Properties

Label 504.2.ch.b.269.24
Level $504$
Weight $2$
Character 504.269
Analytic conductor $4.024$
Analytic rank $0$
Dimension $56$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(269,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.269");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.ch (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 269.24
Character \(\chi\) \(=\) 504.269
Dual form 504.2.ch.b.341.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13135 + 0.848557i) q^{2} +(0.559903 + 1.92003i) q^{4} +(1.53798 - 0.887954i) q^{5} +(0.843933 - 2.50754i) q^{7} +(-0.995807 + 2.64733i) q^{8} +(2.49347 + 0.300478i) q^{10} +(2.09284 - 3.62490i) q^{11} +3.76443 q^{13} +(3.08258 - 2.12078i) q^{14} +(-3.37302 + 2.15006i) q^{16} +(-2.32502 + 4.02705i) q^{17} +(-0.0315203 - 0.0545948i) q^{19} +(2.56602 + 2.45580i) q^{20} +(5.44367 - 2.32514i) q^{22} +(-4.05375 + 2.34043i) q^{23} +(-0.923074 + 1.59881i) q^{25} +(4.25888 + 3.19433i) q^{26} +(5.28708 + 0.216393i) q^{28} -6.47316 q^{29} +(6.64896 + 3.83878i) q^{31} +(-5.64051 - 0.429729i) q^{32} +(-6.04758 + 2.58309i) q^{34} +(-0.928631 - 4.60593i) q^{35} +(2.91602 - 1.68357i) q^{37} +(0.0106663 - 0.0885126i) q^{38} +(0.819176 + 4.95578i) q^{40} -8.06290 q^{41} -9.94628i q^{43} +(8.13170 + 1.98872i) q^{44} +(-6.57220 - 0.791988i) q^{46} +(-0.338788 - 0.586799i) q^{47} +(-5.57556 - 4.23240i) q^{49} +(-2.40100 + 1.02553i) q^{50} +(2.10771 + 7.22781i) q^{52} +(-2.36197 + 4.09104i) q^{53} -7.43338i q^{55} +(5.79791 + 4.73120i) q^{56} +(-7.32341 - 5.49285i) q^{58} +(6.53211 + 3.77132i) q^{59} +(7.23104 + 12.5245i) q^{61} +(4.26487 + 9.98502i) q^{62} +(-6.01674 - 5.27247i) q^{64} +(5.78962 - 3.34264i) q^{65} +(-5.67866 - 3.27857i) q^{67} +(-9.03382 - 2.20934i) q^{68} +(2.85779 - 5.99891i) q^{70} +5.10606i q^{71} +(1.29332 + 0.746696i) q^{73} +(4.72764 + 0.569709i) q^{74} +(0.0871753 - 0.0910878i) q^{76} +(-7.32339 - 8.30706i) q^{77} +(-5.99485 - 10.3834i) q^{79} +(-3.27849 + 6.30184i) q^{80} +(-9.12195 - 6.84183i) q^{82} -7.64992i q^{83} +8.25803i q^{85} +(8.43998 - 11.2527i) q^{86} +(7.51226 + 9.15014i) q^{88} +(-8.97506 - 15.5453i) q^{89} +(3.17692 - 9.43947i) q^{91} +(-6.76340 - 6.47290i) q^{92} +(0.114644 - 0.951355i) q^{94} +(-0.0969554 - 0.0559773i) q^{95} +4.24586i q^{97} +(-2.71647 - 9.51949i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{4} - 20 q^{7} + 20 q^{16} - 16 q^{22} + 8 q^{25} + 36 q^{28} - 36 q^{31} + 60 q^{40} - 8 q^{46} - 28 q^{49} + 36 q^{52} - 44 q^{58} + 40 q^{64} - 60 q^{70} + 72 q^{73} - 12 q^{79} - 36 q^{82}+ \cdots - 180 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13135 + 0.848557i 0.799985 + 0.600020i
\(3\) 0 0
\(4\) 0.559903 + 1.92003i 0.279951 + 0.960014i
\(5\) 1.53798 0.887954i 0.687806 0.397105i −0.114983 0.993367i \(-0.536681\pi\)
0.802790 + 0.596262i \(0.203348\pi\)
\(6\) 0 0
\(7\) 0.843933 2.50754i 0.318977 0.947763i
\(8\) −0.995807 + 2.64733i −0.352071 + 0.935973i
\(9\) 0 0
\(10\) 2.49347 + 0.300478i 0.788506 + 0.0950196i
\(11\) 2.09284 3.62490i 0.631015 1.09295i −0.356330 0.934360i \(-0.615972\pi\)
0.987345 0.158589i \(-0.0506945\pi\)
\(12\) 0 0
\(13\) 3.76443 1.04406 0.522032 0.852926i \(-0.325174\pi\)
0.522032 + 0.852926i \(0.325174\pi\)
\(14\) 3.08258 2.12078i 0.823853 0.566803i
\(15\) 0 0
\(16\) −3.37302 + 2.15006i −0.843254 + 0.537515i
\(17\) −2.32502 + 4.02705i −0.563899 + 0.976702i 0.433252 + 0.901273i \(0.357366\pi\)
−0.997151 + 0.0754291i \(0.975967\pi\)
\(18\) 0 0
\(19\) −0.0315203 0.0545948i −0.00723126 0.0125249i 0.862387 0.506249i \(-0.168968\pi\)
−0.869618 + 0.493724i \(0.835635\pi\)
\(20\) 2.56602 + 2.45580i 0.573779 + 0.549134i
\(21\) 0 0
\(22\) 5.44367 2.32514i 1.16059 0.495721i
\(23\) −4.05375 + 2.34043i −0.845265 + 0.488014i −0.859050 0.511891i \(-0.828945\pi\)
0.0137854 + 0.999905i \(0.495612\pi\)
\(24\) 0 0
\(25\) −0.923074 + 1.59881i −0.184615 + 0.319762i
\(26\) 4.25888 + 3.19433i 0.835236 + 0.626460i
\(27\) 0 0
\(28\) 5.28708 + 0.216393i 0.999163 + 0.0408945i
\(29\) −6.47316 −1.20204 −0.601018 0.799235i \(-0.705238\pi\)
−0.601018 + 0.799235i \(0.705238\pi\)
\(30\) 0 0
\(31\) 6.64896 + 3.83878i 1.19419 + 0.689465i 0.959254 0.282546i \(-0.0911790\pi\)
0.234935 + 0.972011i \(0.424512\pi\)
\(32\) −5.64051 0.429729i −0.997110 0.0759661i
\(33\) 0 0
\(34\) −6.04758 + 2.58309i −1.03715 + 0.442996i
\(35\) −0.928631 4.60593i −0.156967 0.778544i
\(36\) 0 0
\(37\) 2.91602 1.68357i 0.479391 0.276777i −0.240772 0.970582i \(-0.577400\pi\)
0.720163 + 0.693805i \(0.244067\pi\)
\(38\) 0.0106663 0.0885126i 0.00173030 0.0143586i
\(39\) 0 0
\(40\) 0.819176 + 4.95578i 0.129523 + 0.783578i
\(41\) −8.06290 −1.25921 −0.629606 0.776914i \(-0.716784\pi\)
−0.629606 + 0.776914i \(0.716784\pi\)
\(42\) 0 0
\(43\) 9.94628i 1.51679i −0.651793 0.758397i \(-0.725983\pi\)
0.651793 0.758397i \(-0.274017\pi\)
\(44\) 8.13170 + 1.98872i 1.22590 + 0.299810i
\(45\) 0 0
\(46\) −6.57220 0.791988i −0.969017 0.116772i
\(47\) −0.338788 0.586799i −0.0494174 0.0855934i 0.840259 0.542186i \(-0.182403\pi\)
−0.889676 + 0.456592i \(0.849070\pi\)
\(48\) 0 0
\(49\) −5.57556 4.23240i −0.796508 0.604628i
\(50\) −2.40100 + 1.02553i −0.339553 + 0.145032i
\(51\) 0 0
\(52\) 2.10771 + 7.22781i 0.292287 + 1.00232i
\(53\) −2.36197 + 4.09104i −0.324441 + 0.561948i −0.981399 0.191979i \(-0.938509\pi\)
0.656958 + 0.753927i \(0.271843\pi\)
\(54\) 0 0
\(55\) 7.43338i 1.00232i
\(56\) 5.79791 + 4.73120i 0.774778 + 0.632233i
\(57\) 0 0
\(58\) −7.32341 5.49285i −0.961611 0.721246i
\(59\) 6.53211 + 3.77132i 0.850408 + 0.490983i 0.860789 0.508963i \(-0.169971\pi\)
−0.0103803 + 0.999946i \(0.503304\pi\)
\(60\) 0 0
\(61\) 7.23104 + 12.5245i 0.925840 + 1.60360i 0.790204 + 0.612844i \(0.209975\pi\)
0.135636 + 0.990759i \(0.456692\pi\)
\(62\) 4.26487 + 9.98502i 0.541640 + 1.26810i
\(63\) 0 0
\(64\) −6.01674 5.27247i −0.752092 0.659058i
\(65\) 5.78962 3.34264i 0.718115 0.414604i
\(66\) 0 0
\(67\) −5.67866 3.27857i −0.693758 0.400542i 0.111260 0.993791i \(-0.464511\pi\)
−0.805018 + 0.593250i \(0.797845\pi\)
\(68\) −9.03382 2.20934i −1.09551 0.267922i
\(69\) 0 0
\(70\) 2.85779 5.99891i 0.341571 0.717007i
\(71\) 5.10606i 0.605978i 0.952994 + 0.302989i \(0.0979846\pi\)
−0.952994 + 0.302989i \(0.902015\pi\)
\(72\) 0 0
