Properties

Label 504.6.s.f.289.5
Level $504$
Weight $6$
Character 504.289
Analytic conductor $80.833$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,6,Mod(289,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 2]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.289");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 504.s (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(80.8334451857\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 2041 x^{10} - 63452 x^{9} + 3932036 x^{8} - 70117724 x^{7} + 1560078988 x^{6} + \cdots + 472919482810944 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{18}\cdot 3\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 168)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.5
Root \(10.9316 + 18.9342i\) of defining polynomial
Character \(\chi\) \(=\) 504.289
Dual form 504.6.s.f.361.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(30.2849 - 52.4550i) q^{5} +(76.1691 + 104.906i) q^{7} +(-152.194 - 263.607i) q^{11} +600.507 q^{13} +(674.856 + 1168.88i) q^{17} +(-1162.12 + 2012.85i) q^{19} +(-438.629 + 759.727i) q^{23} +(-271.855 - 470.866i) q^{25} +3249.80 q^{29} +(-1804.67 - 3125.78i) q^{31} +(7809.63 - 818.380i) q^{35} +(-3467.78 + 6006.37i) q^{37} +2865.20 q^{41} +2487.91 q^{43} +(-3300.58 + 5716.77i) q^{47} +(-5203.55 + 15981.2i) q^{49} +(12516.5 + 21679.2i) q^{53} -18436.7 q^{55} +(-14446.5 - 25022.1i) q^{59} +(-21953.7 + 38025.0i) q^{61} +(18186.3 - 31499.6i) q^{65} +(-25162.3 - 43582.4i) q^{67} +64705.5 q^{71} +(11306.9 + 19584.1i) q^{73} +(16061.5 - 36044.8i) q^{77} +(12983.3 - 22487.8i) q^{79} -55740.6 q^{83} +81751.9 q^{85} +(39958.5 - 69210.2i) q^{89} +(45740.1 + 62996.8i) q^{91} +(70389.6 + 121918. i) q^{95} +116989. q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 17 q^{5} + 144 q^{7} + 565 q^{11} - 842 q^{13} - 52 q^{17} + 107 q^{19} - 700 q^{23} - 4881 q^{25} - 12958 q^{29} - 3552 q^{31} + 938 q^{35} - 3453 q^{37} + 15148 q^{41} + 38278 q^{43} - 12136 q^{47}+ \cdots + 28934 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 30.2849 52.4550i 0.541753 0.938344i −0.457050 0.889441i \(-0.651094\pi\)
0.998804 0.0489035i \(-0.0155727\pi\)
\(6\) 0 0
\(7\) 76.1691 + 104.906i 0.587535 + 0.809199i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −152.194 263.607i −0.379241 0.656865i 0.611711 0.791081i \(-0.290482\pi\)
−0.990952 + 0.134217i \(0.957148\pi\)
\(12\) 0 0
\(13\) 600.507 0.985507 0.492754 0.870169i \(-0.335990\pi\)
0.492754 + 0.870169i \(0.335990\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 674.856 + 1168.88i 0.566355 + 0.980956i 0.996922 + 0.0783972i \(0.0249802\pi\)
−0.430567 + 0.902559i \(0.641686\pi\)
\(18\) 0 0
\(19\) −1162.12 + 2012.85i −0.738529 + 1.27917i 0.214628 + 0.976696i \(0.431146\pi\)
−0.953157 + 0.302475i \(0.902187\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −438.629 + 759.727i −0.172893 + 0.299460i −0.939430 0.342741i \(-0.888645\pi\)
0.766537 + 0.642200i \(0.221978\pi\)
\(24\) 0 0
\(25\) −271.855 470.866i −0.0869935 0.150677i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 3249.80 0.717565 0.358782 0.933421i \(-0.383192\pi\)
0.358782 + 0.933421i \(0.383192\pi\)
\(30\) 0 0
\(31\) −1804.67 3125.78i −0.337282 0.584190i 0.646639 0.762797i \(-0.276174\pi\)
−0.983920 + 0.178607i \(0.942841\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 7809.63 818.380i 1.07761 0.112924i
\(36\) 0 0
\(37\) −3467.78 + 6006.37i −0.416435 + 0.721287i −0.995578 0.0939393i \(-0.970054\pi\)
0.579143 + 0.815226i \(0.303387\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2865.20 0.266193 0.133096 0.991103i \(-0.457508\pi\)
0.133096 + 0.991103i \(0.457508\pi\)
\(42\) 0 0
\(43\) 2487.91 0.205194 0.102597 0.994723i \(-0.467285\pi\)
0.102597 + 0.994723i \(0.467285\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3300.58 + 5716.77i −0.217944 + 0.377491i −0.954179 0.299235i \(-0.903268\pi\)
0.736235 + 0.676726i \(0.236602\pi\)
\(48\) 0 0
\(49\) −5203.55 + 15981.2i −0.309606 + 0.950865i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12516.5 + 21679.2i 0.612059 + 1.06012i 0.990893 + 0.134653i \(0.0429919\pi\)
−0.378834 + 0.925465i \(0.623675\pi\)
\(54\) 0 0
\(55\) −18436.7 −0.821820
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −14446.5 25022.1i −0.540297 0.935822i −0.998887 0.0471739i \(-0.984979\pi\)
0.458590 0.888648i \(-0.348355\pi\)
\(60\) 0 0
\(61\) −21953.7 + 38025.0i −0.755412 + 1.30841i 0.189758 + 0.981831i \(0.439230\pi\)
−0.945169 + 0.326581i \(0.894104\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 18186.3 31499.6i 0.533902 0.924745i
\(66\) 0 0
\(67\) −25162.3 43582.4i −0.684800 1.18611i −0.973500 0.228689i \(-0.926556\pi\)
0.288699 0.957420i \(-0.406777\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 64705.5 1.52333 0.761667 0.647969i \(-0.224381\pi\)
