Properties

Label 507.2.f.b.239.2
Level 507507
Weight 22
Character 507.239
Analytic conductor 4.0484.048
Analytic rank 00
Dimension 44
CM discriminant -3
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [507,2,Mod(239,507)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(507, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("507.239");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 507=3132 507 = 3 \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 507.f (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.048415382484.04841538248
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(i)\Q(i)
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: U(1)[D4]\mathrm{U}(1)[D_{4}]

Embedding invariants

Embedding label 239.2
Root 0.8660250.500000i0.866025 - 0.500000i of defining polynomial
Character χ\chi == 507.239
Dual form 507.2.f.b.437.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.73205q32.00000iq4+(3.098083.09808i)q7+3.00000q93.46410iq124.00000q16+(2.267952.26795i)q19+(5.366035.36603i)q215.00000iq25+5.19615q27+(6.19615+6.19615i)q28+(0.830127+0.830127i)q316.00000iq36+(8.46410+8.46410i)q37+1.73205iq436.92820q48+12.1962iq49+(3.928203.92820i)q57+8.66025q61+(9.294239.29423i)q63+8.00000iq64+(11.562211.5622i)q67+(7.63397+7.63397i)q738.66025iq75+(4.535904.53590i)q7612.1244q79+9.00000q81+(10.7321+10.7321i)q84+(1.43782+1.43782i)q93+(7.026287.02628i)q97+O(q100)q+1.73205 q^{3} -2.00000i q^{4} +(-3.09808 - 3.09808i) q^{7} +3.00000 q^{9} -3.46410i q^{12} -4.00000 q^{16} +(2.26795 - 2.26795i) q^{19} +(-5.36603 - 5.36603i) q^{21} -5.00000i q^{25} +5.19615 q^{27} +(-6.19615 + 6.19615i) q^{28} +(-0.830127 + 0.830127i) q^{31} -6.00000i q^{36} +(8.46410 + 8.46410i) q^{37} +1.73205i q^{43} -6.92820 q^{48} +12.1962i q^{49} +(3.92820 - 3.92820i) q^{57} +8.66025 q^{61} +(-9.29423 - 9.29423i) q^{63} +8.00000i q^{64} +(11.5622 - 11.5622i) q^{67} +(7.63397 + 7.63397i) q^{73} -8.66025i q^{75} +(-4.53590 - 4.53590i) q^{76} -12.1244 q^{79} +9.00000 q^{81} +(-10.7321 + 10.7321i) q^{84} +(-1.43782 + 1.43782i) q^{93} +(7.02628 - 7.02628i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q2q7+12q916q16+16q1918q214q28+14q31+20q3712q576q63+22q67+34q7332q76+36q8136q8430q9310q97+O(q100) 4 q - 2 q^{7} + 12 q^{9} - 16 q^{16} + 16 q^{19} - 18 q^{21} - 4 q^{28} + 14 q^{31} + 20 q^{37} - 12 q^{57} - 6 q^{63} + 22 q^{67} + 34 q^{73} - 32 q^{76} + 36 q^{81} - 36 q^{84} - 30 q^{93} - 10 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/507Z)×\left(\mathbb{Z}/507\mathbb{Z}\right)^\times.

nn 170170 340340
χ(n)\chi(n) 1-1 e(34)e\left(\frac{3}{4}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
33 1.73205 1.00000
44 2.00000i 1.00000i
55 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
66 0 0
77 −3.09808 3.09808i −1.17096 1.17096i −0.981981 0.188982i 0.939481π-0.939481\pi
−0.188982 0.981981i 0.560519π-0.560519\pi
88 0 0
99 3.00000 1.00000
1010 0 0
1111 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
1212 3.46410i 1.00000i
1313 0 0
1414 0 0
1515 0 0
1616 −4.00000 −1.00000
1717 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
1818 0 0
1919 2.26795 2.26795i 0.520303 0.520303i −0.397360 0.917663i 0.630073π-0.630073\pi
0.917663 + 0.397360i 0.130073π0.130073\pi
2020 0 0
2121 −5.36603 5.36603i −1.17096 1.17096i
2222 0 0
2323 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
2424 0 0
2525 5.00000i 1.00000i
2626 0 0
2727 5.19615 1.00000
2828 −6.19615 + 6.19615i −1.17096 + 1.17096i
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 −0.830127 + 0.830127i −0.149095 + 0.149095i −0.777714 0.628619i 0.783621π-0.783621\pi
0.628619 + 0.777714i 0.283621π0.283621\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 6.00000i 1.00000i