\(73\) 1.29332 + 0.746696i 0.151371 + 0.0873942i 0.573772 0.819015i \(-0.305479\pi\)
−0.422401 + 0.906409i \(0.638813\pi\)
\(74\) 4.72764 + 0.569709i 0.549577 + 0.0662273i
\(75\) 0 0
\(76\) 0.0871753 0.0910878i 0.00999969 0.0104485i
\(77\) −7.32339 8.30706i −0.834578 0.946677i
\(78\) 0 0
\(79\) −5.99485 10.3834i −0.674473 1.16822i −0.976623 0.214961i \(-0.931038\pi\)
0.302150 0.953260i \(-0.402296\pi\)
\(80\) −3.27849 + 6.30184i −0.366546 + 0.704567i
\(81\) 0 0
\(82\) −9.12195 6.84183i −1.00735 0.755553i
\(83\) 7.64992i 0.839688i −0.907596 0.419844i \(-0.862085\pi\)
0.907596 0.419844i \(-0.137915\pi\)
\(84\) 0 0
\(85\) 8.25803i 0.895709i
\(86\) 8.43998 11.2527i 0.910107 1.21341i
\(87\) 0 0
\(88\) 7.51226 + 9.15014i 0.800809 + 0.975409i
\(89\) −8.97506 15.5453i −0.951354 1.64779i −0.742499 0.669847i \(-0.766360\pi\)
−0.208855 0.977947i \(-0.566974\pi\)
\(90\) 0 0
\(91\) 3.17692 9.43947i 0.333032 0.989526i
\(92\) −6.76340 6.47290i −0.705133 0.674846i
\(93\) 0 0
\(94\) 0.114644 0.951355i 0.0118246 0.0981248i
\(95\) −0.0969554 0.0559773i −0.00994742 0.00574315i
\(96\) 0 0
\(97\) 4.24586i 0.431102i 0.976493 + 0.215551i \(0.0691547\pi\)
−0.976493 + 0.215551i \(0.930845\pi\)
\(98\) −2.71647 9.51949i −0.274405 0.961614i
\(99\) 0 0
\(100\) −3.58660 0.877150i −0.358660 0.0877150i
\(101\) 3.63654 + 2.09956i 0.361849 + 0.208914i 0.669892 0.742459i \(-0.266341\pi\)
−0.308042 + 0.951373i \(0.599674\pi\)
\(102\) 0 0
\(103\) −11.3144 + 6.53235i −1.11484 + 0.643652i −0.940078 0.340959i \(-0.889248\pi\)
−0.174759 + 0.984611i \(0.555915\pi\)
\(104\) −3.74865 + 9.96569i −0.367585 + 0.977217i
\(105\) 0 0
\(106\) −6.14369 + 2.62414i −0.596728 + 0.254879i
\(107\) −5.25101 9.09502i −0.507635 0.879249i −0.999961 0.00883827i \(-0.997187\pi\)
0.492326 0.870411i \(-0.336147\pi\)
\(108\) 0 0
\(109\) 2.19797 + 1.26900i 0.210528 + 0.121548i 0.601557 0.798830i \(-0.294547\pi\)
−0.391029 + 0.920378i \(0.627881\pi\)
\(110\) 6.30764 8.40975i 0.601410 0.801838i
\(111\) 0 0
\(112\) 2.54477 + 10.2725i 0.240458 + 0.970660i
\(113\) 4.56501i 0.429440i −0.976676 0.214720i \(-0.931116\pi\)
0.976676 0.214720i \(-0.0688838\pi\)
\(114\) 0 0
\(115\) −4.15639 + 7.19909i −0.387586 + 0.671318i
\(116\) −3.62434 12.4287i −0.336512 1.15397i
\(117\) 0 0
\(118\) 4.18992 + 9.80954i 0.385714 + 0.903041i
\(119\) 8.13584 + 9.22863i 0.745811 + 0.845988i
\(120\) 0 0
\(121\) −3.25995 5.64639i −0.296359 0.513308i
\(122\) −2.44694 + 20.3056i −0.221536 + 1.83838i
\(123\) 0 0
\(124\) −3.64779 + 14.9155i −0.327581 + 1.33945i
\(125\) 12.1581i 1.08746i
\(126\) 0 0
\(127\) 8.36161 0.741973 0.370986 0.928638i \(-0.379020\pi\)
0.370986 + 0.928638i \(0.379020\pi\)
\(128\) −2.33304 11.0705i −0.206214 0.978507i
\(129\) 0 0
\(130\) 9.38651 + 1.13113i 0.823251 + 0.0992066i
\(131\) 5.45901 3.15176i 0.476956 0.275371i −0.242191 0.970229i \(-0.577866\pi\)
0.719147 + 0.694858i \(0.244533\pi\)
\(132\) 0 0
\(133\) −0.163500 + 0.0329643i −0.0141772 + 0.00285837i
\(134\) −3.64249 8.52788i −0.314663 0.736696i
\(135\) 0 0
\(136\) −8.34566 10.1652i −0.715634 0.871663i
\(137\) 11.3468 + 6.55109i 0.969425 + 0.559698i 0.899061 0.437824i \(-0.144251\pi\)
0.0703639 + 0.997521i \(0.477584\pi\)
\(138\) 0 0
\(139\) −19.1125 −1.62110 −0.810549 0.585671i \(-0.800831\pi\)
−0.810549 + 0.585671i \(0.800831\pi\)
\(140\) 8.32358 4.36187i 0.703471 0.368646i
\(141\) 0 0
\(142\) −4.33278 + 5.77674i −0.363599 + 0.484773i
\(143\) 7.87834 13.6457i 0.658820 1.14111i
\(144\) 0 0
\(145\) −9.95561 + 5.74787i −0.826768 + 0.477335i
\(146\) 0.829578 + 1.94223i 0.0686564 + 0.160740i
\(147\) 0 0
\(148\) 4.86518 + 4.65621i 0.399916 + 0.382738i
\(149\) 2.19406 + 3.80023i 0.179745 + 0.311327i 0.941793 0.336193i \(-0.109140\pi\)
−0.762048 + 0.647520i \(0.775806\pi\)
\(150\) 0 0
\(151\) 1.37428 2.38033i 0.111838 0.193708i −0.804674 0.593717i \(-0.797660\pi\)
0.916511 + 0.400009i \(0.130993\pi\)
\(152\) 0.175919 0.0290789i 0.0142689 0.00235861i
\(153\) 0 0
\(154\) −1.23630 15.6125i −0.0996239 1.25809i
\(155\) 13.6346 1.09516
\(156\) 0 0
\(157\) 0.669124 1.15896i 0.0534019 0.0924948i −0.838089 0.545534i \(-0.816327\pi\)
0.891491 + 0.453039i \(0.149660\pi\)
\(158\) 2.02862 16.8342i 0.161388 1.33926i
\(159\) 0 0
\(160\) −9.05658 + 4.34760i −0.715986 + 0.343708i
\(161\) 2.44765 + 12.1401i 0.192902 + 0.956776i
\(162\) 0 0
\(163\) −3.30942 + 1.91070i −0.259214 + 0.149657i −0.623976 0.781444i \(-0.714484\pi\)
0.364762 + 0.931101i \(0.381150\pi\)
\(164\) −4.51444 15.4810i −0.352518 1.20886i
\(165\) 0 0
\(166\) 6.49139 8.65473i 0.503830 0.671737i
\(167\) −7.25804 −0.561644 −0.280822 0.959760i \(-0.590607\pi\)
−0.280822 + 0.959760i \(0.590607\pi\)
\(168\) 0 0
\(169\) 1.17093 0.0900713
\(170\) −7.00741 + 9.34272i −0.537444 + 0.716554i
\(171\) 0 0
\(172\) 19.0971 5.56895i 1.45614 0.424628i
\(173\) −1.07114 + 0.618425i −0.0814375 + 0.0470180i −0.540166 0.841559i \(-0.681638\pi\)
0.458728 + 0.888577i \(0.348305\pi\)
\(174\) 0 0
\(175\) 3.23008 + 3.66394i 0.244171 + 0.276968i
\(176\) 0.734572 + 16.7266i 0.0553705 + 1.26081i
\(177\) 0 0
\(178\) 3.03711 25.2030i 0.227641 1.88904i
\(179\) −8.80192 + 15.2454i −0.657886 + 1.13949i 0.323275 + 0.946305i \(0.395216\pi\)
−0.981162 + 0.193188i \(0.938117\pi\)
\(180\) 0 0
\(181\) 16.4773 1.22475 0.612376 0.790567i \(-0.290214\pi\)
0.612376 + 0.790567i \(0.290214\pi\)
\(182\) 11.6041 7.98354i 0.860156 0.591779i
\(183\) 0 0
\(184\) −2.15915 13.0622i −0.159175 0.962961i
\(185\) 2.98986 5.17859i 0.219819 0.380737i
\(186\) 0 0
\(187\) 9.73176 + 16.8559i 0.711657 + 1.23263i
\(188\) 0.936981 0.979033i 0.0683364 0.0714033i
\(189\) 0 0
\(190\) −0.0621906 0.145602i −0.00451178 0.0105631i
\(191\) 14.2159 8.20758i 1.02863 0.593880i 0.112038 0.993704i \(-0.464262\pi\)
0.916592 + 0.399824i \(0.130929\pi\)
\(192\) 0 0
\(193\) −11.7627 + 20.3736i −0.846696 + 1.46652i 0.0374435 + 0.999299i \(0.488079\pi\)
−0.884140 + 0.467222i \(0.845255\pi\)
\(194\) −3.60285 + 4.80355i −0.258670 + 0.344875i
\(195\) 0 0
\(196\) 5.00455 13.0750i 0.357468 0.933925i
\(197\) 0.792724 0.0564792 0.0282396 0.999601i \(-0.491010\pi\)
0.0282396 + 0.999601i \(0.491010\pi\)
\(198\) 0 0
\(199\) 10.9922 + 6.34632i 0.779213 + 0.449879i 0.836151 0.548499i \(-0.184800\pi\)
−0.0569382 + 0.998378i \(0.518134\pi\)
