Properties

Label 975.2.bo.c.176.1
Level $975$
Weight $2$
Character 975.176
Analytic conductor $7.785$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(176,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 0, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.176");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bo (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 176.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.176
Dual form 975.2.bo.c.626.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 - 1.50000i) q^{3} +(1.73205 - 1.00000i) q^{4} +(4.23205 + 1.13397i) q^{7} +(-1.50000 - 2.59808i) q^{9} -3.46410i q^{12} +(-2.59808 - 2.50000i) q^{13} +(2.00000 - 3.46410i) q^{16} +(-0.830127 + 3.09808i) q^{19} +(5.36603 - 5.36603i) q^{21} -5.19615 q^{27} +(8.46410 - 2.26795i) q^{28} +(0.830127 + 0.830127i) q^{31} +(-5.19615 - 3.00000i) q^{36} +(3.09808 + 11.5622i) q^{37} +(-6.00000 + 1.73205i) q^{39} +(1.50000 - 0.866025i) q^{43} +(-3.46410 - 6.00000i) q^{48} +(10.5622 + 6.09808i) q^{49} +(-7.00000 - 1.73205i) q^{52} +(3.92820 + 3.92820i) q^{57} +(-4.33013 - 7.50000i) q^{61} +(-3.40192 - 12.6962i) q^{63} -8.00000i q^{64} +(-15.7942 + 4.23205i) q^{67} +(7.63397 - 7.63397i) q^{73} +(1.66025 + 6.19615i) q^{76} -12.1244 q^{79} +(-4.50000 + 7.79423i) q^{81} +(3.92820 - 14.6603i) q^{84} +(-8.16025 - 13.5263i) q^{91} +(1.96410 - 0.526279i) q^{93} +(2.57180 - 9.59808i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 10 q^{7} - 6 q^{9} + 8 q^{16} + 14 q^{19} + 18 q^{21} + 20 q^{28} - 14 q^{31} + 2 q^{37} - 24 q^{39} + 6 q^{43} + 18 q^{49} - 28 q^{52} - 12 q^{57} - 24 q^{63} - 32 q^{67} + 34 q^{73} - 28 q^{76}+ \cdots + 38 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(3\) 0.866025 1.50000i 0.500000 0.866025i
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) 4.23205 + 1.13397i 1.59956 + 0.428602i 0.944911 0.327327i \(-0.106148\pi\)
0.654654 + 0.755929i \(0.272814\pi\)
\(8\) 0 0
\(9\) −1.50000 2.59808i −0.500000 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 3.46410i 1.00000i
\(13\) −2.59808 2.50000i −0.720577 0.693375i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 0 0
\(19\) −0.830127 + 3.09808i −0.190444 + 0.710747i 0.802955 + 0.596040i \(0.203260\pi\)
−0.993399 + 0.114708i \(0.963407\pi\)
\(20\) 0 0
\(21\) 5.36603 5.36603i 1.17096 1.17096i
\(22\) 0 0
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −5.19615 −1.00000
\(28\) 8.46410 2.26795i 1.59956 0.428602i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0.830127 + 0.830127i 0.149095 + 0.149095i 0.777714 0.628619i \(-0.216379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.19615 3.00000i −0.866025 0.500000i
\(37\) 3.09808 + 11.5622i 0.509321 + 1.90081i 0.427121 + 0.904194i \(0.359528\pi\)
0.0821995 + 0.996616i \(0.473806\pi\)
\(38\) 0 0
\(39\) −6.00000 + 1.73205i −0.960769 + 0.277350i
\(40\) 0 0
\(41\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(42\) 0 0
\(43\) 1.50000 0.866025i 0.228748 0.132068i −0.381246 0.924473i \(-0.624505\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) −3.46410 6.00000i −0.500000 0.866025i
\(49\) 10.5622 + 6.09808i 1.50888 + 0.871154i
\(50\) 0 0
\(51\) 0 0
\(52\) −7.00000 1.73205i −0.970725 0.240192i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 3.92820 + 3.92820i 0.520303 + 0.520303i
\(58\) 0 0
\(59\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(60\) 0 0
\(61\) −4.33013 7.50000i −0.554416 0.960277i −0.997949 0.0640184i \(-0.979608\pi\)
0.443533 0.896258i \(-0.353725\pi\)
\(62\) 0 0
