.65685i 0.866025 0.500000i
\(129\) 0 0
\(130\) −12.3384 + 21.3707i −1.08215 + 1.87433i
\(131\) −8.39072 4.84438i −0.733100 0.423256i 0.0864550 0.996256i \(-0.472446\pi\)
−0.819555 + 0.573000i \(0.805779\pi\)
\(132\) 0 0
\(133\) −9.27635 16.0671i −0.804361 1.39319i
\(134\) 0 0
\(135\) −6.09462 18.9692i −0.524541 1.63261i
\(136\) 0 0
\(137\) −12.9615 + 7.48331i −1.10737 + 0.639343i −0.938148 0.346235i \(-0.887460\pi\)
−0.169226 + 0.985577i \(0.554127\pi\)
\(138\) 21.2369 + 5.31968i 1.80781 + 0.452841i
\(139\) −1.14233 + 1.97858i −0.0968913 + 0.167821i −0.910396 0.413737i \(-0.864223\pi\)
0.813505 + 0.581558i \(0.197557\pi\)
\(140\) 17.5715 + 10.1449i 1.48506 + 0.857401i
\(141\) 0 0
\(142\) −7.72111 13.3734i −0.647941 1.12227i
\(143\) 0 0
\(144\) −0.392523 11.9936i −0.0327103 0.999465i
\(145\) 0 0
\(146\) 0 0
\(147\) 8.43183 8.71230i 0.695446 0.718579i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 17.0782 + 16.5285i 1.39443 + 1.34954i
\(151\) −12.2211 21.1676i −0.994540 1.72259i −0.587646 0.809118i \(-0.699945\pi\)
−0.406894 0.913475i \(-0.633388\pi\)
\(152\) 19.8337i 1.60872i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 4.32853 + 15.1580i 0.346560 + 1.21361i
\(157\) 3.34486 5.79347i 0.266949 0.462369i −0.701123 0.713040i \(-0.747318\pi\)
0.968072 + 0.250671i \(0.0806511\pi\)
\(158\) 21.2404 + 12.2631i 1.68979 + 0.975603i
\(159\) 0 0
\(160\) 10.8454 + 18.7847i 0.857401 + 1.48506i
\(161\) 23.6472i 1.86366i
\(162\) −11.4152 5.62962i −0.896865 0.442305i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −12.8459 + 22.2498i −0.997039 + 1.72692i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 12.4633 3.55902i 0.961563 0.274584i
\(169\) −3.85425 6.67575i −0.296481 0.513520i
\(170\) 0 0
\(171\) −18.5527 9.91683i −1.41876 0.758359i
\(172\) 0 0
\(173\) −21.3064 + 12.3013i −1.61990 + 0.935247i −0.632950 + 0.774193i \(0.718156\pi\)
−0.986945 + 0.161055i \(0.948510\pi\)
\(174\) 0 0
\(175\) −12.8355 + 22.2317i −0.970272 + 1.68056i
\(176\) 0 0
\(177\) −6.59111 6.37892i −0.495418 0.479469i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 22.9942 0.752548i 1.71388 0.0560916i
\(181\) 3.13802 0.233247 0.116623 0.993176i \(-0.462793\pi\)
0.116623 + 0.993176i \(0.462793\pi\)
\(182\) −14.7458 + 8.51350i −1.09303 + 0.631063i
\(183\) −3.48839 12.2159i −0.257869 0.903027i
\(184\) −12.6400 + 21.8931i −0.931831 + 1.61398i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 2.90248 13.4378i 0.211124 0.977459i
\(190\) 38.0252 2.75864
\(191\) 2.10792 1.21701i 0.152524 0.0880597i −0.421796 0.906691i \(-0.638600\pi\)
0.574320 + 0.818631i \(0.305267\pi\)
\(192\) 13.4411 + 3.36689i 0.970030 + 0.242984i
\(193\) 10.2886 17.8204i 0.740591 1.28274i −0.211636 0.977349i \(-0.567879\pi\)
0.952227 0.305392i \(-0.0987875\pi\)
\(194\) 0 0
\(195\) −29.0611 + 8.29869i −2.08111 + 0.594282i
\(196\) 7.00000 + 12.1244i 0.500000 + 0.866025i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −23.7667 + 13.7217i −1.68056 + 0.970272i
\(201\) 0 0
\(202\) 14.1858 24.5705i 0.998109 1.72877i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 14.1591 + 22.7701i 0.984126 + 1.58263i
\(208\) −18.2026 −1.26213
\(209\) 0 0
\(210\) 6.82338 + 23.8947i 0.470858 + 1.64889i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 4.59551 18.3460i 0.314879 1.25705i
\(214\) 0 0
\(215\) 0 0
\(216\) 9.87000 10.8896i 0.671569 0.740942i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 14.9666i 1.00000i
\(225\) 0.952135 + 29.0926i 0.0634757 + 1.93951i
\(226\) 9.44222 0.628087
\(227\) −12.7602 + 7.36712i −0.846926 + 0.488973i −0.859612 0.510947i \(-0.829295\pi\)
0.0126866 + 0.999920i \(0.495962\pi\)
\(228\) 16.8932 17.4551i 1.11878 1.15599i
\(229\) 14.6990 25.4595i 0.971339 1.68241i 0.279817 0.960053i \(-0.409726\pi\)