\(200\) −3.31338 4.03579i −0.234291 0.285374i
\(201\) 0 0
\(202\) 2.33260 + 5.46115i 0.164121 + 0.384245i
\(203\) −5.46292 + 16.2317i −0.383421 + 1.13925i
\(204\) 0 0
\(205\) −12.4006 + 7.15948i −0.866095 + 0.500040i
\(206\) −18.3436 2.21051i −1.27806 0.154013i
\(207\) 0 0
\(208\) −12.6975 + 8.09374i −0.880412 + 0.561200i
\(209\) −0.263868 −0.0182521
\(210\) 0 0
\(211\) 18.9821i 1.30678i −0.757020 0.653392i \(-0.773345\pi\)
0.757020 0.653392i \(-0.226655\pi\)
\(212\) −9.17739 2.24445i −0.630306 0.154150i
\(213\) 0 0
\(214\) 1.77691 14.7454i 0.121467 1.00798i
\(215\) −8.83184 15.2972i −0.602326 1.04326i
\(216\) 0 0
\(217\) 15.2372 13.4329i 1.03437 0.911884i
\(218\) 1.40986 + 3.30079i 0.0954876 + 0.223558i
\(219\) 0 0
\(220\) 14.2723 4.16197i 0.962238 0.280600i
\(221\) −8.75236 + 15.1595i −0.588747 + 1.01974i
\(222\) 0 0
\(223\) 8.56676i 0.573673i 0.957980 + 0.286836i \(0.0926036\pi\)
−0.957980 + 0.286836i \(0.907396\pi\)
\(224\) −5.83777 + 13.7812i −0.390053 + 0.920793i
\(225\) 0 0
\(226\) 3.87367 5.16462i 0.257673 0.343545i
\(227\) 12.3870 + 7.15164i 0.822155 + 0.474671i 0.851159 0.524908i \(-0.175900\pi\)
−0.0290044 + 0.999579i \(0.509234\pi\)
\(228\) 0 0
\(229\) −14.0246 24.2914i −0.926774 1.60522i −0.788683 0.614800i \(-0.789237\pi\)
−0.138091 0.990420i \(-0.544097\pi\)
\(230\) −10.8112 + 4.61775i −0.712867 + 0.304485i
\(231\) 0 0
\(232\) 6.44602 17.1366i 0.423202 1.12507i
\(233\) −7.52792 + 4.34625i −0.493170 + 0.284732i −0.725889 0.687812i \(-0.758571\pi\)
0.232718 + 0.972544i \(0.425238\pi\)
\(234\) 0 0
\(235\) −1.04210 0.601657i −0.0679792 0.0392478i
\(236\) −3.58369 + 14.6534i −0.233278 + 0.953856i
\(237\) 0 0
\(238\) 1.37345 + 17.3445i 0.0890278 + 1.12428i
\(239\) 12.4878i 0.807772i 0.914809 + 0.403886i \(0.132341\pi\)
−0.914809 + 0.403886i \(0.867659\pi\)
\(240\) 0 0
\(241\) 20.0923 + 11.6003i 1.29426 + 0.747240i 0.979406 0.201900i \(-0.0647117\pi\)
0.314852 + 0.949141i \(0.398045\pi\)
\(242\) 1.10315 9.15429i 0.0709129 0.588460i
\(243\) 0 0
\(244\) −19.9988 + 20.8963i −1.28029 + 1.33775i
\(245\) −12.3333 1.55851i −0.787944 0.0995697i
\(246\) 0 0
\(247\) −0.118656 0.205518i −0.00754991 0.0130768i
\(248\) −16.7836 + 13.7793i −1.06576 + 0.874988i
\(249\) 0 0
\(250\) −10.3169 + 13.7551i −0.652496 + 0.869949i
\(251\) 13.9698i 0.881768i −0.897564 0.440884i \(-0.854665\pi\)
0.897564 0.440884i \(-0.145335\pi\)
\(252\) 0 0
\(253\) 19.5926i 1.23178i
\(254\) 9.45990 + 7.09530i 0.593567 + 0.445199i
\(255\) 0 0
\(256\) 6.75450 14.5044i 0.422156 0.906523i
\(257\) 11.8457 + 20.5174i 0.738915 + 1.27984i 0.952984 + 0.303020i \(0.0979950\pi\)
−0.214069 + 0.976819i \(0.568672\pi\)
\(258\) 0 0
\(259\) −1.76069 8.73287i −0.109404 0.542634i
\(260\) 9.65959 + 9.24469i 0.599063 + 0.573331i
\(261\) 0 0
\(262\) 8.85049 + 1.06654i 0.546785 + 0.0658909i
\(263\) 13.5097 + 7.79983i 0.833044 + 0.480958i 0.854894 0.518803i \(-0.173622\pi\)
−0.0218497 + 0.999761i \(0.506956\pi\)
\(264\) 0 0
\(265\) 8.38927i 0.515349i
\(266\) −0.212948 0.101445i −0.0130567 0.00621999i
\(267\) 0 0
\(268\) 3.11546 12.7389i 0.190307 0.778150i
\(269\) 27.5546 + 15.9086i 1.68003 + 0.969966i 0.961635 + 0.274332i \(0.0884566\pi\)
0.718396 + 0.695635i \(0.244877\pi\)
\(270\) 0 0
\(271\) 8.16789 4.71573i 0.496164 0.286460i −0.230964 0.972962i \(-0.574188\pi\)
0.727128 + 0.686502i \(0.240855\pi\)
\(272\) −0.816065 18.5822i −0.0494812 1.12671i
\(273\) 0 0
\(274\) 7.27825 + 17.0400i 0.439695 + 1.02942i
\(275\) 3.86369 + 6.69211i 0.232989 + 0.403549i
\(276\) 0 0
\(277\) −23.1275 13.3527i −1.38960 0.802284i −0.396327 0.918109i \(-0.629715\pi\)
−0.993270 + 0.115825i \(0.963049\pi\)
\(278\) −21.6229 16.2180i −1.29685 0.972691i
\(279\) 0 0
\(280\) 13.1182 + 2.12822i 0.783961 + 0.127186i
\(281\) 26.1930i 1.56254i −0.624193 0.781271i \(-0.714572\pi\)
0.624193 0.781271i \(-0.285428\pi\)
\(282\) 0 0
\(283\) −2.62071 + 4.53920i −0.155785 + 0.269827i −0.933345 0.358982i \(-0.883124\pi\)
0.777560 + 0.628809i \(0.216457\pi\)
\(284\) −9.80378 + 2.85890i −0.581748 + 0.169644i
\(285\) 0 0
\(286\) 20.4923 8.75282i 1.21174 0.517565i
\(287\) −6.80454 + 20.2181i −0.401659 + 1.19343i
\(288\) 0 0
\(289\) −2.31140 4.00346i −0.135964 0.235497i
\(290\) −16.1407 1.94505i −0.947813 0.114217i
\(291\) 0 0
\(292\) −0.709547 + 2.90128i −0.0415231 + 0.169785i
\(293\) 8.29435i 0.484561i −0.970206 0.242280i \(-0.922105\pi\)
0.970206 0.242280i \(-0.0778954\pi\)
\(294\) 0 0
\(295\) 13.3950 0.779888
\(296\) 1.55316 + 9.39619i 0.0902757 + 0.546142i
\(297\) 0 0
\(298\) −0.742458 + 6.16117i −0.0430094 + 0.356907i
\(299\) −15.2600 + 8.81039i −0.882511 + 0.509518i
\(300\) 0 0
\(301\) −24.9407 8.39399i −1.43756 0.483821i
\(302\) 3.57464 1.52683i 0.205697 0.0878589i
\(303\) 0 0
\(304\) 0.223701 + 0.116379i 0.0128301 + 0.00667478i
\(305\) 22.2424 + 12.8417i 1.27360 + 0.735312i
\(306\) 0 0
\(307\) 17.8873 1.02088 0.510442 0.859912i \(-0.329482\pi\)
0.510442 + 0.859912i \(0.329482\pi\)
\(308\) 11.8494 18.7123i 0.675182 1.06623i
\(309\) 0 0
\(310\) 15.4255 + 11.5698i 0.876112 + 0.657119i
\(311\) −0.257495 + 0.445994i −0.0146012 + 0.0252900i −0.873234 0.487302i \(-0.837981\pi\)
0.858632 + 0.512592i \(0.171315\pi\)
\(312\) 0 0
\(313\) 20.1970 11.6607i 1.14160 0.659104i 0.194775 0.980848i \(-0.437602\pi\)
0.946827 + 0.321744i \(0.104269\pi\)
\(314\) 1.74045 0.743395i 0.0982195 0.0419522i
\(315\) 0 0
\(316\) 16.5799 17.3240i 0.932689 0.974549i
\(317\) −10.4926 18.1736i −0.589321 1.02073i −0.994322 0.106417i \(-0.966062\pi\)
0.405001 0.914316i \(-0.367271\pi\)
\(318\) 0 0
\(319\) −13.5473 + 23.4646i −0.758503 + 1.31376i
\(320\) −13.9353 2.76637i −0.779009 0.154645i
\(321\) 0 0
\(322\) −7.53244 + 15.8117i −0.419766 + 0.881151i
\(323\) 0.293141 0.0163108
\(324\) 0 0
\(325\) −3.47485 + 6.01861i −0.192750 + 0.333853i
\(326\) −5.36545 0.646568i −0.297165 0.0358101i
\(327\) 0 0
\(328\) 8.02909 21.3452i 0.443332 1.17859i
\(329\) −1.75734 + 0.354308i −0.0968852 + 0.0195336i
\(330\) 0 0
\(331\) −8.16441 + 4.71372i −0.448756 + 0.259090i −0.707305 0.706909i \(-0.750089\pi\)
0.258548 + 0.965998i \(0.416756\pi\)
\(332\) 14.6881 4.28321i 0.806112 0.235072i
\(333\) 0 0
\(334\) −8.21138 6.15886i −0.449307 0.336998i
\(335\) −11.6449 −0.636229
\(336\) 0 0
\(337\) −14.8141 −0.806977 −0.403488 0.914985i \(-0.632202\pi\)