3737 8.46410 + 8.46410i 1.39149 + 1.39149i 0.821995 + 0.569495i 0.192861π0.192861\pi
0.569495 + 0.821995i 0.307139π0.307139\pi
3838 0 0
3939 0 0
4040 0 0
4141 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
4242 0 0
4343 1.73205i 0.264135i 0.991241 + 0.132068i 0.0421616π0.0421616\pi
−0.991241 + 0.132068i 0.957838π0.957838\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4848 −6.92820 −1.00000
4949 12.1962i 1.74231i
5050 0 0
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 3.92820 3.92820i 0.520303 0.520303i
5858 0 0
5959 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
6060 0 0
6161 8.66025 1.10883 0.554416 0.832240i 0.312942π-0.312942\pi
0.554416 + 0.832240i 0.312942π0.312942\pi
6262 0 0
6363 −9.29423 9.29423i −1.17096 1.17096i
6464 8.00000i 1.00000i
6565 0 0
6666 0 0
6767 11.5622 11.5622i 1.41254 1.41254i 0.671932 0.740613i 0.265465π-0.265465\pi
0.740613 0.671932i 0.234535π-0.234535\pi
6868 0 0
6969 0 0
7070 0 0
7171 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7272 0 0
7373 7.63397 + 7.63397i 0.893489 + 0.893489i 0.994850 0.101361i 0.0323196π-0.0323196\pi
−0.101361 + 0.994850i 0.532320π0.532320\pi
7474 0 0
7575 8.66025i 1.00000i
7676 −4.53590 4.53590i −0.520303 0.520303i
7777 0 0
7878 0 0
7979 −12.1244 −1.36410 −0.682048 0.731307i 0.738911π-0.738911\pi
−0.682048 + 0.731307i 0.738911π0.738911\pi
8080 0 0
8181 9.00000 1.00000
8282 0 0
8383 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
8484 −10.7321 + 10.7321i −1.17096 + 1.17096i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
9090 0 0
9191 0 0
9292 0 0
9393 −1.43782 + 1.43782i −0.149095 + 0.149095i
9494 0 0
9595 0 0
9696 0 0
9797 7.02628 7.02628i 0.713411 0.713411i −0.253837 0.967247i 0.581693π-0.581693\pi
0.967247 + 0.253837i 0.0816925π0.0816925\pi
9898 0 0
9999 0 0
100100 −10.0000 −1.00000
101101 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
102102 0 0
103103 15.5885i 1.53598i 0.640464 + 0.767988i 0.278742π0.278742\pi
−0.640464 + 0.767988i 0.721258π0.721258\pi
104104 0 0
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 10.3923i 1.00000i
109109 −13.8301 + 13.8301i −1.32469 + 1.32469i −0.414751 + 0.909935i 0.636131π0.636131\pi
−0.909935 + 0.414751i 0.863869π0.863869\pi
110110 0 0
111111 14.6603 + 14.6603i 1.39149 + 1.39149i
112112 12.3923 + 12.3923i 1.17096 + 1.17096i
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 11.0000i 1.00000i
122122 0 0
123123 0 0
124124 1.66025 + 1.66025i 0.149095 + 0.149095i
125125 0 0
126126 0 0
127127 1.00000i 0.0887357i 0.999015 + 0.0443678i 0.0141274π0.0141274\pi
−0.999015 + 0.0443678i 0.985873π0.985873\pi
128128 0 0
129129 3.00000i 0.264135i
130130 0 0
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 −14.0526 −1.21851
134134 0 0
135135 0 0
136136 0 0
137137 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
138138 0 0
139139 −7.00000 −0.593732 −0.296866 0.954919i 0.595942π-0.595942\pi
−0.296866 + 0.954919i 0.595942π0.595942\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 −12.0000 −1.00000
145145 0 0
146146 0 0
147147 21.1244i 1.74231i
148148 16.9282 16.9282i 1.39149 1.39149i
149149 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
150150 0 0
151151 −10.1244 10.1244i −0.823908 0.823908i 0.162758 0.986666i 0.447961π-0.447961\pi
−0.986666 + 0.162758i 0.947961π0.947961\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −11.0000 −0.877896 −0.438948 0.898513i 0.644649π-0.644649\pi
−0.438948 + 0.898513i 0.644649π0.644649\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 9.90192 + 9.90192i 0.775579 + 0.775579i 0.979076 0.203497i 0.0652307π-0.0652307\pi
−0.203497 + 0.979076i 0.565231π0.565231\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
168168 0 0
169169 0 0
170170 0 0
171171 6.80385 6.80385i 0.520303 0.520303i
