Properties

Label 504.2.cc.a.293.3
Level $504$
Weight $2$
Character 504.293
Analytic conductor $4.024$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(293,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{12} + 19x^{8} + 810x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 293.3
Root \(-1.24461 - 1.20455i\) of defining polynomial
Character \(\chi\) \(=\) 504.293
Dual form 504.2.cc.a.461.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.420861 + 1.68014i) q^{3} +(1.00000 - 1.73205i) q^{4} +(3.87242 + 2.23574i) q^{5} +(-1.70349 - 1.76015i) q^{6} +(-1.32288 - 2.29129i) q^{7} +2.82843i q^{8} +(-2.64575 + 1.41421i) q^{9} +O(q^{10})\) \(q+(-1.22474 + 0.707107i) q^{2} +(0.420861 + 1.68014i) q^{3} +(1.00000 - 1.73205i) q^{4} +(3.87242 + 2.23574i) q^{5} +(-1.70349 - 1.76015i) q^{6} +(-1.32288 - 2.29129i) q^{7} +2.82843i q^{8} +(-2.64575 + 1.41421i) q^{9} -6.32364 q^{10} +(3.33095 + 0.951188i) q^{12} +(-2.79694 + 4.84444i) q^{13} +(3.24037 + 1.87083i) q^{14} +(-2.12661 + 7.44716i) q^{15} +(-2.00000 - 3.46410i) q^{16} +(2.24037 - 3.60288i) q^{18} +3.48300 q^{19} +(7.74485 - 4.47149i) q^{20} +(3.29294 - 3.18693i) q^{21} +(1.25963 + 0.727248i) q^{23} +(-4.75216 + 1.19038i) q^{24} +(7.49711 + 12.9854i) q^{25} -7.91094i q^{26} +(-3.48957 - 3.85005i) q^{27} -5.29150 q^{28} +(-2.66138 - 10.6246i) q^{30} +(4.89898 + 2.82843i) q^{32} -11.8304i q^{35} +(-0.196262 + 5.99679i) q^{36} +(-4.26578 + 2.46285i) q^{38} +(-9.31647 - 2.66042i) q^{39} +(-6.32364 + 10.9529i) q^{40} +(-1.77951 + 6.23164i) q^{42} +(-13.4073 - 0.438791i) q^{45} -2.05697 q^{46} +(4.97846 - 4.81819i) q^{48} +(-3.50000 + 6.06218i) q^{49} +(-18.3641 - 10.6025i) q^{50} +(5.59388 + 9.68889i) q^{52} +(6.99623 + 2.24783i) q^{54} +(6.48074 - 3.74166i) q^{56} +(1.46586 + 5.85193i) q^{57} +(12.4887 + 7.21033i) q^{59} +(10.7722 + 11.1306i) q^{60} +(-6.62389 - 11.4729i) q^{61} +(6.74037 + 4.19135i) q^{63} -8.00000 q^{64} +(-21.6619 + 12.5065i) q^{65} +(-0.691749 + 2.42243i) q^{69} +(8.36539 + 14.4893i) q^{70} -16.5762i q^{71} +(-4.00000 - 7.48331i) q^{72} +(-18.6620 + 18.0613i) q^{75} +(3.48300 - 6.03273i) q^{76} +(13.2915 - 3.32941i) q^{78} +(-6.02559 - 10.4366i) q^{79} -17.8860i q^{80} +(5.00000 - 7.48331i) q^{81} +(-1.21349 + 0.700610i) q^{83} +(-2.22699 - 8.89047i) q^{84} +(16.7308 - 8.94298i) q^{90} +14.8000 q^{91} +(2.51926 - 1.45450i) q^{92} +(13.4876 + 7.78709i) q^{95} +(-2.69037 + 9.42135i) q^{96} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 16 q^{4} - 16 q^{15} - 32 q^{16} - 16 q^{18} + 72 q^{23} + 40 q^{25} + 32 q^{30} - 40 q^{39} - 56 q^{49} - 144 q^{50} + 8 q^{57} - 16 q^{60} + 56 q^{63} - 128 q^{64} - 72 q^{65} - 64 q^{72} + 128 q^{78} + 80 q^{81} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22474 + 0.707107i −0.866025 + 0.500000i
\(3\) 0.420861 + 1.68014i 0.242984 + 0.970030i
\(4\) 1.00000 1.73205i 0.500000 0.866025i
\(5\) 3.87242 + 2.23574i 1.73180 + 0.999856i 0.874400 + 0.485206i \(0.161255\pi\)
0.857401 + 0.514649i \(0.172078\pi\)
\(6\) −1.70349 1.76015i −0.695446 0.718579i
\(7\) −1.32288 2.29129i −0.500000 0.866025i
\(8\) 2.82843i 1.00000i
\(9\) −2.64575 + 1.41421i −0.881917 + 0.471405i
\(10\) −6.32364 −1.99971
\(11\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(12\) 3.33095 + 0.951188i 0.961563 + 0.274584i
\(13\) −2.79694 + 4.84444i −0.775732 + 1.34361i 0.158651 + 0.987335i \(0.449286\pi\)
−0.934382 + 0.356272i \(0.884048\pi\)
\(14\) 3.24037 + 1.87083i 0.866025 + 0.500000i
\(15\) −2.12661 + 7.44716i −0.549089 + 1.92285i
\(16\) −2.00000 3.46410i −0.500000 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 2.24037 3.60288i 0.528060 0.849207i
\(19\) 3.48300 0.799054 0.399527 0.916721i \(-0.369174\pi\)
0.399527 + 0.916721i \(0.369174\pi\)
\(20\) 7.74485 4.47149i 1.73180 0.999856i
\(21\) 3.29294 3.18693i 0.718579 0.695446i
\(22\) 0 0
\(23\) 1.25963 + 0.727248i 0.262651 + 0.151642i 0.625543 0.780189i \(-0.284877\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) −4.75216 + 1.19038i −0.970030 + 0.242984i
\(25\) 7.49711 + 12.9854i 1.49942 + 2.59708i
\(26\) 7.91094i 1.55146i
\(27\) −3.48957 3.85005i −0.671569 0.740942i
\(28\) −5.29150 −1.00000
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) −2.66138 10.6246i −0.485899 1.93978i
\(31\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(32\) 4.89898 + 2.82843i 0.866025 + 0.500000i
\(33\) 0 0
\(34\) 0 0
\(35\) 11.8304i 1.99971i
\(36\) −0.196262 + 5.99679i −0.0327103 + 0.999465i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −4.26578 + 2.46285i −0.692001 + 0.399527i
\(39\) −9.31647 2.66042i −1.49183 0.426008i
\(40\) −6.32364 + 10.9529i −0.999856 + 1.73180i
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) −1.77951 + 6.23164i −0.274584 + 0.961563i
\(43\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) 0 0
\(45\) −13.4073 0.438791i −1.99864 0.0654111i