−0.403488 + 0.914985i \(0.632202\pi\)
\(338\) 1.32473 + 0.993598i 0.0720557 + 0.0540446i
\(339\) 0 0
\(340\) −15.8557 + 4.62370i −0.859894 + 0.250755i
\(341\) 27.8304 16.0679i 1.50710 0.870125i
\(342\) 0 0
\(343\) −15.3183 + 10.4091i −0.827111 + 0.562038i
\(344\) 26.3311 + 9.90457i 1.41968 + 0.534019i
\(345\) 0 0
\(346\) −1.73661 0.209271i −0.0933605 0.0112505i
\(347\) −10.9642 + 18.9905i −0.588587 + 1.01946i 0.405830 + 0.913948i \(0.366982\pi\)
−0.994418 + 0.105515i \(0.966351\pi\)
\(348\) 0 0
\(349\) 34.9301 1.86977 0.934884 0.354954i \(-0.115503\pi\)
0.934884 + 0.354954i \(0.115503\pi\)
\(350\) 0.545287 + 6.88610i 0.0291468 + 0.368077i
\(351\) 0 0
\(352\) −13.3624 + 19.5469i −0.712218 + 1.04186i
\(353\) 3.71324 6.43152i 0.197636 0.342315i −0.750126 0.661295i \(-0.770007\pi\)
0.947761 + 0.318980i \(0.103340\pi\)
\(354\) 0 0
\(355\) 4.53395 + 7.85303i 0.240637 + 0.416796i
\(356\) 24.8222 25.9362i 1.31557 1.37462i
\(357\) 0 0
\(358\) −22.8946 + 9.77891i −1.21002 + 0.516832i
\(359\) 6.73364 3.88767i 0.355388 0.205183i −0.311668 0.950191i \(-0.600888\pi\)
0.667056 + 0.745008i \(0.267554\pi\)
\(360\) 0 0
\(361\) 9.49801 16.4510i 0.499895 0.865844i
\(362\) 18.6416 + 13.9820i 0.979783 + 0.734876i
\(363\) 0 0
\(364\) 19.9028 + 0.814598i 1.04319 + 0.0426965i
\(365\) 2.65213 0.138819
\(366\) 0 0
\(367\) −6.99509 4.03862i −0.365141 0.210814i 0.306193 0.951970i \(-0.400945\pi\)
−0.671333 + 0.741155i \(0.734278\pi\)
\(368\) 8.64130 16.6101i 0.450459 0.865862i
\(369\) 0 0
\(370\) 7.77690 3.32173i 0.404302 0.172688i
\(371\) 8.26513 + 9.37530i 0.429104 + 0.486741i
\(372\) 0 0
\(373\) 24.1708 13.9550i 1.25152 0.722563i 0.280105 0.959969i \(-0.409631\pi\)
0.971410 + 0.237407i \(0.0762974\pi\)
\(374\) −3.29317 + 27.3279i −0.170286 + 1.41309i
\(375\) 0 0
\(376\) 1.89082 0.312547i 0.0975115 0.0161184i
\(377\) −24.3678 −1.25500
\(378\) 0 0
\(379\) 29.0460i 1.49199i 0.665949 + 0.745997i \(0.268027\pi\)
−0.665949 + 0.745997i \(0.731973\pi\)
\(380\) 0.0531923 0.217499i 0.00272871 0.0111575i
\(381\) 0 0
\(382\) 23.0478 + 2.77740i 1.17923 + 0.142104i
\(383\) −5.63040 9.75214i −0.287700 0.498311i 0.685560 0.728016i \(-0.259557\pi\)
−0.973260 + 0.229705i \(0.926224\pi\)
\(384\) 0 0
\(385\) −18.6395 6.27327i −0.949958 0.319716i
\(386\) −30.5958 + 13.0683i −1.55729 + 0.665160i
\(387\) 0 0
\(388\) −8.15217 + 2.37727i −0.413864 + 0.120688i
\(389\) 2.51811 4.36149i 0.127673 0.221136i −0.795102 0.606476i \(-0.792583\pi\)
0.922775 + 0.385340i \(0.125916\pi\)
\(390\) 0 0
\(391\) 21.7662i 1.10076i
\(392\) 16.7567 10.5457i 0.846343 0.532638i
\(393\) 0 0
\(394\) 0.896848 + 0.672671i 0.0451825 + 0.0338887i
\(395\) −18.4399 10.6463i −0.927814 0.535674i
\(396\) 0 0
\(397\) −13.8771 24.0358i −0.696471 1.20632i −0.969682 0.244369i \(-0.921419\pi\)
0.273211 0.961954i \(-0.411914\pi\)
\(398\) 7.05075 + 16.5074i 0.353422 + 0.827440i
\(399\) 0 0
\(400\) −0.323993 7.37748i −0.0161996 0.368874i
\(401\) 3.70394 2.13847i 0.184966 0.106790i −0.404658 0.914468i \(-0.632609\pi\)
0.589624 + 0.807678i \(0.299276\pi\)
\(402\) 0 0
\(403\) 25.0295 + 14.4508i 1.24681 + 0.719846i
\(404\) −1.99510 + 8.15781i −0.0992600 + 0.405866i
\(405\) 0 0
\(406\) −19.9540 + 13.7282i −0.990302 + 0.681318i
\(407\) 14.0937i 0.698600i
\(408\) 0 0
\(409\) 13.6093 + 7.85734i 0.672937 + 0.388521i 0.797189 0.603730i \(-0.206320\pi\)
−0.124251 + 0.992251i \(0.539653\pi\)
\(410\) −20.1046 2.42273i −0.992897 0.119650i
\(411\) 0 0
\(412\) −18.8772 18.0664i −0.930015 0.890069i
\(413\) 14.9694 13.1968i 0.736596 0.649373i
\(414\) 0 0
\(415\) −6.79278 11.7654i −0.333444 0.577543i
\(416\) −21.2333 1.61769i −1.04105 0.0793136i
\(417\) 0 0
\(418\) −0.298527 0.223907i −0.0146014 0.0109516i
\(419\) 38.0838i 1.86052i −0.366904 0.930259i \(-0.619582\pi\)
0.366904 0.930259i \(-0.380418\pi\)
\(420\) 0 0
\(421\) 15.7506i 0.767635i 0.923409 + 0.383818i \(0.125391\pi\)
−0.923409 + 0.383818i \(0.874609\pi\)
\(422\) 16.1074 21.4754i 0.784097 1.04541i
\(423\) 0 0
\(424\) −8.47829 10.3268i −0.411742 0.501514i
\(425\) −4.29232 7.43452i −0.208208 0.360627i
\(426\) 0 0
\(427\) 37.5083 7.56230i 1.81516 0.365965i
\(428\) 14.5226 15.1744i 0.701978 0.733483i
\(429\) 0 0
\(430\) 2.98864 24.8008i 0.144125 1.19600i
\(431\) −6.36898 3.67713i −0.306783 0.177121i 0.338703 0.940893i \(-0.390012\pi\)
−0.645486 + 0.763772i \(0.723345\pi\)
\(432\) 0 0
\(433\) 8.06468i 0.387564i −0.981045 0.193782i \(-0.937925\pi\)
0.981045 0.193782i \(-0.0620754\pi\)
\(434\) 28.6371 2.26768i 1.37463 0.108852i
\(435\) 0 0
\(436\) −1.20587 + 4.93069i −0.0577505 + 0.236137i
\(437\) 0.255551 + 0.147542i 0.0122247 + 0.00705791i
\(438\) 0 0
\(439\) −5.02415 + 2.90069i −0.239790 + 0.138443i −0.615080 0.788465i \(-0.710876\pi\)
0.375290 + 0.926907i \(0.377543\pi\)
\(440\) 19.6786 + 7.40221i 0.938142 + 0.352887i
\(441\) 0 0
\(442\) −22.7657 + 9.72385i −1.08285 + 0.462516i
\(443\) −7.82446 13.5524i −0.371751 0.643892i 0.618084 0.786112i \(-0.287909\pi\)
−0.989835 + 0.142220i \(0.954576\pi\)
\(444\) 0 0
\(445\) −27.6069 15.9389i −1.30869 0.755575i
\(446\) −7.26938 + 9.69200i −0.344215 + 0.458930i
\(447\) 0 0
\(448\) −18.2987 + 10.6376i −0.864530 + 0.502581i
\(449\) 34.7839i 1.64155i 0.571250 + 0.820776i \(0.306459\pi\)
−0.571250 + 0.820776i \(0.693541\pi\)
\(450\) 0 0
\(451\) −16.8743 + 29.2272i −0.794582 + 1.37626i
\(452\) 8.76494 2.55596i 0.412268 0.120222i
\(453\) 0 0
\(454\) 7.94546 + 18.6021i 0.372899 + 0.873039i
\(455\) −3.49577 17.3387i −0.163884 0.812851i
\(456\) 0 0
\(457\) −5.38911 9.33422i −0.252092 0.436636i 0.712010 0.702170i \(-0.247785\pi\)
−0.964102 + 0.265533i \(0.914452\pi\)
\(458\) 4.74585 39.3827i 0.221759 1.84023i
\(459\) 0 0
\(460\) −16.1496 3.94961i −0.752980 0.184151i
\(461\) 19.5062i 0.908494i −0.890876 0.454247i \(-0.849908\pi\)
0.890876 0.454247i \(-0.150092\pi\)
\(462\) 0 0
\(463\) −27.2099 −1.26455 −0.632275 0.774744i \(-0.717879\pi\)
−0.632275 + 0.774744i \(0.717879\pi\)
\(464\) 21.8341 13.9177i 1.01362 0.646112i
\(465\) 0 0
\(466\) −12.2047 1.47074i −0.565374 0.0681309i
\(467\) −29.3243 + 16.9304i −1.35697 + 0.783445i −0.989214 0.146479i \(-0.953206\pi\)
−0.367752 + 0.929924i \(0.619872\pi\)
\(468\) 0 0
\(469\) −13.0136 + 11.4726i −0.600911 + 0.529755i