172172 3.46410 0.264135
173173 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
174174 0 0
175175 −15.4904 + 15.4904i −1.17096 + 1.17096i
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 6.92820i 0.514969i −0.966282 0.257485i 0.917106π-0.917106\pi
0.966282 0.257485i 0.0828937π-0.0828937\pi
182182 0 0
183183 15.0000 1.10883
184184 0 0
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 −16.0981 16.0981i −1.17096 1.17096i
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 13.8564i 1.00000i
193193 3.70577 + 3.70577i 0.266747 + 0.266747i 0.827788 0.561041i 0.189599π-0.189599\pi
−0.561041 + 0.827788i 0.689599π0.689599\pi
194194 0 0
195195 0 0
196196 24.3923 1.74231
197197 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
198198 0 0
199199 17.0000i 1.20510i −0.798082 0.602549i 0.794152π-0.794152\pi
0.798082 0.602549i 0.205848π-0.205848\pi
200200 0 0
201201 20.0263 20.0263i 1.41254 1.41254i
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 25.9808 1.78859 0.894295 0.447478i 0.147678π-0.147678\pi
0.894295 + 0.447478i 0.147678π0.147678\pi
212212 0 0
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 5.14359 0.349170
218218 0 0
219219 13.2224 + 13.2224i 0.893489 + 0.893489i
220220 0 0
221221 0 0
222222 0 0
223223 −19.1962 + 19.1962i −1.28547 + 1.28547i −0.347960 + 0.937509i 0.613126π0.613126\pi
−0.937509 + 0.347960i 0.886874π0.886874\pi
224224 0 0
225225 15.0000i 1.00000i
226226 0 0
227227 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
228228 −7.85641 7.85641i −0.520303 0.520303i
229229 −0.607695 0.607695i −0.0401576 0.0401576i 0.686743 0.726900i 0.259040π-0.259040\pi
−0.726900 + 0.686743i 0.759040π0.759040\pi
230230 0 0
231231 0 0
232232 0 0
233233 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
234234 0 0
235235 0 0
236236 0 0
237237 −21.0000 −1.36410
238238 0 0
239239 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
240240 0 0
241241 −20.8564 20.8564i −1.34348 1.34348i −0.892570 0.450910i 0.851100π-0.851100\pi
−0.450910 0.892570i 0.648900π-0.648900\pi
242242 0 0
243243 15.5885 1.00000
244244 17.3205i 1.10883i
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
252252 −18.5885 + 18.5885i −1.17096 + 1.17096i
253253 0 0
254254 0 0
255255 0 0
256256 16.0000 1.00000
257257 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
258258 0 0
259259 52.4449i 3.25877i
260260 0 0
261261 0 0
262262 0 0
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −23.1244 23.1244i −1.41254 1.41254i
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 −22.2942 22.2942i −1.35428 1.35428i −0.880812 0.473466i 0.843003π-0.843003\pi
−0.473466 0.880812i 0.656997π-0.656997\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 0 0
277277 20.7846i 1.24883i −0.781094 0.624413i 0.785338π-0.785338\pi
0.781094 0.624413i 0.214662π-0.214662\pi
278278 0 0
279279 −2.49038 + 2.49038i −0.149095 + 0.149095i
280280 0 0
281281 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
282282 0 0
283283 25.0000i 1.48610i −0.669238 0.743048i 0.733379π-0.733379\pi
0.669238 0.743048i 0.266621π-0.266621\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 −17.0000 −1.00000
290290 0 0
291291 12.1699 12.1699i 0.713411 0.713411i
292292 15.2679 15.2679i 0.893489 0.893489i
293293 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 −17.3205 −1.00000
301301 5.36603 5.36603i 0.309293 0.309293i
302302 0 0
303303 0 0
304304 −9.07180 + 9.07180i −0.520303 + 0.520303i
305305 0 0
306306 0 0
307307 −18.3660 18.3660i −1.04820 1.04820i −0.998778 0.0494267i 0.984261π-0.984261\pi
−0.0494267 0.998778i 0.515739π-0.515739\pi
308308 0 0
309309 27.0000i 1.53598i
310310 0 0
311311 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
312312 0 0
313313 32.9090 1.86012 0.930062 0.367402i 0.119753π-0.119753\pi
