Properties

Label 504.2.cc.a.461.8
Level $504$
Weight $2$
Character 504.461
Analytic conductor $4.024$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(293,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 10x^{12} + 19x^{8} + 810x^{4} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{6}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 461.8
Root \(1.20455 + 1.24461i\) of defining polynomial
Character \(\chi\) \(=\) 504.461
Dual form 504.2.cc.a.293.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.22474 + 0.707107i) q^{2} +(1.68014 + 0.420861i) q^{3} +(1.00000 + 1.73205i) q^{4} +(0.0658376 - 0.0380114i) q^{5} +(1.76015 + 1.70349i) q^{6} +(1.32288 - 2.29129i) q^{7} +2.82843i q^{8} +(2.64575 + 1.41421i) q^{9} +O(q^{10})\) \(q+(1.22474 + 0.707107i) q^{2} +(1.68014 + 0.420861i) q^{3} +(1.00000 + 1.73205i) q^{4} +(0.0658376 - 0.0380114i) q^{5} +(1.76015 + 1.70349i) q^{6} +(1.32288 - 2.29129i) q^{7} +2.82843i q^{8} +(2.64575 + 1.41421i) q^{9} +0.107512 q^{10} +(0.951188 + 3.33095i) q^{12} +(-2.27533 - 3.94099i) q^{13} +(3.24037 - 1.87083i) q^{14} +(0.126614 - 0.0361560i) q^{15} +(-2.00000 + 3.46410i) q^{16} +(2.24037 + 3.60288i) q^{18} -7.99179 q^{19} +(0.131675 + 0.0760228i) q^{20} +(3.18693 - 3.29294i) q^{21} +(1.25963 - 0.727248i) q^{23} +(-1.19038 + 4.75216i) q^{24} +(-2.49711 + 4.32512i) q^{25} -6.43560i q^{26} +(3.85005 + 3.48957i) q^{27} +5.29150 q^{28} +(0.180636 + 0.0452478i) q^{30} +(-4.89898 + 2.82843i) q^{32} -0.201137i q^{35} +(0.196262 + 5.99679i) q^{36} +(-9.78791 - 5.65105i) q^{38} +(-2.16427 - 7.57901i) q^{39} +(0.107512 + 0.186217i) q^{40} +(6.23164 - 1.77951i) q^{42} +(0.227946 - 0.00746017i) q^{45} +2.05697 q^{46} +(-4.81819 + 4.97846i) q^{48} +(-3.50000 - 6.06218i) q^{49} +(-6.11665 + 3.53145i) q^{50} +(4.55066 - 7.88197i) q^{52} +(2.24783 + 6.99623i) q^{54} +(6.48074 + 3.74166i) q^{56} +(-13.4273 - 3.36344i) q^{57} +(4.58621 - 2.64785i) q^{59} +(0.189238 + 0.183146i) q^{60} +(-4.13812 + 7.16744i) q^{61} +(6.74037 - 4.19135i) q^{63} -8.00000 q^{64} +(-0.299605 - 0.172977i) q^{65} +(2.42243 - 0.691749i) q^{69} +(0.142226 - 0.246342i) q^{70} -16.5762i q^{71} +(-4.00000 + 7.48331i) q^{72} +(-6.01578 + 6.21588i) q^{75} +(-7.99179 - 13.8422i) q^{76} +(2.70850 - 10.8127i) q^{78} +(6.02559 - 10.4366i) q^{79} +0.304091i q^{80} +(5.00000 + 7.48331i) q^{81} +(15.7330 + 9.08345i) q^{83} +(8.89047 + 2.22699i) q^{84} +(0.284451 + 0.152046i) q^{90} -12.0399 q^{91} +(2.51926 + 1.45450i) q^{92} +(-0.526161 + 0.303779i) q^{95} +(-9.42135 + 2.69037i) q^{96} -9.89949i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 16 q + 16 q^{4} - 16 q^{15} - 32 q^{16} - 16 q^{18} + 72 q^{23} + 40 q^{25} + 32 q^{30} - 40 q^{39} - 56 q^{49} - 144 q^{50} + 8 q^{57} - 16 q^{60} + 56 q^{63} - 128 q^{64} - 72 q^{65} - 64 q^{72} + 128 q^{78} + 80 q^{81} + 144 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.22474 + 0.707107i 0.866025 + 0.500000i
\(3\) 1.68014 + 0.420861i 0.970030 + 0.242984i
\(4\) 1.00000 + 1.73205i 0.500000 + 0.866025i
\(5\) 0.0658376 0.0380114i 0.0294435 0.0169992i −0.485206 0.874400i \(-0.661255\pi\)
0.514649 + 0.857401i \(0.327922\pi\)
\(6\) 1.76015 + 1.70349i 0.718579 + 0.695446i
\(7\) 1.32288 2.29129i 0.500000 0.866025i
\(8\) 2.82843i 1.00000i
\(9\) 2.64575 + 1.41421i 0.881917 + 0.471405i
\(10\) 0.107512 0.0339984
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) 0.951188 + 3.33095i 0.274584 + 0.961563i
\(13\) −2.27533 3.94099i −0.631063 1.09303i −0.987335 0.158651i \(-0.949286\pi\)
0.356272 0.934382i \(-0.384048\pi\)
\(14\) 3.24037 1.87083i 0.866025 0.500000i
\(15\) 0.126614 0.0361560i 0.0326916 0.00933543i
\(16\) −2.00000 + 3.46410i −0.500000 + 0.866025i
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 2.24037 + 3.60288i 0.528060 + 0.849207i
\(19\) −7.99179 −1.83344 −0.916721 0.399527i \(-0.869174\pi\)
−0.916721 + 0.399527i \(0.869174\pi\)
\(20\) 0.131675 + 0.0760228i 0.0294435 + 0.0169992i
\(21\) 3.18693 3.29294i 0.695446 0.718579i
\(22\) 0 0
\(23\) 1.25963 0.727248i 0.262651 0.151642i −0.362892 0.931831i \(-0.618211\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) −1.19038 + 4.75216i −0.242984 + 0.970030i
\(25\) −2.49711 + 4.32512i −0.499422 + 0.865024i
\(26\) 6.43560i 1.26213i
\(27\) 3.85005 + 3.48957i 0.740942 + 0.671569i
\(28\) 5.29150 1.00000
\(29\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(30\) 0.180636 + 0.0452478i 0.0329795 + 0.00826109i
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) −4.89898 + 2.82843i −0.866025 + 0.500000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.201137i 0.0339984i
\(36\) 0.196262 + 5.99679i 0.0327103 + 0.999465i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) −9.78791 5.65105i −1.58781 0.916721i
\(39\) −2.16427 7.57901i −0.346560 1.21361i
\(40\) 0.107512 + 0.186217i 0.0169992 + 0.0294435i
\(41\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(42\) 6.23164 1.77951i 0.961563 0.274584i