\(63\) −3.40192 12.6962i −0.428602 1.59956i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −15.7942 + 4.23205i −1.92957 + 0.517027i −0.952217 + 0.305424i \(0.901202\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(72\) 0 0
\(73\) 7.63397 7.63397i 0.893489 0.893489i −0.101361 0.994850i \(-0.532320\pi\)
0.994850 + 0.101361i \(0.0323196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.66025 + 6.19615i 0.190444 + 0.710747i
\(77\) 0 0
\(78\) 0 0
\(79\) −12.1244 −1.36410 −0.682048 0.731307i \(-0.738911\pi\)
−0.682048 + 0.731307i \(0.738911\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(84\) 3.92820 14.6603i 0.428602 1.59956i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(90\) 0 0
\(91\) −8.16025 13.5263i −0.855427 1.41794i
\(92\) 0 0
\(93\) 1.96410 0.526279i 0.203668 0.0545726i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 2.57180 9.59808i 0.261126 0.974537i −0.703452 0.710742i \(-0.748359\pi\)
0.964579 0.263795i \(-0.0849741\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 15.5885i 1.53598i 0.640464 + 0.767988i \(0.278742\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −9.00000 + 5.19615i −0.866025 + 0.500000i
\(109\) 13.8301 + 13.8301i 1.32469 + 1.32469i 0.909935 + 0.414751i \(0.136131\pi\)
0.414751 + 0.909935i \(0.363869\pi\)
\(110\) 0 0
\(111\) 20.0263 + 5.36603i 1.90081 + 0.509321i
\(112\) 12.3923 12.3923i 1.17096 1.17096i
\(113\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −2.59808 + 10.5000i −0.240192 + 0.970725i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) 2.26795 + 0.607695i 0.203668 + 0.0545726i
\(125\) 0 0
\(126\) 0 0
\(127\) −0.866025 0.500000i −0.0768473 0.0443678i 0.461084 0.887357i \(-0.347461\pi\)
−0.537931 + 0.842989i \(0.680794\pi\)
\(128\) 0 0
\(129\) 3.00000i 0.264135i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) −7.02628 + 12.1699i −0.609256 + 1.05526i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(138\) 0 0
\(139\) 3.50000 + 6.06218i 0.296866 + 0.514187i 0.975417 0.220366i \(-0.0707252\pi\)
−0.678551 + 0.734553i \(0.737392\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −12.0000 −1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 18.2942 10.5622i 1.50888 0.871154i
\(148\) 16.9282 + 16.9282i 1.39149 + 1.39149i
\(149\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(150\) 0 0
\(151\) 10.1244 10.1244i 0.823908 0.823908i −0.162758 0.986666i \(-0.552039\pi\)
0.986666 + 0.162758i \(0.0520389\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −8.66025 + 9.00000i −0.693375 + 0.720577i
\(157\) 11.0000 0.877896 0.438948 0.898513i \(-0.355351\pi\)
0.438948 + 0.898513i \(0.355351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −13.5263 3.62436i −1.05946 0.283881i −0.313304 0.949653i \(-0.601436\pi\)
−0.746156 + 0.665771i \(0.768103\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 0 0
\(169\) 0.500000 + 12.9904i 0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 9.29423 2.49038i 0.710747 0.190444i
\(172\) 1.73205 3.00000i 0.132068 0.228748i
\(173\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i 0.966282 + 0.257485i \(0.0828937\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) −15.0000 −1.10883
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −21.9904 5.89230i −1.59956 0.428602i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) −12.0000 6.92820i −0.866025 0.500000i
\(193\) 1.35641 + 5.06218i 0.0976363 + 0.364384i 0.997406 0.0719816i \(-0.0229323\pi\)
−0.899770 + 0.436365i \(0.856266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 24.3923 1.74231
\(197\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 14.7224 8.50000i 1.04365 0.602549i 0.122782 0.992434i \(-0.460818\pi\)
0.920864 + 0.389885i \(0.127485\pi\)