\(46\) −2.05697 −0.303283
\(47\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(48\) 4.97846 4.81819i 0.718579 0.695446i
\(49\) −3.50000 + 6.06218i −0.500000 + 0.866025i
\(50\) −18.3641 10.6025i −2.59708 1.49942i
\(51\) 0 0
\(52\) 5.59388 + 9.68889i 0.775732 + 1.34361i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 6.99623 + 2.24783i 0.952067 + 0.305890i
\(55\) 0 0
\(56\) 6.48074 3.74166i 0.866025 0.500000i
\(57\) 1.46586 + 5.85193i 0.194158 + 0.775107i
\(58\) 0 0
\(59\) 12.4887 + 7.21033i 1.62589 + 0.938705i 0.985303 + 0.170816i \(0.0546403\pi\)
0.640582 + 0.767890i \(0.278693\pi\)
\(60\) 10.7722 + 11.1306i 1.39069 + 1.43695i
\(61\) −6.62389 11.4729i −0.848103 1.46896i −0.882899 0.469562i \(-0.844412\pi\)
0.0347968 0.999394i \(-0.488922\pi\)
\(62\) 0 0
\(63\) 6.74037 + 4.19135i 0.849207 + 0.528060i
\(64\) −8.00000 −1.00000
\(65\) −21.6619 + 12.5065i −2.68683 + 1.55124i
\(66\) 0 0
\(67\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(68\) 0 0
\(69\) −0.691749 + 2.42243i −0.0832768 + 0.291626i
\(70\) 8.36539 + 14.4893i 0.999856 + 1.73180i
\(71\) 16.5762i 1.96723i −0.180288 0.983614i \(-0.557703\pi\)
0.180288 0.983614i \(-0.442297\pi\)
\(72\) −4.00000 7.48331i −0.471405 0.881917i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −18.6620 + 18.0613i −2.15491 + 2.08553i
\(76\) 3.48300 6.03273i 0.399527 0.692001i
\(77\) 0 0
\(78\) 13.2915 3.32941i 1.50497 0.376981i
\(79\) −6.02559 10.4366i −0.677932 1.17421i −0.975603 0.219544i \(-0.929543\pi\)
0.297670 0.954669i \(-0.403790\pi\)
\(80\) 17.8860i 1.99971i
\(81\) 5.00000 7.48331i 0.555556 0.831479i
\(82\) 0 0
\(83\) −1.21349 + 0.700610i −0.133198 + 0.0769020i −0.565118 0.825010i \(-0.691170\pi\)
0.431920 + 0.901912i \(0.357836\pi\)
\(84\) −2.22699 8.89047i −0.242984 0.970030i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 16.7308 8.94298i 1.76358 0.942673i
\(91\) 14.8000 1.55146
\(92\) 2.51926 1.45450i 0.262651 0.151642i
\(93\) 0 0
\(94\) 0 0
\(95\) 13.4876 + 7.78709i 1.38380 + 0.798939i
\(96\) −2.69037 + 9.42135i −0.274584 + 0.961563i
\(97\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) 29.9884 2.99884
\(101\) 14.5113 8.37808i 1.44392 0.833650i 0.445815 0.895125i \(-0.352914\pi\)
0.998109 + 0.0614754i \(0.0195806\pi\)
\(102\) 0 0
\(103\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(104\) −13.7022 7.91094i −1.34361 0.775732i
\(105\) 19.8768 4.97898i 1.93978 0.485899i
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −10.1581 + 2.19407i −0.977459 + 0.211124i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −5.29150 + 9.16515i −0.500000 + 0.866025i
\(113\) 18.0296 + 10.4094i 1.69608 + 0.979234i 0.949409 + 0.314044i \(0.101684\pi\)
0.746674 + 0.665190i \(0.231650\pi\)
\(114\) −5.93324 6.13060i −0.555699 0.574183i
\(115\) 3.25188 + 5.63242i 0.303239 + 0.525226i
\(116\) 0 0
\(117\) 0.548932 16.7727i 0.0507488 1.55063i
\(118\) −20.3939 −1.87741
\(119\) 0 0
\(120\) −21.0637 6.01497i −1.92285 0.549089i
\(121\) 5.50000 9.52628i 0.500000 0.866025i
\(122\) 16.2252 + 9.36760i 1.46896 + 0.848103i
\(123\) 0 0
\(124\) 0 0
\(125\) 44.6891i 3.99711i
\(126\) −11.2190 0.367172i −0.999465 0.0327103i
\(127\) −20.4422 −1.81395 −0.906977 0.421180i \(-0.861616\pi\)
−0.906977 + 0.421180i \(0.861616\pi\)
\(128\) 9.79796 5.65685i 0.866025 0.500000i
\(129\) 0 0
\(130\) 17.6868 30.6345i 1.55124 2.68683i
\(131\) −1.71390 0.989523i −0.149744 0.0864550i 0.423256 0.906010i \(-0.360887\pi\)
−0.573000 + 0.819555i \(0.694221\pi\)
\(132\) 0 0
\(133\) −4.60757 7.98055i −0.399527 0.692001i
\(134\) 0 0
\(135\) −4.90538 22.7108i −0.422188 1.95464i
\(136\) 0 0
\(137\) 12.9615 7.48331i 1.10737 0.639343i 0.169226 0.985577i \(-0.445873\pi\)
0.938148 + 0.346235i \(0.112540\pi\)
\(138\) −0.865698 3.45600i −0.0736931 0.294194i
\(139\) 4.87789 8.44875i 0.413737 0.716614i −0.581558 0.813505i \(-0.697557\pi\)
0.995295 + 0.0968913i \(0.0308899\pi\)
\(140\) −20.4909 11.8304i −1.73180 0.999856i
\(141\) 0 0
\(142\) 11.7211 + 20.3016i 0.983614 + 1.70367i
\(143\) 0 0
\(144\) 10.1905 + 6.33672i 0.849207 + 0.528060i
\(145\) 0 0
\(146\) 0 0
\(147\) −11.6583 3.32916i −0.961563 0.274584i
\(148\) 0 0
\(149\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(150\) 10.0850 35.3165i 0.823436 2.88358i
\(151\) 7.22111 + 12.5073i 0.587646 + 1.01783i 0.994540 + 0.104357i \(0.0332784\pi\)
−0.406894 + 0.913475i \(0.633388\pi\)
\(152\) 9.85140i 0.799054i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −13.9245 + 13.4762i −1.11485 + 1.07896i
\(157\) 3.14090 5.44019i 0.250671 0.434174i −0.713040 0.701123i \(-0.752682\pi\)
0.963711 + 0.266949i \(0.0860155\pi\)
\(158\) 14.7596 + 8.52148i 1.17421 + 0.677932i
\(159\) 0 0
\(160\) 12.6473 + 21.9057i 0.999856 + 1.73180i
\(161\) 3.84823i 0.303283i