0.930062 + 0.367402i 0.119753π0.119753\pi
314314 0 0
315315 0 0
316316 24.2487i 1.36410i
317317 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 0 0
324324 18.0000i 1.00000i
325325 0 0
326326 0 0
327327 −23.9545 + 23.9545i −1.32469 + 1.32469i
328328 0 0
329329 0 0
330330 0 0
331331 −5.97372 + 5.97372i −0.328345 + 0.328345i −0.851957 0.523612i 0.824584π-0.824584\pi
0.523612 + 0.851957i 0.324584π0.324584\pi
332332 0 0
333333 25.3923 + 25.3923i 1.39149 + 1.39149i
334334 0 0
335335 0 0
336336 21.4641 + 21.4641i 1.17096 + 1.17096i
337337 29.0000i 1.57973i 0.613280 + 0.789865i 0.289850π0.289850\pi
−0.613280 + 0.789865i 0.710150π0.710150\pi
338338 0 0
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 16.0981 16.0981i 0.869214 0.869214i
344344 0 0
345345 0 0
346346 0 0
347347 0 0 1.00000 00
−1.00000 π\pi
348348 0 0
349349 26.2224 + 26.2224i 1.40365 + 1.40365i 0.788074 + 0.615581i 0.211079π0.211079\pi
0.615581 + 0.788074i 0.288921π0.288921\pi
350350 0 0
351351 0 0
352352 0 0
353353 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
360360 0 0
361361 8.71281i 0.458569i
362362 0 0
363363 19.0526i 1.00000i
364364 0 0
365365 0 0
366366 0 0
367367 31.0000 1.61819 0.809093 0.587680i 0.199959π-0.199959\pi
0.809093 + 0.587680i 0.199959π0.199959\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 2.87564 + 2.87564i 0.149095 + 0.149095i
373373 −36.3731 −1.88333 −0.941663 0.336557i 0.890737π-0.890737\pi
−0.941663 + 0.336557i 0.890737π0.890737\pi
374374 0 0
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 24.5622 24.5622i 1.26167 1.26167i 0.311393 0.950281i 0.399204π-0.399204\pi
0.950281 0.311393i 0.100796π-0.100796\pi
380380 0 0
381381 1.73205i 0.0887357i
382382 0 0
383383 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
384384 0 0
385385 0 0
386386 0 0
387387 5.19615i 0.264135i
388388 −14.0526 14.0526i −0.713411 0.713411i
389389 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
390390 0 0
391391 0 0
392392 0 0
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 19.4186 + 19.4186i 0.974591 + 0.974591i 0.999685 0.0250943i 0.00798860π-0.00798860\pi
−0.0250943 + 0.999685i 0.507989π0.507989\pi
398398 0 0
399399 −24.3397 −1.21851
400400 20.0000i 1.00000i
401401 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −28.4904 + 28.4904i −1.40876 + 1.40876i −0.642333 + 0.766426i 0.722033π0.722033\pi
−0.766426 + 0.642333i 0.777967π0.777967\pi
410410 0 0
411411 0 0
412412 31.1769 1.53598
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 −12.1244 −0.593732
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 8.68653 8.68653i 0.423356 0.423356i −0.463002 0.886357i 0.653228π-0.653228\pi
0.886357 + 0.463002i 0.153228π0.153228\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 −26.8301 26.8301i −1.29840 1.29840i
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
432432 −20.7846 −1.00000
433433 35.0000i 1.68199i 0.541041 + 0.840996i 0.318030π0.318030\pi
−0.541041 + 0.840996i 0.681970π0.681970\pi
434434 0 0
435435 0 0
436436 27.6603 + 27.6603i 1.32469 + 1.32469i
437437 0 0
438438 0 0
439439 39.8372i 1.90132i −0.310228 0.950662i 0.600405π-0.600405\pi
0.310228 0.950662i 0.399595π-0.399595\pi
440440 0 0
441441 36.5885i 1.74231i
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 29.3205 29.3205i 1.39149 1.39149i
445445 0 0
446446 0 0
447447 0 0
448448 24.7846 24.7846i 1.17096 1.17096i
449449 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
450450 0 0
451451 0 0
452452 0 0
453453 −17.5359 17.5359i −0.823908 0.823908i
454454 0 0
455455 0 0
456456 0 0
457457 −14.4378 + 14.4378i −0.675373 + 0.675373i −0.958950 0.283577i 0.908479π-0.908479\pi
0.283577 + 0.958950i 0.408479π0.408479\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