\(43\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(44\) 0 0
\(45\) 0.227946 0.00746017i 0.0339802 0.00111210i
\(46\) 2.05697 0.303283
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) −4.81819 + 4.97846i −0.695446 + 0.718579i
\(49\) −3.50000 6.06218i −0.500000 0.866025i
\(50\) −6.11665 + 3.53145i −0.865024 + 0.499422i
\(51\) 0 0
\(52\) 4.55066 7.88197i 0.631063 1.09303i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 2.24783 + 6.99623i 0.305890 + 0.952067i
\(55\) 0 0
\(56\) 6.48074 + 3.74166i 0.866025 + 0.500000i
\(57\) −13.4273 3.36344i −1.77849 0.445498i
\(58\) 0 0
\(59\) 4.58621 2.64785i 0.597074 0.344721i −0.170816 0.985303i \(-0.554640\pi\)
0.767890 + 0.640582i \(0.221307\pi\)
\(60\) 0.189238 + 0.183146i 0.0244305 + 0.0236441i
\(61\) −4.13812 + 7.16744i −0.529832 + 0.917696i 0.469562 + 0.882899i \(0.344412\pi\)
−0.999394 + 0.0347968i \(0.988922\pi\)
\(62\) 0 0
\(63\) 6.74037 4.19135i 0.849207 0.528060i
\(64\) −8.00000 −1.00000
\(65\) −0.299605 0.172977i −0.0371614 0.0214551i
\(66\) 0 0
\(67\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(68\) 0 0
\(69\) 2.42243 0.691749i 0.291626 0.0832768i
\(70\) 0.142226 0.246342i 0.0169992 0.0294435i
\(71\) 16.5762i 1.96723i −0.180288 0.983614i \(-0.557703\pi\)
0.180288 0.983614i \(-0.442297\pi\)
\(72\) −4.00000 + 7.48331i −0.471405 + 0.881917i
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) −6.01578 + 6.21588i −0.694642 + 0.717748i
\(76\) −7.99179 13.8422i −0.916721 1.58781i
\(77\) 0 0
\(78\) 2.70850 10.8127i 0.306677 1.22430i
\(79\) 6.02559 10.4366i 0.677932 1.17421i −0.297670 0.954669i \(-0.596210\pi\)
0.975603 0.219544i \(-0.0704571\pi\)
\(80\) 0.304091i 0.0339984i
\(81\) 5.00000 + 7.48331i 0.555556 + 0.831479i
\(82\) 0 0
\(83\) 15.7330 + 9.08345i 1.72692 + 0.997039i 0.901912 + 0.431920i \(0.142164\pi\)
0.825010 + 0.565118i \(0.191170\pi\)
\(84\) 8.89047 + 2.22699i 0.970030 + 0.242984i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0.284451 + 0.152046i 0.0299838 + 0.0160270i
\(91\) −12.0399 −1.26213
\(92\) 2.51926 + 1.45450i 0.262651 + 0.151642i
\(93\) 0 0
\(94\) 0 0
\(95\) −0.526161 + 0.303779i −0.0539830 + 0.0311671i
\(96\) −9.42135 + 2.69037i −0.961563 + 0.274584i
\(97\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(98\) 9.89949i 1.00000i
\(99\) 0 0
\(100\) −9.98844 −0.998844
\(101\) 9.61372 + 5.55048i 0.956600 + 0.552294i 0.895125 0.445815i \(-0.147086\pi\)
0.0614754 + 0.998109i \(0.480419\pi\)
\(102\) 0 0
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 11.1468 6.43560i 1.09303 0.631063i
\(105\) 0.0846509 0.337939i 0.00826109 0.0329795i
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) −2.19407 + 10.1581i −0.211124 + 0.977459i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 5.29150 + 9.16515i 0.500000 + 0.866025i
\(113\) −18.0296 + 10.4094i −1.69608 + 0.979234i −0.746674 + 0.665190i \(0.768350\pi\)
−0.949409 + 0.314044i \(0.898316\pi\)
\(114\) −14.0668 13.6139i −1.31747 1.27506i
\(115\) 0.0552874 0.0957605i 0.00515557 0.00892972i
\(116\) 0 0
\(117\) −0.446560 13.6447i −0.0412845 1.26145i
\(118\) 7.48925 0.689442
\(119\) 0 0
\(120\) 0.102265 + 0.358119i 0.00933543 + 0.0326916i
\(121\) 5.50000 + 9.52628i 0.500000 + 0.866025i
\(122\) −10.1363 + 5.85219i −0.917696 + 0.529832i
\(123\) 0 0
\(124\) 0 0
\(125\) 0.759788i 0.0679575i
\(126\) 11.2190 0.367172i 0.999465 0.0327103i
\(127\) −20.4422 −1.81395 −0.906977 0.421180i \(-0.861616\pi\)
−0.906977 + 0.421180i \(0.861616\pi\)
\(128\) −9.79796 5.65685i −0.866025 0.500000i
\(129\) 0 0
\(130\) −0.244626 0.423705i −0.0214551 0.0371614i
\(131\) 19.7500 11.4027i 1.72557 0.996256i 0.819555 0.573000i \(-0.194221\pi\)
0.906010 0.423256i \(-0.139113\pi\)
\(132\) 0 0
\(133\) −10.5721 + 18.3115i −0.916721 + 1.58781i
\(134\) 0 0
\(135\) 0.386122 + 0.0833996i 0.0332321 + 0.00717790i
\(136\) 0 0
\(137\) 12.9615 + 7.48331i 1.10737 + 0.639343i 0.938148 0.346235i \(-0.112540\pi\)
0.169226 + 0.985577i \(0.445873\pi\)
\(138\) 3.45600 + 0.865698i 0.294194 + 0.0736931i
\(139\) −10.7334 18.5908i −0.910396 1.57685i −0.813505 0.581558i \(-0.802443\pi\)
−0.0968913 0.995295i \(-0.530890\pi\)
\(140\) 0.348380 0.201137i 0.0294435 0.0169992i
\(141\) 0 0
\(142\) 11.7211 20.3016i 0.983614 1.70367i
\(143\) 0 0
\(144\) −10.1905 + 6.33672i −0.849207 + 0.528060i
\(145\) 0 0
\(146\) 0 0
\(147\) −3.32916 11.6583i −0.274584 0.961563i
\(148\) 0 0
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) −11.7631 + 3.35907i −0.960452 + 0.274267i
\(151\) 7.22111 12.5073i 0.587646 1.01783i −0.406894 0.913475i \(-0.633388\pi\)
0.994540 0.104357i \(-0.0332784\pi\)
\(152\) 22.6042i 1.83344i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 10.9630 11.3276i 0.877740 0.906936i
\(157\) 12.1299 + 21.0096i 0.968072 + 1.67675i 0.701123 + 0.713040i \(0.252682\pi\)
0.266949 + 0.963711i \(0.413984\pi\)
\(158\) 14.7596 8.52148i 1.17421 0.677932i
\(159\) 0 0