0.761667 + 0.647969i \(0.224381\pi\)
\(72\) 0 0
\(73\) 11306.9 + 19584.1i 0.248334 + 0.430127i 0.963064 0.269274i \(-0.0867837\pi\)
−0.714730 + 0.699401i \(0.753450\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 16061.5 36044.8i 0.308717 0.692812i
\(78\) 0 0
\(79\) 12983.3 22487.8i 0.234055 0.405395i −0.724943 0.688809i \(-0.758134\pi\)
0.958998 + 0.283414i \(0.0914671\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −55740.6 −0.888129 −0.444065 0.895995i \(-0.646464\pi\)
−0.444065 + 0.895995i \(0.646464\pi\)
\(84\) 0 0
\(85\) 81751.9 1.22730
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 39958.5 69210.2i 0.534730 0.926179i −0.464447 0.885601i \(-0.653747\pi\)
0.999176 0.0405781i \(-0.0129199\pi\)
\(90\) 0 0
\(91\) 45740.1 + 62996.8i 0.579020 + 0.797472i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 70389.6 + 121918.i 0.800202 + 1.38599i
\(96\) 0 0
\(97\) 116989. 1.26246 0.631228 0.775597i \(-0.282551\pi\)
0.631228 + 0.775597i \(0.282551\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −14237.2 24659.6i −0.138874 0.240537i 0.788197 0.615424i \(-0.211015\pi\)
−0.927071 + 0.374886i \(0.877682\pi\)
\(102\) 0 0
\(103\) 41737.4 72291.4i 0.387644 0.671419i −0.604488 0.796614i \(-0.706622\pi\)
0.992132 + 0.125195i \(0.0399558\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −65743.6 + 113871.i −0.555129 + 0.961511i 0.442765 + 0.896638i \(0.353998\pi\)
−0.997894 + 0.0648734i \(0.979336\pi\)
\(108\) 0 0
\(109\) 107070. + 185450.i 0.863179 + 1.49507i 0.868844 + 0.495085i \(0.164863\pi\)
−0.00566575 + 0.999984i \(0.501803\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −94500.0 −0.696203 −0.348101 0.937457i \(-0.613174\pi\)
−0.348101 + 0.937457i \(0.613174\pi\)
\(114\) 0 0
\(115\) 26567.7 + 46016.6i 0.187331 + 0.324466i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −71219.9 + 159829.i −0.461035 + 1.03464i
\(120\) 0 0
\(121\) 34199.6 59235.5i 0.212353 0.367806i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 156348. 0.894991
\(126\) 0 0
\(127\) 214404. 1.17957 0.589784 0.807561i \(-0.299213\pi\)
0.589784 + 0.807561i \(0.299213\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −171480. + 297012.i −0.873042 + 1.51215i −0.0142087 + 0.999899i \(0.504523\pi\)
−0.858834 + 0.512255i \(0.828810\pi\)
\(132\) 0 0
\(133\) −299678. + 31403.6i −1.46902 + 0.153940i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 88485.9 + 153262.i 0.402784 + 0.697643i 0.994061 0.108826i \(-0.0347091\pi\)
−0.591276 + 0.806469i \(0.701376\pi\)
\(138\) 0 0
\(139\) 267589. 1.17471 0.587357 0.809328i \(-0.300169\pi\)
0.587357 + 0.809328i \(0.300169\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −91393.5 158298.i −0.373745 0.647345i
\(144\) 0 0
\(145\) 98419.9 170468.i 0.388743 0.673323i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −29535.6 + 51157.1i −0.108988 + 0.188773i −0.915361 0.402635i \(-0.868094\pi\)
0.806372 + 0.591408i \(0.201428\pi\)
\(150\) 0 0
\(151\) 179646. + 311156.i 0.641173 + 1.11054i 0.985171 + 0.171574i \(0.0548852\pi\)
−0.343998 + 0.938970i \(0.611781\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −218617. −0.730895
\(156\) 0 0
\(157\) 287924. + 498698.i 0.932241 + 1.61469i 0.779481 + 0.626426i \(0.215483\pi\)
0.152760 + 0.988263i \(0.451184\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −113110. + 11852.9i −0.343903 + 0.0360380i
\(162\) 0 0
\(163\) −226635. + 392543.i −0.668125 + 1.15723i 0.310303 + 0.950638i \(0.399569\pi\)
−0.978428 + 0.206588i \(0.933764\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 405992. 1.12649 0.563243 0.826291i \(-0.309553\pi\)
0.563243 + 0.826291i \(0.309553\pi\)
\(168\) 0 0
\(169\) −10684.0 −0.0287751
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 256454. 444191.i 0.651469 1.12838i −0.331298 0.943526i \(-0.607486\pi\)
0.982767 0.184851i \(-0.0591802\pi\)
\(174\) 0 0
\(175\) 28689.8 64384.6i 0.0708161 0.158923i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 140325. + 243050.i 0.327343 + 0.566974i 0.981984 0.188966i \(-0.0605135\pi\)
−0.654641 + 0.755940i \(0.727180\pi\)
\(180\) 0 0
\(181\) 551836. 1.25203 0.626013 0.779813i \(-0.284686\pi\)
0.626013 + 0.779813i \(0.284686\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 210043. + 363805.i 0.451210 + 0.781519i
\(186\) 0 0
\(187\) 205418. 355794.i 0.429570 0.744037i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 410784. 711499.i 0.814762 1.41121i −0.0947374 0.995502i \(-0.530201\pi\)
0.909499 0.415706i \(-0.136466\pi\)
\(192\) 0 0
\(193\) −46835.6 81121.7i −0.0905072 0.156763i 0.817217 0.576329i \(-0.195515\pi\)
−0.907725 + 0.419566i \(0.862182\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −76717.0 −0.140840 −0.0704200 0.997517i \(-0.522434\pi\)