0.691522 0.722355i \(-0.256940\pi\)
\(230\) −41.9735 24.2334i −2.76765 1.59791i
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1628i 1.32091i −0.750867 0.660454i \(-0.770364\pi\)
0.750867 0.660454i \(-0.229636\pi\)
\(234\) −9.10132 + 17.0270i −0.594972 + 1.11309i
\(235\) 0 0
\(236\) 9.17242 5.29570i 0.597074 0.344721i
\(237\) 8.24808 + 28.8838i 0.535770 + 1.87621i
\(238\) 0 0
\(239\) −19.2596 11.1196i −1.24580 0.719264i −0.275533 0.961292i \(-0.588854\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) −6.45503 + 25.7694i −0.416670 + 1.66341i
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 15.5563i 1.00000i
\(243\) −5.25127 14.6773i −0.336869 0.941551i
\(244\) 14.6696 0.939125
\(245\) −23.2449 + 13.4204i −1.48506 + 0.857401i
\(246\) 0 0
\(247\) −15.9552 + 27.6352i −1.01521 + 1.75839i
\(248\) 0 0
\(249\) −30.2566 + 8.64007i −1.91743 + 0.547542i
\(250\) −12.7507 22.0848i −0.806423 1.39677i
\(251\) 7.06541i 0.445965i 0.974822 + 0.222982i \(0.0715793\pi\)
−0.974822 + 0.222982i \(0.928421\pi\)
\(252\) 14.0000 + 7.48331i 0.881917 + 0.471405i
\(253\) 0 0
\(254\) −22.5870 + 13.0406i −1.41724 + 0.818241i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 34.8982i 2.16429i
\(261\) 0 0
\(262\) 13.7020 0.846511
\(263\) 24.1533 13.9449i 1.48936 0.859881i 0.489432 0.872041i \(-0.337204\pi\)
0.999926 + 0.0121601i \(0.00387079\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 22.7223 + 13.1187i 1.39319 + 0.804361i
\(267\) 0 0
\(268\) 0 0
\(269\) 20.5179i 1.25100i −0.780225 0.625498i \(-0.784896\pi\)
0.780225 0.625498i \(-0.215104\pi\)
\(270\) 20.8776 + 18.9228i 1.27057 + 1.15161i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −20.2288 5.06713i −1.22430 0.306677i
\(274\) 10.5830 18.3303i 0.639343 1.10737i
\(275\) 0 0
\(276\) −29.7714 + 8.50154i −1.79203 + 0.511733i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 3.23100i 0.193783i
\(279\) 0 0
\(280\) −28.6941 −1.71480
\(281\) 28.9807 16.7320i 1.72885 0.998150i 0.834021 0.551733i \(-0.186033\pi\)
0.894825 0.446417i \(-0.147300\pi\)
\(282\) 0 0
\(283\) 3.82867 6.63145i 0.227591 0.394199i −0.729503 0.683978i \(-0.760249\pi\)
0.957094 + 0.289779i \(0.0935819\pi\)
\(284\) 18.9128 + 10.9193i 1.12227 + 0.647941i
\(285\) 33.4651 + 32.3877i 1.98230 + 1.91848i
\(286\) 0 0
\(287\) 0 0
\(288\) 8.96148 + 14.4115i 0.528060 + 0.849207i
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.9789 + 9.80280i 0.991921 + 0.572686i 0.905848 0.423603i \(-0.139235\pi\)
0.0860728 + 0.996289i \(0.472568\pi\)
\(294\) −4.16632 + 16.6326i −0.242984 + 0.970030i
\(295\) 10.1530 + 17.5854i 0.591128 + 1.02386i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 35.2238 20.3365i 2.03704 1.17609i
\(300\) −32.6039 8.16700i −1.88239 0.471522i
\(301\) 0 0
\(302\) 29.9355 + 17.2833i 1.72259 + 0.994540i
\(303\) 33.4123 9.54124i 1.91949 0.548130i
\(304\) 14.0245 + 24.2912i 0.804361 + 1.39319i
\(305\) 28.1246i 1.61041i
\(306\) 0 0
\(307\) 34.8207 1.98732 0.993662 0.112409i \(-0.0358567\pi\)
0.993662 + 0.112409i \(0.0358567\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) −16.0197 15.5040i −0.906936 0.877740i
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 9.46070i 0.533898i
\(315\) −14.3471 + 26.8409i −0.808365 + 1.51231i
\(316\) −34.6854 −1.95121
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −26.5656 15.3376i −1.48506 0.857401i
\(321\) 0 0
\(322\) −16.7211 28.9618i −0.931831 1.61398i
\(323\) 0 0
\(324\) 17.9615 1.17694i 0.997860 0.0653855i
\(325\) 44.1538 2.44921
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 36.3338i 1.99408i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −12.7477 + 13.1718i −0.695446 + 0.718579i
\(337\) −13.2288 + 22.9129i −0.720616 + 1.24814i 0.240137 + 0.970739i \(0.422808\pi\)
−0.960753 + 0.277405i \(0.910526\pi\)