\(160\) −0.215025 + 0.372434i −0.0169992 + 0.0294435i
\(161\) 3.84823i 0.303283i
\(162\) 0.832222 + 12.7007i 0.0653855 + 0.997860i
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 12.8459 + 22.2498i 0.997039 + 1.72692i
\(167\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(168\) 9.31384 + 9.01401i 0.718579 + 0.695446i
\(169\) −3.85425 + 6.67575i −0.296481 + 0.513520i
\(170\) 0 0
\(171\) −21.1443 11.3021i −1.61694 0.864293i
\(172\) 0 0
\(173\) −21.3064 12.3013i −1.61990 0.935247i −0.986945 0.161055i \(-0.948510\pi\)
−0.632950 0.774193i \(-0.718156\pi\)
\(174\) 0 0
\(175\) 6.60673 + 11.4432i 0.499422 + 0.865024i
\(176\) 0 0
\(177\) 8.81986 2.51860i 0.662942 0.189310i
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0.240868 + 0.387354i 0.0179532 + 0.0288717i
\(181\) −21.5743 −1.60361 −0.801804 0.597587i \(-0.796126\pi\)
−0.801804 + 0.597587i \(0.796126\pi\)
\(182\) −14.7458 8.51350i −1.09303 0.631063i
\(183\) −9.96913 + 10.3007i −0.736939 + 0.761452i
\(184\) 2.05697 + 3.56277i 0.151642 + 0.262651i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 13.0888 4.20530i 0.952067 0.305890i
\(190\) −0.859217 −0.0623341
\(191\) 21.7038 + 12.5307i 1.57043 + 0.906691i 0.996115 + 0.0880597i \(0.0280666\pi\)
0.574320 + 0.818631i \(0.305267\pi\)
\(192\) −13.4411 3.36689i −0.970030 0.242984i
\(193\) 2.94014 + 5.09248i 0.211636 + 0.366565i 0.952227 0.305392i \(-0.0987875\pi\)
−0.740591 + 0.671957i \(0.765454\pi\)
\(194\) 0 0
\(195\) −0.430579 0.416718i −0.0308344 0.0298418i
\(196\) 7.00000 12.1244i 0.500000 0.866025i
\(197\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −12.2333 7.06289i −0.865024 0.499422i
\(201\) 0 0
\(202\) 7.84957 + 13.5958i 0.552294 + 0.956600i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 4.36115 0.142731i 0.303121 0.00992047i
\(208\) 18.2026 1.26213
\(209\) 0 0
\(210\) 0.342635 0.354032i 0.0236441 0.0244305i
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) 6.97626 27.8503i 0.478006 1.90827i
\(214\) 0 0
\(215\) 0 0
\(216\) −9.87000 + 10.8896i −0.671569 + 0.740942i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 14.9666i 1.00000i
\(225\) −12.7234 + 7.91175i −0.848225 + 0.527450i
\(226\) −29.4422 −1.95847
\(227\) 26.0939 + 15.0653i 1.73191 + 0.999920i 0.872299 + 0.488973i \(0.162628\pi\)
0.859612 + 0.510947i \(0.170705\pi\)
\(228\) −7.60170 26.6203i −0.503435 1.76297i
\(229\) 10.4646 + 18.1253i 0.691522 + 1.19775i 0.971339 + 0.237699i \(0.0763930\pi\)
−0.279817 + 0.960053i \(0.590274\pi\)
\(230\) 0.135426 0.0781881i 0.00892972 0.00515557i
\(231\) 0 0
\(232\) 0 0
\(233\) 9.77048i 0.640085i −0.947403 0.320043i \(-0.896303\pi\)
0.947403 0.320043i \(-0.103697\pi\)
\(234\) 9.10132 17.0270i 0.594972 1.11309i
\(235\) 0 0
\(236\) 9.17242 + 5.29570i 0.597074 + 0.344721i
\(237\) 14.5162 14.9991i 0.942930 0.974295i
\(238\) 0 0
\(239\) −25.7404 + 14.8612i −1.66501 + 0.961292i −0.694737 + 0.719264i \(0.744479\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) −0.127980 + 0.510916i −0.00826109 + 0.0329795i
\(241\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(242\) 15.5563i 1.00000i
\(243\) 5.25127 + 14.6773i 0.336869 + 0.941551i
\(244\) −16.5525 −1.05966
\(245\) −0.460864 0.266080i −0.0294435 0.0169992i
\(246\) 0 0
\(247\) 18.1840 + 31.4955i 1.15702 + 2.00401i
\(248\) 0 0
\(249\) 22.6108 + 21.8829i 1.43290 + 1.38677i
\(250\) −0.537251 + 0.930547i −0.0339788 + 0.0588529i
\(251\) 30.2827i 1.91142i 0.294303 + 0.955712i \(0.404913\pi\)
−0.294303 + 0.955712i \(0.595087\pi\)
\(252\) 14.0000 + 7.48331i 0.881917 + 0.471405i
\(253\) 0 0
\(254\) −25.0365 14.4548i −1.57093 0.906977i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0.691907i 0.0429103i
\(261\) 0 0
\(262\) 32.2516 1.99251
\(263\) −0.341568 0.197204i −0.0210620 0.0121601i 0.489432 0.872041i \(-0.337204\pi\)
−0.510494 + 0.859881i \(0.670537\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −25.8964 + 14.9513i −1.58781 + 0.916721i
\(267\) 0 0
\(268\) 0 0
\(269\) 11.9055i 0.725892i 0.931810 + 0.362946i \(0.118229\pi\)
−0.931810 + 0.362946i \(0.881771\pi\)
\(270\) 0.413928 + 0.375173i 0.0251909 + 0.0228323i
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) −20.2288 5.06713i −1.22430 0.306677i
\(274\) 10.5830 + 18.3303i 0.639343 + 1.10737i
\(275\) 0 0
\(276\) 3.62057 + 3.50402i 0.217933 + 0.210917i
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 30.3587i 1.82079i
\(279\) 0 0
\(280\) 0.568902 0.0339984
\(281\) 16.0193 + 9.24872i 0.955629 + 0.551733i 0.894825 0.446417i \(-0.147300\pi\)
0.0608039 + 0.998150i \(0.480634\pi\)
\(282\) 0 0
\(283\) −12.2721 21.2560i −0.729503 1.26354i −0.957094 0.289779i \(-0.906418\pi\)
0.227591 0.973757i \(-0.426915\pi\)
\(284\) 28.7107 16.5762i 1.70367 0.983614i
\(285\) −1.01187 + 0.288951i −0.0599382 + 0.0171160i
\(286\) 0 0
\(287\) 0 0
\(288\) −16.9615 + 0.555112i −0.999465 + 0.0327103i
