Properties

Label 975.2.bp.a.449.1
Level $975$
Weight $2$
Character 975.449
Analytic conductor $7.785$
Analytic rank $1$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [975,2,Mod(149,975)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(975, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 6, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("975.149");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 975 = 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 975.bp (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.78541419707\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 449.1
Root \(0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 975.449
Dual form 975.2.bp.a.899.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.50000 - 0.866025i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(-1.13397 + 4.23205i) q^{7} +(1.50000 + 2.59808i) q^{9} +3.46410 q^{12} +(-2.50000 + 2.59808i) q^{13} +(2.00000 - 3.46410i) q^{16} +(0.830127 - 3.09808i) q^{19} +(5.36603 - 5.36603i) q^{21} -5.19615i q^{27} +(-2.26795 - 8.46410i) q^{28} +(0.830127 + 0.830127i) q^{31} +(-5.19615 - 3.00000i) q^{36} +(-11.5622 + 3.09808i) q^{37} +(6.00000 - 1.73205i) q^{39} +(-0.866025 - 1.50000i) q^{43} +(-6.00000 + 3.46410i) q^{48} +(-10.5622 - 6.09808i) q^{49} +(1.73205 - 7.00000i) q^{52} +(-3.92820 + 3.92820i) q^{57} +(-4.33013 - 7.50000i) q^{61} +(-12.6962 + 3.40192i) q^{63} +8.00000i q^{64} +(-4.23205 - 15.7942i) q^{67} +(-7.63397 - 7.63397i) q^{73} +(1.66025 + 6.19615i) q^{76} +12.1244 q^{79} +(-4.50000 + 7.79423i) q^{81} +(-3.92820 + 14.6603i) q^{84} +(-8.16025 - 13.5263i) q^{91} +(-0.526279 - 1.96410i) q^{93} +(9.59808 + 2.57180i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{3} - 8 q^{7} + 6 q^{9} - 10 q^{13} + 8 q^{16} - 14 q^{19} + 18 q^{21} - 16 q^{28} - 14 q^{31} - 22 q^{37} + 24 q^{39} - 24 q^{48} - 18 q^{49} + 12 q^{57} - 30 q^{63} - 10 q^{67} - 34 q^{73} - 28 q^{76}+ \cdots + 28 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/975\mathbb{Z}\right)^\times\).

\(n\) \(301\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{11}{12}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(3\) −1.50000 0.866025i −0.866025 0.500000i
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 0 0
\(6\) 0 0
\(7\) −1.13397 + 4.23205i −0.428602 + 1.59956i 0.327327 + 0.944911i \(0.393852\pi\)
−0.755929 + 0.654654i \(0.772814\pi\)
\(8\) 0 0
\(9\) 1.50000 + 2.59808i 0.500000 + 0.866025i
\(10\) 0 0
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 3.46410 1.00000
\(13\) −2.50000 + 2.59808i −0.693375 + 0.720577i
\(14\) 0 0
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0 0
\(19\) 0.830127 3.09808i 0.190444 0.710747i −0.802955 0.596040i \(-0.796740\pi\)
0.993399 0.114708i \(-0.0365932\pi\)
\(20\) 0 0
\(21\) 5.36603 5.36603i 1.17096 1.17096i
\(22\) 0 0
\(23\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.19615i 1.00000i
\(28\) −2.26795 8.46410i −0.428602 1.59956i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0.830127 + 0.830127i 0.149095 + 0.149095i 0.777714 0.628619i \(-0.216379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −5.19615 3.00000i −0.866025 0.500000i
\(37\) −11.5622 + 3.09808i −1.90081 + 0.509321i −0.904194 + 0.427121i \(0.859528\pi\)
−0.996616 + 0.0821995i \(0.973806\pi\)
\(38\) 0 0
\(39\) 6.00000 1.73205i 0.960769 0.277350i
\(40\) 0 0
\(41\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(42\) 0 0
\(43\) −0.866025 1.50000i −0.132068 0.228748i 0.792406 0.609994i \(-0.208828\pi\)
−0.924473 + 0.381246i \(0.875495\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −6.00000 + 3.46410i −0.866025 + 0.500000i
\(49\) −10.5622 6.09808i −1.50888 0.871154i
\(50\) 0 0
\(51\) 0 0
\(52\) 1.73205 7.00000i 0.240192 0.970725i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −3.92820 + 3.92820i −0.520303 + 0.520303i