−0.0704200 + 0.997517i \(0.522434\pi\)
\(198\) 0 0
\(199\) 152265. + 263730.i 0.272563 + 0.472093i 0.969517 0.245023i \(-0.0787954\pi\)
−0.696955 + 0.717115i \(0.745462\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 247534. + 340923.i 0.421594 + 0.580653i
\(204\) 0 0
\(205\) 86772.5 150294.i 0.144211 0.249780i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 707471. 1.12032
\(210\) 0 0
\(211\) −391659. −0.605622 −0.302811 0.953051i \(-0.597925\pi\)
−0.302811 + 0.953051i \(0.597925\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 75346.3 130504.i 0.111164 0.192543i
\(216\) 0 0
\(217\) 190453. 427408.i 0.274561 0.616160i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 405256. + 701924.i 0.558147 + 0.966739i
\(222\) 0 0
\(223\) −732879. −0.986893 −0.493447 0.869776i \(-0.664263\pi\)
−0.493447 + 0.869776i \(0.664263\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −425958. 737782.i −0.548659 0.950305i −0.998367 0.0571296i \(-0.981805\pi\)
0.449708 0.893176i \(-0.351528\pi\)
\(228\) 0 0
\(229\) −342010. + 592379.i −0.430973 + 0.746468i −0.996957 0.0779485i \(-0.975163\pi\)
0.565984 + 0.824416i \(0.308496\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 579124. 1.00307e6i 0.698846 1.21044i −0.270021 0.962855i \(-0.587031\pi\)
0.968867 0.247582i \(-0.0796361\pi\)
\(234\) 0 0
\(235\) 199916. + 346264.i 0.236144 + 0.409014i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −638377. −0.722908 −0.361454 0.932390i \(-0.617719\pi\)
−0.361454 + 0.932390i \(0.617719\pi\)
\(240\) 0 0
\(241\) 79265.3 + 137291.i 0.0879104 + 0.152265i 0.906628 0.421932i \(-0.138648\pi\)
−0.818717 + 0.574197i \(0.805314\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 680705. + 756942.i 0.724509 + 0.805651i
\(246\) 0 0
\(247\) −697863. + 1.20873e6i −0.727826 + 1.26063i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −1.62185e6 −1.62490 −0.812451 0.583029i \(-0.801867\pi\)
−0.812451 + 0.583029i \(0.801867\pi\)
\(252\) 0 0
\(253\) 267026. 0.262272
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 389207. 674127.i 0.367577 0.636662i −0.621609 0.783327i \(-0.713521\pi\)
0.989186 + 0.146666i \(0.0468542\pi\)
\(258\) 0 0
\(259\) −894242. + 93708.7i −0.828335 + 0.0868022i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 294945. + 510860.i 0.262937 + 0.455420i 0.967021 0.254696i \(-0.0819755\pi\)
−0.704084 + 0.710117i \(0.748642\pi\)
\(264\) 0 0
\(265\) 1.51625e6 1.32634
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 230565. + 399351.i 0.194273 + 0.336492i 0.946662 0.322228i \(-0.104432\pi\)
−0.752389 + 0.658719i \(0.771098\pi\)
\(270\) 0 0
\(271\) −456680. + 790993.i −0.377736 + 0.654258i −0.990733 0.135827i \(-0.956631\pi\)
0.612996 + 0.790086i \(0.289964\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −82749.2 + 143326.i −0.0659830 + 0.114286i
\(276\) 0 0
\(277\) −1.03563e6 1.79376e6i −0.810969 1.40464i −0.912187 0.409775i \(-0.865607\pi\)
0.101218 0.994864i \(-0.467726\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 493074. 0.372517 0.186259 0.982501i \(-0.440364\pi\)
0.186259 + 0.982501i \(0.440364\pi\)
\(282\) 0 0
\(283\) −264091. 457418.i −0.196014 0.339506i 0.751218 0.660054i \(-0.229466\pi\)
−0.947232 + 0.320547i \(0.896133\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 218240. + 300577.i 0.156397 + 0.215403i
\(288\) 0 0
\(289\) −200933. + 348025.i −0.141516 + 0.245113i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −2.49808e6 −1.69995 −0.849977 0.526821i \(-0.823384\pi\)
−0.849977 + 0.526821i \(0.823384\pi\)
\(294\) 0 0
\(295\) −1.75005e6 −1.17083
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −263400. + 456222.i −0.170387 + 0.295120i
\(300\) 0 0
\(301\) 189502. + 260997.i 0.120559 + 0.166043i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.32973e6 + 2.30317e6i 0.818494 + 1.41767i
\(306\) 0 0
\(307\) 3.02907e6 1.83427 0.917137 0.398573i \(-0.130494\pi\)
0.917137 + 0.398573i \(0.130494\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 278275. + 481986.i 0.163145 + 0.282575i 0.935995 0.352014i \(-0.114503\pi\)
−0.772850 + 0.634589i \(0.781170\pi\)
\(312\) 0 0
\(313\) 1.41584e6 2.45230e6i 0.816868 1.41486i −0.0911102 0.995841i \(-0.529042\pi\)
0.907979 0.419017i \(-0.137625\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.07815e6 1.86741e6i 0.602604 1.04374i −0.389822 0.920890i \(-0.627463\pi\)
0.992425 0.122850i \(-0.0392033\pi\)
\(318\) 0 0
\(319\) −494599. 856670.i −0.272130 0.471343i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −3.13706e6 −1.67308
\(324\) 0 0
\(325\) −163251. 282759.i −0.0857327 0.148493i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −851126. + 89190.5i −0.433515 + 0.0454285i
\(330\) 0 0
\(331\) −532428. + 922193.i −0.267111 + 0.462649i −0.968114 0.250508i \(-0.919402\pi\)