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −29.5379 + 17.0537i −1.72562 + 0.996289i −0.819775 + 0.572686i \(0.805902\pi\)
−0.905848 + 0.423603i \(0.860765\pi\)
\(294\) 4.16632 16.6326i 0.242984 0.970030i
\(295\) 0.201297 0.348657i 0.0117200 0.0202996i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −5.73215 3.30946i −0.331499 0.191391i
\(300\) −16.7820 4.20375i −0.968909 0.242704i
\(301\) 0 0
\(302\) 17.6880 10.2122i 1.01783 0.587646i
\(303\) 13.8164 + 13.3716i 0.793733 + 0.768180i
\(304\) 15.9836 27.6844i 0.916721 1.58781i
\(305\) 0.629183i 0.0360269i
\(306\) 0 0
\(307\) 20.8218 1.18836 0.594180 0.804332i \(-0.297477\pi\)
0.594180 + 0.804332i \(0.297477\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(312\) 21.4367 6.12147i 1.21361 0.346560i
\(313\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(314\) 34.3086i 1.93614i
\(315\) 0.284451 0.532159i 0.0160270 0.0299838i
\(316\) 24.1024 1.35586
\(317\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −0.526701 + 0.304091i −0.0294435 + 0.0169992i
\(321\) 0 0
\(322\) 2.72111 4.71310i 0.151642 0.262651i
\(323\) 0 0
\(324\) −7.96148 + 16.1436i −0.442305 + 0.896865i
\(325\) 22.7270 1.26067
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(332\) 36.3338i 1.99408i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 5.03321 + 17.6257i 0.274584 + 0.961563i
\(337\) −13.2288 22.9129i −0.720616 1.24814i −0.960753 0.277405i \(-0.910526\pi\)
0.240137 0.970739i \(-0.422808\pi\)
\(338\) −9.44094 + 5.45073i −0.513520 + 0.296481i
\(339\) −34.6732 + 9.90130i −1.88319 + 0.537765i
\(340\) 0 0
\(341\) 0 0
\(342\) −17.9046 28.7935i −0.968168 1.55697i
\(343\) −18.5203 −1.00000
\(344\) 0 0
\(345\) 0.133193 0.137623i 0.00717084 0.00740937i
\(346\) −17.3966 30.1318i −0.935247 1.61990i
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 14.3152 24.7947i 0.766277 1.32723i −0.173291 0.984871i \(-0.555440\pi\)
0.939569 0.342361i \(-0.111226\pi\)
\(350\) 18.6867i 0.998844i
\(351\) 4.99223 23.1129i 0.266466 1.23368i
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 12.5830 + 3.15194i 0.668779 + 0.167524i
\(355\) −0.630083 1.09133i −0.0334413 0.0579220i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.9044i 1.26163i 0.775934 + 0.630814i \(0.217279\pi\)
−0.775934 + 0.630814i \(0.782721\pi\)
\(360\) 0.0211006 + 0.644729i 0.00111210 + 0.0339802i
\(361\) 44.8687 2.36151
\(362\) −26.4231 15.2554i −1.38877 0.801804i
\(363\) 5.23153 + 18.3202i 0.274584 + 0.961563i
\(364\) −12.0399 20.8537i −0.631063 1.09303i
\(365\) 0 0
\(366\) −19.4934 + 5.56653i −1.01893 + 0.290967i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 5.81798i 0.303283i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) −0.319766 + 1.27655i −0.0165126 + 0.0659209i
\(376\) 0 0
\(377\) 0 0
\(378\) 19.0040 + 4.10473i 0.977459 + 0.211124i
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) −1.05232 0.607558i −0.0539830 0.0311671i
\(381\) −34.3458 8.60334i −1.75959 0.440763i
\(382\) 17.7211 + 30.6939i 0.906691 + 1.57043i
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) −14.0812 13.6279i −0.718579 0.695446i
\(385\) 0 0
\(386\) 8.31598i 0.423272i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(390\) −0.232686 0.814838i −0.0117825 0.0412609i
\(391\) 0 0
\(392\) 17.1464 9.89949i 0.866025 0.500000i
\(393\) 37.9817 10.8461i 1.91593 0.547113i
\(394\) 0 0
\(395\) 0.916165i 0.0460972i
\(396\) 0 0
\(397\) 37.7318 1.89370 0.946852 0.321668i \(-0.104244\pi\)
0.946852 + 0.321668i \(0.104244\pi\)
\(398\) 0 0
\(399\) −25.4693 + 26.3165i −1.27506 + 1.31747i
\(400\) −9.98844 17.3005i −0.499422 0.865024i
\(401\) 4.01580 2.31852i 0.200540 0.115782i −0.396368 0.918092i \(-0.629729\pi\)
0.596907 + 0.802310i \(0.296396\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 22.2019i 1.10459i
\(405\) 0.613639 + 0.302627i 0.0304920 + 0.0150377i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(410\) 0 0
\(411\) 18.6277 + 18.0280i 0.918836 + 0.889256i
\(412\) 0 0
\(413\) 14.0111i 0.689442i
\(414\) 5.44222 + 2.90899i 0.267471 + 0.142969i
\(415\) 1.38110 0.0677955
\(416\) 22.2936 + 12.8712i 1.09303 + 0.631063i
\(417\) −10.2095 35.7525i −0.499961 1.75081i
\(418\) 0 0
\(419\) −26.4889 + 15.2934i −1.29407 + 0.747130i −0.979373 0.202063i \(-0.935236\pi\)
−0.314695 + 0.949193i \(0.601902\pi\)
\(420\) 0.669979 0.191319i 0.0326916 0.00933543i
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 28.2373 29.1765i 1.36810 1.41361i
\(427\) 10.9484 + 18.9633i 0.529832 + 0.917696i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 37.4166i 1.80229i −0.433515 0.901146i \(-0.642727\pi\)
0.433515 0.901146i \(-0.357273\pi\)
\(432\) −19.7883 + 6.35781i −0.952067 + 0.305890i
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.0667 + 5.81201i −0.481555 + 0.278026i
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) −0.686915 20.9888i −0.0327103 0.999465i
\(442\) 0 0
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −10.5830 + 18.3303i −0.500000 + 0.866025i