\(338\) 9.44094 + 5.45073i 0.513520 + 0.296481i
\(339\) 8.30987 + 8.04235i 0.451330 + 0.436801i
\(340\) 0 0
\(341\) 0 0
\(342\) 29.7346 0.973147i 1.60786 0.0526217i
\(343\) −18.5203 −1.00000
\(344\) 0 0
\(345\) −16.2992 57.0779i −0.877520 3.07297i
\(346\) 17.3966 30.1318i 0.935247 1.61990i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −14.3152 24.7947i −0.766277 1.32723i −0.939569 0.342361i \(-0.888774\pi\)
0.173291 0.984871i \(-0.444560\pi\)
\(350\) 36.3042i 1.94054i
\(351\) −22.5125 + 7.23306i −1.20163 + 0.386072i
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) 12.5830 + 3.15194i 0.668779 + 0.167524i
\(355\) −20.9345 + 36.2597i −1.11109 + 1.92447i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 13.5121i 0.713143i 0.934268 + 0.356572i \(0.116054\pi\)
−0.934268 + 0.356572i \(0.883946\pi\)
\(360\) −27.6299 + 17.1810i −1.45622 + 0.905519i
\(361\) 30.1718 1.58799
\(362\) −3.84327 + 2.21891i −0.201998 + 0.116623i
\(363\) −13.2500 + 13.6908i −0.695446 + 0.718579i
\(364\) 12.0399 20.8537i 0.631063 1.09303i
\(365\) 0 0
\(366\) 12.9103 + 12.4947i 0.674835 + 0.653110i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 35.7512i 1.86366i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 7.58904 30.2966i 0.391896 1.56451i
\(376\) 0 0
\(377\) 0 0
\(378\) 5.94719 + 18.5103i 0.305890 + 0.952067i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −46.5712 + 26.8879i −2.38905 + 1.37932i
\(381\) −30.9855 7.76162i −1.58744 0.397640i
\(382\) −1.72111 + 2.98105i −0.0880597 + 0.152524i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) −18.8427 + 5.38073i −0.961563 + 0.274584i
\(385\) 0 0
\(386\) 29.1006i 1.48118i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 29.7243 30.7131i 1.50515 1.55522i
\(391\) 0 0
\(392\) −17.1464 9.89949i −0.866025 0.500000i
\(393\) 12.0588 + 11.6706i 0.608285 + 0.588703i
\(394\) 0 0
\(395\) 66.4990i 3.34593i
\(396\) 0 0
\(397\) −37.7318 −1.89370 −0.946852 0.321668i \(-0.895756\pi\)
−0.946852 + 0.321668i \(0.895756\pi\)
\(398\) 0 0
\(399\) 8.82355 + 30.8991i 0.441730 + 1.54689i
\(400\) 19.4054 33.6112i 0.970272 1.68056i
\(401\) −27.8276 16.0663i −1.38964 0.802310i −0.396368 0.918092i \(-0.629729\pi\)
−0.993275 + 0.115782i \(0.963063\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 40.1235i 1.99622i
\(405\) 2.25644 + 34.4359i 0.112123 + 1.71113i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 24.9266 7.11804i 1.22954 0.351107i
\(412\) 0 0
\(413\) 14.0111i 0.689442i
\(414\) −33.4422 17.8756i −1.64360 0.878539i
\(415\) 69.6594 3.41945
\(416\) 22.2936 12.8712i 1.09303 0.631063i
\(417\) 2.75198 2.84352i 0.134765 0.139248i
\(418\) 0 0
\(419\) −7.16397 4.13612i −0.349983 0.202063i 0.314695 0.949193i \(-0.398098\pi\)
−0.664678 + 0.747130i \(0.731431\pi\)
\(420\) −25.2530 24.4400i −1.23222 1.19255i
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 7.34423 + 25.7187i 0.355829 + 1.24607i
\(427\) −9.70302 + 16.8061i −0.469562 + 0.813306i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4166i 1.80229i −0.433515 0.901146i \(-0.642727\pi\)
0.433515 0.901146i \(-0.357273\pi\)
\(432\) −4.38814 + 20.3161i −0.211124 + 0.977459i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −54.2775 31.3371i −2.59644 1.49906i
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) −17.8333 + 11.0893i −0.849207 + 0.528060i
\(442\) 0 0
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −10.5830 18.3303i −0.500000 0.866025i
\(449\) 11.0141i 0.519789i 0.965637 + 0.259895i \(0.0836878\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) −21.7377 34.9577i −1.02472 1.64792i
\(451\) 0 0
\(452\) −11.5643 + 6.67666i −0.543940 + 0.314044i
\(453\) 11.6246 + 40.7079i 0.546170 + 1.91263i
\(454\) 10.4187 18.0457i 0.488973 0.846926i
\(455\) 39.9809 + 23.0830i 1.87433 + 1.08215i