462462 0 0
463463 20.6340 + 20.6340i 0.958942 + 0.958942i 0.999190 0.0402476i 0.0128147π-0.0128147\pi
−0.0402476 + 0.999190i 0.512815π0.512815\pi
464464 0 0
465465 0 0
466466 0 0
467467 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
468468 0 0
469469 −71.6410 −3.30807
470470 0 0
471471 −19.0526 −0.877896
472472 0 0
473473 0 0
474474 0 0
475475 −11.3397 11.3397i −0.520303 0.520303i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 22.0000 1.00000
485485 0 0
486486 0 0
487487 −23.7321 + 23.7321i −1.07540 + 1.07540i −0.0784867 + 0.996915i 0.525009π0.525009\pi
−0.996915 + 0.0784867i 0.974991π0.974991\pi
488488 0 0
489489 17.1506 + 17.1506i 0.775579 + 0.775579i
490490 0 0
491491 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 3.32051 3.32051i 0.149095 0.149095i
497497 0 0
498498 0 0
499499 −31.5885 + 31.5885i −1.41409 + 1.41409i −0.697835 + 0.716258i 0.745853π0.745853\pi
−0.716258 + 0.697835i 0.754147π0.754147\pi
500500 0 0
501501 0 0
502502 0 0
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 2.00000 0.0887357
509509 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
510510 0 0
511511 47.3013i 2.09248i
512512 0 0
513513 11.7846 11.7846i 0.520303 0.520303i
514514 0 0
515515 0 0
516516 6.00000 0.264135
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 −8.00000 −0.349816 −0.174908 0.984585i 0.555963π-0.555963\pi
−0.174908 + 0.984585i 0.555963π0.555963\pi
524524 0 0
525525 −26.8301 + 26.8301i −1.17096 + 1.17096i
526526 0 0
527527 0 0
528528 0 0
529529 −23.0000 −1.00000
530530 0 0
531531 0 0
532532 28.1051i 1.21851i
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 30.1506 + 30.1506i 1.29628 + 1.29628i 0.930834 + 0.365444i 0.119083π0.119083\pi
0.365444 + 0.930834i 0.380917π0.380917\pi
542542 0 0
543543 12.0000i 0.514969i
544544 0 0
545545 0 0
546546 0 0
547547 41.0000 1.75303 0.876517 0.481371i 0.159861π-0.159861\pi
0.876517 + 0.481371i 0.159861π0.159861\pi
548548 0 0
549549 25.9808 1.10883
550550 0 0
551551 0 0
552552 0 0
553553 37.5622 + 37.5622i 1.59731 + 1.59731i
554554 0 0
555555 0 0
556556 14.0000i 0.593732i
557557 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
564564 0 0
565565 0 0
566566 0 0
567567 −27.8827 27.8827i −1.17096 1.17096i
568568 0 0
569569 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
570570 0 0
571571 16.0000i 0.669579i 0.942293 + 0.334790i 0.108665π0.108665\pi
−0.942293 + 0.334790i 0.891335π0.891335\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 24.0000i 1.00000i
577577 29.9282 29.9282i 1.24593 1.24593i 0.288425 0.957503i 0.406868π-0.406868\pi
0.957503 0.288425i 0.0931316π-0.0931316\pi
578578 0 0
579579 6.41858 + 6.41858i 0.266747 + 0.266747i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
588588 42.2487 1.74231
589589 3.76537i 0.155149i
590590 0 0
591591 0 0
592592 −33.8564 33.8564i −1.39149 1.39149i
593593 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
594594 0 0
595595 0 0
596596 0 0
597597 29.4449i 1.20510i
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 −41.5692 −1.69564 −0.847822 0.530281i 0.822086π-0.822086\pi
−0.847822 + 0.530281i 0.822086π0.822086\pi
602602 0 0
603603 34.6865 34.6865i 1.41254 1.41254i
604604 −20.2487 + 20.2487i −0.823908 + 0.823908i
605605 0 0
606606 0 0
607607 −20.0000 −0.811775 −0.405887 0.913923i 0.633038π-0.633038\pi
−0.405887 + 0.913923i 0.633038π0.633038\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 2.04552 2.04552i 0.0826177 0.0826177i −0.664590 0.747208i 0.731394π-0.731394\pi
0.747208 + 0.664590i 0.231394π0.231394\pi
614614 0 0
615615 0 0
616616 0 0
617617 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
618618 0 0
619619 −14.8827 14.8827i −0.598186 0.598186i 0.341644 0.939829i 0.389016π-0.389016\pi