\(449\) 40.9474i 1.93243i −0.257743 0.966213i \(-0.582979\pi\)
0.257743 0.966213i \(-0.417021\pi\)
\(450\) −21.1773 + 0.693087i −0.998310 + 0.0326725i
\(451\) 0 0
\(452\) −36.0592 20.8188i −1.69608 0.979234i
\(453\) 17.3963 17.9750i 0.817351 0.844539i
\(454\) 21.3056 + 36.9023i 0.999920 + 1.73191i
\(455\) −0.792679 + 0.457654i −0.0371614 + 0.0214551i
\(456\) 9.51324 37.9783i 0.445498 1.77849i
\(457\) 17.0483 29.5285i 0.797486 1.38129i −0.123763 0.992312i \(-0.539496\pi\)
0.921249 0.388974i \(-0.127170\pi\)
\(458\) 29.5985i 1.38304i
\(459\) 0 0
\(460\) 0.221149 0.0103111
\(461\) −29.1895 16.8526i −1.35949 0.784903i −0.369937 0.929057i \(-0.620621\pi\)
−0.989555 + 0.144154i \(0.953954\pi\)
\(462\) 0 0
\(463\) −8.08256 13.9994i −0.375628 0.650608i 0.614792 0.788689i \(-0.289240\pi\)
−0.990421 + 0.138081i \(0.955906\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 6.90877 11.9663i 0.320043 0.554330i
\(467\) 41.6295i 1.92638i −0.268814 0.963192i \(-0.586632\pi\)
0.268814 0.963192i \(-0.413368\pi\)
\(468\) 23.1867 14.4181i 1.07181 0.666479i
\(469\) 0 0
\(470\) 0 0
\(471\) 11.5378 + 40.4042i 0.531635 + 1.86173i
\(472\) 7.48925 + 12.9718i 0.344721 + 0.597074i
\(473\) 0 0
\(474\) 28.3846 8.10553i 1.30375 0.372299i
\(475\) 19.9564 34.5655i 0.915662 1.58597i
\(476\) 0 0
\(477\) 0 0
\(478\) −42.0338 −1.92258
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) −0.518015 + 0.535246i −0.0236441 + 0.0244305i
\(481\) 0 0
\(482\) 0 0
\(483\) 1.61957 6.46557i 0.0736931 0.294194i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) −3.94698 + 21.6892i −0.179039 + 0.983842i
\(487\) −38.4422 −1.74198 −0.870992 0.491298i \(-0.836523\pi\)
−0.870992 + 0.491298i \(0.836523\pi\)
\(488\) −20.2726 11.7044i −0.917696 0.529832i
\(489\) 0 0
\(490\) −0.376293 0.651759i −0.0169992 0.0294435i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 51.4320i 2.31404i
\(495\) 0 0
\(496\) 0 0
\(497\) −37.9807 21.9282i −1.70367 0.983614i
\(498\) 12.2189 + 42.7892i 0.547542 + 1.91743i
\(499\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(500\) −1.31599 + 0.759788i −0.0588529 + 0.0339788i
\(501\) 0 0
\(502\) −21.4131 + 37.0885i −0.955712 + 1.65534i
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 11.8549 + 19.0646i 0.528060 + 0.849207i
\(505\) 0.843926 0.0375542
\(506\) 0 0
\(507\) −9.28525 + 9.59411i −0.412372 + 0.426089i
\(508\) −20.4422 35.4070i −0.906977 1.57093i
\(509\) −32.4532 + 18.7369i −1.43846 + 0.830497i −0.997743 0.0671482i \(-0.978610\pi\)
−0.440719 + 0.897645i \(0.645277\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.6274i 1.00000i
\(513\) −30.7688 27.8879i −1.35848 1.23128i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) −30.6206 29.6349i −1.34410 1.30083i
\(520\) 0.489252 0.847410i 0.0214551 0.0371614i
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −20.6067 −0.901069 −0.450535 0.892759i \(-0.648767\pi\)
−0.450535 + 0.892759i \(0.648767\pi\)
\(524\) 39.5000 + 22.8053i 1.72557 + 0.996256i
\(525\) 6.28425 + 22.0067i 0.274267 + 0.960452i
\(526\) −0.278889 0.483050i −0.0121601 0.0210620i
\(527\) 0 0
\(528\) 0 0
\(529\) −10.4422 + 18.0865i −0.454010 + 0.786368i
\(530\) 0 0
\(531\) 15.8786 0.519671i 0.689073 0.0225518i
\(532\) −42.2886 −1.83344
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −8.41847 + 14.5812i −0.362946 + 0.628641i
\(539\) 0 0
\(540\) 0.241669 + 0.752182i 0.0103998 + 0.0323688i
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) −36.2479 9.07981i −1.55555 0.389652i
\(544\) 0 0
\(545\) 0 0
\(546\) −21.1921 20.5098i −0.906936 0.877740i
\(547\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(548\) 29.9333i 1.27869i
\(549\) −21.0847 + 13.1111i −0.899874 + 0.559567i
\(550\) 0 0
\(551\) 0 0
\(552\) 1.95656 + 6.85166i 0.0832768 + 0.291626i
\(553\) −15.9422 27.6127i −0.677932 1.17421i
\(554\) 0 0
\(555\) 0 0
\(556\) 21.4668 37.1816i 0.910396 1.57685i
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0.696760 + 0.402275i 0.0294435 + 0.0169992i
\(561\) 0 0
\(562\) 13.0797 + 22.6547i 0.551733 + 0.955629i
\(563\) 26.6206 15.3694i 1.12192 0.647743i 0.180032 0.983661i \(-0.442380\pi\)
0.941891 + 0.335918i \(0.109046\pi\)
\(564\) 0 0
\(565\) −0.791351 + 1.37066i −0.0332924 + 0.0576641i
\(566\) 34.7108i 1.45901i
\(567\) 23.7608 1.55694i 0.997860 0.0653855i
\(568\) 46.8844 1.96723
\(569\) 2.44949 + 1.41421i 0.102688 + 0.0592869i 0.550464 0.834859i \(-0.314451\pi\)
−0.447777 + 0.894146i \(0.647784\pi\)
\(570\) −1.44361 0.361611i −0.0604660 0.0151462i
\(571\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(572\) 0 0
\(573\) 31.1918 + 30.1877i 1.30306 + 1.26111i
\(574\) 0 0
\(575\) 7.26407i 0.302933i
\(576\) −21.1660 11.3137i −0.881917 0.471405i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −20.8207 12.0208i −0.866025 0.500000i
\(579\) 2.79663 + 9.79348i 0.116224 + 0.407003i
\(580\) 0 0