\(470\) −0.668440 1.56497i −0.0308328 0.0721865i
\(471\) 0 0
\(472\) −16.4886 + 13.5372i −0.758952 + 0.623098i
\(473\) −36.0543 20.8160i −1.65778 0.957118i
\(474\) 0 0
\(475\) 0.116382 0.00533999
\(476\) −13.1640 + 20.7882i −0.603369 + 0.952825i
\(477\) 0 0
\(478\) −10.5966 + 14.1281i −0.484679 + 0.646205i
\(479\) −0.640883 + 1.11004i −0.0292827 + 0.0507191i −0.880295 0.474426i \(-0.842656\pi\)
0.851013 + 0.525145i \(0.175989\pi\)
\(480\) 0 0
\(481\) 10.9772 6.33766i 0.500515 0.288973i
\(482\) 12.8879 + 30.1734i 0.587028 + 1.37436i
\(483\) 0 0
\(484\) 9.01598 9.42062i 0.409817 0.428210i
\(485\) 3.77013 + 6.53005i 0.171193 + 0.296515i
\(486\) 0 0
\(487\) −11.5313 + 19.9728i −0.522534 + 0.905055i 0.477122 + 0.878837i \(0.341680\pi\)
−0.999656 + 0.0262185i \(0.991653\pi\)
\(488\) −40.3573 + 6.67095i −1.82689 + 0.301980i
\(489\) 0 0
\(490\) −12.6308 12.2287i −0.570600 0.552437i
\(491\) 33.6759 1.51977 0.759886 0.650057i \(-0.225255\pi\)
0.759886 + 0.650057i \(0.225255\pi\)
\(492\) 0 0
\(493\) 15.0502 26.0677i 0.677827 1.17403i
\(494\) 0.0401525 0.333200i 0.00180655 0.0149914i
\(495\) 0 0
\(496\) −30.6807 + 1.34739i −1.37760 + 0.0604994i
\(497\) 12.8037 + 4.30917i 0.574323 + 0.193293i
\(498\) 0 0
\(499\) 5.15436 2.97587i 0.230741 0.133218i −0.380173 0.924915i \(-0.624135\pi\)
0.610914 + 0.791697i \(0.290802\pi\)
\(500\) −23.3440 + 6.80737i −1.04397 + 0.304435i
\(501\) 0 0
\(502\) 11.8542 15.8048i 0.529079 0.705401i
\(503\) −1.41791 −0.0632214 −0.0316107 0.999500i \(-0.510064\pi\)
−0.0316107 + 0.999500i \(0.510064\pi\)
\(504\) 0 0
\(505\) 7.45725 0.331843
\(506\) −16.6254 + 22.1661i −0.739090 + 0.985402i
\(507\) 0 0
\(508\) 4.68169 + 16.0545i 0.207716 + 0.712304i
\(509\) 7.25269 4.18734i 0.321470 0.185601i −0.330578 0.943779i \(-0.607244\pi\)
0.652048 + 0.758178i \(0.273910\pi\)
\(510\) 0 0
\(511\) 2.96385 2.61289i 0.131113 0.115587i
\(512\) 19.9495 10.6779i 0.881651 0.471903i
\(513\) 0 0
\(514\) −4.00852 + 33.2641i −0.176808 + 1.46722i
\(515\) −11.6009 + 20.0933i −0.511195 + 0.885416i
\(516\) 0 0
\(517\) −2.83612 −0.124732
\(518\) 5.41838 11.3740i 0.238070 0.499744i
\(519\) 0 0
\(520\) 3.08373 + 18.6557i 0.135231 + 0.818106i
\(521\) 11.7714 20.3887i 0.515715 0.893244i −0.484119 0.875002i \(-0.660860\pi\)
0.999834 0.0182421i \(-0.00580695\pi\)
\(522\) 0 0
\(523\) 14.4448 + 25.0191i 0.631626 + 1.09401i 0.987219 + 0.159368i \(0.0509456\pi\)
−0.355593 + 0.934641i \(0.615721\pi\)
\(524\) 9.10798 + 8.71677i 0.397884 + 0.380794i
\(525\) 0 0
\(526\) 8.66560 + 20.2881i 0.377838 + 0.884603i
\(527\) −30.9179 + 17.8504i −1.34680 + 0.777577i
\(528\) 0 0
\(529\) −0.544750 + 0.943535i −0.0236848 + 0.0410233i
\(530\) −7.11877 + 9.49119i −0.309220 + 0.412271i
\(531\) 0 0
\(532\) −0.154837 0.295468i −0.00671301 0.0128102i
\(533\) −30.3522 −1.31470
\(534\) 0 0
\(535\) −16.1519 9.32532i −0.698309 0.403169i
\(536\) 14.3343 11.7685i 0.619148 0.508320i
\(537\) 0 0
\(538\) 17.6745 + 41.3798i 0.762000 + 1.78401i
\(539\) −27.0108 + 11.3531i −1.16344 + 0.489014i
\(540\) 0 0
\(541\) 1.78575 1.03100i 0.0767754 0.0443263i −0.461121 0.887337i \(-0.652553\pi\)
0.537896 + 0.843011i \(0.319219\pi\)
\(542\) 13.2423 + 1.59578i 0.568806 + 0.0685445i
\(543\) 0 0
\(544\) 14.8448 21.7155i 0.636466 0.931042i
\(545\) 4.50726 0.193070
\(546\) 0 0
\(547\) 35.7819i 1.52992i −0.644076 0.764962i \(-0.722758\pi\)
0.644076 0.764962i \(-0.277242\pi\)
\(548\) −6.22516 + 25.4542i −0.265926 + 1.08735i
\(549\) 0 0
\(550\) −1.30745 + 10.8497i −0.0557499 + 0.462632i
\(551\) 0.204036 + 0.353401i 0.00869224 + 0.0150554i
\(552\) 0 0
\(553\) −31.0960 + 6.26947i −1.32234 + 0.266605i
\(554\) −14.8348 34.7315i −0.630270 1.47560i
\(555\) 0 0
\(556\) −10.7011 36.6965i −0.453828 1.55628i
\(557\) 11.9748 20.7409i 0.507388 0.878821i −0.492576 0.870270i \(-0.663945\pi\)
0.999963 0.00855174i \(-0.00272214\pi\)
\(558\) 0 0
\(559\) 37.4421i 1.58363i
\(560\) 13.0353 + 13.5393i 0.550843 + 0.572139i
\(561\) 0 0
\(562\) 22.2262 29.6334i 0.937556 1.25001i
\(563\) −22.4987 12.9896i −0.948206 0.547447i −0.0556830 0.998448i \(-0.517734\pi\)
−0.892523 + 0.451001i \(0.851067\pi\)
\(564\) 0 0
\(565\) −4.05352 7.02090i −0.170533 0.295371i
\(566\) −6.81671 + 2.91160i −0.286528 + 0.122384i
\(567\) 0 0
\(568\) −13.5174 5.08465i −0.567179 0.213347i
\(569\) −15.4525 + 8.92150i −0.647802 + 0.374009i −0.787614 0.616169i \(-0.788684\pi\)
0.139812 + 0.990178i \(0.455350\pi\)
\(570\) 0 0
\(571\) −15.9523 9.21009i −0.667585 0.385430i 0.127576 0.991829i \(-0.459280\pi\)
−0.795161 + 0.606398i \(0.792614\pi\)
\(572\) 30.6112 + 7.48638i 1.27992 + 0.313021i
\(573\) 0 0
\(574\) −24.8545 + 17.0997i −1.03741 + 0.713726i
\(575\) 8.64157i 0.360378i
\(576\) 0 0
\(577\) −17.5485 10.1317i −0.730556 0.421786i 0.0880698 0.996114i \(-0.471930\pi\)
−0.818625 + 0.574328i \(0.805263\pi\)
\(578\) 0.782163 6.49066i 0.0325337 0.269976i
\(579\) 0 0
\(580\) −16.6103 15.8968i −0.689703 0.660079i
\(581\) −19.1825 6.45602i −0.795825 0.267841i
\(582\) 0 0
\(583\) 9.88642 + 17.1238i 0.409454 + 0.709195i
\(584\) −3.26465 + 2.68027i −0.135092 + 0.110910i
\(585\) 0 0
\(586\) 7.03822 9.38380i 0.290746 0.387641i
\(587\) 3.63501i 0.150033i −0.997182 0.0750164i \(-0.976099\pi\)
0.997182 0.0750164i \(-0.0239009\pi\)
\(588\) 0 0
\(589\) 0.483999i 0.0199428i
\(590\) 15.1545 + 11.3664i 0.623899 + 0.467949i
\(591\) 0 0
\(592\) −6.21603 + 11.9483i −0.255477 + 0.491073i
\(593\) 10.4731 + 18.1399i 0.430078 + 0.744918i 0.996880 0.0789370i \(-0.0251526\pi\)
−0.566801 + 0.823855i \(0.691819\pi\)
\(594\) 0 0
\(595\) 20.7074 + 6.96922i 0.848920 + 0.285710i
\(596\) −6.06808 + 6.34042i −0.248558 + 0.259714i
\(597\) 0 0
\(598\) −24.7406 2.98138i −1.01172 0.121918i
\(599\) 1.58346 + 0.914209i 0.0646983 + 0.0373536i 0.532000 0.846744i \(-0.321441\pi\)
−0.467302 + 0.884098i \(0.654774\pi\)
\(600\) 0 0
\(601\) 29.7207i 1.21233i −0.795338 0.606166i \(-0.792707\pi\)
0.795338 0.606166i \(-0.207293\pi\)
\(602\) −21.0939 30.6602i −0.859723 1.24961i
\(603\) 0 0
\(604\) 5.33976 + 1.30591i 0.217272 + 0.0531367i
\(605\) −10.0275 5.78937i −0.407675 0.235371i
\(606\) 0 0
\(607\) −5.04013 + 2.90992i −0.204573 + 0.118110i −0.598787 0.800909i \(-0.704350\pi\)
0.394214 + 0.919019i \(0.371017\pi\)
\(608\) 0.154330 + 0.321488i 0.00625890 + 0.0130381i