\(456\) −8.34723 + 33.3234i −0.390895 + 1.56051i
\(457\) −19.6940 34.1111i −0.921249 1.59565i −0.797486 0.603338i \(-0.793837\pi\)
−0.123763 0.992312i \(-0.539496\pi\)
\(458\) 41.5751i 1.94268i
\(459\) 0 0
\(460\) 68.5425 3.19581
\(461\) 34.5504 19.9477i 1.60917 0.929057i 0.619619 0.784903i \(-0.287287\pi\)
0.989555 0.144154i \(-0.0460461\pi\)
\(462\) 0 0
\(463\) 21.3113 36.9123i 0.990421 1.71546i 0.375628 0.926770i \(-0.377427\pi\)
0.614792 0.788689i \(-0.289240\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 14.2572 + 24.6943i 0.660454 + 1.14394i
\(467\) 41.6295i 1.92638i 0.268814 + 0.963192i \(0.413368\pi\)
−0.268814 + 0.963192i \(0.586632\pi\)
\(468\) −0.893119 27.2893i −0.0412845 1.26145i
\(469\) 0 0
\(470\) 0 0
\(471\) −8.05809 + 8.32613i −0.371297 + 0.383648i
\(472\) −7.48925 + 12.9718i −0.344721 + 0.597074i
\(473\) 0 0
\(474\) −30.5257 29.5431i −1.40209 1.35696i
\(475\) −34.0190 58.9226i −1.56090 2.70356i
\(476\) 0 0
\(477\) 0 0
\(478\) 31.4508 1.43853
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) −10.3160 36.1254i −0.470858 1.64889i
\(481\) 0 0
\(482\) 0 0
\(483\) 9.95220 39.7307i 0.452841 1.80781i
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) 16.8099 + 14.2628i 0.762513 + 0.646973i
\(487\) 0.442222 0.0200390 0.0100195 0.999950i \(-0.496811\pi\)
0.0100195 + 0.999950i \(0.496811\pi\)
\(488\) −17.9665 + 10.3730i −0.813306 + 0.469562i
\(489\) 0 0
\(490\) 18.9794 32.8732i 0.857401 1.48506i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 45.1281i 2.03041i
\(495\) 0 0
\(496\) 0 0
\(497\) −25.0193 + 14.4449i −1.12227 + 0.647941i
\(498\) 30.9471 31.9765i 1.38677 1.43290i
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 31.2326 + 18.0322i 1.39677 + 0.806423i
\(501\) 0 0
\(502\) −4.99600 8.65333i −0.222982 0.386217i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −22.4379 + 0.734344i −0.999465 + 0.0327103i
\(505\) −76.9250 −3.42312
\(506\) 0 0
\(507\) 3.66612 + 12.8383i 0.162818 + 0.570170i
\(508\) 18.4422 31.9429i 0.818241 1.41724i
\(509\) −32.4532 18.7369i −1.43846 0.830497i −0.440719 0.897645i \(-0.645277\pi\)
−0.997743 + 0.0671482i \(0.978610\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) 26.9975 + 24.4698i 1.19197 + 1.08037i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 40.9749 11.7008i 1.79860 0.513609i
\(520\) 24.6768 + 42.7414i 1.08215 + 1.87433i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −45.6661 −1.99684 −0.998419 0.0562050i \(-0.982100\pi\)
−0.998419 + 0.0562050i \(0.982100\pi\)
\(524\) −16.7814 + 9.68876i −0.733100 + 0.423256i
\(525\) 30.9219 31.9505i 1.34954 1.39443i
\(526\) −19.7211 + 34.1580i −0.859881 + 1.48936i
\(527\) 0 0
\(528\) 0 0
\(529\) 28.4422 + 49.2634i 1.23662 + 2.14189i
\(530\) 0 0
\(531\) 8.38935 + 13.4914i 0.364067 + 0.585479i
\(532\) −37.1054 −1.60872
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 14.5083 + 25.1292i 0.625498 + 1.08339i
\(539\) 0 0
\(540\) −38.9502 8.41297i −1.67615 0.362037i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −5.27231 1.32067i −0.226257 0.0566754i
\(544\) 0 0
\(545\) 0 0
\(546\) 28.3581 8.09794i 1.21361 0.346560i
\(547\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(548\) 29.9333i 1.27869i
\(549\) 0.719769 + 21.9926i 0.0307190 + 0.938622i
\(550\) 0 0
\(551\) 0 0
\(552\) 30.4509 31.4638i 1.29608 1.33919i
\(553\) 22.9422 39.7371i 0.975603 1.68979i
\(554\) 0 0
\(555\) 0 0
\(556\) 2.28466 + 3.95715i 0.0968913 + 0.167821i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 35.1430 20.2898i 1.48506 0.857401i
\(561\) 0 0
\(562\) −23.6627 + 40.9850i −0.998150 + 1.72885i
\(563\) 13.8054 + 7.97053i 0.581827 + 0.335918i 0.761859 0.647743i \(-0.224287\pi\)
−0.180032 + 0.983661i \(0.557620\pi\)
\(564\) 0 0
\(565\) −12.8005 22.1712i −0.538522 0.932748i