\(581\) 41.6256 24.0326i 1.72692 0.997039i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −0.548053 0.881359i −0.0226592 0.0364397i
\(586\) −48.2352 −1.99258
\(587\) −39.6742 22.9059i −1.63753 0.945428i −0.981680 0.190536i \(-0.938978\pi\)
−0.655849 0.754892i \(-0.727689\pi\)
\(588\) 16.8637 17.4246i 0.695446 0.718579i
\(589\) 0 0
\(590\) 0.493075 0.284677i 0.0202996 0.0117200i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −4.68028 8.10648i −0.191391 0.331499i
\(599\) −9.79796 + 5.65685i −0.400334 + 0.231133i −0.686628 0.727009i \(-0.740910\pi\)
0.286294 + 0.958142i \(0.407577\pi\)
\(600\) −17.5812 17.0152i −0.717748 0.694642i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 28.8844 1.17529
\(605\) 0.724214 + 0.418125i 0.0294435 + 0.0169992i
\(606\) 7.46641 + 26.1465i 0.303302 + 1.06213i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 39.1516 22.6042i 1.58781 0.916721i
\(609\) 0 0
\(610\) −0.444899 + 0.770588i −0.0180135 + 0.0312002i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) 25.5013 + 14.7232i 1.02915 + 0.594180i
\(615\) 0 0
\(616\) 0 0
\(617\) 12.2474 7.07107i 0.493064 0.284670i −0.232781 0.972529i \(-0.574782\pi\)
0.725845 + 0.687859i \(0.241449\pi\)
\(618\) 0 0
\(619\) 11.7032 20.2706i 0.470393 0.814744i −0.529034 0.848601i \(-0.677446\pi\)
0.999427 + 0.0338565i \(0.0107789\pi\)
\(620\) 0 0
\(621\) 7.38742 + 1.59563i 0.296447 + 0.0640305i
\(622\) 0 0
\(623\) 0 0
\(624\) 30.5830 + 7.66079i 1.22430 + 0.306677i
\(625\) −12.4567 21.5756i −0.498267 0.863023i
\(626\) 0 0
\(627\) 0 0
\(628\) −24.2598 + 42.0192i −0.968072 + 1.67675i
\(629\) 0 0
\(630\) 0.724674 0.450622i 0.0288717 0.0179532i
\(631\) 47.9141 1.90743 0.953716 0.300709i \(-0.0972234\pi\)
0.953716 + 0.300709i \(0.0972234\pi\)
\(632\) 29.5193 + 17.0430i 1.17421 + 0.677932i
\(633\) 0 0
\(634\) 0 0
\(635\) −1.34587 + 0.777037i −0.0534091 + 0.0308358i
\(636\) 0 0
\(637\) −15.9273 + 27.5869i −0.631063 + 1.09303i
\(638\) 0 0
\(639\) 23.4422 43.8564i 0.927360 1.73493i
\(640\) −0.860099 −0.0339984
\(641\) 32.7265 + 18.8947i 1.29262 + 0.746295i 0.979118 0.203292i \(-0.0651642\pi\)
0.313503 + 0.949587i \(0.398498\pi\)
\(642\) 0 0
\(643\) −7.63202 13.2190i −0.300978 0.521308i 0.675380 0.737470i \(-0.263980\pi\)
−0.976358 + 0.216161i \(0.930646\pi\)
\(644\) 6.66533 3.84823i 0.262651 0.151642i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) −21.1660 + 14.1421i −0.831479 + 0.555556i
\(649\) 0 0
\(650\) 27.8348 + 16.0704i 1.09177 + 0.630333i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0.866862 1.50145i 0.0338711 0.0586665i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) −10.2496 17.7528i −0.398664 0.690506i 0.594898 0.803801i \(-0.297193\pi\)
−0.993561 + 0.113296i \(0.963859\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −25.6919 + 44.4997i −0.997039 + 1.72692i
\(665\) 1.60745i 0.0623341i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −6.29888 + 25.1461i −0.242984 + 0.970030i
\(673\) −12.9422 + 22.4166i −0.498886 + 0.864096i −0.999999 0.00128586i \(-0.999591\pi\)
0.501113 + 0.865382i \(0.332924\pi\)
\(674\) 37.4166i 1.44123i
\(675\) −24.7068 + 7.93808i −0.950966 + 0.305537i
\(676\) −15.4170 −0.592961
\(677\) −8.18524 4.72575i −0.314584 0.181625i 0.334392 0.942434i \(-0.391469\pi\)
−0.648976 + 0.760809i \(0.724802\pi\)
\(678\) −49.4671 12.3911i −1.89977 0.475877i
\(679\) 0 0
\(680\) 0 0
\(681\) 37.5010 + 36.2938i 1.43704 + 1.39078i
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) −1.56848 47.9251i −0.0599724 1.83246i
\(685\) 1.13780 0.0434733
\(686\) −22.6826 13.0958i −0.866025 0.500000i
\(687\) 9.95384 + 34.8572i 0.379763 + 1.32988i
\(688\) 0 0
\(689\) 0 0
\(690\) 0.260441 0.0743716i 0.00991482 0.00283128i
\(691\) −11.0560 + 19.1495i −0.420588 + 0.728480i −0.995997 0.0893857i \(-0.971510\pi\)
0.575409 + 0.817866i \(0.304843\pi\)
\(692\) 49.2050i 1.87049i
\(693\) 0 0
\(694\) 0 0
\(695\) −1.41333 0.815984i −0.0536105 0.0309520i
\(696\) 0 0
\(697\) 0 0
\(698\) 35.0650 20.2448i 1.32723 0.766277i
\(699\) 4.11202 16.4158i 0.155531 0.620902i
\(700\) −13.2135 + 22.8864i −0.499422 + 0.865024i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 22.4575 24.7774i 0.847604 0.935162i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 25.4355 14.6852i 0.956600 0.552294i
\(708\) 13.1822 + 12.7578i 0.495418 + 0.479469i
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 1.78214i 0.0668826i
\(711\) 30.7019 19.0913i 1.15141 0.715978i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −49.5020 + 14.1358i −1.84869 + 0.527911i
\(718\) −16.9030 + 29.2768i −0.630814 + 1.09260i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) −0.430050 + 0.804549i −0.0160270 + 0.0299838i
\(721\) 0 0
\(722\) 54.9527 + 31.7270i 2.04513 + 1.18076i
\(723\) 0 0
\(724\) −21.5743 37.3679i −0.801804 1.38877i
\(725\) 0 0
\(726\) −6.54707 + 26.1369i −0.242984 + 0.970030i
\(727\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 34.0540i 1.26213i