0.701004 + 0.713157i \(0.252736\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.04816e6 −1.48397
\(336\) 0 0
\(337\) −223972. −0.107428 −0.0537141 0.998556i \(-0.517106\pi\)
−0.0537141 + 0.998556i \(0.517106\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −549319. + 951448.i −0.255822 + 0.443097i
\(342\) 0 0
\(343\) −2.07287e6 + 671389.i −0.951343 + 0.308133i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.37069e6 2.37411e6i −0.611106 1.05847i −0.991054 0.133459i \(-0.957391\pi\)
0.379948 0.925008i \(-0.375942\pi\)
\(348\) 0 0
\(349\) 2.12214e6 0.932631 0.466316 0.884618i \(-0.345581\pi\)
0.466316 + 0.884618i \(0.345581\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −2.22077e6 3.84649e6i −0.948566 1.64297i −0.748448 0.663193i \(-0.769201\pi\)
−0.200118 0.979772i \(-0.564133\pi\)
\(354\) 0 0
\(355\) 1.95960e6 3.39413e6i 0.825271 1.42941i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 641834. 1.11169e6i 0.262837 0.455247i −0.704158 0.710044i \(-0.748675\pi\)
0.966995 + 0.254797i \(0.0820085\pi\)
\(360\) 0 0
\(361\) −1.46301e6 2.53400e6i −0.590851 1.02338i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.36971e6 0.538143
\(366\) 0 0
\(367\) −2.49672e6 4.32444e6i −0.967618 1.67596i −0.702410 0.711773i \(-0.747893\pi\)
−0.265208 0.964191i \(-0.585441\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −1.32091e6 + 2.96434e6i −0.498240 + 1.11813i
\(372\) 0 0
\(373\) 242108. 419344.i 0.0901026 0.156062i −0.817452 0.575997i \(-0.804614\pi\)
0.907554 + 0.419935i \(0.137947\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 1.95153e6 0.707165
\(378\) 0 0
\(379\) 4.13495e6 1.47867 0.739336 0.673337i \(-0.235140\pi\)
0.739336 + 0.673337i \(0.235140\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −327620. + 567455.i −0.114123 + 0.197667i −0.917429 0.397900i \(-0.869739\pi\)
0.803306 + 0.595567i \(0.203073\pi\)
\(384\) 0 0
\(385\) −1.40431e6 1.93412e6i −0.482848 0.665016i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 512840. + 888265.i 0.171834 + 0.297624i 0.939061 0.343751i \(-0.111698\pi\)
−0.767227 + 0.641375i \(0.778364\pi\)
\(390\) 0 0
\(391\) −1.18404e6 −0.391675
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −786397. 1.36208e6i −0.253600 0.439248i
\(396\) 0 0
\(397\) −2.38535e6 + 4.13154e6i −0.759583 + 1.31564i 0.183481 + 0.983023i \(0.441263\pi\)
−0.943064 + 0.332612i \(0.892070\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.32830e6 4.03274e6i 0.723067 1.25239i −0.236697 0.971583i \(-0.576065\pi\)
0.959765 0.280806i \(-0.0906017\pi\)
\(402\) 0 0
\(403\) −1.08372e6 1.87705e6i −0.332394 0.575723i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.11110e6 0.631717
\(408\) 0 0
\(409\) 1.27969e6 + 2.21648e6i 0.378265 + 0.655173i 0.990810 0.135262i \(-0.0431876\pi\)
−0.612545 + 0.790435i \(0.709854\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.52459e6 3.42143e6i 0.439823 0.987036i
\(414\) 0 0
\(415\) −1.68810e6 + 2.92387e6i −0.481147 + 0.833371i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 342145. 0.0952083 0.0476042 0.998866i \(-0.484841\pi\)
0.0476042 + 0.998866i \(0.484841\pi\)
\(420\) 0 0
\(421\) −3.61976e6 −0.995348 −0.497674 0.867364i \(-0.665812\pi\)
−0.497674 + 0.867364i \(0.665812\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 366925. 635534.i 0.0985384 0.170674i
\(426\) 0 0
\(427\) −5.66124e6 + 593248.i −1.50260 + 0.157459i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −629229. 1.08986e6i −0.163161 0.282602i 0.772840 0.634601i \(-0.218836\pi\)
−0.936001 + 0.351999i \(0.885502\pi\)
\(432\) 0 0
\(433\) −2.22735e6 −0.570912 −0.285456 0.958392i \(-0.592145\pi\)
−0.285456 + 0.958392i \(0.592145\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.01948e6 1.76579e6i −0.255373 0.442319i
\(438\) 0 0
\(439\) 8124.26 14071.6i 0.00201197 0.00348484i −0.865018 0.501741i \(-0.832693\pi\)
0.867030 + 0.498257i \(0.166026\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.08982e6 + 5.35173e6i −0.748039 + 1.29564i 0.200722 + 0.979648i \(0.435671\pi\)
−0.948761 + 0.315994i \(0.897662\pi\)
\(444\) 0 0
\(445\) −2.42028e6 4.19205e6i −0.579383 1.00352i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −6.39476e6 −1.49695 −0.748477 0.663161i \(-0.769214\pi\)
−0.748477 + 0.663161i \(0.769214\pi\)
\(450\) 0 0
\(451\) −436066. 755289.i −0.100951 0.174853i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.68974e6 491443.i 1.06199 0.111287i
\(456\) 0 0
\(457\) −2.74197e6 + 4.74923e6i −0.614147 + 1.06373i 0.376387 + 0.926463i \(0.377166\pi\)
−0.990534 + 0.137271i \(0.956167\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −317176. −0.0695101 −0.0347551 0.999396i \(-0.511065\pi\)
−0.0347551 + 0.999396i \(0.511065\pi\)
\(462\) 0 0
\(463\) −2.27371e6 −0.492926 −0.246463 0.969152i \(-0.579268\pi\)