\(200\) 0 0
\(201\) −7.33013 + 27.3564i −0.517027 + 1.92957i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) −13.8564 + 4.00000i −0.960769 + 0.277350i
\(209\) 0 0
\(210\) 0 0
\(211\) −12.9904 + 22.5000i −0.894295 + 1.54896i −0.0596196 + 0.998221i \(0.518989\pi\)
−0.834675 + 0.550743i \(0.814345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 2.57180 + 4.45448i 0.174585 + 0.302390i
\(218\) 0 0
\(219\) −4.83975 18.0622i −0.327040 1.22053i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 26.2224 7.02628i 1.75598 0.470514i 0.770097 0.637927i \(-0.220208\pi\)
0.985887 + 0.167412i \(0.0535411\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(228\) 10.7321 + 2.87564i 0.710747 + 0.190444i
\(229\) 0.607695 0.607695i 0.0401576 0.0401576i −0.686743 0.726900i \(-0.740960\pi\)
0.726900 + 0.686743i \(0.240960\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −10.5000 + 18.1865i −0.682048 + 1.18134i
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −28.4904 7.63397i −1.83523 0.491748i −0.836784 0.547533i \(-0.815567\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) 7.79423 + 13.5000i 0.500000 + 0.866025i
\(244\) −15.0000 8.66025i −0.960277 0.554416i
\(245\) 0 0
\(246\) 0 0
\(247\) 9.90192 5.97372i 0.630044 0.380099i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) −18.5885 18.5885i −1.17096 1.17096i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 52.4449i 3.25877i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −23.1244 + 23.1244i −1.41254 + 1.41254i
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) 8.16025 + 30.4545i 0.495700 + 1.84998i 0.526073 + 0.850439i \(0.323664\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0 0
\(273\) −27.3564 + 0.526279i −1.65569 + 0.0318519i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −18.0000 + 10.3923i −1.08152 + 0.624413i −0.931305 0.364241i \(-0.881328\pi\)
−0.150210 + 0.988654i \(0.547995\pi\)
\(278\) 0 0
\(279\) 0.911543 3.40192i 0.0545726 0.203668i
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0 0
\(283\) 21.6506 + 12.5000i 1.28700 + 0.743048i 0.978117 0.208053i \(-0.0667128\pi\)
0.308879 + 0.951101i \(0.400046\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) −12.1699 12.1699i −0.713411 0.713411i
\(292\) 5.58846 20.8564i 0.327040 1.22053i
\(293\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7.33013 1.96410i 0.422501 0.113209i
\(302\) 0 0
\(303\) 0 0
\(304\) 9.07180 + 9.07180i 0.520303 + 0.520303i
\(305\) 0 0
\(306\) 0 0
\(307\) −18.3660 + 18.3660i −1.04820 + 1.04820i −0.0494267 + 0.998778i \(0.515739\pi\)
−0.998778 + 0.0494267i \(0.984261\pi\)
\(308\) 0 0
\(309\) 23.3827 + 13.5000i 1.33019 + 0.767988i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) −32.9090 −1.86012 −0.930062 0.367402i \(-0.880247\pi\)
−0.930062 + 0.367402i \(0.880247\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −21.0000 + 12.1244i −1.18134 + 0.682048i
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 32.7224 8.76795i 1.80955 0.484869i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.18653 8.16025i 0.120183 0.448528i −0.879440 0.476011i \(-0.842082\pi\)
0.999622 + 0.0274825i \(0.00874905\pi\)
\(332\) 0 0
\(333\) 25.3923 25.3923i 1.39149 1.39149i
\(334\) 0 0
\(335\) 0 0
\(336\) −7.85641 29.3205i −0.428602 1.59956i
\(337\) 29.0000i 1.57973i 0.613280 + 0.789865i \(0.289850\pi\)
−0.613280 + 0.789865i \(0.710150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.0981 + 16.0981i 0.869214 + 0.869214i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −9.59808 35.8205i −0.513773 1.91743i −0.374701 0.927146i \(-0.622255\pi\)