\(609\) 0 0
\(610\) 14.2671 + 33.4024i 0.577657 + 1.35242i
\(611\) −1.27534 2.20896i −0.0515949 0.0893650i
\(612\) 0 0
\(613\) 6.81649 + 3.93550i 0.275316 + 0.158954i 0.631301 0.775538i \(-0.282521\pi\)
−0.355985 + 0.934492i \(0.615855\pi\)
\(614\) 20.2368 + 15.1784i 0.816692 + 0.612551i
\(615\) 0 0
\(616\) 29.2842 11.1152i 1.17990 0.447845i
\(617\) 8.93676i 0.359781i −0.983687 0.179890i \(-0.942426\pi\)
0.983687 0.179890i \(-0.0575743\pi\)
\(618\) 0 0
\(619\) 3.80163 6.58462i 0.152801 0.264658i −0.779455 0.626458i \(-0.784504\pi\)
0.932256 + 0.361799i \(0.117837\pi\)
\(620\) 7.63407 + 26.1789i 0.306592 + 1.05137i
\(621\) 0 0
\(622\) −0.669768 + 0.286076i −0.0268552 + 0.0114706i
\(623\) −46.5547 + 9.38620i −1.86518 + 0.376050i
\(624\) 0 0
\(625\) 6.18050 + 10.7049i 0.247220 + 0.428197i
\(626\) 32.7447 + 3.94593i 1.30874 + 0.157711i
\(627\) 0 0
\(628\) 2.59987 + 0.635834i 0.103746 + 0.0253725i
\(629\) 15.6573i 0.624296i
\(630\) 0 0
\(631\) 49.9909 1.99010 0.995052 0.0993517i \(-0.0316769\pi\)
0.995052 + 0.0993517i \(0.0316769\pi\)
\(632\) 33.4580 5.53051i 1.33089 0.219992i
\(633\) 0 0
\(634\) 3.55062 29.4643i 0.141013 1.17018i
\(635\) 12.8600 7.42473i 0.510334 0.294641i
\(636\) 0 0
\(637\) −20.9888 15.9326i −0.831606 0.631271i
\(638\) −35.2378 + 15.0510i −1.39508 + 0.595875i
\(639\) 0 0
\(640\) −13.4183 14.9547i −0.530405 0.591135i
\(641\) 34.4319 + 19.8793i 1.35998 + 0.785184i 0.989621 0.143705i \(-0.0459016\pi\)
0.370358 + 0.928889i \(0.379235\pi\)
\(642\) 0 0
\(643\) −28.7989 −1.13572 −0.567858 0.823126i \(-0.692228\pi\)
−0.567858 + 0.823126i \(0.692228\pi\)
\(644\) −21.9389 + 11.4968i −0.864515 + 0.453039i
\(645\) 0 0
\(646\) 0.331645 + 0.248747i 0.0130484 + 0.00978682i
\(647\) 13.1134 22.7130i 0.515540 0.892941i −0.484298 0.874903i \(-0.660925\pi\)
0.999837 0.0180376i \(-0.00574185\pi\)
\(648\) 0 0
\(649\) 27.3413 15.7855i 1.07324 0.619635i
\(650\) −9.03840 + 3.86055i −0.354515 + 0.151423i
\(651\) 0 0
\(652\) −5.52155 5.28438i −0.216240 0.206952i
\(653\) −3.12639 5.41506i −0.122345 0.211908i 0.798347 0.602198i \(-0.205708\pi\)
−0.920692 + 0.390290i \(0.872375\pi\)
\(654\) 0 0
\(655\) 5.59724 9.69470i 0.218702 0.378803i
\(656\) 27.1963 17.3357i 1.06184 0.676845i
\(657\) 0 0
\(658\) −2.28881 1.09035i −0.0892273 0.0425064i
\(659\) 32.2081 1.25465 0.627326 0.778757i \(-0.284150\pi\)
0.627326 + 0.778757i \(0.284150\pi\)
\(660\) 0 0
\(661\) −8.81544 + 15.2688i −0.342881 + 0.593887i −0.984966 0.172746i \(-0.944736\pi\)
0.642085 + 0.766633i \(0.278069\pi\)
\(662\) −13.2367 1.59510i −0.514457 0.0619951i
\(663\) 0 0
\(664\) 20.2519 + 7.61784i 0.785925 + 0.295630i
\(665\) −0.222189 + 0.195879i −0.00861613 + 0.00759586i
\(666\) 0 0
\(667\) 26.2406 15.1500i 1.01604 0.586611i
\(668\) −4.06380 13.9357i −0.157233 0.539186i
\(669\) 0 0
\(670\) −13.1744 9.88136i −0.508973 0.381750i
\(671\) 60.5336 2.33687
\(672\) 0 0
\(673\) −32.0260 −1.23451 −0.617256 0.786762i \(-0.711756\pi\)
−0.617256 + 0.786762i \(0.711756\pi\)
\(674\) −16.7599 12.5706i −0.645569 0.484202i
\(675\) 0 0
\(676\) 0.655605 + 2.24821i 0.0252156 + 0.0864697i
\(677\) 20.5345 11.8556i 0.789205 0.455648i −0.0504774 0.998725i \(-0.516074\pi\)
0.839683 + 0.543077i \(0.182741\pi\)
\(678\) 0 0
\(679\) 10.6467 + 3.58322i 0.408582 + 0.137511i
\(680\) −21.8618 8.22341i −0.838360 0.315353i
\(681\) 0 0
\(682\) 45.1204 + 5.43728i 1.72775 + 0.208204i
\(683\) 9.16325 15.8712i 0.350622 0.607295i −0.635737 0.771906i \(-0.719304\pi\)
0.986359 + 0.164611i \(0.0526369\pi\)
\(684\) 0 0
\(685\) 23.2683 0.889035
\(686\) −26.1631 1.22214i −0.998911 0.0466615i
\(687\) 0 0
\(688\) 21.3851 + 33.5490i 0.815299 + 1.27904i
\(689\) −8.89145 + 15.4004i −0.338737 + 0.586710i
\(690\) 0 0
\(691\) 20.3501 + 35.2473i 0.774153 + 1.34087i 0.935269 + 0.353937i \(0.115157\pi\)
−0.161116 + 0.986935i \(0.551509\pi\)
\(692\) −1.78713 1.71037i −0.0679365 0.0650184i
\(693\) 0 0
\(694\) −28.5188 + 12.1812i −1.08256 + 0.462391i
\(695\) −29.3946 + 16.9710i −1.11500 + 0.643746i
\(696\) 0 0
\(697\) 18.7464 32.4697i 0.710069 1.22988i
\(698\) 39.5182 + 29.6402i 1.49579 + 1.12190i
\(699\) 0 0
\(700\) −5.22634 + 8.25329i −0.197537 + 0.311945i
\(701\) 12.2653 0.463255 0.231628 0.972805i \(-0.425595\pi\)
0.231628 + 0.972805i \(0.425595\pi\)
\(702\) 0 0
\(703\) −0.183828 0.106133i −0.00693321 0.00400289i
\(704\) −31.7042 + 10.7757i −1.19490 + 0.406123i
\(705\) 0 0
\(706\) 9.65848 4.12540i 0.363502 0.155262i
\(707\) 8.33373 7.34690i 0.313422 0.276309i
\(708\) 0 0
\(709\) 5.83014 3.36604i 0.218956 0.126414i −0.386511 0.922285i \(-0.626320\pi\)
0.605467 + 0.795871i \(0.292987\pi\)
\(710\) −1.53426 + 12.7318i −0.0575798 + 0.477817i
\(711\) 0 0
\(712\) 50.0909 8.27988i 1.87723 0.310302i
\(713\) −35.9376 −1.34587
\(714\) 0 0
\(715\) 27.9824i 1.04648i
\(716\) −34.1998 8.36401i −1.27811 0.312578i
\(717\) 0 0
\(718\) 10.9170 + 1.31556i 0.407419 + 0.0490964i
\(719\) −1.45947 2.52788i −0.0544291 0.0942739i 0.837527 0.546396i \(-0.184001\pi\)
−0.891956 + 0.452122i \(0.850667\pi\)
\(720\) 0 0
\(721\) 6.83160 + 33.8841i 0.254422 + 1.26191i
\(722\) 24.7052 10.5523i 0.919433 0.392715i
\(723\) 0 0
\(724\) 9.22571 + 31.6370i 0.342871 + 1.17578i
\(725\) 5.97521 10.3494i 0.221914 0.384366i
\(726\) 0 0
\(727\) 3.12734i 0.115987i 0.998317 + 0.0579933i \(0.0184702\pi\)
−0.998317 + 0.0579933i \(0.981530\pi\)
\(728\) 21.8258 + 17.8103i 0.808919 + 0.660093i
\(729\) 0 0
\(730\) 3.00048 + 2.25048i 0.111053 + 0.0832941i
\(731\) 40.0541 + 23.1252i 1.48145 + 0.855318i
\(732\) 0 0
\(733\) −3.93077 6.80830i −0.145186 0.251470i 0.784256 0.620437i \(-0.213045\pi\)
−0.929442 + 0.368967i \(0.879712\pi\)
\(734\) −4.48689 10.5048i −0.165614 0.387740i
\(735\) 0 0
\(736\) 23.8710 11.4592i 0.879895 0.422392i
\(737\) −23.7690 + 13.7231i −0.875543 + 0.505495i
\(738\) 0 0
\(739\) 1.01186 + 0.584195i 0.0372217 + 0.0214900i 0.518495 0.855080i \(-0.326492\pi\)
−0.481274 + 0.876570i \(0.659826\pi\)
\(740\) 11.6171 + 2.84111i 0.427052 + 0.104441i
\(741\) 0 0
\(742\) 1.39528 + 17.6202i 0.0512224 + 0.646857i
\(743\) 6.12199i 0.224594i −0.993675 0.112297i \(-0.964179\pi\)
0.993675 0.112297i \(-0.0358208\pi\)
\(744\) 0 0
\(745\) 6.74886 + 3.89645i 0.247259 + 0.142755i
\(746\) 39.1872 + 4.72229i 1.43475 + 0.172895i
\(747\) 0 0