−0.246463 + 0.969152i \(0.579268\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −3.99318e6 + 6.91638e6i −0.847279 + 1.46753i 0.0363490 + 0.999339i \(0.488427\pi\)
−0.883628 + 0.468190i \(0.844906\pi\)
\(468\) 0 0
\(469\) 2.65547e6 5.95931e6i 0.557454 1.25102i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −378645. 655833.i −0.0778179 0.134785i
\(474\) 0 0
\(475\) 1.26371e6 0.256989
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −57787.1 100090.i −0.0115078 0.0199321i 0.860214 0.509933i \(-0.170330\pi\)
−0.871722 + 0.490001i \(0.836996\pi\)
\(480\) 0 0
\(481\) −2.08243e6 + 3.60687e6i −0.410400 + 0.710834i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.54301e6 6.13667e6i 0.683940 1.18462i
\(486\) 0 0
\(487\) −2.71618e6 4.70456e6i −0.518962 0.898869i −0.999757 0.0220360i \(-0.992985\pi\)
0.480795 0.876833i \(-0.340348\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 8.62648e6 1.61484 0.807420 0.589977i \(-0.200863\pi\)
0.807420 + 0.589977i \(0.200863\pi\)
\(492\) 0 0
\(493\) 2.19314e6 + 3.79864e6i 0.406396 + 0.703899i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.92855e6 + 6.78799e6i 0.895011 + 1.23268i
\(498\) 0 0
\(499\) 375738. 650798.i 0.0675514 0.117002i −0.830272 0.557359i \(-0.811815\pi\)
0.897823 + 0.440357i \(0.145148\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −3.12863e6 −0.551358 −0.275679 0.961250i \(-0.588903\pi\)
−0.275679 + 0.961250i \(0.588903\pi\)
\(504\) 0 0
\(505\) −1.72469e6 −0.300942
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.21487e6 + 3.83627e6i −0.378926 + 0.656319i −0.990906 0.134554i \(-0.957040\pi\)
0.611980 + 0.790873i \(0.290373\pi\)
\(510\) 0 0
\(511\) −1.19326e6 + 2.67786e6i −0.202153 + 0.453666i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −2.52803e6 4.37868e6i −0.420015 0.727487i
\(516\) 0 0
\(517\) 2.00931e6 0.330614
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 2.33826e6 + 4.04999e6i 0.377397 + 0.653672i 0.990683 0.136190i \(-0.0434857\pi\)
−0.613285 + 0.789861i \(0.710152\pi\)
\(522\) 0 0
\(523\) 741533. 1.28437e6i 0.118543 0.205323i −0.800647 0.599136i \(-0.795511\pi\)
0.919191 + 0.393813i \(0.128844\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.43578e6 4.21890e6i 0.382043 0.661717i
\(528\) 0 0
\(529\) 2.83338e6 + 4.90756e6i 0.440216 + 0.762476i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 1.72058e6 0.262335
\(534\) 0 0
\(535\) 3.98208e6 + 6.89716e6i 0.601486 + 1.04180i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 5.00471e6 1.06054e6i 0.742005 0.157238i
\(540\) 0 0
\(541\) 2.09764e6 3.63323e6i 0.308133 0.533703i −0.669821 0.742523i \(-0.733629\pi\)
0.977954 + 0.208820i \(0.0669624\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1.29704e7 1.87052
\(546\) 0 0
\(547\) 5.83053e6 0.833181 0.416591 0.909094i \(-0.363225\pi\)
0.416591 + 0.909094i \(0.363225\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −3.77666e6 + 6.54137e6i −0.529943 + 0.917888i
\(552\) 0 0
\(553\) 3.34803e6 350844.i 0.465560 0.0487866i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −2.06141e6 3.57047e6i −0.281531 0.487627i 0.690231 0.723589i \(-0.257509\pi\)
−0.971762 + 0.235963i \(0.924176\pi\)
\(558\) 0 0
\(559\) 1.49401e6 0.202220
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −995072. 1.72352e6i −0.132307 0.229163i 0.792258 0.610186i \(-0.208905\pi\)
−0.924566 + 0.381023i \(0.875572\pi\)
\(564\) 0 0
\(565\) −2.86193e6 + 4.95700e6i −0.377170 + 0.653278i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 746894. 1.29366e6i 0.0967115 0.167509i −0.813610 0.581411i \(-0.802501\pi\)
0.910322 + 0.413902i \(0.135834\pi\)
\(570\) 0 0
\(571\) −5.19490e6 8.99783e6i −0.666787 1.15491i −0.978798 0.204830i \(-0.934336\pi\)
0.312011 0.950079i \(-0.398997\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 476973. 0.0601623
\(576\) 0 0
\(577\) 3.30161e6 + 5.71856e6i 0.412844 + 0.715068i 0.995200 0.0978670i \(-0.0312020\pi\)
−0.582355 + 0.812935i \(0.697869\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.24571e6 5.84752e6i −0.521807 0.718673i
\(582\) 0 0
\(583\) 3.80987e6 6.59889e6i 0.464236 0.804080i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1.23858e7 −1.48364 −0.741820 0.670599i \(-0.766037\pi\)
−0.741820 + 0.670599i \(0.766037\pi\)
\(588\) 0 0
\(589\) 8.38898e6 0.996371
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −2.69859e6 + 4.67409e6i −0.315137 + 0.545833i −0.979467 0.201606i \(-0.935384\pi\)
0.664330 + 0.747440i \(0.268717\pi\)
\(594\) 0 0
\(595\) 6.22696e6 + 8.57626e6i 0.721081 + 0.993129i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.00340e6 6.93409e6i −0.455892 0.789628i 0.542847 0.839831i \(-0.317346\pi\)
−0.998739 + 0.0502038i \(0.984013\pi\)
\(600\) 0 0
\(601\) 1.02285e7 1.15511 0.577557 0.816351i \(-0.304006\pi\)