−0.139072 0.990282i \(-0.544412\pi\)
\(350\) 0 0
\(351\) 13.5000 + 12.9904i 0.720577 + 0.693375i
\(352\) 0 0
\(353\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) 0 0
\(361\) 7.54552 + 4.35641i 0.397132 + 0.229285i
\(362\) 0 0
\(363\) 19.0526i 1.00000i
\(364\) −27.6603 15.2679i −1.44979 0.800258i
\(365\) 0 0
\(366\) 0 0
\(367\) 15.5000 26.8468i 0.809093 1.40139i −0.104399 0.994535i \(-0.533292\pi\)
0.913493 0.406855i \(-0.133375\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 2.87564 2.87564i 0.149095 0.149095i
\(373\) −18.1865 31.5000i −0.941663 1.63101i −0.762299 0.647225i \(-0.775929\pi\)
−0.179364 0.983783i \(-0.557404\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 33.5526 8.99038i 1.72348 0.461805i 0.744815 0.667271i \(-0.232538\pi\)
0.978664 + 0.205466i \(0.0658711\pi\)
\(380\) 0 0
\(381\) −1.50000 + 0.866025i −0.0768473 + 0.0443678i
\(382\) 0 0
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.50000 2.59808i −0.228748 0.132068i
\(388\) −5.14359 19.1962i −0.261126 0.974537i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −26.5263 7.10770i −1.33132 0.356725i −0.478110 0.878300i \(-0.658678\pi\)
−0.853206 + 0.521575i \(0.825345\pi\)
\(398\) 0 0
\(399\) 12.1699 + 21.0788i 0.609256 + 1.05526i
\(400\) 0 0
\(401\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(402\) 0 0
\(403\) −0.0814157 4.23205i −0.00405561 0.210813i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 10.4282 38.9186i 0.515641 1.92440i 0.173064 0.984911i \(-0.444633\pi\)
0.342578 0.939490i \(-0.388700\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 15.5885 + 27.0000i 0.767988 + 1.33019i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.1244 0.593732
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) −8.68653 8.68653i −0.423356 0.423356i 0.463002 0.886357i \(-0.346772\pi\)
−0.886357 + 0.463002i \(0.846772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −9.82051 36.6506i −0.475248 1.77365i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(432\) −10.3923 + 18.0000i −0.500000 + 0.866025i
\(433\) 30.3109 17.5000i 1.45665 0.840996i 0.457804 0.889053i \(-0.348636\pi\)
0.998845 + 0.0480569i \(0.0153029\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 37.7846 + 10.1244i 1.80955 + 0.484869i
\(437\) 0 0
\(438\) 0 0
\(439\) −34.5000 19.9186i −1.64660 0.950662i −0.978412 0.206666i \(-0.933739\pi\)
−0.668184 0.743996i \(-0.732928\pi\)
\(440\) 0 0
\(441\) 36.5885i 1.74231i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 40.0526 10.7321i 1.90081 0.509321i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 9.07180 33.8564i 0.428602 1.59956i
\(449\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −6.41858 23.9545i −0.301571 1.12548i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 19.7224 5.28461i 0.922576 0.247204i 0.233890 0.972263i \(-0.424854\pi\)
0.688686 + 0.725059i \(0.258188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(462\) 0 0
\(463\) 20.6340 20.6340i 0.958942 0.958942i −0.0402476 0.999190i \(-0.512815\pi\)
0.999190 + 0.0402476i \(0.0128147\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 6.00000 + 20.7846i 0.277350 + 0.960769i
\(469\) −71.6410 −3.30807
\(470\) 0 0
\(471\) 9.52628 16.5000i 0.438948 0.760280i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 0 0
\(481\) 20.8564 37.7846i 0.950970 1.72283i
\(482\) 0 0
\(483\) 0 0
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −8.68653 + 32.4186i −0.393624 + 1.46903i 0.430486 + 0.902597i \(0.358342\pi\)
−0.824110 + 0.566429i \(0.808325\pi\)
\(488\) 0 0
\(489\) −17.1506 + 17.1506i −0.775579 + 0.775579i