\(748\) −26.9150 + 28.1229i −0.984109 + 1.02828i
\(749\) −27.2377 + 5.49156i −0.995243 + 0.200657i
\(750\) 0 0
\(751\) 20.8430 + 36.1012i 0.760573 + 1.31735i 0.942556 + 0.334049i \(0.108415\pi\)
−0.181983 + 0.983302i \(0.558252\pi\)
\(752\) 2.40439 + 1.25087i 0.0876791 + 0.0456144i
\(753\) 0 0
\(754\) −27.5685 20.6774i −1.00398 0.753028i
\(755\) 4.88120i 0.177645i
\(756\) 0 0
\(757\) 35.8599i 1.30335i 0.758498 + 0.651676i \(0.225934\pi\)
−0.758498 + 0.651676i \(0.774066\pi\)
\(758\) −24.6472 + 32.8612i −0.895227 + 1.19357i
\(759\) 0 0
\(760\) 0.244739 0.200931i 0.00887763 0.00728852i
\(761\) −4.88971 8.46923i −0.177252 0.307009i 0.763686 0.645587i \(-0.223387\pi\)
−0.940938 + 0.338578i \(0.890054\pi\)
\(762\) 0 0
\(763\) 5.03702 4.44056i 0.182352 0.160759i
\(764\) 23.7183 + 22.6996i 0.858099 + 0.821241i
\(765\) 0 0
\(766\) 1.90529 15.8108i 0.0688411 0.571267i
\(767\) 24.5897 + 14.1968i 0.887881 + 0.512619i
\(768\) 0 0
\(769\) 54.2218i 1.95529i 0.210269 + 0.977644i \(0.432566\pi\)
−0.210269 + 0.977644i \(0.567434\pi\)
\(770\) −15.7646 22.9140i −0.568116 0.825762i
\(771\) 0 0
\(772\) −45.7038 11.1775i −1.64491 0.402286i
\(773\) 20.8017 + 12.0099i 0.748185 + 0.431965i 0.825038 0.565078i \(-0.191154\pi\)
−0.0768527 + 0.997042i \(0.524487\pi\)
\(774\) 0 0
\(775\) −12.2750 + 7.08696i −0.440930 + 0.254571i
\(776\) −11.2402 4.22806i −0.403500 0.151778i
\(777\) 0 0
\(778\) 6.54983 2.79761i 0.234823 0.100299i
\(779\) 0.254145 + 0.440193i 0.00910570 + 0.0157715i
\(780\) 0 0
\(781\) 18.5090 + 10.6862i 0.662303 + 0.382381i
\(782\) 18.4698 24.6251i 0.660480 0.880593i
\(783\) 0 0
\(784\) 27.9063 + 2.28818i 0.996655 + 0.0817206i
\(785\) 2.37661i 0.0848247i
\(786\) 0 0
\(787\) −13.5019 + 23.3859i −0.481290 + 0.833619i −0.999769 0.0214714i \(-0.993165\pi\)
0.518479 + 0.855090i \(0.326498\pi\)
\(788\) 0.443848 + 1.52205i 0.0158114 + 0.0542209i
\(789\) 0 0
\(790\) −11.8280 27.6920i −0.420822 0.985238i
\(791\) −11.4470 3.85256i −0.407007 0.136981i
\(792\) 0 0
\(793\) 27.2208 + 47.1477i 0.966637 + 1.67426i
\(794\) 4.69592 38.9684i 0.166652 1.38294i
\(795\) 0 0
\(796\) −6.03058 + 24.6586i −0.213748 + 0.874000i
\(797\) 30.6501i 1.08568i 0.839835 + 0.542841i \(0.182651\pi\)
−0.839835 + 0.542841i \(0.817349\pi\)
\(798\) 0 0
\(799\) 3.15075 0.111466
\(800\) 5.89366 8.62144i 0.208372 0.304814i
\(801\) 0 0
\(802\) 6.00506 + 0.723645i 0.212046 + 0.0255528i
\(803\) 5.41340 3.12543i 0.191035 0.110294i
\(804\) 0 0
\(805\) 14.5443 + 16.4979i 0.512620 + 0.581474i
\(806\) 16.0548 + 37.5879i 0.565507 + 1.32398i
\(807\) 0 0
\(808\) −9.17952 + 7.53638i −0.322934 + 0.265129i
\(809\) −10.5996 6.11967i −0.372661 0.215156i 0.301959 0.953321i \(-0.402359\pi\)
−0.674620 + 0.738165i \(0.735693\pi\)
\(810\) 0 0
\(811\) −51.5601 −1.81052 −0.905260 0.424858i \(-0.860324\pi\)
−0.905260 + 0.424858i \(0.860324\pi\)
\(812\) −34.2241 1.40075i −1.20103 0.0491567i
\(813\) 0 0
\(814\) 11.9593 15.9449i 0.419174 0.558869i
\(815\) −3.39322 + 5.87723i −0.118859 + 0.205870i
\(816\) 0 0
\(817\) −0.543015 + 0.313510i −0.0189977 + 0.0109683i
\(818\) 8.72949 + 20.4377i 0.305219 + 0.714587i
\(819\) 0 0
\(820\) −20.6895 19.8009i −0.722510 0.691476i
\(821\) 22.3477 + 38.7073i 0.779940 + 1.35090i 0.931976 + 0.362520i \(0.118084\pi\)
−0.152036 + 0.988375i \(0.548583\pi\)
\(822\) 0 0
\(823\) 8.91299 15.4378i 0.310687 0.538126i −0.667824 0.744319i \(-0.732774\pi\)
0.978511 + 0.206193i \(0.0661075\pi\)
\(824\) −6.02638 36.4578i −0.209939 1.27007i
\(825\) 0 0
\(826\) 28.1339 2.22783i 0.978903 0.0775160i
\(827\) −44.4781 −1.54665 −0.773327 0.634007i \(-0.781409\pi\)
−0.773327 + 0.634007i \(0.781409\pi\)
\(828\) 0 0
\(829\) 6.86797 11.8957i 0.238534 0.413154i −0.721760 0.692144i \(-0.756666\pi\)
0.960294 + 0.278990i \(0.0899997\pi\)
\(830\) 2.29864 19.0749i 0.0797868 0.662099i
\(831\) 0 0
\(832\) −22.6496 19.8478i −0.785233 0.688099i
\(833\) 30.0073 12.6126i 1.03969 0.437002i
\(834\) 0 0
\(835\) −11.1627 + 6.44481i −0.386303 + 0.223032i
\(836\) −0.147740 0.506634i −0.00510971 0.0175223i
\(837\) 0 0
\(838\) 32.3163 43.0861i 1.11635 1.48839i
\(839\) −18.7998 −0.649040 −0.324520 0.945879i \(-0.605203\pi\)
−0.324520 + 0.945879i \(0.605203\pi\)
\(840\) 0 0
\(841\) 12.9019 0.444892
\(842\) −13.3652 + 17.8194i −0.460597 + 0.614097i
\(843\) 0 0
\(844\) 36.4462 10.6281i 1.25453 0.365836i
\(845\) 1.80086 1.03973i 0.0619516 0.0357678i
\(846\) 0 0
\(847\) −16.9098 + 3.40928i −0.581026 + 0.117144i
\(848\) −0.829034 18.8775i −0.0284691 0.648257i
\(849\) 0 0
\(850\) 1.45250 12.0533i 0.0498202 0.413426i
\(851\) −7.88055 + 13.6495i −0.270142 + 0.467899i
\(852\) 0 0
\(853\) 4.23719 0.145079 0.0725393 0.997366i \(-0.476890\pi\)
0.0725393 + 0.997366i \(0.476890\pi\)
\(854\) 48.8521 + 23.2724i 1.67168 + 0.796364i
\(855\) 0 0
\(856\) 29.3065 4.84429i 1.00168 0.165574i
\(857\) 6.78696 11.7554i 0.231838 0.401556i −0.726511 0.687155i \(-0.758859\pi\)
0.958349 + 0.285599i \(0.0921927\pi\)
\(858\) 0 0
\(859\) −14.8653 25.7475i −0.507198 0.878494i −0.999965 0.00833211i \(-0.997348\pi\)
0.492767 0.870161i \(-0.335986\pi\)
\(860\) 24.4261 25.5223i 0.832922 0.870304i
\(861\) 0 0
\(862\) −4.08528 9.56456i −0.139145 0.325770i
\(863\) 26.7055 15.4184i 0.909066 0.524849i 0.0289352 0.999581i \(-0.490788\pi\)
0.880130 + 0.474732i \(0.157455\pi\)
\(864\) 0 0
\(865\) −1.09827 + 1.90225i −0.0373422 + 0.0646785i
\(866\) 6.84334 9.12397i 0.232546 0.310045i
\(867\) 0 0
\(868\) 34.3229 + 21.7347i 1.16499 + 0.737724i
\(869\) −50.1850 −1.70241
\(870\) 0 0
\(871\) −21.3769 12.3420i −0.724329 0.418191i
\(872\) −5.54822 + 4.55509i −0.187887 + 0.154255i
\(873\) 0 0
\(874\) 0.163919 + 0.383772i 0.00554466 + 0.0129813i
\(875\) 30.4871 + 10.2606i 1.03065 + 0.346873i
\(876\) 0 0
\(877\) 10.0815 5.82055i 0.340428 0.196546i −0.320033 0.947406i \(-0.603694\pi\)
0.660461 + 0.750860i \(0.270361\pi\)
\(878\) −8.14547 0.981578i −0.274896 0.0331266i
\(879\) 0 0
\(880\) 15.9822 + 25.0729i 0.538760 + 0.845208i
\(881\) 23.5879 0.794698 0.397349 0.917668i \(-0.369930\pi\)
0.397349 + 0.917668i \(0.369930\pi\)
\(882\) 0 0
\(883\) 39.4950i 1.32911i −0.747239 0.664556i \(-0.768621\pi\)
0.747239 0.664556i \(-0.231379\pi\)
\(884\) −34.0072 8.31691i −1.14379 0.279728i
\(885\) 0 0
\(886\) 2.64775 21.9720i 0.0889529 0.738162i