\(729\) 2.64575 + 26.8701i 0.0979908 + 0.995187i
\(730\) 0 0
\(731\) 0 0
\(732\) −27.8105 6.96630i −1.02791 0.257482i
\(733\) 3.56922 + 6.18207i 0.131832 + 0.228340i 0.924383 0.381466i \(-0.124581\pi\)
−0.792551 + 0.609806i \(0.791247\pi\)
\(734\) 0 0
\(735\) −0.662333 0.641011i −0.0244305 0.0236441i
\(736\) −4.11393 + 7.12554i −0.151642 + 0.262651i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 17.2964 + 60.5699i 0.635398 + 2.22509i
\(742\) 0 0
\(743\) 6.48074 3.74166i 0.237755 0.137268i −0.376389 0.926462i \(-0.622834\pi\)
0.614145 + 0.789193i \(0.289501\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 28.7797 + 46.2824i 1.05299 + 1.69338i
\(748\) 0 0
\(749\) 0 0
\(750\) −1.29429 + 1.33734i −0.0472608 + 0.0488328i
\(751\) 22.2211 + 38.4881i 0.810860 + 1.40445i 0.912263 + 0.409605i \(0.134333\pi\)
−0.101403 + 0.994845i \(0.532333\pi\)
\(752\) 0 0
\(753\) −12.7448 + 50.8792i −0.464446 + 1.85414i
\(754\) 0 0
\(755\) 1.09794i 0.0399580i
\(756\) 20.3725 + 18.4651i 0.740942 + 0.671569i
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −0.859217 1.48821i −0.0311671 0.0539830i
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) −35.9814 34.8231i −1.30347 1.26151i
\(763\) 0 0
\(764\) 50.1229i 1.81338i
\(765\) 0 0
\(766\) 0 0
\(767\) −20.8703 12.0495i −0.753582 0.435081i
\(768\) −7.60951 26.6476i −0.274584 0.961563i
\(769\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −5.88029 + 10.1850i −0.211636 + 0.366565i
\(773\) 12.3078i 0.442680i −0.975197 0.221340i \(-0.928957\pi\)
0.975197 0.221340i \(-0.0710431\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0.291197 1.16250i 0.0104265 0.0416243i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 28.0000 1.00000
\(785\) 1.59721 + 0.922149i 0.0570069 + 0.0329129i
\(786\) 54.1873 + 13.5735i 1.93280 + 0.484149i
\(787\) 22.6105 + 39.1626i 0.805978 + 1.39600i 0.915629 + 0.402025i \(0.131694\pi\)
−0.109650 + 0.993970i \(0.534973\pi\)
\(788\) 0 0
\(789\) −0.490887 0.475084i −0.0174760 0.0169134i
\(790\) 0.647826 1.12207i 0.0230486 0.0399214i
\(791\) 55.0814i 1.95847i
\(792\) 0 0
\(793\) 37.6624 1.33743
\(794\) 46.2118 + 26.6804i 1.64000 + 0.946852i
\(795\) 0 0
\(796\) 0 0
\(797\) 30.2347 17.4560i 1.07097 0.618323i 0.142521 0.989792i \(-0.454479\pi\)
0.928445 + 0.371469i \(0.121146\pi\)
\(798\) −49.8020 + 14.2215i −1.76297 + 0.503435i
\(799\) 0 0
\(800\) 28.2516i 0.998844i
\(801\) 0 0
\(802\) 6.55778 0.231563
\(803\) 0 0
\(804\) 0 0
\(805\) −0.146277 0.253359i −0.00515557 0.00892972i
\(806\) 0 0
\(807\) −5.01057 + 20.0029i −0.176380 + 0.704137i
\(808\) −15.6991 + 27.1917i −0.552294 + 0.956600i
\(809\) 31.1127i 1.09386i 0.837177 + 0.546932i \(0.184204\pi\)
−0.837177 + 0.546932i \(0.815796\pi\)
\(810\) 0.537562 + 0.804549i 0.0188880 + 0.0282690i
\(811\) 48.4452 1.70114 0.850570 0.525861i \(-0.176257\pi\)
0.850570 + 0.525861i \(0.176257\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −31.8546 17.0270i −1.11309 0.594972i
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 10.0664 + 35.2515i 0.351107 + 1.22954i
\(823\) −13.2288 22.9129i −0.461125 0.798693i 0.537892 0.843014i \(-0.319221\pi\)
−0.999017 + 0.0443211i \(0.985888\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 9.90735 17.1600i 0.344721 0.597074i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 4.60837 + 7.41100i 0.160152 + 0.257550i
\(829\) −1.32653 −0.0460723 −0.0230361 0.999735i \(-0.507333\pi\)
−0.0230361 + 0.999735i \(0.507333\pi\)
\(830\) 1.69149 + 0.976584i 0.0587126 + 0.0338977i
\(831\) 0 0
\(832\) 18.2026 + 31.5279i 0.631063 + 1.09303i
\(833\) 0 0
\(834\) 12.7768 51.0069i 0.442424 1.76622i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −43.2562 −1.49426
\(839\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(840\) 0.955836 + 0.239429i 0.0329795 + 0.00826109i
\(841\) 14.5000 + 25.1147i 0.500000 + 0.866025i
\(842\) 0 0
\(843\) 23.0222 + 22.2811i 0.792926 + 0.767400i
\(844\) 0 0
\(845\) 0.586021i 0.0201597i
\(846\) 0 0
\(847\) 29.1033 1.00000
\(848\) 0 0
\(849\) −11.6731 40.8779i −0.400620 1.40293i
\(850\) 0 0
\(851\) 0 0
\(852\) 55.2144 15.7670i 1.89161 0.540170i
\(853\) 11.1097 19.2426i 0.380389 0.658853i −0.610729 0.791840i \(-0.709123\pi\)
0.991118 + 0.132987i \(0.0424567\pi\)
\(854\) 30.9669i 1.05966i
\(855\) −1.82170 + 0.0596201i −0.0623008 + 0.00203897i
\(856\) 0 0
\(857\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(858\) 0 0
\(859\) −27.1612 47.0446i −0.926728 1.60514i −0.788759 0.614703i \(-0.789276\pi\)
−0.137969 0.990437i \(-0.544057\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 26.4575 45.8258i 0.901146 1.56083i
\(863\) 42.0320i 1.43079i −0.698722 0.715393i \(-0.746248\pi\)
0.698722 0.715393i \(-0.253752\pi\)
\(864\) −28.7313 6.20577i −0.977459 0.211124i
\(865\) −1.87035 −0.0635938
\(866\) 0 0
\(867\) −28.5624 7.15464i −0.970030 0.242984i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −16.4388 −0.556052