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 4.53590 1.21539i 0.203668 0.0545726i
\(497\) 0 0
\(498\) 0 0
\(499\) 31.5885 + 31.5885i 1.41409 + 1.41409i 0.716258 + 0.697835i \(0.245853\pi\)
0.697835 + 0.716258i \(0.254147\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 19.9186 + 10.5000i 0.884615 + 0.466321i
\(508\) −2.00000 −0.0887357
\(509\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(510\) 0 0
\(511\) 40.9641 23.6506i 1.81215 1.04624i
\(512\) 0 0
\(513\) 4.31347 16.0981i 0.190444 0.710747i
\(514\) 0 0
\(515\) 0 0
\(516\) −3.00000 5.19615i −0.132068 0.228748i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −4.00000 + 6.92820i −0.174908 + 0.302949i −0.940129 0.340818i \(-0.889296\pi\)
0.765222 + 0.643767i \(0.222629\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 28.1051i 1.21851i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −30.1506 + 30.1506i −1.29628 + 1.29628i −0.365444 + 0.930834i \(0.619083\pi\)
−0.930834 + 0.365444i \(0.880917\pi\)
\(542\) 0 0
\(543\) 10.3923 + 6.00000i 0.445976 + 0.257485i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −41.0000 −1.75303 −0.876517 0.481371i \(-0.840139\pi\)
−0.876517 + 0.481371i \(0.840139\pi\)
\(548\) 0 0
\(549\) −12.9904 + 22.5000i −0.554416 + 0.960277i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −51.3109 13.7487i −2.18196 0.584655i
\(554\) 0 0
\(555\) 0 0
\(556\) 12.1244 + 7.00000i 0.514187 + 0.296866i
\(557\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) −6.06218 1.50000i −0.256403 0.0634432i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −27.8827 + 27.8827i −1.17096 + 1.17096i
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i −0.942293 0.334790i \(-0.891335\pi\)
0.942293 0.334790i \(-0.108665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −20.7846 + 12.0000i −0.866025 + 0.500000i
\(577\) 29.9282 + 29.9282i 1.24593 + 1.24593i 0.957503 + 0.288425i \(0.0931316\pi\)
0.288425 + 0.957503i \(0.406868\pi\)
\(578\) 0 0
\(579\) 8.76795 + 2.34936i 0.364384 + 0.0976363i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(588\) 21.1244 36.5885i 0.871154 1.50888i
\(589\) −3.26091 + 1.88269i −0.134363 + 0.0775747i
\(590\) 0 0
\(591\) 0 0
\(592\) 46.2487 + 12.3923i 1.90081 + 0.509321i
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.4449i 1.20510i
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 20.7846 36.0000i 0.847822 1.46847i −0.0353259 0.999376i \(-0.511247\pi\)
0.883148 0.469095i \(-0.155420\pi\)
\(602\) 0 0
\(603\) 34.6865 + 34.6865i 1.41254 + 1.41254i
\(604\) 7.41154 27.6603i 0.301571 1.12548i
\(605\) 0 0
\(606\) 0 0
\(607\) −10.0000 17.3205i −0.405887 0.703018i 0.588537 0.808470i \(-0.299704\pi\)
−0.994424 + 0.105453i \(0.966371\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −2.79423 + 0.748711i −0.112858 + 0.0302402i −0.314806 0.949156i \(-0.601939\pi\)
0.201948 + 0.979396i \(0.435273\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(618\) 0 0
\(619\) 14.8827 14.8827i 0.598186 0.598186i −0.341644 0.939829i \(-0.610984\pi\)
0.939829 + 0.341644i \(0.110984\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −6.00000 + 24.2487i −0.240192 + 0.970725i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 19.0526 11.0000i 0.760280 0.438948i
\(629\) 0 0
\(630\) 0 0
\(631\) −34.9904 9.37564i −1.39295 0.373239i −0.517139 0.855901i \(-0.673003\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 22.5000 + 38.9711i 0.894295 + 1.54896i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −12.1962 42.2487i −0.483229 1.67395i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(642\) 0 0
\(643\) 12.0885 45.1147i 0.476722 1.77915i −0.138027 0.990429i \(-0.544076\pi\)