\(58\) 0 0
\(59\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(60\) 0 0
\(61\) −4.33013 7.50000i −0.554416 0.960277i −0.997949 0.0640184i \(-0.979608\pi\)
0.443533 0.896258i \(-0.353725\pi\)
\(62\) 0 0
\(63\) −12.6962 + 3.40192i −1.59956 + 0.428602i
\(64\) 8.00000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −4.23205 15.7942i −0.517027 1.92957i −0.305424 0.952217i \(-0.598798\pi\)
−0.211604 0.977356i \(-0.567869\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(72\) 0 0
\(73\) −7.63397 7.63397i −0.893489 0.893489i 0.101361 0.994850i \(-0.467680\pi\)
−0.994850 + 0.101361i \(0.967680\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1.66025 + 6.19615i 0.190444 + 0.710747i
\(77\) 0 0
\(78\) 0 0
\(79\) 12.1244 1.36410 0.682048 0.731307i \(-0.261089\pi\)
0.682048 + 0.731307i \(0.261089\pi\)
\(80\) 0 0
\(81\) −4.50000 + 7.79423i −0.500000 + 0.866025i
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) −3.92820 + 14.6603i −0.428602 + 1.59956i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(90\) 0 0
\(91\) −8.16025 13.5263i −0.855427 1.41794i
\(92\) 0 0
\(93\) −0.526279 1.96410i −0.0545726 0.203668i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 9.59808 + 2.57180i 0.974537 + 0.261126i 0.710742 0.703452i \(-0.248359\pi\)
0.263795 + 0.964579i \(0.415026\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(102\) 0 0
\(103\) 15.5885 1.53598 0.767988 0.640464i \(-0.221258\pi\)
0.767988 + 0.640464i \(0.221258\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(108\) 5.19615 + 9.00000i 0.500000 + 0.866025i
\(109\) −13.8301 13.8301i −1.32469 1.32469i −0.909935 0.414751i \(-0.863869\pi\)
−0.414751 0.909935i \(-0.636131\pi\)
\(110\) 0 0
\(111\) 20.0263 + 5.36603i 1.90081 + 0.509321i
\(112\) 12.3923 + 12.3923i 1.17096 + 1.17096i
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −10.5000 2.59808i −0.970725 0.240192i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) −2.26795 0.607695i −0.203668 0.0545726i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.500000 0.866025i 0.0443678 0.0768473i −0.842989 0.537931i \(-0.819206\pi\)
0.887357 + 0.461084i \(0.152539\pi\)
\(128\) 0 0
\(129\) 3.00000i 0.264135i
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 12.1699 + 7.02628i 1.05526 + 0.609256i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(138\) 0 0
\(139\) −3.50000 6.06218i −0.296866 0.514187i 0.678551 0.734553i \(-0.262608\pi\)
−0.975417 + 0.220366i \(0.929275\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 12.0000 1.00000
\(145\) 0 0
\(146\) 0 0
\(147\) 10.5622 + 18.2942i 0.871154 + 1.50888i
\(148\) 16.9282 16.9282i 1.39149 1.39149i
\(149\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(150\) 0 0
\(151\) 10.1244 10.1244i 0.823908 0.823908i −0.162758 0.986666i \(-0.552039\pi\)
0.986666 + 0.162758i \(0.0520389\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −8.66025 + 9.00000i −0.693375 + 0.720577i
\(157\) 11.0000i 0.877896i 0.898513 + 0.438948i \(0.144649\pi\)
−0.898513 + 0.438948i \(0.855351\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.62436 + 13.5263i −0.283881 + 1.05946i 0.665771 + 0.746156i \(0.268103\pi\)
−0.949653 + 0.313304i \(0.898564\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(168\) 0 0
\(169\) −0.500000 12.9904i −0.0384615 0.999260i
\(170\) 0 0
\(171\) 9.29423 2.49038i 0.710747 0.190444i
\(172\) 3.00000 + 1.73205i 0.228748 + 0.132068i
\(173\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 0 0
\(181\) 6.92820i 0.514969i 0.966282 + 0.257485i \(0.0828937\pi\)
−0.966282 + 0.257485i \(0.917106\pi\)
\(182\) 0 0
\(183\) 15.0000i 1.10883i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 21.9904 + 5.89230i 1.59956 + 0.428602i
\(190\) 0 0