\(875\) 1.74089 + 1.00511i 0.0588529 + 0.0339788i
\(876\) 0 0
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) −56.8051 + 16.2213i −1.91599 + 0.547131i
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 14.0000 26.1916i 0.471405 0.881917i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0.484943 0.501074i 0.0163012 0.0168434i
\(886\) 0 0
\(887\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(888\) 0 0
\(889\) −27.0425 + 46.8390i −0.906977 + 1.57093i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) −25.9230 + 14.9666i −0.866025 + 0.500000i
\(897\) −8.23799 7.97279i −0.275059 0.266204i
\(898\) 28.9542 50.1501i 0.966213 1.67353i
\(899\) 0 0
\(900\) −26.4269 14.1258i −0.880898 0.470860i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −29.4422 50.9954i −0.979234 1.69608i
\(905\) −1.42040 + 0.820071i −0.0472158 + 0.0272601i
\(906\) 34.0163 9.71372i 1.13012 0.322717i
\(907\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) 60.2612i 1.99984i
\(909\) 17.5859 + 28.2810i 0.583289 + 0.938023i
\(910\) −1.29444 −0.0429103
\(911\) 45.1826 + 26.0862i 1.49697 + 0.864274i 0.999994 0.00349271i \(-0.00111177\pi\)
0.496972 + 0.867766i \(0.334445\pi\)
\(912\) 38.5060 39.7868i 1.27506 1.31747i
\(913\) 0 0
\(914\) 41.7596 24.1099i 1.38129 0.797486i
\(915\) −0.264799 + 1.05712i −0.00875398 + 0.0349472i
\(916\) −20.9293 + 36.2506i −0.691522 + 1.19775i
\(917\) 60.3372i 1.99251i
\(918\) 0 0
\(919\) −43.8002 −1.44484 −0.722418 0.691457i \(-0.756969\pi\)
−0.722418 + 0.691457i \(0.756969\pi\)
\(920\) 0.270852 + 0.156376i 0.00892972 + 0.00515557i
\(921\) 34.9835 + 8.76307i 1.15275 + 0.288753i
\(922\) −23.8331 41.2802i −0.784903 1.35949i
\(923\) −65.3264 + 37.7162i −2.15024 + 1.24144i
\(924\) 0 0
\(925\) 0 0
\(926\) 22.8609i 0.751257i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(930\) 0 0
\(931\) 27.9713 + 48.4477i 0.916721 + 1.58781i
\(932\) 16.9230 9.77048i 0.554330 0.320043i
\(933\) 0 0
\(934\) 29.4365 50.9855i 0.963192 1.66830i
\(935\) 0 0
\(936\) 38.5930 1.26306i 1.26145 0.0412845i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 51.9902 30.0166i 1.69483 0.978513i 0.744323 0.667820i \(-0.232772\pi\)
0.950510 0.310693i \(-0.100561\pi\)
\(942\) −14.4392 + 57.6433i −0.470453 + 1.87812i
\(943\) 0 0
\(944\) 21.1828i 0.689442i
\(945\) 0.701884 0.774389i 0.0228323 0.0251909i
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 40.4954 + 10.1438i 1.31523 + 0.329454i
\(949\) 0 0
\(950\) 48.8830 28.2226i 1.58597 0.915662i
\(951\) 0 0
\(952\) 0 0
\(953\) 29.9333i 0.969633i 0.874616 + 0.484817i \(0.161114\pi\)
−0.874616 + 0.484817i \(0.838886\pi\)
\(954\) 0 0
\(955\) 1.90524 0.0616521
\(956\) −51.4807 29.7224i −1.66501 0.961292i
\(957\) 0 0
\(958\) 0 0
\(959\) 34.2929 19.7990i 1.10737 0.639343i
\(960\) −1.01291 + 0.289248i −0.0326916 + 0.00933543i
\(961\) −15.5000 + 26.8468i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0.387144 + 0.223518i 0.0124626 + 0.00719529i
\(966\) 6.55541 6.77347i 0.210917 0.217933i
\(967\) −4.77889 8.27728i −0.153679 0.266179i 0.778898 0.627150i \(-0.215779\pi\)
−0.932577 + 0.360971i \(0.882445\pi\)
\(968\) −26.9444 + 15.5563i −0.866025 + 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 31.0429i 0.996214i −0.867116 0.498107i \(-0.834029\pi\)
0.867116 0.498107i \(-0.165971\pi\)
\(972\) −20.1706 + 23.7728i −0.646973 + 0.762513i
\(973\) −56.7959 −1.82079
\(974\) −47.0819 27.1828i −1.50860 0.870992i
\(975\) 38.1846 + 9.56492i 1.22288 + 0.306322i
\(976\) −16.5525 28.6697i −0.529832 0.917696i
\(977\) −51.8459 + 29.9333i −1.65870 + 0.957650i −0.685381 + 0.728184i \(0.740364\pi\)
−0.973317 + 0.229465i \(0.926302\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.06432i 0.0339984i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −36.3679 + 62.9911i −1.15702 + 2.00401i
\(989\) 0 0
\(990\) 0 0
\(991\) −37.0405 −1.17663 −0.588315 0.808632i \(-0.700209\pi\)
−0.588315 + 0.808632i \(0.700209\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) −31.0111 53.7129i −0.983614 1.70367i
\(995\) 0 0
\(996\) −15.2915 + 61.0460i −0.484530 + 1.93432i
\(997\) 10.1421 17.5666i 0.321203 0.556341i −0.659533 0.751675i \(-0.729246\pi\)
0.980737 + 0.195335i \(0.0625793\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.cc.a.461.8 yes 16
7.6 odd 2 inner 504.2.cc.a.461.5 yes 16
8.5 even 2 inner 504.2.cc.a.461.5 yes 16
9.5 odd 6 inner 504.2.cc.a.293.8 yes 16
56.13 odd 2 CM 504.2.cc.a.461.8 yes 16
63.41 even 6 inner 504.2.cc.a.293.5 16
72.5 odd 6 inner 504.2.cc.a.293.5 16
504.293 even 6 inner 504.2.cc.a.293.8 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.cc.a.293.5 16 63.41 even 6 inner
504.2.cc.a.293.5 16 72.5 odd 6 inner
504.2.cc.a.293.8 yes 16 9.5 odd 6 inner
504.2.cc.a.293.8 yes 16 504.293 even 6 inner
504.2.cc.a.461.5 yes 16 7.6 odd 2 inner
504.2.cc.a.461.5 yes 16 8.5 even 2 inner
504.2.cc.a.461.8 yes 16 1.1 even 1 trivial
504.2.cc.a.461.8 yes 16 56.13 odd 2 CM