0.614749 0.788723i \(-0.289257\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 8.90897 0.349170
\(652\) −27.0526 + 7.24871i −1.05946 + 0.283881i
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −31.2846 8.38269i −1.22053 0.327040i
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −6.11474 22.8205i −0.237836 0.887615i −0.976850 0.213925i \(-0.931375\pi\)
0.739014 0.673690i \(-0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 12.1699 45.4186i 0.470514 1.75598i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −43.5000 25.1147i −1.67680 0.968102i −0.963679 0.267063i \(-0.913947\pi\)
−0.713123 0.701039i \(-0.752720\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 13.8564 + 22.0000i 0.532939 + 0.846154i
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 21.7679 37.7032i 0.835377 1.44692i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) 13.6077 13.6077i 0.520303 0.520303i
\(685\) 0 0
\(686\) 0 0
\(687\) −0.385263 1.43782i −0.0146987 0.0548563i
\(688\) 6.92820i 0.264135i
\(689\) 0 0
\(690\) 0 0
\(691\) −50.4808 + 13.5263i −1.92038 + 0.514564i −0.932024 + 0.362397i \(0.881959\pi\)
−0.988355 + 0.152167i \(0.951375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) −38.3923 −1.44799
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −39.7487 10.6506i −1.49279 0.399993i −0.582115 0.813107i \(-0.697775\pi\)
−0.910679 + 0.413114i \(0.864441\pi\)
\(710\) 0 0
\(711\) 18.1865 + 31.5000i 0.682048 + 1.18134i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −17.6769 + 65.9711i −0.658323 + 2.45689i
\(722\) 0 0
\(723\) −36.1244 + 36.1244i −1.34348 + 1.34348i
\(724\) 6.92820 + 12.0000i 0.257485 + 0.445976i
\(725\) 0 0
\(726\) 0 0
\(727\) 49.0000i 1.81731i −0.417548 0.908655i \(-0.637111\pi\)
0.417548 0.908655i \(-0.362889\pi\)
\(728\) 0 0
\(729\) 27.0000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −25.9808 + 15.0000i −0.960277 + 0.554416i
\(733\) −23.3468 23.3468i −0.862333 0.862333i 0.129275 0.991609i \(-0.458735\pi\)
−0.991609 + 0.129275i \(0.958735\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −6.58142 24.5622i −0.242101 0.903534i −0.974818 0.223001i \(-0.928415\pi\)
0.732717 0.680534i \(-0.238252\pi\)
\(740\) 0 0
\(741\) −0.385263 20.0263i −0.0141530 0.735684i
\(742\) 0 0
\(743\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.0000 8.66025i −0.547358 0.316017i 0.200698 0.979653i \(-0.435679\pi\)
−0.748056 + 0.663636i \(0.769012\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −43.9808 + 11.7846i −1.59956 + 0.428602i
\(757\) 24.2487 42.0000i 0.881334 1.52652i 0.0314762 0.999505i \(-0.489979\pi\)
0.849858 0.527011i \(-0.176688\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(762\) 0 0
\(763\) 42.8468 + 74.2128i 1.55116 + 2.68668i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −27.7128 −1.00000
\(769\) −39.2224 + 10.5096i −1.41440 + 0.378987i −0.883493 0.468445i \(-0.844814\pi\)
−0.530904 + 0.847432i \(0.678148\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 7.41154 + 7.41154i 0.266747 + 0.266747i
\(773\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 78.6673 + 45.4186i 2.82217 + 1.62938i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 42.2487 24.3923i 1.50888 0.871154i
\(785\) 0 0
\(786\) 0 0
\(787\) 17.2321 + 4.61731i 0.614256 + 0.164589i 0.552515 0.833503i \(-0.313668\pi\)
0.0617409 + 0.998092i \(0.480335\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −7.50000 + 30.3109i −0.266333 + 1.07637i
\(794\) 0 0
\(795\) 0 0
\(796\) 17.0000 29.4449i 0.602549 1.04365i