\(887\) 27.3283 + 47.3340i 0.917595 + 1.58932i 0.803058 + 0.595901i \(0.203205\pi\)
0.114537 + 0.993419i \(0.463462\pi\)
\(888\) 0 0
\(889\) 7.05664 20.9671i 0.236672 0.703214i
\(890\) −17.7081 41.4585i −0.593576 1.38969i
\(891\) 0 0
\(892\) −16.4484 + 4.79655i −0.550734 + 0.160601i
\(893\) −0.0213575 + 0.0369922i −0.000714700 + 0.00123790i
\(894\) 0 0
\(895\) 31.2628i 1.04500i
\(896\) −29.7288 3.49258i −0.993170 0.116679i
\(897\) 0 0
\(898\) −29.5161 + 39.3527i −0.984964 + 1.31322i
\(899\) −43.0398 24.8490i −1.43546 0.828762i
\(900\) 0 0
\(901\) −10.9832 19.0235i −0.365904 0.633764i
\(902\) −43.8917 + 18.7474i −1.46143 + 0.624219i
\(903\) 0 0
\(904\) 12.0851 + 4.54587i 0.401944 + 0.151193i
\(905\) 25.3419 14.6311i 0.842392 0.486355i
\(906\) 0 0
\(907\) −7.80208 4.50453i −0.259064 0.149571i 0.364844 0.931069i \(-0.381122\pi\)
−0.623907 + 0.781498i \(0.714456\pi\)
\(908\) −6.79583 + 27.7876i −0.225528 + 0.922165i
\(909\) 0 0
\(910\) 10.7579 22.5825i 0.356622 0.748602i
\(911\) 35.3463i 1.17107i 0.810646 + 0.585537i \(0.199116\pi\)
−0.810646 + 0.585537i \(0.800884\pi\)
\(912\) 0 0
\(913\) −27.7302 16.0100i −0.917736 0.529855i
\(914\) 1.82364 15.1332i 0.0603208 0.500563i
\(915\) 0 0
\(916\) 38.7877 40.5285i 1.28158 1.33910i
\(917\) −3.29614 16.3486i −0.108848 0.539878i
\(918\) 0 0
\(919\) −10.9416 18.9514i −0.360931 0.625150i 0.627184 0.778871i \(-0.284208\pi\)
−0.988114 + 0.153721i \(0.950874\pi\)
\(920\) −14.9194 18.1723i −0.491878 0.599122i
\(921\) 0 0
\(922\) 16.5521 22.0683i 0.545115 0.726782i
\(923\) 19.2214i 0.632680i
\(924\) 0 0
\(925\) 6.21623i 0.204388i
\(926\) −30.7839 23.0891i −1.01162 0.758756i
\(927\) 0 0
\(928\) 36.5119 + 2.78171i 1.19856 + 0.0913141i
\(929\) 4.66786 + 8.08497i 0.153148 + 0.265259i 0.932383 0.361472i \(-0.117726\pi\)
−0.779235 + 0.626731i \(0.784392\pi\)
\(930\) 0 0
\(931\) −0.0553236 + 0.437803i −0.00181316 + 0.0143484i
\(932\) −12.5598 12.0203i −0.411411 0.393739i
\(933\) 0 0
\(934\) −47.5424 5.72914i −1.55563 0.187463i
\(935\) 29.9346 + 17.2827i 0.978965 + 0.565206i
\(936\) 0 0
\(937\) 14.0652i 0.459492i −0.973251 0.229746i \(-0.926211\pi\)
0.973251 0.229746i \(-0.0737895\pi\)
\(938\) −24.4580 + 1.93675i −0.798583 + 0.0632371i
\(939\) 0 0
\(940\) 0.571724 2.33773i 0.0186476 0.0762484i
\(941\) 34.5165 + 19.9281i 1.12521 + 0.649638i 0.942725 0.333571i \(-0.108254\pi\)
0.182481 + 0.983209i \(0.441587\pi\)
\(942\) 0 0
\(943\) 32.6850 18.8707i 1.06437 0.614513i
\(944\) −30.1415 + 1.32371i −0.981021 + 0.0430830i
\(945\) 0 0
\(946\) −23.1265 54.1442i −0.751907 1.76038i
\(947\) 10.3155 + 17.8669i 0.335208 + 0.580598i 0.983525 0.180773i \(-0.0578600\pi\)
−0.648317 + 0.761371i \(0.724527\pi\)
\(948\) 0 0
\(949\) 4.86860 + 2.81088i 0.158041 + 0.0912452i
\(950\) 0.131669 + 0.0987571i 0.00427191 + 0.00320410i
\(951\) 0 0
\(952\) −32.5330 + 12.3483i −1.05440 + 0.400211i
\(953\) 36.6133i 1.18602i −0.805194 0.593011i \(-0.797939\pi\)
0.805194 0.593011i \(-0.202061\pi\)
\(954\) 0 0
\(955\) 14.5759 25.2462i 0.471665 0.816948i
\(956\) −23.9770 + 6.99198i −0.775472 + 0.226137i
\(957\) 0 0
\(958\) −1.66700 + 0.712019i −0.0538582 + 0.0230043i
\(959\) 26.0031 22.9240i 0.839684 0.740254i
\(960\) 0 0
\(961\) 13.9724 + 24.2010i 0.450724 + 0.780677i
\(962\) 17.7969 + 2.14463i 0.573794 + 0.0691456i
\(963\) 0 0
\(964\) −11.0232 + 45.0728i −0.355032 + 1.45170i
\(965\) 41.7789i 1.34491i
\(966\) 0 0
\(967\) −10.0693 −0.323808 −0.161904 0.986806i \(-0.551764\pi\)
−0.161904 + 0.986806i \(0.551764\pi\)
\(968\) 18.1942 3.00744i 0.584782 0.0966628i
\(969\) 0 0
\(970\) −1.27579 + 10.5869i −0.0409631 + 0.339926i
\(971\) −2.76132 + 1.59425i −0.0886149 + 0.0511618i −0.543653 0.839310i \(-0.682959\pi\)
0.455038 + 0.890472i \(0.349626\pi\)
\(972\) 0 0
\(973\) −16.1296 + 47.9253i −0.517092 + 1.53642i
\(974\) −29.9940 + 12.8113i −0.961071 + 0.410500i
\(975\) 0 0
\(976\) −51.3189 26.6983i −1.64268 0.854592i
\(977\) 3.60255 + 2.07994i 0.115256 + 0.0665430i 0.556520 0.830834i \(-0.312136\pi\)
−0.441264 + 0.897377i \(0.645470\pi\)
\(978\) 0 0
\(979\) −75.1334 −2.40127
\(980\) −3.91305 24.5529i −0.124998 0.784312i
\(981\) 0 0
\(982\) 38.0992 + 28.5759i 1.21579 + 0.911894i
\(983\) −10.4374 + 18.0782i −0.332902 + 0.576604i −0.983080 0.183179i \(-0.941361\pi\)
0.650177 + 0.759783i \(0.274695\pi\)
\(984\) 0 0
\(985\) 1.21919 0.703903i 0.0388468 0.0224282i
\(986\) 39.1470 16.7208i 1.24669 0.532497i
\(987\) 0 0
\(988\) 0.328165 0.342893i 0.0104403 0.0109089i
\(989\) 23.2786 + 40.3197i 0.740216 + 1.28209i
\(990\) 0 0
\(991\) 6.31063 10.9303i 0.200464 0.347213i −0.748214 0.663457i \(-0.769088\pi\)
0.948678 + 0.316244i \(0.102422\pi\)
\(992\) −35.8539 24.5099i −1.13836 0.778191i
\(993\) 0 0
\(994\) 10.8289 + 15.7398i 0.343470 + 0.499237i
\(995\) 22.5410 0.714597
\(996\) 0 0
\(997\) −9.23934 + 16.0030i −0.292613 + 0.506820i −0.974427 0.224705i \(-0.927858\pi\)
0.681814 + 0.731526i \(0.261191\pi\)
\(998\) 8.35659 + 1.00702i 0.264523 + 0.0318766i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.ch.b.269.24 yes 56
3.2 odd 2 inner 504.2.ch.b.269.5 56
4.3 odd 2 2016.2.cp.b.17.22 56
7.5 odd 6 inner 504.2.ch.b.341.15 yes 56
8.3 odd 2 2016.2.cp.b.17.7 56
8.5 even 2 inner 504.2.ch.b.269.14 yes 56
12.11 even 2 2016.2.cp.b.17.8 56
21.5 even 6 inner 504.2.ch.b.341.14 yes 56
24.5 odd 2 inner 504.2.ch.b.269.15 yes 56
24.11 even 2 2016.2.cp.b.17.21 56
28.19 even 6 2016.2.cp.b.593.21 56
56.5 odd 6 inner 504.2.ch.b.341.5 yes 56
56.19 even 6 2016.2.cp.b.593.8 56
84.47 odd 6 2016.2.cp.b.593.7 56
168.5 even 6 inner 504.2.ch.b.341.24 yes 56
168.131 odd 6 2016.2.cp.b.593.22 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.ch.b.269.5 56 3.2 odd 2 inner
504.2.ch.b.269.14 yes 56 8.5 even 2 inner
504.2.ch.b.269.15 yes 56 24.5 odd 2 inner
504.2.ch.b.269.24 yes 56 1.1 even 1 trivial
504.2.ch.b.341.5 yes 56 56.5 odd 6 inner
504.2.ch.b.341.14 yes 56 21.5 even 6 inner
504.2.ch.b.341.15 yes 56 7.5 odd 6 inner
504.2.ch.b.341.24 yes 56 168.5 even 6 inner
2016.2.cp.b.17.7 56 8.3 odd 2
2016.2.cp.b.17.8 56 12.11 even 2
2016.2.cp.b.17.21 56 24.11 even 2
2016.2.cp.b.17.22 56 4.3 odd 2
2016.2.cp.b.593.7 56 84.47 odd 6
2016.2.cp.b.593.8 56 56.19 even 6
2016.2.cp.b.593.21 56 28.19 even 6
2016.2.cp.b.593.22 56 168.131 odd 6