−0.939829 + 0.341644i 0.889016π0.889016\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −25.0000 −1.00000
626626 0 0
627627 0 0
628628 22.0000i 0.877896i
629629 0 0
630630 0 0
631631 −25.6147 25.6147i −1.01971 1.01971i −0.999802 0.0199047i 0.993664π-0.993664\pi
−0.0199047 0.999802i 0.506336π-0.506336\pi
632632 0 0
633633 45.0000 1.78859
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 33.0263 33.0263i 1.30243 1.30243i 0.375680 0.926750i 0.377409π-0.377409\pi
0.926750 0.375680i 0.122591π-0.122591\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
648648 0 0
649649 0 0
650650 0 0
651651 8.90897 0.349170
652652 19.8038 19.8038i 0.775579 0.775579i
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 22.9019 + 22.9019i 0.893489 + 0.893489i
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 16.7058 + 16.7058i 0.649779 + 0.649779i 0.952940 0.303160i 0.0980418π-0.0980418\pi
−0.303160 + 0.952940i 0.598042π0.598042\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 −33.2487 + 33.2487i −1.28547 + 1.28547i
670670 0 0
671671 0 0
672672 0 0
673673 50.2295i 1.93620i 0.250557 + 0.968102i 0.419386π0.419386\pi
−0.250557 + 0.968102i 0.580614π0.580614\pi
674674 0 0
675675 25.9808i 1.00000i
676676 0 0
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 −43.5359 −1.67075
680680 0 0
681681 0 0
682682 0 0
683683 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
684684 −13.6077 13.6077i −0.520303 0.520303i
685685 0 0
686686 0 0
687687 −1.05256 1.05256i −0.0401576 0.0401576i
688688 6.92820i 0.264135i
689689 0 0
690690 0 0
691691 −36.9545 + 36.9545i −1.40581 + 1.40581i −0.625958 + 0.779857i 0.715292π0.715292\pi
−0.779857 + 0.625958i 0.784708π0.784708\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 30.9808 + 30.9808i 1.17096 + 1.17096i
701701 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
702702 0 0
703703 38.3923 1.44799
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −29.0981 29.0981i −1.09280 1.09280i −0.995228 0.0975728i 0.968892π-0.968892\pi
−0.0975728 0.995228i 0.531108π-0.531108\pi
710710 0 0
711711 −36.3731 −1.36410
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 48.2942 48.2942i 1.79857 1.79857i
722722 0 0
723723 −36.1244 36.1244i −1.34348 1.34348i
724724 −13.8564 −0.514969
725725 0 0
726726 0 0
727727 49.0000i 1.81731i −0.417548 0.908655i 0.637111π-0.637111\pi
0.417548 0.908655i 0.362889π-0.362889\pi
728728 0 0
729729 27.0000 1.00000
730730 0 0
731731 0 0
732732 30.0000i 1.10883i
733733 −23.3468 + 23.3468i −0.862333 + 0.862333i −0.991609 0.129275i 0.958735π-0.958735\pi
0.129275 + 0.991609i 0.458735π0.458735\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 17.9808 + 17.9808i 0.661433 + 0.661433i 0.955718 0.294285i 0.0950814π-0.0950814\pi
−0.294285 + 0.955718i 0.595081π0.595081\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 17.3205i 0.632034i −0.948753 0.316017i 0.897654π-0.897654\pi
0.948753 0.316017i 0.102346π-0.102346\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 −32.1962 + 32.1962i −1.17096 + 1.17096i
757757 48.4974 1.76267 0.881334 0.472493i 0.156646π-0.156646\pi
0.881334 + 0.472493i 0.156646π0.156646\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
762762 0 0
763763 85.6936 3.10232
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 27.7128 1.00000
769769 −28.7128 + 28.7128i −1.03541 + 1.03541i −0.0360609 + 0.999350i 0.511481π0.511481\pi
−0.999350 + 0.0360609i 0.988519π0.988519\pi
770770 0 0
771771 0 0
772772 7.41154 7.41154i 0.266747 0.266747i
773773 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
774774 0 0
775775 4.15064 + 4.15064i 0.149095 + 0.149095i
776776 0 0
777777 90.8372i 3.25877i
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 48.7846i 1.74231i
785785 0 0
786786 0 0