\(566\) 10.8291i 0.455181i
\(567\) −10.5320 + 21.3559i −0.442305 + 0.896865i
\(568\) −30.8844 −1.29588
\(569\) −2.44949 + 1.41421i −0.102688 + 0.0592869i −0.550464 0.834859i \(-0.685549\pi\)
0.447777 + 0.894146i \(0.352216\pi\)
\(570\) −63.8878 16.0034i −2.67596 0.670307i
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) −4.05380 + 1.15760i −0.169350 + 0.0483596i
\(574\) 0 0
\(575\) 86.7210i 3.61652i
\(576\) −21.1660 11.3137i −0.881917 0.471405i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 20.8207 12.0208i 0.866025 0.500000i
\(579\) −24.7862 + 25.6107i −1.03008 + 1.06434i
\(580\) 0 0
\(581\) 41.6256 + 24.0326i 1.72692 + 0.997039i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 52.3193 1.71229i 2.16314 0.0707947i
\(586\) −27.7265 −1.14537
\(587\) 7.99569 4.61631i 0.330017 0.190536i −0.325831 0.945428i \(-0.605644\pi\)
0.655849 + 0.754892i \(0.272311\pi\)
\(588\) −6.65832 23.3167i −0.274584 0.961563i
\(589\) 0 0
\(590\) −24.8696 14.3584i −1.02386 0.591128i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −28.7601 + 49.8140i −1.17609 + 2.03704i
\(599\) 9.79796 + 5.65685i 0.400334 + 0.231133i 0.686628 0.727009i \(-0.259090\pi\)
−0.286294 + 0.958142i \(0.592423\pi\)
\(600\) 45.7064 13.0519i 1.86595 0.532843i
\(601\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −48.8844 −1.98908
\(605\) 36.5277 21.0893i 1.48506 0.857401i
\(606\) −34.1749 + 35.3117i −1.38826 + 1.43444i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −34.3529 19.8337i −1.39319 0.804361i
\(609\) 0 0
\(610\) −19.8871 34.4455i −0.805206 1.39466i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −42.6465 + 24.6220i −1.72107 + 0.993662i
\(615\) 0 0
\(616\) 0 0
\(617\) −12.2474 7.07107i −0.493064 0.284670i 0.232781 0.972529i \(-0.425218\pi\)
−0.725845 + 0.687859i \(0.758551\pi\)
\(618\) 0 0
\(619\) 24.8654 + 43.0682i 0.999427 + 1.73106i 0.529034 + 0.848601i \(0.322554\pi\)
0.470393 + 0.882457i \(0.344112\pi\)
\(620\) 0 0
\(621\) −14.2062 44.2161i −0.570076 1.77433i
\(622\) 0 0
\(623\) 0 0
\(624\) 30.5830 + 7.66079i 1.22430 + 0.306677i
\(625\) −10.3146 + 17.8654i −0.412583 + 0.714615i
\(626\) 0 0
\(627\) 0 0
\(628\) −6.68972 11.5869i −0.266949 0.462369i
\(629\) 0 0
\(630\) −1.40789 43.0181i −0.0560916 1.71388i
\(631\) −10.8736 −0.432872 −0.216436 0.976297i \(-0.569443\pi\)
−0.216436 + 0.976297i \(0.569443\pi\)
\(632\) 42.4807 24.5263i 1.68979 0.975603i
\(633\) 0 0
\(634\) 0 0
\(635\) 61.2411 + 35.3575i 2.43028 + 1.40312i
\(636\) 0 0
\(637\) 15.9273 + 27.5869i 0.631063 + 1.09303i
\(638\) 0 0
\(639\) −15.4422 + 28.8898i −0.610885 + 1.14286i
\(640\) 43.3814 1.71480
\(641\) −8.91478 + 5.14695i −0.352113 + 0.203292i −0.665615 0.746295i \(-0.731831\pi\)
0.313503 + 0.949587i \(0.398498\pi\)
\(642\) 0 0
\(643\) 7.63202 13.2190i 0.300978 0.521308i −0.675380 0.737470i \(-0.736020\pi\)
0.976358 + 0.216161i \(0.0693537\pi\)
\(644\) 40.9582 + 23.6472i 1.61398 + 0.931831i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −21.1660 + 14.1421i −0.831479 + 0.555556i
\(649\) 0 0
\(650\) −54.0771 + 31.2214i −2.12108 + 1.22460i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) −18.5754 32.1735i −0.725799 1.25712i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −25.5444 + 44.2442i −0.993561 + 1.72090i −0.398664 + 0.917097i \(0.630526\pi\)
−0.594898 + 0.803801i \(0.702807\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 25.6919 + 44.4997i 0.997039 + 1.72692i
\(665\) 71.1387i 2.75864i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 6.29888 25.1461i 0.242984 0.970030i
\(673\) 25.9422 + 44.9332i 0.999999 + 1.73205i 0.501113 + 0.865382i \(0.332924\pi\)
0.498886 + 0.866668i \(0.333743\pi\)
\(674\) 37.4166i 1.44123i
\(675\) 10.6442 49.2804i 0.409696 1.89680i
\(676\) −15.4170 −0.592961