\(162\) −0.832222 + 12.7007i −0.0653855 + 0.997860i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0.990812 1.71614i 0.0769020 0.133198i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 9.01401 + 9.31384i 0.695446 + 0.718579i
\(169\) −9.14575 15.8409i −0.703519 1.21853i
\(170\) 0 0
\(171\) −9.21515 + 4.92570i −0.704700 + 0.376678i
\(172\) 0 0
\(173\) 8.06457 4.65608i 0.613138 0.353995i −0.161055 0.986945i \(-0.551490\pi\)
0.774193 + 0.632950i \(0.218156\pi\)
\(174\) 0 0
\(175\) 19.8355 34.3561i 1.49942 2.59708i
\(176\) 0 0
\(177\) −6.85838 + 24.0173i −0.515508 + 1.80525i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −14.1673 + 22.7833i −1.05597 + 1.69817i
\(181\) 16.0794 1.19517 0.597587 0.801804i \(-0.296126\pi\)
0.597587 + 0.801804i \(0.296126\pi\)
\(182\) −18.1262 + 10.4652i −1.34361 + 0.775732i
\(183\) 16.4884 15.9576i 1.21886 1.17962i
\(184\) −2.05697 + 3.56277i −0.151642 + 0.262651i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −4.20530 + 13.0888i −0.305890 + 0.952067i
\(190\) −22.0252 −1.59788
\(191\) −21.7038 + 12.5307i −1.57043 + 0.906691i −0.574320 + 0.818631i \(0.694733\pi\)
−0.996115 + 0.0880597i \(0.971933\pi\)
\(192\) −3.36689 13.4411i −0.242984 0.970030i
\(193\) −2.94014 + 5.09248i −0.211636 + 0.366565i −0.952227 0.305392i \(-0.901213\pi\)
0.740591 + 0.671957i \(0.234546\pi\)
\(194\) 0 0
\(195\) −30.1293 31.1315i −2.15761 2.22937i
\(196\) 7.00000 + 12.1244i 0.500000 + 0.866025i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −36.7282 + 21.2050i −2.59708 + 1.49942i
\(201\) 0 0
\(202\) −11.8484 + 20.5220i −0.833650 + 1.44392i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −4.36115 0.142731i −0.303121 0.00992047i
\(208\) 22.3755 1.55146
\(209\) 0 0
\(210\) −20.8234 + 20.1530i −1.43695 + 1.39069i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 27.8503 6.97626i 1.90827 0.478006i
\(214\) 0 0
\(215\) 0 0
\(216\) 10.8896 9.87000i 0.740942 0.671569i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(224\) 14.9666i 1.00000i
\(225\) −38.1996 23.7536i −2.54664 1.58357i
\(226\) −29.4422 −1.95847
\(227\) 0.331069 0.191143i 0.0219738 0.0126866i −0.488973 0.872299i \(-0.662628\pi\)
0.510947 + 0.859612i \(0.329295\pi\)
\(228\) 11.6017 + 3.31299i 0.768341 + 0.219408i
\(229\) 10.9312 18.9334i 0.722355 1.25116i −0.237699 0.971339i \(-0.576393\pi\)
0.960053 0.279817i \(-0.0902736\pi\)
\(230\) −7.96545 4.59885i −0.525226 0.303239i
\(231\) 0 0
\(232\) 0 0
\(233\) 9.77048i 0.640085i 0.947403 + 0.320043i \(0.103697\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) 11.1878 + 20.9304i 0.731367 + 1.36826i
\(235\) 0 0
\(236\) 24.9773 14.4207i 1.62589 0.938705i
\(237\) 14.9991 14.5162i 0.974295 0.942930i
\(238\) 0 0
\(239\) −25.7404 14.8612i −1.66501 0.961292i −0.970269 0.242028i \(-0.922188\pi\)
−0.694737 0.719264i \(-0.744479\pi\)
\(240\) 30.0509 7.52751i 1.93978 0.485899i
\(241\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 14.6773 + 5.25127i 0.941551 + 0.336869i
\(244\) −26.4956 −1.69621
\(245\) −27.1070 + 15.6502i −1.73180 + 0.999856i
\(246\) 0 0
\(247\) −9.74174 + 16.8732i −0.619852 + 1.07361i
\(248\) 0 0
\(249\) −1.68784 1.74398i −0.106962 0.110520i
\(250\) −31.5999 54.7327i −1.99856 3.46160i
\(251\) 9.32527i 0.588606i −0.955712 0.294303i \(-0.904913\pi\)
0.955712 0.294303i \(-0.0950874\pi\)
\(252\) 14.0000 7.48331i 0.881917 0.471405i
\(253\) 0 0
\(254\) 25.0365 14.4548i 1.57093 0.906977i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 50.0260i 3.10248i
\(261\) 0 0
\(262\) 2.79879 0.172910
\(263\) 0.341568 0.197204i 0.0210620 0.0121601i −0.489432 0.872041i \(-0.662796\pi\)
0.510494 + 0.859881i \(0.329463\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 11.2862 + 6.51609i 0.692001 + 0.399527i
\(267\) 0 0
\(268\) 0 0
\(269\) 30.5656i 1.86362i 0.362946 + 0.931810i \(0.381771\pi\)
−0.362946 + 0.931810i \(0.618229\pi\)
\(270\) 22.0668 + 24.3463i 1.34294 + 1.48167i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 6.22876 + 24.8661i 0.376981 + 1.50497i
\(274\) −10.5830 + 18.3303i −0.639343 + 1.10737i
\(275\) 0 0
\(276\) 3.50402 + 3.62057i 0.210917 + 0.217933i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 13.7968i 0.827474i
\(279\) 0 0
\(280\) 33.4616 1.99971
\(281\) 16.0193 9.24872i 0.955629 0.551733i 0.0608039 0.998150i \(-0.480634\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −11.5063 + 19.9295i −0.683978 + 1.18468i 0.289779 + 0.957094i \(0.406418\pi\)
−0.973757 + 0.227591i \(0.926915\pi\)
\(284\) −28.7107 16.5762i −1.70367 0.983614i
\(285\) −7.40699 + 25.9384i −0.438752 + 1.53646i
\(286\) 0 0
\(287\) 0 0
\(288\) −16.9615 0.555112i −0.999465 0.0327103i
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.55188 1.47333i −0.149082 0.0860728i 0.423603 0.905848i \(-0.360765\pi\)
−0.572686 + 0.819775i \(0.694098\pi\)
\(294\) 16.6326 4.16632i 0.970030 0.242984i
\(295\) 32.2409 + 55.8429i 1.87714 + 3.25130i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −7.04622 + 4.06814i −0.407493 + 0.235266i