787787 −12.6147 12.6147i −0.449667 0.449667i 0.445577 0.895244i 0.352999π-0.352999\pi
−0.895244 + 0.445577i 0.852999π0.852999\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 −34.0000 −1.20510
797797 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
798798 0 0
799799 0 0
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 −40.0526 40.0526i −1.41254 1.41254i
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 −36.3468 + 36.3468i −1.27631 + 1.27631i −0.333590 + 0.942718i 0.608260π0.608260\pi
−0.942718 + 0.333590i 0.891740π0.891740\pi
812812 0 0
813813 −38.6147 38.6147i −1.35428 1.35428i
814814 0 0
815815 0 0
816816 0 0
817817 3.92820 + 3.92820i 0.137430 + 0.137430i
818818 0 0
819819 0 0
820820 0 0
821821 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
822822 0 0
823823 24.2487i 0.845257i 0.906303 + 0.422628i 0.138892π0.138892\pi
−0.906303 + 0.422628i 0.861108π0.861108\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
828828 0 0
829829 53.0000i 1.84077i 0.391018 + 0.920383i 0.372123π0.372123\pi
−0.391018 + 0.920383i 0.627877π0.627877\pi
830830 0 0
831831 36.0000i 1.24883i
832832 0 0
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 −4.31347 + 4.31347i −0.149095 + 0.149095i
838838 0 0
839839 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
840840 0 0
841841 29.0000 1.00000
842842 0 0
843843 0 0
844844 51.9615i 1.78859i
845845 0 0
846846 0 0
847847 34.0788 34.0788i 1.17096 1.17096i
848848 0 0
849849 43.3013i 1.48610i
850850 0 0
851851 0 0
852852 0 0
853853 −40.8827 40.8827i −1.39980 1.39980i −0.800608 0.599189i 0.795490π-0.795490\pi
−0.599189 0.800608i 0.704510π-0.704510\pi
854854 0 0
855855 0 0
856856 0 0
857857 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
858858 0 0
859859 −57.1577 −1.95019 −0.975097 0.221777i 0.928814π-0.928814\pi
−0.975097 + 0.221777i 0.928814π0.928814\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
864864 0 0
865865 0 0
866866 0 0
867867 −29.4449 −1.00000
868868 10.2872i 0.349170i
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 21.0788 21.0788i 0.713411 0.713411i
874874 0 0
875875 0 0
876876 26.4449 26.4449i 0.893489 0.893489i
877877 −7.24871 + 7.24871i −0.244772 + 0.244772i −0.818821 0.574049i 0.805372π-0.805372\pi
0.574049 + 0.818821i 0.305372π0.305372\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
882882 0 0
883883 55.0000i 1.85090i 0.378873 + 0.925449i 0.376312π0.376312\pi
−0.378873 + 0.925449i 0.623688π0.623688\pi
884884 0 0
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 3.09808 3.09808i 0.103906 0.103906i
890890 0 0
891891 0 0
892892 38.3923 + 38.3923i 1.28547 + 1.28547i
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 −30.0000 −1.00000
901901 0 0
902902 0 0
903903 9.29423 9.29423i 0.309293 0.309293i
904904 0 0
905905 0 0
906906 0 0
907907 40.0000i 1.32818i 0.747653 + 0.664089i 0.231180π0.231180\pi
−0.747653 + 0.664089i 0.768820π0.768820\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −15.7128 + 15.7128i −0.520303 + 0.520303i
913913 0 0
914914 0 0
915915 0 0
916916 −1.21539 + 1.21539i −0.0401576 + 0.0401576i
917917 0 0
918918 0 0
919919 31.1769 1.02843 0.514216 0.857661i 0.328083π-0.328083\pi
0.514216 + 0.857661i 0.328083π0.328083\pi
920920 0 0
921921 −31.8109 31.8109i −1.04820 1.04820i
922922 0 0
923923 0 0
924924 0 0
925925 42.3205 42.3205i 1.39149 1.39149i
926926 0 0
927927 46.7654i 1.53598i
928928 0 0
929929 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
930930 0 0
931931 27.6603 + 27.6603i 0.906528 + 0.906528i
932932 0 0
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 55.4256 1.81068 0.905338 0.424691i 0.139617π-0.139617\pi
0.905338 + 0.424691i 0.139617π0.139617\pi
938938 0 0
939939 57.0000 1.86012
940940 0 0