\(797\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 14.6603 + 54.7128i 0.517027 + 1.92957i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 36.3468 + 36.3468i 1.27631 + 1.27631i 0.942718 + 0.333590i \(0.108260\pi\)
0.333590 + 0.942718i \(0.391740\pi\)
\(812\) 0 0
\(813\) 52.7487 + 14.1340i 1.84998 + 0.495700i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 1.43782 + 5.36603i 0.0503030 + 0.187733i
\(818\) 0 0
\(819\) −22.9019 + 41.4904i −0.800258 + 1.44979i
\(820\) 0 0
\(821\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(822\) 0 0
\(823\) 21.0000 12.1244i 0.732014 0.422628i −0.0871445 0.996196i \(-0.527774\pi\)
0.819159 + 0.573567i \(0.194441\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) 0 0
\(829\) 45.8993 + 26.5000i 1.59415 + 0.920383i 0.992584 + 0.121560i \(0.0387897\pi\)
0.601566 + 0.798823i \(0.294544\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) −20.0000 + 20.7846i −0.693375 + 0.720577i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −4.31347 4.31347i −0.149095 0.149095i
\(838\) 0 0
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) 0 0
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 51.9615i 1.78859i
\(845\) 0 0
\(846\) 0 0
\(847\) −46.5526 + 12.4737i −1.59956 + 0.428602i
\(848\) 0 0
\(849\) 37.5000 21.6506i 1.28700 0.743048i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −40.8827 + 40.8827i −1.39980 + 1.39980i −0.599189 + 0.800608i \(0.704510\pi\)
−0.800608 + 0.599189i \(0.795490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −57.1577 −1.95019 −0.975097 0.221777i \(-0.928814\pi\)
−0.975097 + 0.221777i \(0.928814\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −14.7224 25.5000i −0.500000 0.866025i
\(868\) 8.90897 + 5.14359i 0.302390 + 0.174585i
\(869\) 0 0
\(870\) 0 0
\(871\) 51.6147 + 28.4904i 1.74890 + 0.965360i
\(872\) 0 0
\(873\) −28.7942 + 7.71539i −0.974537 + 0.261126i
\(874\) 0 0
\(875\) 0 0
\(876\) −26.4449 26.4449i −0.893489 0.893489i
\(877\) −2.65321 + 9.90192i −0.0895926 + 0.334364i −0.996144 0.0877308i \(-0.972038\pi\)
0.906552 + 0.422095i \(0.138705\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 0 0
\(883\) 55.0000i 1.85090i 0.378873 + 0.925449i \(0.376312\pi\)
−0.378873 + 0.925449i \(0.623688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) −3.09808 3.09808i −0.103906 0.103906i
\(890\) 0 0
\(891\) 0 0
\(892\) 38.3923 38.3923i 1.28547 1.28547i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 3.40192 12.6962i 0.113209 0.422501i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −34.6410 20.0000i −1.15024 0.664089i −0.201291 0.979531i \(-0.564514\pi\)
−0.948945 + 0.315442i \(0.897847\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 21.4641 5.75129i 0.710747 0.190444i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.444864 1.66025i 0.0146987 0.0548563i
\(917\) 0 0
\(918\) 0 0
\(919\) −15.5885 27.0000i −0.514216 0.890648i −0.999864 0.0164935i \(-0.994750\pi\)
0.485648 0.874154i \(-0.338584\pi\)
\(920\) 0 0
\(921\) 11.6436 + 43.4545i 0.383669 + 1.43187i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 40.5000 23.3827i 1.33019 0.767988i
\(928\) 0 0
\(929\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(930\) 0 0
\(931\) −27.6603 + 27.6603i −0.906528 + 0.906528i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −55.4256 −1.81068 −0.905338 0.424691i \(-0.860383\pi\)
−0.905338 + 0.424691i \(0.860383\pi\)
\(938\) 0 0
\(939\) −28.5000 + 49.3634i −0.930062 + 1.61092i
\(940\) 0 0
\(941\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 42.0000i 1.36410i
\(949\) −38.9186 + 0.748711i −1.26335 + 0.0243042i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29.6218i 0.955541i
\(962\) 0 0
\(963\) 0 0