\(300\) 12.6210 + 50.3848i 0.728673 + 2.90897i
\(301\) 0 0
\(302\) −17.6880 10.2122i −1.01783 0.587646i
\(303\) 20.1836 + 20.8550i 1.15952 + 1.19809i
\(304\) −6.96600 12.0655i −0.399527 0.692001i
\(305\) 59.2373i 3.39192i
\(306\) 0 0
\(307\) 28.1861 1.60866 0.804332 0.594180i \(-0.202523\pi\)
0.804332 + 0.594180i \(0.202523\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(312\) 7.52479 26.3510i 0.426008 1.49183i
\(313\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(314\) 8.88379i 0.501341i
\(315\) 16.7308 + 31.3004i 0.942673 + 1.76358i
\(316\) −24.1024 −1.35586
\(317\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −30.9794 17.8860i −1.73180 0.999856i
\(321\) 0 0
\(322\) 2.72111 + 4.71310i 0.151642 + 0.262651i
\(323\) 0 0
\(324\) −7.96148 16.1436i −0.442305 0.896865i
\(325\) −83.8759 −4.65260
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(332\) 2.80244i 0.153804i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −17.6257 5.03321i −0.961563 0.274584i
\(337\) 13.2288 22.9129i 0.720616 1.24814i −0.240137 0.970739i \(-0.577192\pi\)
0.960753 0.277405i \(-0.0894744\pi\)
\(338\) 22.4024 + 12.9340i 1.21853 + 0.703519i
\(339\) −9.90130 + 34.6732i −0.537765 + 1.88319i
\(340\) 0 0
\(341\) 0 0
\(342\) 7.80320 12.5488i 0.421949 0.678562i
\(343\) 18.5203 1.00000
\(344\) 0 0
\(345\) −8.09467 + 7.83409i −0.435803 + 0.421773i
\(346\) −6.58469 + 11.4050i −0.353995 + 0.613138i
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) −12.0031 20.7899i −0.642510 1.11286i −0.984871 0.173291i \(-0.944560\pi\)
0.342361 0.939569i \(-0.388774\pi\)
\(350\) 56.1032i 2.99884i
\(351\) 28.4115 6.13668i 1.51649 0.327552i
\(352\) 0 0
\(353\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(354\) −8.58301 34.2646i −0.456182 1.82114i
\(355\) 37.0601 64.1899i 1.96694 3.40685i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.9044i 1.26163i −0.775934 0.630814i \(-0.782721\pi\)
0.775934 0.630814i \(-0.217279\pi\)
\(360\) 1.24109 37.9215i 0.0654111 1.99864i
\(361\) −6.86873 −0.361512
\(362\) −19.6932 + 11.3699i −1.03505 + 0.597587i
\(363\) 18.3202 + 5.23153i 0.961563 + 0.274584i
\(364\) 14.8000 25.6344i 0.775732 1.34361i
\(365\) 0 0
\(366\) −8.91035 + 31.2030i −0.465751 + 1.63101i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) 5.81798i 0.303283i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) −75.0839 + 18.8079i −3.87732 + 0.971236i
\(376\) 0 0
\(377\) 0 0
\(378\) −4.10473 19.0040i −0.211124 0.977459i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 26.9753 15.5742i 1.38380 0.798939i
\(381\) −8.60334 34.3458i −0.440763 1.75959i
\(382\) 17.7211 30.6939i 0.906691 1.57043i
\(383\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(384\) 13.6279 + 14.0812i 0.695446 + 0.718579i
\(385\) 0 0
\(386\) 8.31598i 0.423272i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(390\) 58.9140 + 16.8235i 2.98323 + 0.851892i
\(391\) 0 0
\(392\) −17.1464 9.89949i −0.866025 0.500000i
\(393\) 0.941222 3.29605i 0.0474784 0.166264i
\(394\) 0 0
\(395\) 53.8868i 2.71134i
\(396\) 0 0
\(397\) −12.8184 −0.643337 −0.321668 0.946852i \(-0.604244\pi\)
−0.321668 + 0.946852i \(0.604244\pi\)
\(398\) 0 0
\(399\) 11.4693 11.1001i 0.574183 0.555699i
\(400\) 29.9884 51.9415i 1.49942 2.59708i
\(401\) −4.01580 2.31852i −0.200540 0.115782i 0.396368 0.918092i \(-0.370271\pi\)
−0.596907 + 0.802310i \(0.703604\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 33.5123i 1.66730i
\(405\) 36.0929 17.7998i 1.79347 0.884481i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(410\) 0 0
\(411\) 18.0280 + 18.6277i 0.889256 + 0.918836i
\(412\) 0 0
\(413\) 38.1535i 1.87741i
\(414\) 5.44222 2.90899i 0.267471 0.142969i
\(415\) −6.26554 −0.307563
\(416\) −27.4043 + 15.8219i −1.34361 + 0.775732i
\(417\) 16.2480 + 4.63979i 0.795669 + 0.227212i
\(418\) 0 0
\(419\) −23.5656 13.6056i −1.15126 0.664678i −0.202063 0.979373i \(-0.564764\pi\)
−0.949193 + 0.314695i \(0.898098\pi\)
\(420\) 11.2530 39.4067i 0.549089 1.92285i
\(421\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −29.1765 + 28.2373i −1.41361 + 1.36810i
\(427\) −17.5252 + 30.3545i −0.848103 + 1.46896i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4166i 1.80229i 0.433515 + 0.901146i \(0.357273\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) −6.35781 + 19.7883i −0.305890 + 0.952067i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4.38729 + 2.53300i 0.209872 + 0.121170i
\(438\) 0 0
\(439\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(440\) 0 0
\(441\) 0.686915 20.9888i 0.0327103 0.999465i
\(442\) 0 0
\(443\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 10.5830 + 18.3303i 0.500000 + 0.866025i
\(449\) 40.9474i 1.93243i 0.257743 + 0.966213i \(0.417021\pi\)
−0.257743 + 0.966213i \(0.582979\pi\)