0.577557 + 0.816351i \(0.304006\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −2.07147e6 3.58788e6i −0.230086 0.398520i
\(606\) 0 0
\(607\) −2.66714e6 + 4.61963e6i −0.293816 + 0.508903i −0.974709 0.223479i \(-0.928258\pi\)
0.680893 + 0.732383i \(0.261592\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.98202e6 + 3.43296e6i −0.214786 + 0.372020i
\(612\) 0 0
\(613\) −8.06888e6 1.39757e7i −0.867286 1.50218i −0.864759 0.502186i \(-0.832529\pi\)
−0.00252631 0.999997i \(-0.500804\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.66405e7 −1.75976 −0.879879 0.475197i \(-0.842377\pi\)
−0.879879 + 0.475197i \(0.842377\pi\)
\(618\) 0 0
\(619\) 1.93849e6 + 3.35757e6i 0.203347 + 0.352207i 0.949605 0.313450i \(-0.101485\pi\)
−0.746258 + 0.665657i \(0.768151\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.03042e7 1.07979e6i 1.06364 0.111460i
\(624\) 0 0
\(625\) 5.58455e6 9.67272e6i 0.571858 0.990487i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −9.36101e6 −0.943401
\(630\) 0 0
\(631\) −8.87637e6 −0.887487 −0.443744 0.896154i \(-0.646350\pi\)
−0.443744 + 0.896154i \(0.646350\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.49321e6 1.12466e7i 0.639035 1.10684i
\(636\) 0 0
\(637\) −3.12477e6 + 9.59682e6i −0.305119 + 0.937084i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 7.95914e6 + 1.37856e7i 0.765105 + 1.32520i 0.940191 + 0.340647i \(0.110646\pi\)
−0.175087 + 0.984553i \(0.556021\pi\)
\(642\) 0 0
\(643\) 1.80650e7 1.72310 0.861551 0.507670i \(-0.169493\pi\)
0.861551 + 0.507670i \(0.169493\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 4.82101e6 + 8.35023e6i 0.452769 + 0.784220i 0.998557 0.0537040i \(-0.0171027\pi\)
−0.545787 + 0.837924i \(0.683769\pi\)
\(648\) 0 0
\(649\) −4.39734e6 + 7.61641e6i −0.409806 + 0.709804i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.01681e7 + 1.76117e7i −0.933166 + 1.61629i −0.155293 + 0.987868i \(0.549632\pi\)
−0.777872 + 0.628422i \(0.783701\pi\)
\(654\) 0 0
\(655\) 1.03865e7 + 1.79900e7i 0.945947 + 1.63843i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 8.68194e6 0.778759 0.389380 0.921077i \(-0.372689\pi\)
0.389380 + 0.921077i \(0.372689\pi\)
\(660\) 0 0
\(661\) −4.75543e6 8.23665e6i −0.423337 0.733241i 0.572926 0.819607i \(-0.305808\pi\)
−0.996264 + 0.0863655i \(0.972475\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.42846e6 + 1.66707e7i −0.651395 + 1.46184i
\(666\) 0 0
\(667\) −1.42545e6 + 2.46896e6i −0.124062 + 0.214882i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1.33649e7 1.14593
\(672\) 0 0
\(673\) 7.89064e6 0.671544 0.335772 0.941943i \(-0.391003\pi\)
0.335772 + 0.941943i \(0.391003\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 4.50722e6 7.80674e6i 0.377952 0.654633i −0.612812 0.790229i \(-0.709962\pi\)
0.990764 + 0.135596i \(0.0432949\pi\)
\(678\) 0 0
\(679\) 8.91095e6 + 1.22729e7i 0.741737 + 1.02158i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −529513. 917144.i −0.0434335 0.0752291i 0.843491 0.537143i \(-0.180496\pi\)
−0.886925 + 0.461914i \(0.847163\pi\)
\(684\) 0 0
\(685\) 1.07192e7 0.872839
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.51625e6 + 1.30185e7i 0.603189 + 1.04475i
\(690\) 0 0
\(691\) 6.16510e6 1.06783e7i 0.491185 0.850758i −0.508763 0.860906i \(-0.669897\pi\)
0.999949 + 0.0101487i \(0.00323047\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.10393e6 1.40364e7i 0.636405 1.10229i
\(696\) 0 0
\(697\) 1.93360e6 + 3.34909e6i 0.150760 + 0.261123i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −1.18317e7 −0.909392 −0.454696 0.890647i \(-0.650252\pi\)
−0.454696 + 0.890647i \(0.650252\pi\)
\(702\) 0 0
\(703\) −8.05997e6 1.39603e7i −0.615099 1.06538i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.50250e6 3.37187e6i 0.113049 0.253701i
\(708\) 0 0
\(709\) 1.47513e6 2.55500e6i 0.110209 0.190887i −0.805646 0.592398i \(-0.798181\pi\)
0.915854 + 0.401511i \(0.131515\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.16632e6 0.233255
\(714\) 0 0
\(715\) −1.10714e7 −0.809910
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −4.54286e6 + 7.86847e6i −0.327723 + 0.567634i −0.982060 0.188570i \(-0.939615\pi\)
0.654336 + 0.756204i \(0.272948\pi\)
\(720\) 0 0
\(721\) 1.07629e7 1.12786e6i 0.771065 0.0808008i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −883472. 1.53022e6i −0.0624235 0.108121i
\(726\) 0 0
\(727\) 2.38405e7 1.67293 0.836467 0.548018i \(-0.184617\pi\)
0.836467 + 0.548018i \(0.184617\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.67898e6 + 2.90809e6i 0.116213 + 0.201286i
\(732\) 0 0
\(733\) −1.01233e7 + 1.75340e7i −0.695922 + 1.20537i 0.273947 + 0.961745i \(0.411671\pi\)
−0.969869 + 0.243627i \(0.921663\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −7.65910e6 + 1.32660e7i −0.519408 + 0.899642i