\(677\) −8.18524 + 4.72575i −0.314584 + 0.181625i −0.648976 0.760809i \(-0.724802\pi\)
0.334392 + 0.942434i \(0.391469\pi\)
\(678\) −15.8643 3.97387i −0.609264 0.152615i
\(679\) 0 0
\(680\) 0 0
\(681\) 24.5395 7.00752i 0.940356 0.268529i
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) −35.7292 + 22.2174i −1.36614 + 0.849503i
\(685\) −57.3882 −2.19269
\(686\) 22.6826 13.0958i 0.866025 0.500000i
\(687\) −35.4113 + 36.5892i −1.35103 + 1.39597i
\(688\) 0 0
\(689\) 0 0
\(690\) 60.3226 + 58.3806i 2.29644 + 2.22251i
\(691\) 15.1257 + 26.1985i 0.575409 + 0.996637i 0.995997 + 0.0893857i \(0.0284904\pi\)
−0.420588 + 0.907252i \(0.638176\pi\)
\(692\) 49.2050i 1.87049i
\(693\) 0 0
\(694\) 0 0
\(695\) −7.58667 + 4.38017i −0.287779 + 0.166149i
\(696\) 0 0
\(697\) 0 0
\(698\) 35.0650 + 20.2448i 1.32723 + 0.766277i
\(699\) −8.48574 + 33.8763i −0.320960 + 1.28132i
\(700\) 25.6710 + 44.4634i 0.970272 + 1.68056i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 22.4575 24.7774i 0.847604 0.935162i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −45.9672 26.5392i −1.72877 0.998109i
\(708\) −17.6397 + 5.03721i −0.662942 + 0.189310i
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 59.2118i 2.22218i
\(711\) −1.70185 52.0002i −0.0638244 1.95016i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 27.6791 + 26.7881i 1.03370 + 1.00042i
\(718\) −9.55452 16.5489i −0.356572 0.617600i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 21.6907 40.5796i 0.808365 1.51231i
\(721\) 0 0
\(722\) −36.9527 + 21.3347i −1.37524 + 0.793994i
\(723\) 0 0
\(724\) 3.13802 5.43520i 0.116623 0.201998i
\(725\) 0 0
\(726\) 6.54707 26.1369i 0.242984 0.970030i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 34.0540i 1.26213i
\(729\) 2.64575 + 26.8701i 0.0979908 + 0.995187i
\(730\) 0 0
\(731\) 0 0
\(732\) −24.6470 6.17387i −0.910979 0.228193i
\(733\) 25.0267 43.3475i 0.924383 1.60108i 0.131832 0.991272i \(-0.457914\pi\)
0.792551 0.609806i \(-0.208753\pi\)
\(734\) 0 0
\(735\) 44.7029 12.7654i 1.64889 0.470858i
\(736\) 25.2799 + 43.7861i 0.931831 + 1.61398i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 38.4376 39.7162i 1.41204 1.45901i
\(742\) 0 0
\(743\) −6.48074 3.74166i −0.237755 0.137268i 0.376389 0.926462i \(-0.377166\pi\)
−0.614145 + 0.789193i \(0.710499\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 54.4716 1.78273i 1.99301 0.0652268i
\(748\) 0 0
\(749\) 0 0
\(750\) 12.1283 + 42.4718i 0.442862 + 1.55085i
\(751\) 2.77889 4.81318i 0.101403 0.175635i −0.810860 0.585240i \(-0.801000\pi\)
0.912263 + 0.409605i \(0.134333\pi\)
\(752\) 0 0
\(753\) 2.97356 11.8709i 0.108363 0.432599i
\(754\) 0 0
\(755\) 93.7216i 3.41088i
\(756\) −20.3725 18.4651i −0.740942 0.671569i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 38.0252 65.8616i 1.37932 2.38905i
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 43.4377 12.4041i 1.57358 0.449353i
\(763\) 0 0
\(764\) 4.86804i 0.176119i
\(765\) 0 0
\(766\) 0 0
\(767\) 20.8703 12.0495i 0.753582 0.435081i
\(768\) 19.2728 19.9138i 0.695446 0.718579i
\(769\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −20.5772 35.6408i −0.740591 1.28274i
\(773\) 40.8077i 1.46775i 0.679285 + 0.733875i \(0.262290\pi\)
−0.679285 + 0.733875i \(0.737710\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −14.6873 + 58.6339i −0.525890 + 2.09943i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 22.2146 12.8256i 0.792871 0.457764i
\(786\) −23.0213 5.76664i −0.821142 0.205689i
\(787\) −22.6105 + 39.1626i −0.805978 + 1.39600i 0.109650 + 0.993970i \(0.465027\pi\)
−0.915629 + 0.402025i \(0.868306\pi\)
\(788\) 0 0
\(789\) −46.4499 + 13.2643i −1.65366 + 0.472220i
\(790\) 47.0219 + 81.4443i 1.67296 + 2.89766i
\(791\) 17.6648i 0.628087i
\(792\) 0 0
\(793\) 33.3782 1.18529