\(191\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(192\) 6.92820 12.0000i 0.500000 0.866025i
\(193\) 5.06218 1.35641i 0.364384 0.0976363i −0.0719816 0.997406i \(-0.522932\pi\)
0.436365 + 0.899770i \(0.356266\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 24.3923 1.74231
\(197\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(198\) 0 0
\(199\) −14.7224 + 8.50000i −1.04365 + 0.602549i −0.920864 0.389885i \(-0.872515\pi\)
−0.122782 + 0.992434i \(0.539182\pi\)
\(200\) 0 0
\(201\) −7.33013 + 27.3564i −0.517027 + 1.92957i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 4.00000 + 13.8564i 0.277350 + 0.960769i
\(209\) 0 0
\(210\) 0 0
\(211\) −12.9904 + 22.5000i −0.894295 + 1.54896i −0.0596196 + 0.998221i \(0.518989\pi\)
−0.834675 + 0.550743i \(0.814345\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −4.45448 + 2.57180i −0.302390 + 0.174585i
\(218\) 0 0
\(219\) 4.83975 + 18.0622i 0.327040 + 1.22053i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −7.02628 26.2224i −0.470514 1.75598i −0.637927 0.770097i \(-0.720208\pi\)
0.167412 0.985887i \(-0.446459\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(228\) 2.87564 10.7321i 0.190444 0.710747i
\(229\) −0.607695 + 0.607695i −0.0401576 + 0.0401576i −0.726900 0.686743i \(-0.759040\pi\)
0.686743 + 0.726900i \(0.259040\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.1865 10.5000i −1.18134 0.682048i
\(238\) 0 0
\(239\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(240\) 0 0
\(241\) −28.4904 7.63397i −1.83523 0.491748i −0.836784 0.547533i \(-0.815567\pi\)
−0.998443 + 0.0557856i \(0.982234\pi\)
\(242\) 0 0
\(243\) 13.5000 7.79423i 0.866025 0.500000i
\(244\) 15.0000 + 8.66025i 0.960277 + 0.554416i
\(245\) 0 0
\(246\) 0 0
\(247\) 5.97372 + 9.90192i 0.380099 + 0.630044i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(252\) 18.5885 18.5885i 1.17096 1.17096i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 52.4449i 3.25877i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 23.1244 + 23.1244i 1.41254 + 1.41254i
\(269\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(270\) 0 0
\(271\) 8.16025 + 30.4545i 0.495700 + 1.84998i 0.526073 + 0.850439i \(0.323664\pi\)
−0.0303728 + 0.999539i \(0.509669\pi\)
\(272\) 0 0
\(273\) 0.526279 + 27.3564i 0.0318519 + 1.65569i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −10.3923 18.0000i −0.624413 1.08152i −0.988654 0.150210i \(-0.952005\pi\)
0.364241 0.931305i \(-0.381328\pi\)
\(278\) 0 0
\(279\) −0.911543 + 3.40192i −0.0545726 + 0.203668i
\(280\) 0 0
\(281\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(282\) 0 0
\(283\) 12.5000 21.6506i 0.743048 1.28700i −0.208053 0.978117i \(-0.566713\pi\)
0.951101 0.308879i \(-0.0999539\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −8.50000 + 14.7224i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) −12.1699 12.1699i −0.713411 0.713411i
\(292\) 20.8564 + 5.58846i 1.22053 + 0.327040i
\(293\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 7.33013 1.96410i 0.422501 0.113209i
\(302\) 0 0
\(303\) 0 0
\(304\) −9.07180 9.07180i −0.520303 0.520303i
\(305\) 0 0
\(306\) 0 0
\(307\) −18.3660 18.3660i −1.04820 1.04820i −0.998778 0.0494267i \(-0.984261\pi\)
−0.0494267 0.998778i \(-0.515739\pi\)
\(308\) 0 0
\(309\) −23.3827 13.5000i −1.33019 0.767988i
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 32.9090i 1.86012i 0.367402 + 0.930062i \(0.380247\pi\)
−0.367402 + 0.930062i \(0.619753\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −21.0000 + 12.1244i −1.18134 + 0.682048i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 18.0000i 1.00000i
\(325\) 0 0
\(326\) 0 0
\(327\) 8.76795 + 32.7224i 0.484869 + 1.80955i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.18653 8.16025i 0.120183 0.448528i −0.879440 0.476011i \(-0.842082\pi\)