\(450\) 63.5810 + 2.08087i 2.99724 + 0.0980930i
\(451\) 0 0
\(452\) 36.0592 20.8188i 1.69608 0.979234i
\(453\) −17.9750 + 17.3963i −0.844539 + 0.817351i
\(454\) −0.270317 + 0.468203i −0.0126866 + 0.0219738i
\(455\) 57.3119 + 33.0891i 2.68683 + 1.55124i
\(456\) −16.5518 + 4.14608i −0.775107 + 0.194158i
\(457\) −17.0483 29.5285i −0.797486 1.38129i −0.921249 0.388974i \(-0.872830\pi\)
0.123763 0.992312i \(-0.460504\pi\)
\(458\) 30.9181i 1.44471i
\(459\) 0 0
\(460\) 13.0075 0.606479
\(461\) −23.0428 + 13.3038i −1.07321 + 0.619619i −0.929057 0.369937i \(-0.879379\pi\)
−0.144154 + 0.989555i \(0.546046\pi\)
\(462\) 0 0
\(463\) 8.08256 13.9994i 0.375628 0.650608i −0.614792 0.788689i \(-0.710760\pi\)
0.990421 + 0.138081i \(0.0440936\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −6.90877 11.9663i −0.320043 0.554330i
\(467\) 11.6182i 0.537627i 0.963192 + 0.268814i \(0.0866316\pi\)
−0.963192 + 0.268814i \(0.913368\pi\)
\(468\) −28.5022 17.7234i −1.31751 0.819266i
\(469\) 0 0
\(470\) 0 0
\(471\) 10.4622 + 2.98758i 0.482071 + 0.137661i
\(472\) −20.3939 + 35.3233i −0.938705 + 1.62589i
\(473\) 0 0
\(474\) −8.10553 + 28.3846i −0.372299 + 1.30375i
\(475\) 26.1124 + 45.2280i 1.19812 + 2.07520i
\(476\) 0 0
\(477\) 0 0
\(478\) 42.0338 1.92258
\(479\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(480\) −31.4820 + 30.4685i −1.43695 + 1.39069i
\(481\) 0 0
\(482\) 0 0
\(483\) 6.46557 1.61957i 0.294194 0.0736931i
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) −21.6892 + 3.94698i −0.983842 + 0.179039i
\(487\) −38.4422 −1.74198 −0.870992 0.491298i \(-0.836523\pi\)
−0.870992 + 0.491298i \(0.836523\pi\)
\(488\) 32.4503 18.7352i 1.46896 0.848103i
\(489\) 0 0
\(490\) 22.1327 38.3350i 0.999856 1.73180i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 27.5538i 1.23970i
\(495\) 0 0
\(496\) 0 0
\(497\) −37.9807 + 21.9282i −1.70367 + 0.983614i
\(498\) 3.30035 + 0.942449i 0.147892 + 0.0422322i
\(499\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(500\) 77.4037 + 44.6891i 3.46160 + 1.99856i
\(501\) 0 0
\(502\) 6.59396 + 11.4211i 0.294303 + 0.509747i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) −11.8549 + 19.0646i −0.528060 + 0.849207i
\(505\) 74.9250 3.33412
\(506\) 0 0
\(507\) 22.7659 22.0330i 1.01107 0.978519i
\(508\) −20.4422 + 35.4070i −0.906977 + 1.57093i
\(509\) 21.7667 + 12.5670i 0.964793 + 0.557024i 0.897645 0.440719i \(-0.145277\pi\)
0.0671482 + 0.997743i \(0.478610\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) −12.1542 13.4097i −0.536620 0.592053i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 11.2169 + 11.5901i 0.492369 + 0.508747i
\(520\) −35.3737 61.2690i −1.55124 2.68683i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −40.8334 −1.78552 −0.892759 0.450535i \(-0.851233\pi\)
−0.892759 + 0.450535i \(0.851233\pi\)
\(524\) −3.42781 + 1.97905i −0.149744 + 0.0864550i
\(525\) 66.0711 + 18.8673i 2.88358 + 0.823436i
\(526\) −0.278889 + 0.483050i −0.0121601 + 0.0210620i
\(527\) 0 0
\(528\) 0 0
\(529\) −10.4422 18.0865i −0.454010 0.786368i
\(530\) 0 0
\(531\) −43.2388 1.41511i −1.87641 0.0614106i
\(532\) −18.4303 −0.799054
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −21.6132 37.4351i −0.931810 1.61394i
\(539\) 0 0
\(540\) −44.2417 14.2144i −1.90386 0.611692i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 6.76721 + 27.0157i 0.290409 + 1.15935i
\(544\) 0 0
\(545\) 0 0
\(546\) −25.2116 26.0503i −1.07896 1.11485i
\(547\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(548\) 29.9333i 1.27869i
\(549\) 33.7503 + 20.9869i 1.44043 + 0.895699i
\(550\) 0 0
\(551\) 0 0
\(552\) −6.85166 1.95656i −0.291626 0.0832768i
\(553\) −15.9422 + 27.6127i −0.677932 + 1.17421i
\(554\) 0 0
\(555\) 0 0
\(556\) −9.75578 16.8975i −0.413737 0.716614i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −40.9819 + 23.6609i −1.73180 + 0.999856i
\(561\) 0 0
\(562\) −13.0797 + 22.6547i −0.551733 + 0.955629i
\(563\) 31.3105 + 18.0771i 1.31958 + 0.761859i 0.983661 0.180032i \(-0.0576202\pi\)
0.335918 + 0.941891i \(0.390954\pi\)
\(564\) 0 0
\(565\) 46.5455 + 80.6192i 1.95818 + 3.39168i
\(566\) 32.5447i 1.36796i
\(567\) −23.7608 1.55694i −0.997860 0.0653855i
\(568\) 46.8844 1.96723
\(569\) −2.44949 + 1.41421i −0.102688 + 0.0592869i −0.550464 0.834859i \(-0.685549\pi\)
0.447777 + 0.894146i \(0.352216\pi\)
\(570\) −9.26957 37.0055i −0.388260 1.54999i
\(571\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(572\) 0 0
\(573\) −30.1877 31.1918i −1.26111 1.30306i
\(574\) 0 0
\(575\) 21.8090i 0.909499i
\(576\) 21.1660 11.3137i 0.881917 0.471405i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 20.8207 12.0208i 0.866025 0.500000i
\(579\) −9.79348 2.79663i −0.407003 0.116224i
\(580\) 0 0
\(581\) 3.21060 + 1.85364i 0.133198 + 0.0769020i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 39.6251 63.7236i 1.63830 2.63465i