941941 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
948948 42.0000i 1.36410i
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 29.6218i 0.955541i
962962 0 0
963963 0 0
964964 −41.7128 + 41.7128i −1.34348 + 1.34348i
965965 0 0
966966 0 0
967967 39.4449 39.4449i 1.26846 1.26846i 0.321578 0.946883i 0.395787π-0.395787\pi
0.946883 0.321578i 0.104213π-0.104213\pi
968968 0 0
969969 0 0
970970 0 0
971971 0 0 1.00000 00
−1.00000 π\pi
972972 31.1769i 1.00000i
973973 21.6865 + 21.6865i 0.695238 + 0.695238i
974974 0 0
975975 0 0
976976 −34.6410 −1.10883
977977 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
978978 0 0
979979 0 0
980980 0 0
981981 −41.4904 + 41.4904i −1.32469 + 1.32469i
982982 0 0
983983 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 44.0000 1.39771 0.698853 0.715265i 0.253694π-0.253694\pi
0.698853 + 0.715265i 0.253694π0.253694\pi
992992 0 0
993993 −10.3468 + 10.3468i −0.328345 + 0.328345i
994994 0 0
995995 0 0
996996 0 0
997997 −59.0000 −1.86855 −0.934274 0.356555i 0.883951π-0.883951\pi
−0.934274 + 0.356555i 0.883951π0.883951\pi
998998 0 0
999999 43.9808 + 43.9808i 1.39149 + 1.39149i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 507.2.f.b.239.2 4
3.2 odd 2 CM 507.2.f.b.239.2 4
13.2 odd 12 39.2.k.a.20.1 yes 4
13.3 even 3 507.2.k.a.188.1 4
13.4 even 6 39.2.k.a.2.1 4
13.5 odd 4 507.2.f.c.437.2 4
13.6 odd 12 507.2.k.b.89.1 4
13.7 odd 12 507.2.k.a.89.1 4
13.8 odd 4 inner 507.2.f.b.437.2 4
13.9 even 3 507.2.k.c.80.1 4
13.10 even 6 507.2.k.b.188.1 4
13.11 odd 12 507.2.k.c.488.1 4
13.12 even 2 507.2.f.c.239.2 4
39.2 even 12 39.2.k.a.20.1 yes 4
39.5 even 4 507.2.f.c.437.2 4
39.8 even 4 inner 507.2.f.b.437.2 4
39.11 even 12 507.2.k.c.488.1 4
39.17 odd 6 39.2.k.a.2.1 4
39.20 even 12 507.2.k.a.89.1 4
39.23 odd 6 507.2.k.b.188.1 4
39.29 odd 6 507.2.k.a.188.1 4
39.32 even 12 507.2.k.b.89.1 4
39.35 odd 6 507.2.k.c.80.1 4
39.38 odd 2 507.2.f.c.239.2 4
52.15 even 12 624.2.cn.b.449.1 4
52.43 odd 6 624.2.cn.b.353.1 4
65.2 even 12 975.2.bp.d.449.1 4
65.4 even 6 975.2.bo.c.626.1 4
65.17 odd 12 975.2.bp.a.899.1 4
65.28 even 12 975.2.bp.a.449.1 4
65.43 odd 12 975.2.bp.d.899.1 4
65.54 odd 12 975.2.bo.c.176.1 4
156.95 even 6 624.2.cn.b.353.1 4
156.119 odd 12 624.2.cn.b.449.1 4
195.2 odd 12 975.2.bp.d.449.1 4
195.17 even 12 975.2.bp.a.899.1 4
195.119 even 12 975.2.bo.c.176.1 4
195.134 odd 6 975.2.bo.c.626.1 4
195.158 odd 12 975.2.bp.a.449.1 4
195.173 even 12 975.2.bp.d.899.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.a.2.1 4 13.4 even 6
39.2.k.a.2.1 4 39.17 odd 6
39.2.k.a.20.1 yes 4 13.2 odd 12
39.2.k.a.20.1 yes 4 39.2 even 12
507.2.f.b.239.2 4 1.1 even 1 trivial
507.2.f.b.239.2 4 3.2 odd 2 CM
507.2.f.b.437.2 4 13.8 odd 4 inner
507.2.f.b.437.2 4 39.8 even 4 inner
507.2.f.c.239.2 4 13.12 even 2
507.2.f.c.239.2 4 39.38 odd 2
507.2.f.c.437.2 4 13.5 odd 4
507.2.f.c.437.2 4 39.5 even 4
507.2.k.a.89.1 4 13.7 odd 12
507.2.k.a.89.1 4 39.20 even 12
507.2.k.a.188.1 4 13.3 even 3
507.2.k.a.188.1 4 39.29 odd 6
507.2.k.b.89.1 4 13.6 odd 12
507.2.k.b.89.1 4 39.32 even 12
507.2.k.b.188.1 4 13.10 even 6
507.2.k.b.188.1 4 39.23 odd 6
507.2.k.c.80.1 4 13.9 even 3
507.2.k.c.80.1 4 39.35 odd 6
507.2.k.c.488.1 4 13.11 odd 12
507.2.k.c.488.1 4 39.11 even 12
624.2.cn.b.353.1 4 52.43 odd 6
624.2.cn.b.353.1 4 156.95 even 6
624.2.cn.b.449.1 4 52.15 even 12
624.2.cn.b.449.1 4 156.119 odd 12
975.2.bo.c.176.1 4 65.54 odd 12
975.2.bo.c.176.1 4 195.119 even 12
975.2.bo.c.626.1 4 65.4 even 6
975.2.bo.c.626.1 4 195.134 odd 6
975.2.bp.a.449.1 4 65.28 even 12
975.2.bp.a.449.1 4 195.158 odd 12
975.2.bp.a.899.1 4 65.17 odd 12
975.2.bp.a.899.1 4 195.17 even 12
975.2.bp.d.449.1 4 65.2 even 12
975.2.bp.d.449.1 4 195.2 odd 12
975.2.bp.d.899.1 4 65.43 odd 12
975.2.bp.d.899.1 4 195.173 even 12