0.999622 + 0.0274825i \(0.00874905\pi\)
\(332\) 0 0
\(333\) −25.3923 25.3923i −1.39149 1.39149i
\(334\) 0 0
\(335\) 0 0
\(336\) −7.85641 29.3205i −0.428602 1.59956i
\(337\) −29.0000 −1.57973 −0.789865 0.613280i \(-0.789850\pi\)
−0.789865 + 0.613280i \(0.789850\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 16.0981 16.0981i 0.869214 0.869214i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(348\) 0 0
\(349\) 9.59808 + 35.8205i 0.513773 + 1.91743i 0.374701 + 0.927146i \(0.377745\pi\)
0.139072 + 0.990282i \(0.455588\pi\)
\(350\) 0 0
\(351\) 13.5000 + 12.9904i 0.720577 + 0.693375i
\(352\) 0 0
\(353\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(360\) 0 0
\(361\) 7.54552 + 4.35641i 0.397132 + 0.229285i
\(362\) 0 0
\(363\) 19.0526 1.00000
\(364\) 27.6603 + 15.2679i 1.44979 + 0.800258i
\(365\) 0 0
\(366\) 0 0
\(367\) 26.8468 + 15.5000i 1.40139 + 0.809093i 0.994535 0.104399i \(-0.0332919\pi\)
0.406855 + 0.913493i \(0.366625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 2.87564 + 2.87564i 0.149095 + 0.149095i
\(373\) −31.5000 + 18.1865i −1.63101 + 0.941663i −0.647225 + 0.762299i \(0.724071\pi\)
−0.983783 + 0.179364i \(0.942596\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −33.5526 + 8.99038i −1.72348 + 0.461805i −0.978664 0.205466i \(-0.934129\pi\)
−0.744815 + 0.667271i \(0.767462\pi\)
\(380\) 0 0
\(381\) −1.50000 + 0.866025i −0.0768473 + 0.0443678i
\(382\) 0 0
\(383\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.59808 4.50000i 0.132068 0.228748i
\(388\) −19.1962 + 5.14359i −0.974537 + 0.261126i
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.10770 26.5263i 0.356725 1.33132i −0.521575 0.853206i \(-0.674655\pi\)
0.878300 0.478110i \(-0.158678\pi\)
\(398\) 0 0
\(399\) −12.1699 21.0788i −0.609256 1.05526i
\(400\) 0 0
\(401\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(402\) 0 0
\(403\) −4.23205 + 0.0814157i −0.210813 + 0.00405561i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −10.4282 + 38.9186i −0.515641 + 1.92440i −0.173064 + 0.984911i \(0.555367\pi\)
−0.342578 + 0.939490i \(0.611300\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −27.0000 + 15.5885i −1.33019 + 0.767988i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 12.1244i 0.593732i
\(418\) 0 0
\(419\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(420\) 0 0
\(421\) −8.68653 8.68653i −0.423356 0.423356i 0.463002 0.886357i \(-0.346772\pi\)
−0.886357 + 0.463002i \(0.846772\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 36.6506 9.82051i 1.77365 0.475248i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(432\) −18.0000 10.3923i −0.866025 0.500000i
\(433\) −17.5000 30.3109i −0.840996 1.45665i −0.889053 0.457804i \(-0.848636\pi\)
0.0480569 0.998845i \(-0.484697\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 37.7846 + 10.1244i 1.80955 + 0.484869i
\(437\) 0 0
\(438\) 0 0
\(439\) 34.5000 + 19.9186i 1.64660 + 0.950662i 0.978412 + 0.206666i \(0.0662612\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) 36.5885i 1.74231i
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) −40.0526 + 10.7321i −1.90081 + 0.509321i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −33.8564 9.07180i −1.59956 0.428602i
\(449\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −23.9545 + 6.41858i −1.12548 + 0.301571i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.28461 + 19.7224i 0.247204 + 0.922576i 0.972263 + 0.233890i \(0.0751456\pi\)
−0.725059 + 0.688686i \(0.758188\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(462\) 0 0
\(463\) −20.6340 20.6340i −0.958942 0.958942i 0.0402476 0.999190i \(-0.487185\pi\)
−0.999190 + 0.0402476i \(0.987185\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 20.7846 6.00000i 0.960769 0.277350i
\(469\) 71.6410 3.30807