\(794\) 46.2118 26.6804i 1.64000 0.946852i
\(795\) 0 0
\(796\) 0 0
\(797\) 18.1640 + 10.4870i 0.643403 + 0.371469i 0.785924 0.618323i \(-0.212188\pi\)
−0.142521 + 0.989792i \(0.545521\pi\)
\(798\) −32.6555 31.6043i −1.15599 1.11878i
\(799\) 0 0
\(800\) 54.8869i 1.94054i
\(801\) 0 0
\(802\) 45.4422 1.60462
\(803\) 0 0
\(804\) 0 0
\(805\) −45.3366 + 78.5253i −1.59791 + 2.76765i
\(806\) 0 0
\(807\) −8.63518 + 34.4729i −0.303973 + 1.21350i
\(808\) −28.3716 49.1410i −0.998109 1.72877i
\(809\) 31.1127i 1.09386i 0.837177 + 0.546932i \(0.184204\pi\)
−0.837177 + 0.546932i \(0.815796\pi\)
\(810\) −27.1134 40.5796i −0.952667 1.42582i
\(811\) −48.4452 −1.70114 −0.850570 0.525861i \(-0.823743\pi\)
−0.850570 + 0.525861i \(0.823743\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 31.8546 + 17.0270i 1.11309 + 0.594972i
\(820\) 0 0
\(821\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(822\) −25.4955 + 26.3435i −0.889256 + 0.918836i
\(823\) −13.2288 + 22.9129i −0.461125 + 0.798693i −0.999017 0.0443211i \(-0.985888\pi\)
0.537892 + 0.843014i \(0.319221\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −9.90735 17.1600i −0.344721 0.597074i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 53.5982 1.75415i 1.86266 0.0609609i
\(829\) 1.32653 0.0460723 0.0230361 0.999735i \(-0.492667\pi\)
0.0230361 + 0.999735i \(0.492667\pi\)
\(830\) −85.3150 + 49.2566i −2.96133 + 1.70972i
\(831\) 0 0
\(832\) −18.2026 + 31.5279i −0.631063 + 1.09303i
\(833\) 0 0
\(834\) −1.35980 + 5.42854i −0.0470861 + 0.187975i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 11.6987 0.404125
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 48.2102 + 12.0762i 1.66341 + 0.416670i
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 0 0
\(843\) −55.7336 + 15.9153i −1.91957 + 0.548153i
\(844\) 0 0
\(845\) 29.5576i 1.01681i
\(846\) 0 0
\(847\) 29.1033 1.00000
\(848\) 0 0
\(849\) −9.22362 + 9.53043i −0.316554 + 0.327084i
\(850\) 0 0
\(851\) 0 0
\(852\) −27.1806 26.3056i −0.931193 0.901216i
\(853\) −17.8370 30.8947i −0.610729 1.05781i −0.991118 0.132987i \(-0.957543\pi\)
0.380389 0.924827i \(-0.375790\pi\)
\(854\) 27.4443i 0.939125i
\(855\) −42.5953 68.5002i −1.45673 2.34266i
\(856\) 0 0
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 27.1612 47.0446i 0.926728 1.60514i 0.137969 0.990437i \(-0.455943\pi\)
0.788759 0.614703i \(-0.210724\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 26.4575 + 45.8258i 0.901146 + 1.56083i
\(863\) 14.5365i 0.494830i −0.968910 0.247415i \(-0.920419\pi\)
0.968910 0.247415i \(-0.0795811\pi\)
\(864\) −8.99131 27.9849i −0.305890 0.952067i
\(865\) −94.3362 −3.20753
\(866\) 0 0
\(867\) 28.5624 + 7.15464i 0.970030 + 0.242984i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 88.6348 2.99812
\(875\) −41.3169 + 23.8543i −1.39677 + 0.806423i
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) −24.4014 23.6159i −0.823039 0.796544i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 14.0000 26.1916i 0.471405 0.881917i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) −9.65737 33.8190i −0.324629 1.13681i
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 24.3968 + 42.2564i 0.818241 + 1.41724i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 25.9230 + 14.9666i 0.866025 + 0.500000i
\(897\) −67.7398 + 19.3438i −2.26177 + 0.645871i
\(898\) −7.78817 13.4895i −0.259895 0.450151i
\(899\) 0 0
\(900\) 51.3420 + 27.4434i 1.71140 + 0.914781i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 9.44222 16.3544i 0.314044 0.543940i
\(905\) 10.4204 + 6.01622i 0.346386 + 0.199986i
\(906\) −43.0220 41.6370i −1.42931 1.38330i
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 29.4685i 0.977946i
\(909\) −60.1530 + 1.96867i −1.99515 + 0.0652968i
\(910\) −65.2886 −2.16429