\(738\) 0 0
\(739\) 1.04773e7 + 1.81472e7i 0.705729 + 1.22236i 0.966428 + 0.256938i \(0.0827136\pi\)
−0.260699 + 0.965420i \(0.583953\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.06903e7 1.37497 0.687486 0.726198i \(-0.258714\pi\)
0.687486 + 0.726198i \(0.258714\pi\)
\(744\) 0 0
\(745\) 1.78896e6 + 3.09858e6i 0.118089 + 0.204537i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −1.69534e7 + 1.77657e6i −1.10421 + 0.115712i
\(750\) 0 0
\(751\) 4.50787e6 7.80786e6i 0.291656 0.505164i −0.682545 0.730843i \(-0.739127\pi\)
0.974202 + 0.225680i \(0.0724603\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.17623e7 1.38943
\(756\) 0 0
\(757\) 428276. 0.0271634 0.0135817 0.999908i \(-0.495677\pi\)
0.0135817 + 0.999908i \(0.495677\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.87239e6 3.24308e6i 0.117202 0.203000i −0.801456 0.598054i \(-0.795941\pi\)
0.918658 + 0.395054i \(0.129274\pi\)
\(762\) 0 0
\(763\) −1.12994e7 + 2.53578e7i −0.702661 + 1.57689i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −8.67523e6 1.50259e7i −0.532467 0.922260i
\(768\) 0 0
\(769\) −2.40091e7 −1.46406 −0.732032 0.681270i \(-0.761428\pi\)
−0.732032 + 0.681270i \(0.761428\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −6.65473e6 1.15263e7i −0.400573 0.693813i 0.593222 0.805039i \(-0.297856\pi\)
−0.993795 + 0.111226i \(0.964522\pi\)
\(774\) 0 0
\(775\) −981215. + 1.69951e6i −0.0586827 + 0.101641i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.32972e6 + 5.76724e6i −0.196591 + 0.340506i
\(780\) 0 0
\(781\) −9.84777e6 1.70568e7i −0.577710 1.00062i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 3.48790e7 2.02018
\(786\) 0 0
\(787\) 3.49008e6 + 6.04499e6i 0.200862 + 0.347903i 0.948806 0.315858i \(-0.102292\pi\)
−0.747944 + 0.663761i \(0.768959\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −7.19798e6 9.91362e6i −0.409043 0.563367i
\(792\) 0 0
\(793\) −1.31834e7 + 2.28343e7i −0.744464 + 1.28945i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.91181e7 1.62374 0.811872 0.583836i \(-0.198449\pi\)
0.811872 + 0.583836i \(0.198449\pi\)
\(798\) 0 0
\(799\) −8.90966e6 −0.493735
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.44168e6 5.96116e6i 0.188357 0.326243i
\(804\) 0 0
\(805\) −2.80378e6 + 6.29215e6i −0.152495 + 0.342223i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −8.90045e6 1.54160e7i −0.478124 0.828135i 0.521561 0.853214i \(-0.325350\pi\)
−0.999685 + 0.0250786i \(0.992016\pi\)
\(810\) 0 0
\(811\) −2.86322e6 −0.152863 −0.0764315 0.997075i \(-0.524353\pi\)
−0.0764315 + 0.997075i \(0.524353\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.37272e7 + 2.37763e7i 0.723918 + 1.25386i
\(816\) 0 0
\(817\) −2.89126e6 + 5.00781e6i −0.151542 + 0.262478i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 367651. 636790.i 0.0190361 0.0329715i −0.856350 0.516395i \(-0.827274\pi\)
0.875387 + 0.483424i \(0.160607\pi\)
\(822\) 0 0
\(823\) −2.96647e6 5.13808e6i −0.152665 0.264424i 0.779541 0.626351i \(-0.215452\pi\)
−0.932207 + 0.361927i \(0.882119\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.57974e7 −0.803197 −0.401598 0.915816i \(-0.631545\pi\)
−0.401598 + 0.915816i \(0.631545\pi\)
\(828\) 0 0
\(829\) −1.22213e7 2.11679e7i −0.617634 1.06977i −0.989916 0.141653i \(-0.954758\pi\)
0.372283 0.928119i \(-0.378575\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −2.21918e7 + 4.70265e6i −1.10810 + 0.234817i
\(834\) 0 0
\(835\) 1.22954e7 2.12963e7i 0.610278 1.05703i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 2.17577e7 1.06711 0.533555 0.845766i \(-0.320856\pi\)
0.533555 + 0.845766i \(0.320856\pi\)
\(840\) 0 0
\(841\) −9.94997e6 −0.485101
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −323564. + 560430.i −0.0155890 + 0.0270010i
\(846\) 0 0
\(847\) 8.81911e6 924165.i 0.422392 0.0442630i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −3.04214e6 5.26914e6i −0.143997 0.249411i
\(852\) 0 0
\(853\) −1.45057e7 −0.682600 −0.341300 0.939954i \(-0.610867\pi\)
−0.341300 + 0.939954i \(0.610867\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −1.08316e7 1.87609e7i −0.503779 0.872571i −0.999990 0.00436899i \(-0.998609\pi\)
0.496212 0.868202i \(-0.334724\pi\)
\(858\) 0 0
\(859\) −6.16479e6 + 1.06777e7i −0.285060 + 0.493738i −0.972624 0.232386i \(-0.925347\pi\)
0.687564 + 0.726124i \(0.258680\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −5.19670e6 + 9.00095e6i −0.237520 + 0.411397i −0.960002 0.279993i \(-0.909668\pi\)
0.722482 + 0.691390i \(0.243001\pi\)
\(864\) 0 0
\(865\) −1.55334e7 2.69046e7i −0.705871 1.22260i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −7.90392e6 −0.355053
\(870\) 0 0
\(871\) −1.51102e7 2.61716e7i −0.674876 1.16892i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.19089e7 + 1.64019e7i 0.525838 + 0.724226i