\(586\) 4.16720 0.172146
\(587\) 13.6733 7.89427i 0.564357 0.325831i −0.190536 0.981680i \(-0.561022\pi\)
0.754892 + 0.655849i \(0.227689\pi\)
\(588\) −17.4246 + 16.8637i −0.718579 + 0.695446i
\(589\) 0 0
\(590\) −78.9738 45.5956i −3.25130 1.87714i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 5.75321 9.96486i 0.235266 0.407493i
\(599\) 9.79796 + 5.65685i 0.400334 + 0.231133i 0.686628 0.727009i \(-0.259090\pi\)
−0.286294 + 0.958142i \(0.592423\pi\)
\(600\) −51.0849 52.7842i −2.08553 2.15491i
\(601\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 28.8844 1.17529
\(605\) 42.5967 24.5932i 1.73180 0.999856i
\(606\) −39.4664 11.2700i −1.60321 0.457814i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) 17.0631 + 9.85140i 0.692001 + 0.399527i
\(609\) 0 0
\(610\) 41.8871 + 72.5506i 1.69596 + 2.93749i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −34.5207 + 19.9306i −1.39314 + 0.804332i
\(615\) 0 0
\(616\) 0 0
\(617\) −12.2474 7.07107i −0.493064 0.284670i 0.232781 0.972529i \(-0.425218\pi\)
−0.725845 + 0.687859i \(0.758551\pi\)
\(618\) 0 0
\(619\) −21.9553 38.0277i −0.882457 1.52846i −0.848601 0.529034i \(-0.822554\pi\)
−0.0338565 0.999427i \(-0.510779\pi\)
\(620\) 0 0
\(621\) −1.59563 7.38742i −0.0640305 0.296447i
\(622\) 0 0
\(623\) 0 0
\(624\) 9.41699 + 37.5940i 0.376981 + 1.50497i
\(625\) −62.4278 + 108.128i −2.49711 + 4.32512i
\(626\) 0 0
\(627\) 0 0
\(628\) −6.28179 10.8804i −0.250671 0.434174i
\(629\) 0 0
\(630\) −42.6237 26.5046i −1.69817 1.05597i
\(631\) −47.9141 −1.90743 −0.953716 0.300709i \(-0.902777\pi\)
−0.953716 + 0.300709i \(0.902777\pi\)
\(632\) 29.5193 17.0430i 1.17421 0.677932i
\(633\) 0 0
\(634\) 0 0
\(635\) −79.1609 45.7036i −3.14141 1.81369i
\(636\) 0 0
\(637\) −19.5786 33.9111i −0.775732 1.34361i
\(638\) 0 0
\(639\) 23.4422 + 43.8564i 0.927360 + 1.73493i
\(640\) 50.5891 1.99971
\(641\) −32.7265 + 18.8947i −1.29262 + 0.746295i −0.979118 0.203292i \(-0.934836\pi\)
−0.313503 + 0.949587i \(0.601502\pi\)
\(642\) 0 0
\(643\) −24.1817 + 41.8838i −0.953631 + 1.65174i −0.216161 + 0.976358i \(0.569354\pi\)
−0.737470 + 0.675380i \(0.763980\pi\)
\(644\) −6.66533 3.84823i −0.262651 0.151642i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 21.1660 + 14.1421i 0.831479 + 0.555556i
\(649\) 0 0
\(650\) 102.727 59.3092i 4.02927 2.32630i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) −4.42464 7.66370i −0.172885 0.299446i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(660\) 0 0
\(661\) −23.5785 + 40.8392i −0.917097 + 1.58846i −0.113296 + 0.993561i \(0.536141\pi\)
−0.803801 + 0.594898i \(0.797193\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −1.98162 3.43228i −0.0769020 0.133198i
\(665\) 41.2054i 1.59788i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 25.1461 6.29888i 0.970030 0.242984i
\(673\) −12.9422 22.4166i −0.498886 0.864096i 0.501113 0.865382i \(-0.332924\pi\)
−0.999999 + 0.00128586i \(0.999591\pi\)
\(674\) 37.4166i 1.44123i
\(675\) 23.8326 74.1777i 0.917318 2.85510i
\(676\) −36.5830 −1.40704
\(677\) −44.3171 + 25.5865i −1.70324 + 0.983368i −0.760809 + 0.648976i \(0.775198\pi\)
−0.942434 + 0.334392i \(0.891469\pi\)
\(678\) −12.3911 49.4671i −0.475877 1.89977i
\(679\) 0 0
\(680\) 0 0
\(681\) 0.460482 + 0.475799i 0.0176457 + 0.0182326i
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) −0.683579 + 20.8868i −0.0261373 + 0.798627i
\(685\) 66.9231 2.55700
\(686\) −22.6826 + 13.0958i −0.866025 + 0.500000i
\(687\) 36.4113 + 10.3976i 1.38918 + 0.396695i
\(688\) 0 0
\(689\) 0 0
\(690\) 4.37437 15.3186i 0.166530 0.583167i
\(691\) 23.8488 + 41.3074i 0.907252 + 1.57141i 0.817866 + 0.575409i \(0.195157\pi\)
0.0893857 + 0.995997i \(0.471510\pi\)
\(692\) 18.6243i 0.707991i
\(693\) 0 0
\(694\) 0 0
\(695\) 37.7785 21.8114i 1.43302 0.827355i
\(696\) 0 0
\(697\) 0 0
\(698\) 29.4014 + 16.9749i 1.11286 + 0.642510i
\(699\) −16.4158 + 4.11202i −0.620902 + 0.155531i
\(700\) −39.6710 68.7122i −1.49942 2.59708i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −30.4575 + 27.6058i −1.14954 + 1.04191i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −38.3932 22.1663i −1.44392 0.833650i
\(708\) 34.7407 + 35.8963i 1.30564 + 1.34907i
\(709\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(710\) 104.822i 3.93389i
\(711\) 30.7019 + 19.0913i 1.15141 + 0.715978i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 14.1358 49.5020i 0.527911 1.84869i
\(718\) 16.9030 + 29.2768i 0.630814 + 1.09260i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 25.2946 + 47.3218i 0.942673 + 1.76358i
\(721\) 0 0
\(722\) 8.41244 4.85692i 0.313079 0.180756i
\(723\) 0 0
\(724\) 16.0794 27.8504i 0.597587 1.03505i
\(725\) 0 0
\(726\) −26.1369 + 6.54707i −0.970030 + 0.242984i
\(727\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(728\) 41.8608i 1.55146i
\(729\) −2.64575 + 26.8701i −0.0979908 + 0.995187i