\(911\) −0.182592 + 0.105420i −0.00604956 + 0.00349271i −0.503022 0.864274i \(-0.667778\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) −13.3400 46.7150i −0.441730 1.54689i
\(913\) 0 0
\(914\) 48.2404 + 27.8516i 1.59565 + 0.921249i
\(915\) 11.8366 47.2534i 0.391305 1.56215i
\(916\) −29.3981 50.9189i −0.971339 1.68241i
\(917\) 25.6341i 0.846511i
\(918\) 0 0
\(919\) −14.4063 −0.475221 −0.237610 0.971361i \(-0.576364\pi\)
−0.237610 + 0.971361i \(0.576364\pi\)
\(920\) −83.9471 + 48.4669i −2.76765 + 1.59791i
\(921\) −58.5038 14.6547i −1.92776 0.482889i
\(922\) −28.2103 + 48.8617i −0.929057 + 1.60917i
\(923\) 43.0328 + 24.8450i 1.41644 + 0.817783i
\(924\) 0 0
\(925\) 0 0
\(926\) 60.2775i 1.98084i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 24.5429 42.5096i 0.804361 1.39319i
\(932\) −34.9230 20.1628i −1.14394 0.660454i
\(933\) 0 0
\(934\) −29.4365 50.9855i −0.963192 1.66830i
\(935\) 0 0
\(936\) 20.3903 + 32.7910i 0.666479 + 1.07181i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −35.4825 20.4859i −1.15670 0.667820i −0.206187 0.978513i \(-0.566106\pi\)
−0.950510 + 0.310693i \(0.899439\pi\)
\(942\) 3.98164 15.8953i 0.129729 0.517897i
\(943\) 0 0
\(944\) 21.1828i 0.689442i
\(945\) 35.4014 39.0584i 1.15161 1.27057i
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) 58.2763 + 14.5977i 1.89273 + 0.474113i
\(949\) 0 0
\(950\) 83.3292 + 48.1101i 2.70356 + 1.56090i
\(951\) 0 0
\(952\) 0 0
\(953\) 29.9333i 0.969633i 0.874616 + 0.484817i \(0.161114\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 9.33303 0.302010
\(956\) −38.5193 + 22.2391i −1.24580 + 0.719264i
\(957\) 0 0
\(958\) 0 0
\(959\) −34.2929 19.7990i −1.10737 0.639343i
\(960\) 38.1789 + 36.9499i 1.23222 + 1.19255i
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 68.3308 39.4508i 2.19965 1.26997i
\(966\) 15.9049 + 55.6972i 0.511733 + 1.79203i
\(967\) −24.2211 + 41.9522i −0.778898 + 1.34909i 0.153679 + 0.988121i \(0.450888\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(968\) 26.9444 + 15.5563i 0.866025 + 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 31.2787i 1.00378i 0.864931 + 0.501891i \(0.167362\pi\)
−0.864931 + 0.501891i \(0.832638\pi\)
\(972\) −30.6732 5.58187i −0.983842 0.179039i
\(973\) −6.04465 −0.193783
\(974\) −0.541609 + 0.312698i −0.0173543 + 0.0100195i
\(975\) −74.1846 18.5826i −2.37581 0.595120i
\(976\) 14.6696 25.4085i 0.469562 0.813306i
\(977\) 51.8459 + 29.9333i 1.65870 + 0.957650i 0.973317 + 0.229465i \(0.0736978\pi\)
0.685381 + 0.728184i \(0.259636\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 53.6818i 1.71480i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 31.9104 + 55.2704i 1.01521 + 1.75839i
\(989\) 0 0
\(990\) 0 0
\(991\) −37.0405 −1.17663 −0.588315 0.808632i \(-0.700209\pi\)
−0.588315 + 0.808632i \(0.700209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 20.4281 35.3826i 0.647941 1.12227i
\(995\) 0 0
\(996\) −15.2915 + 61.0460i −0.484530 + 1.93432i
\(997\) 30.9671 + 53.6365i 0.980737 + 1.69869i 0.659533 + 0.751675i \(0.270754\pi\)
0.321203 + 0.947010i \(0.395913\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cc.a.293.1 16
7.6 odd 2 inner 504.2.cc.a.293.4 yes 16
8.5 even 2 inner 504.2.cc.a.293.4 yes 16
9.2 odd 6 inner 504.2.cc.a.461.1 yes 16
56.13 odd 2 CM 504.2.cc.a.293.1 16
63.20 even 6 inner 504.2.cc.a.461.4 yes 16
72.29 odd 6 inner 504.2.cc.a.461.4 yes 16
504.461 even 6 inner 504.2.cc.a.461.1 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.cc.a.293.1 16 1.1 even 1 trivial
504.2.cc.a.293.1 16 56.13 odd 2 CM
504.2.cc.a.293.4 yes 16 7.6 odd 2 inner
504.2.cc.a.293.4 yes 16 8.5 even 2 inner
504.2.cc.a.461.1 yes 16 9.2 odd 6 inner
504.2.cc.a.461.1 yes 16 504.461 even 6 inner
504.2.cc.a.461.4 yes 16 63.20 even 6 inner
504.2.cc.a.461.4 yes 16 72.29 odd 6 inner