\(876\) 0 0
\(877\) 1.47654e7 2.55745e7i 0.648256 1.12281i −0.335283 0.942118i \(-0.608832\pi\)
0.983539 0.180695i \(-0.0578348\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.55937e7 0.676875 0.338437 0.940989i \(-0.390102\pi\)
0.338437 + 0.940989i \(0.390102\pi\)
\(882\) 0 0
\(883\) −2.59236e7 −1.11890 −0.559452 0.828863i \(-0.688988\pi\)
−0.559452 + 0.828863i \(0.688988\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.50215e6 1.29941e7i 0.320167 0.554545i −0.660355 0.750953i \(-0.729594\pi\)
0.980522 + 0.196408i \(0.0629277\pi\)
\(888\) 0 0
\(889\) 1.63309e7 + 2.24923e7i 0.693038 + 0.954506i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −7.67135e6 1.32872e7i −0.321917 0.557576i
\(894\) 0 0
\(895\) 1.69989e7 0.709356
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5.86480e6 1.01581e7i −0.242022 0.419194i
\(900\) 0 0
\(901\) −1.68937e7 + 2.92607e7i −0.693286 + 1.20081i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.67123e7 2.89466e7i 0.678289 1.17483i
\(906\) 0 0
\(907\) 4.82185e6 + 8.35169e6i 0.194624 + 0.337098i 0.946777 0.321890i \(-0.104318\pi\)
−0.752153 + 0.658988i \(0.770985\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.37570e7 −1.74683 −0.873417 0.486973i \(-0.838101\pi\)
−0.873417 + 0.486973i \(0.838101\pi\)
\(912\) 0 0
\(913\) 8.48337e6 + 1.46936e7i 0.336815 + 0.583380i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.42198e7 + 4.63385e6i −1.73658 + 0.181978i
\(918\) 0 0
\(919\) 1.73458e7 3.00439e7i 0.677495 1.17346i −0.298238 0.954492i \(-0.596399\pi\)
0.975733 0.218965i \(-0.0702679\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.88561e7 1.50126
\(924\) 0 0
\(925\) 3.77093e6 0.144909
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −7.91456e6 + 1.37084e7i −0.300876 + 0.521132i −0.976335 0.216265i \(-0.930612\pi\)
0.675459 + 0.737398i \(0.263946\pi\)
\(930\) 0 0
\(931\) −2.61207e7 2.90461e7i −0.987665 1.09828i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.24421e7 2.15504e7i −0.465442 0.806169i
\(936\) 0 0
\(937\) 1.64558e7 0.612307 0.306153 0.951982i \(-0.400958\pi\)
0.306153 + 0.951982i \(0.400958\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.24672e6 1.25517e7i −0.266789 0.462091i 0.701242 0.712923i \(-0.252629\pi\)
−0.968031 + 0.250832i \(0.919296\pi\)
\(942\) 0 0
\(943\) −1.25676e6 + 2.17677e6i −0.0460229 + 0.0797139i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 8.07707e6 1.39899e7i 0.292670 0.506920i −0.681770 0.731567i \(-0.738789\pi\)
0.974440 + 0.224647i \(0.0721228\pi\)
\(948\) 0 0
\(949\) 6.78987e6 + 1.17604e7i 0.244735 + 0.423893i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.86700e7 −0.665904 −0.332952 0.942944i \(-0.608045\pi\)
−0.332952 + 0.942944i \(0.608045\pi\)
\(954\) 0 0
\(955\) −2.48812e7 4.30954e7i −0.882800 1.52905i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.33823e6 + 2.09565e7i −0.327882 + 0.735822i
\(960\) 0 0
\(961\) 7.80092e6 1.35116e7i 0.272482 0.471952i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.67366e6 −0.196130
\(966\) 0 0
\(967\) 661254. 0.0227406 0.0113703 0.999935i \(-0.496381\pi\)
0.0113703 + 0.999935i \(0.496381\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −8.67867e6 + 1.50319e7i −0.295396 + 0.511641i −0.975077 0.221867i \(-0.928785\pi\)
0.679681 + 0.733508i \(0.262118\pi\)
\(972\) 0 0
\(973\) 2.03820e7 + 2.80717e7i 0.690185 + 0.950577i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.36720e7 + 2.36807e7i 0.458244 + 0.793702i 0.998868 0.0475625i \(-0.0151453\pi\)
−0.540624 + 0.841264i \(0.681812\pi\)
\(978\) 0 0
\(979\) −2.43258e7 −0.811166
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.19703e6 + 1.24656e7i 0.237558 + 0.411462i 0.960013 0.279956i \(-0.0903198\pi\)
−0.722455 + 0.691418i \(0.756986\pi\)
\(984\) 0 0
\(985\) −2.32337e6 + 4.02420e6i −0.0763006 + 0.132157i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.09127e6 + 1.89014e6i −0.0354766 + 0.0614473i
\(990\) 0 0
\(991\) −6.36599e6 1.10262e7i −0.205912 0.356650i 0.744511 0.667610i \(-0.232683\pi\)
−0.950423 + 0.310960i \(0.899349\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1.84453e7 0.590647
\(996\) 0 0
\(997\) −1.19987e7 2.07823e7i −0.382293 0.662150i 0.609097 0.793096i \(-0.291532\pi\)
−0.991390 + 0.130945i \(0.958199\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.6.s.f.289.5 12
3.2 odd 2 168.6.q.d.121.2 yes 12
7.4 even 3 inner 504.6.s.f.361.5 12
12.11 even 2 336.6.q.n.289.2 12
21.11 odd 6 168.6.q.d.25.2 12
84.11 even 6 336.6.q.n.193.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
168.6.q.d.25.2 12 21.11 odd 6
168.6.q.d.121.2 yes 12 3.2 odd 2
336.6.q.n.193.2 12 84.11 even 6
336.6.q.n.289.2 12 12.11 even 2
504.6.s.f.289.5 12 1.1 even 1 trivial
504.6.s.f.361.5 12 7.4 even 3 inner