\(964\) −56.9808 + 15.2679i −1.83523 + 0.491748i
\(965\) 0 0
\(966\) 0 0
\(967\) 39.4449 + 39.4449i 1.26846 + 1.26846i 0.946883 + 0.321578i \(0.104213\pi\)
0.321578 + 0.946883i \(0.395787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) 27.0000 + 15.5885i 0.866025 + 0.500000i
\(973\) 7.93782 + 29.6244i 0.254475 + 0.949713i
\(974\) 0 0
\(975\) 0 0
\(976\) −34.6410 −1.10883
\(977\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 15.1865 56.6769i 0.484869 1.80955i
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 11.1769 20.2487i 0.355585 0.644197i
\(989\) 0 0
\(990\) 0 0
\(991\) −22.0000 + 38.1051i −0.698853 + 1.21045i 0.270011 + 0.962857i \(0.412973\pi\)
−0.968864 + 0.247592i \(0.920361\pi\)
\(992\) 0 0
\(993\) −10.3468 10.3468i −0.328345 0.328345i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −29.5000 51.0955i −0.934274 1.61821i −0.775923 0.630828i \(-0.782715\pi\)
−0.158352 0.987383i \(-0.550618\pi\)
\(998\) 0 0
\(999\) −16.0981 60.0788i −0.509321 1.90081i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bo.c.176.1 4
3.2 odd 2 CM 975.2.bo.c.176.1 4
5.2 odd 4 975.2.bp.a.449.1 4
5.3 odd 4 975.2.bp.d.449.1 4
5.4 even 2 39.2.k.a.20.1 yes 4
13.2 odd 12 inner 975.2.bo.c.626.1 4
15.2 even 4 975.2.bp.a.449.1 4
15.8 even 4 975.2.bp.d.449.1 4
15.14 odd 2 39.2.k.a.20.1 yes 4
20.19 odd 2 624.2.cn.b.449.1 4
39.2 even 12 inner 975.2.bo.c.626.1 4
60.59 even 2 624.2.cn.b.449.1 4
65.2 even 12 975.2.bp.d.899.1 4
65.4 even 6 507.2.f.b.437.2 4
65.9 even 6 507.2.f.c.437.2 4
65.19 odd 12 507.2.f.c.239.2 4
65.24 odd 12 507.2.k.c.80.1 4
65.28 even 12 975.2.bp.a.899.1 4
65.29 even 6 507.2.k.b.89.1 4
65.34 odd 4 507.2.k.a.188.1 4
65.44 odd 4 507.2.k.b.188.1 4
65.49 even 6 507.2.k.a.89.1 4
65.54 odd 12 39.2.k.a.2.1 4
65.59 odd 12 507.2.f.b.239.2 4
65.64 even 2 507.2.k.c.488.1 4
195.2 odd 12 975.2.bp.d.899.1 4
195.29 odd 6 507.2.k.b.89.1 4
195.44 even 4 507.2.k.b.188.1 4
195.59 even 12 507.2.f.b.239.2 4
195.74 odd 6 507.2.f.c.437.2 4
195.89 even 12 507.2.k.c.80.1 4
195.119 even 12 39.2.k.a.2.1 4
195.134 odd 6 507.2.f.b.437.2 4
195.149 even 12 507.2.f.c.239.2 4
195.158 odd 12 975.2.bp.a.899.1 4
195.164 even 4 507.2.k.a.188.1 4
195.179 odd 6 507.2.k.a.89.1 4
195.194 odd 2 507.2.k.c.488.1 4
260.119 even 12 624.2.cn.b.353.1 4
780.119 odd 12 624.2.cn.b.353.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.a.2.1 4 65.54 odd 12
39.2.k.a.2.1 4 195.119 even 12
39.2.k.a.20.1 yes 4 5.4 even 2
39.2.k.a.20.1 yes 4 15.14 odd 2
507.2.f.b.239.2 4 65.59 odd 12
507.2.f.b.239.2 4 195.59 even 12
507.2.f.b.437.2 4 65.4 even 6
507.2.f.b.437.2 4 195.134 odd 6
507.2.f.c.239.2 4 65.19 odd 12
507.2.f.c.239.2 4 195.149 even 12
507.2.f.c.437.2 4 65.9 even 6
507.2.f.c.437.2 4 195.74 odd 6
507.2.k.a.89.1 4 65.49 even 6
507.2.k.a.89.1 4 195.179 odd 6
507.2.k.a.188.1 4 65.34 odd 4
507.2.k.a.188.1 4 195.164 even 4
507.2.k.b.89.1 4 65.29 even 6
507.2.k.b.89.1 4 195.29 odd 6
507.2.k.b.188.1 4 65.44 odd 4
507.2.k.b.188.1 4 195.44 even 4
507.2.k.c.80.1 4 65.24 odd 12
507.2.k.c.80.1 4 195.89 even 12
507.2.k.c.488.1 4 65.64 even 2
507.2.k.c.488.1 4 195.194 odd 2
624.2.cn.b.353.1 4 260.119 even 12
624.2.cn.b.353.1 4 780.119 odd 12
624.2.cn.b.449.1 4 20.19 odd 2
624.2.cn.b.449.1 4 60.59 even 2
975.2.bo.c.176.1 4 1.1 even 1 trivial
975.2.bo.c.176.1 4 3.2 odd 2 CM
975.2.bo.c.626.1 4 13.2 odd 12 inner
975.2.bo.c.626.1 4 39.2 even 12 inner
975.2.bp.a.449.1 4 5.2 odd 4
975.2.bp.a.449.1 4 15.2 even 4
975.2.bp.a.899.1 4 65.28 even 12
975.2.bp.a.899.1 4 195.158 odd 12
975.2.bp.d.449.1 4 5.3 odd 4
975.2.bp.d.449.1 4 15.8 even 4
975.2.bp.d.899.1 4 65.2 even 12
975.2.bp.d.899.1 4 195.2 odd 12