\(730\) 0 0
\(731\) 0 0
\(732\) −11.1510 44.5163i −0.412151 1.64537i
\(733\) −26.8377 + 46.4842i −0.991272 + 1.71693i −0.381466 + 0.924383i \(0.624581\pi\)
−0.609806 + 0.792551i \(0.708753\pi\)
\(734\) 0 0
\(735\) −37.7029 38.9570i −1.39069 1.43695i
\(736\) 4.11393 + 7.12554i 0.151642 + 0.262651i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) −32.4493 9.26622i −1.19205 0.340403i
\(742\) 0 0
\(743\) 6.48074 + 3.74166i 0.237755 + 0.137268i 0.614145 0.789193i \(-0.289501\pi\)
−0.376389 + 0.926462i \(0.622834\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.21979 3.56978i 0.0812178 0.130611i
\(748\) 0 0
\(749\) 0 0
\(750\) 78.6595 76.1272i 2.87224 2.77977i
\(751\) 22.2211 38.4881i 0.810860 1.40445i −0.101403 0.994845i \(-0.532333\pi\)
0.912263 0.409605i \(-0.134333\pi\)
\(752\) 0 0
\(753\) 15.6678 3.92464i 0.570965 0.143022i
\(754\) 0 0
\(755\) 64.5782i 2.35024i
\(756\) 18.4651 + 20.3725i 0.671569 + 0.740942i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −22.0252 + 38.1488i −0.798939 + 1.38380i
\(761\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(762\) 34.8231 + 35.9814i 1.26151 + 1.30347i
\(763\) 0 0
\(764\) 50.1229i 1.81338i
\(765\) 0 0
\(766\) 0 0
\(767\) −69.8601 + 40.3337i −2.52250 + 1.45637i
\(768\) −26.6476 7.60951i −0.961563 0.274584i
\(769\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 5.88029 + 10.1850i 0.211636 + 0.366565i
\(773\) 54.2265i 1.95039i −0.221340 0.975197i \(-0.571043\pi\)
0.221340 0.975197i \(-0.428957\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −84.0507 + 21.0540i −3.00950 + 0.753854i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 24.3258 14.0445i 0.868223 0.501269i
\(786\) 1.17790 + 4.70237i 0.0420144 + 0.167728i
\(787\) −16.6061 + 28.7627i −0.591945 + 1.02528i 0.402025 + 0.915629i \(0.368306\pi\)
−0.993970 + 0.109650i \(0.965027\pi\)
\(788\) 0 0
\(789\) 0.475084 + 0.490887i 0.0169134 + 0.0174760i
\(790\) 38.1037 + 65.9975i 1.35567 + 2.34809i
\(791\) 55.0814i 1.95847i
\(792\) 0 0
\(793\) 74.1065 2.63160
\(794\) 15.6993 9.06397i 0.557146 0.321668i
\(795\) 0 0
\(796\) 0 0
\(797\) −38.4300 22.1876i −1.36126 0.785924i −0.371469 0.928445i \(-0.621146\pi\)
−0.989792 + 0.142521i \(0.954479\pi\)
\(798\) −6.19803 + 21.7048i −0.219408 + 0.768341i
\(799\) 0 0
\(800\) 84.8201i 2.99884i
\(801\) 0 0
\(802\) 6.55778 0.231563
\(803\) 0 0
\(804\) 0 0
\(805\) 8.60367 14.9020i 0.303239 0.525226i
\(806\) 0 0
\(807\) −51.3546 + 12.8639i −1.80777 + 0.452831i
\(808\) 23.6968 + 41.0440i 0.833650 + 1.44392i
\(809\) 31.1127i 1.09386i 0.837177 + 0.546932i \(0.184204\pi\)
−0.837177 + 0.546932i \(0.815796\pi\)
\(810\) −31.6182 + 47.3218i −1.11095 + 1.66272i
\(811\) 29.9510 1.05172 0.525861 0.850570i \(-0.323743\pi\)
0.525861 + 0.850570i \(0.323743\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −39.1572 + 20.9304i −1.36826 + 0.731367i
\(820\) 0 0
\(821\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(822\) −35.2515 10.0664i −1.22954 0.351107i
\(823\) 13.2288 22.9129i 0.461125 0.798693i −0.537892 0.843014i \(-0.680779\pi\)
0.999017 + 0.0443211i \(0.0141125\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 26.9786 + 46.7283i 0.938705 + 1.62589i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) −4.60837 + 7.41100i −0.160152 + 0.257550i
\(829\) 57.5694 1.99947 0.999735 0.0230361i \(-0.00733328\pi\)
0.999735 + 0.0230361i \(0.00733328\pi\)
\(830\) 7.67369 4.43041i 0.266358 0.153782i
\(831\) 0 0
\(832\) 22.3755 38.7555i 0.775732 1.34361i
\(833\) 0 0
\(834\) −23.1805 + 5.80652i −0.802675 + 0.201063i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 38.4825 1.32936
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 14.0827 + 56.2202i 0.485899 + 1.93978i
\(841\) 14.5000 25.1147i 0.500000 0.866025i
\(842\) 0 0
\(843\) 22.2811 + 23.0222i 0.767400 + 0.792926i
\(844\) 0 0
\(845\) 81.7903i 2.81367i
\(846\) 0 0
\(847\) −29.1033 −1.00000
\(848\) 0 0
\(849\) −38.3269 10.9446i −1.31538 0.375619i
\(850\) 0 0
\(851\) 0 0
\(852\) 15.7670 55.2144i 0.540170 1.89161i
\(853\) −27.0106 46.7838i −0.924827 1.60185i −0.791840 0.610729i \(-0.790877\pi\)
−0.132987 0.991118i \(-0.542457\pi\)
\(854\) 49.5687i 1.69621i
\(855\) −46.6976 1.52831i −1.59702 0.0522670i
\(856\) 0 0
\(857\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(858\) 0 0
\(859\) 11.0123 19.0738i 0.375734 0.650790i −0.614703 0.788759i \(-0.710724\pi\)
0.990437 + 0.137969i \(0.0440574\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −26.4575 45.8258i −0.901146 1.56083i
\(863\) 42.0320i 1.43079i −0.698722 0.715393i \(-0.746248\pi\)
0.698722 0.715393i \(-0.253752\pi\)
\(864\) −6.20577 28.7313i −0.211124 0.977459i
\(865\) 41.6392 1.41578
\(866\) 0 0
\(867\) −7.15464 28.5624i −0.242984 0.970030i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −7.16441 −0.242340
\(875\) 102.395 59.1181i 3.46160 1.99856i
\(876\) 0 0
\(877\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(878\) 0 0
\(879\) 1.40141 4.90759i 0.0472685 0.165529i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 14.0000 + 26.1916i 0.471405 + 0.881917i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) −80.2550 + 77.6714i −2.69774 + 2.61090i
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 27.0425 + 46.8390i 0.906977 + 1.57093i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −25.9230 14.9666i −0.866025 0.500000i
\(897\) −9.80053 10.1265i −0.327230 0.338115i
\(898\) −28.9542 50.1501i −0.966213 1.67353i
\(899\) 0 0
\(900\) −79.3420 + 42.4101i −2.64473 + 1.41367i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −29.4422 + 50.9954i −0.979234 + 1.69608i
\(905\) 62.2663 + 35.9495i 2.06980 + 1.19500i
\(906\) 9.71372 34.0163i 0.322717 1.13012i
\(907\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(908\) 0.764572i 0.0253732i
\(909\) −26.5448 + 42.6883i −0.880435 + 1.41588i
\(910\) −93.5900 −3.10248
\(911\) 45.1826 26.0862i 1.49697 0.864274i 0.496972 0.867766i \(-0.334445\pi\)
0.999994 + 0.00349271i \(0.00111177\pi\)
\(912\) 17.3400 16.7817i 0.574183 0.555699i
\(913\) 0 0
\(914\) 41.7596 + 24.1099i 1.38129 + 0.797486i
\(915\) 99.5271 24.9307i 3.29026 0.824184i
\(916\) −21.8624 37.8668i −0.722355 1.25116i
\(917\) 5.23606i 0.172910i
\(918\) 0 0
\(919\) 43.8002 1.44484 0.722418 0.691457i \(-0.243031\pi\)
0.722418 + 0.691457i \(0.243031\pi\)
\(920\) −15.9309 + 9.19771i −0.525226 + 0.303239i
\(921\) 11.8624 + 47.3566i 0.390880 + 1.56045i
\(922\) 18.8144 32.5875i 0.619619 1.07321i
\(923\) 80.3022 + 46.3625i 2.64318 + 1.52604i
\(924\) 0 0
\(925\) 0 0
\(926\) 22.8609i 0.751257i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) −12.1905 + 21.1146i −0.399527 + 0.692001i
\(932\) 16.9230 + 9.77048i 0.554330 + 0.320043i
\(933\) 0 0
\(934\) −8.21532 14.2294i −0.268814 0.465599i
\(935\) 0 0
\(936\) 47.4403 + 1.55261i 1.55063 + 0.0507488i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −10.9551 6.32495i −0.357127 0.206187i 0.310693 0.950510i \(-0.399439\pi\)
−0.667820 + 0.744323i \(0.732772\pi\)
\(942\) −14.9260 + 3.73885i −0.486316 + 0.121818i
\(943\) 0 0
\(944\) 57.6827i 1.87741i
\(945\) −45.5478 + 41.2832i −1.48167 + 1.34294i
\(946\) 0 0
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) −10.1438 40.4954i −0.329454 1.31523i
\(949\) 0 0
\(950\) −63.9621 36.9285i −2.07520 1.19812i
\(951\) 0 0
\(952\) 0 0
\(953\) 29.9333i 0.969633i −0.874616 0.484817i \(-0.838886\pi\)
0.874616 0.484817i \(-0.161114\pi\)
\(954\) 0 0
\(955\) −112.062 −3.62624
\(956\) −51.4807 + 29.7224i −1.66501 + 0.961292i
\(957\) 0 0
\(958\) 0 0
\(959\) −34.2929 19.7990i −1.10737 0.639343i
\(960\) 17.0129 59.5773i 0.549089 1.92285i
\(961\) −15.5000 26.8468i −0.500000 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −22.7710 + 13.1468i −0.733023 + 0.423211i
\(966\) −6.77347 + 6.55541i −0.217933 + 0.210917i
\(967\) −4.77889 + 8.27728i −0.153679 + 0.266179i −0.932577 0.360971i \(-0.882445\pi\)
0.778898 + 0.627150i \(0.215779\pi\)
\(968\) 26.9444 + 15.5563i 0.866025 + 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 54.0402i 1.73423i 0.498107 + 0.867116i \(0.334029\pi\)
−0.498107 + 0.867116i \(0.665971\pi\)
\(972\) 23.7728 20.1706i 0.762513 0.646973i
\(973\) −25.8114 −0.827474
\(974\) 47.0819 27.1828i 1.50860 0.870992i
\(975\) −35.3001 140.923i −1.13051 4.51316i
\(976\) −26.4956 + 45.8917i −0.848103 + 1.46896i
\(977\) −51.8459 29.9333i −1.65870 0.957650i −0.973317 0.229465i \(-0.926302\pi\)
−0.685381 0.728184i \(-0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 62.6009i 1.99971i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 19.4835 + 33.7464i 0.619852 + 1.07361i
\(989\) 0 0
\(990\) 0 0
\(991\) 37.0405 1.17663 0.588315 0.808632i \(-0.299791\pi\)
0.588315 + 0.808632i \(0.299791\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 31.0111 53.7129i 0.983614 1.70367i
\(995\) 0 0
\(996\) −4.70850 + 1.17944i −0.149194 + 0.0373720i
\(997\) 29.9021 + 51.7920i 0.947010 + 1.64027i 0.751675 + 0.659533i \(0.229246\pi\)
0.195335 + 0.980737i \(0.437421\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cc.a.293.3 yes 16
7.6 odd 2 inner 504.2.cc.a.293.2 16
8.5 even 2 inner 504.2.cc.a.293.2 16
9.2 odd 6 inner 504.2.cc.a.461.3 yes 16
56.13 odd 2 CM 504.2.cc.a.293.3 yes 16
63.20 even 6 inner 504.2.cc.a.461.2 yes 16
72.29 odd 6 inner 504.2.cc.a.461.2 yes 16
504.461 even 6 inner 504.2.cc.a.461.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.cc.a.293.2 16 7.6 odd 2 inner
504.2.cc.a.293.2 16 8.5 even 2 inner
504.2.cc.a.293.3 yes 16 1.1 even 1 trivial
504.2.cc.a.293.3 yes 16 56.13 odd 2 CM
504.2.cc.a.461.2 yes 16 63.20 even 6 inner
504.2.cc.a.461.2 yes 16 72.29 odd 6 inner
504.2.cc.a.461.3 yes 16 9.2 odd 6 inner
504.2.cc.a.461.3 yes 16 504.461 even 6 inner