\(470\) 0 0
\(471\) 9.52628 16.5000i 0.438948 0.760280i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 0 0
\(481\) 20.8564 37.7846i 0.950970 1.72283i
\(482\) 0 0
\(483\) 0 0
\(484\) 11.0000 19.0526i 0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −32.4186 8.68653i −1.46903 0.393624i −0.566429 0.824110i \(-0.691675\pi\)
−0.902597 + 0.430486i \(0.858342\pi\)
\(488\) 0 0
\(489\) 17.1506 17.1506i 0.775579 0.775579i
\(490\) 0 0
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 4.53590 1.21539i 0.203668 0.0545726i
\(497\) 0 0
\(498\) 0 0
\(499\) −31.5885 31.5885i −1.41409 1.41409i −0.716258 0.697835i \(-0.754147\pi\)
−0.697835 0.716258i \(-0.745853\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −10.5000 + 19.9186i −0.466321 + 0.884615i
\(508\) 2.00000i 0.0887357i
\(509\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(510\) 0 0
\(511\) 40.9641 23.6506i 1.81215 1.04624i
\(512\) 0 0
\(513\) −16.0981 4.31347i −0.710747 0.190444i
\(514\) 0 0
\(515\) 0 0
\(516\) −3.00000 5.19615i −0.132068 0.228748i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 6.92820 + 4.00000i 0.302949 + 0.174908i 0.643767 0.765222i \(-0.277371\pi\)
−0.340818 + 0.940129i \(0.610704\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −11.5000 19.9186i −0.500000 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) −28.1051 −1.21851
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −30.1506 + 30.1506i −1.29628 + 1.29628i −0.365444 + 0.930834i \(0.619083\pi\)
−0.930834 + 0.365444i \(0.880917\pi\)
\(542\) 0 0
\(543\) 6.00000 10.3923i 0.257485 0.445976i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 41.0000i 1.75303i −0.481371 0.876517i \(-0.659861\pi\)
0.481371 0.876517i \(-0.340139\pi\)
\(548\) 0 0
\(549\) 12.9904 22.5000i 0.554416 0.960277i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −13.7487 + 51.3109i −0.584655 + 2.18196i
\(554\) 0 0
\(555\) 0 0
\(556\) 12.1244 + 7.00000i 0.514187 + 0.296866i
\(557\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(558\) 0 0
\(559\) 6.06218 + 1.50000i 0.256403 + 0.0634432i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −27.8827 27.8827i −1.17096 1.17096i
\(568\) 0 0
\(569\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i −0.942293 0.334790i \(-0.891335\pi\)
0.942293 0.334790i \(-0.108665\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −20.7846 + 12.0000i −0.866025 + 0.500000i
\(577\) −29.9282 + 29.9282i −1.24593 + 1.24593i −0.288425 + 0.957503i \(0.593132\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) 0 0
\(579\) −8.76795 2.34936i −0.364384 0.0976363i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(588\) −36.5885 21.1244i −1.50888 0.871154i
\(589\) 3.26091 1.88269i 0.134363 0.0775747i
\(590\) 0 0
\(591\) 0 0
\(592\) −12.3923 + 46.2487i −0.509321 + 1.90081i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.4449 1.20510
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 20.7846 36.0000i 0.847822 1.46847i −0.0353259 0.999376i \(-0.511247\pi\)
0.883148 0.469095i \(-0.155420\pi\)
\(602\) 0 0
\(603\) 34.6865 34.6865i 1.41254 1.41254i
\(604\) −7.41154 + 27.6603i −0.301571 + 1.12548i
\(605\) 0 0
\(606\) 0 0
\(607\) 17.3205 10.0000i 0.703018 0.405887i −0.105453 0.994424i \(-0.533629\pi\)
0.808470 + 0.588537i \(0.200296\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0.748711 + 2.79423i 0.0302402 + 0.112858i 0.979396 0.201948i \(-0.0647272\pi\)
−0.949156 + 0.314806i \(0.898061\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(618\) 0 0
\(619\) −14.8827 + 14.8827i −0.598186 + 0.598186i −0.939829 0.341644i \(-0.889016\pi\)
0.341644 + 0.939829i \(0.389016\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 6.00000 24.2487i 0.240192 0.970725i
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) −11.0000 19.0526i −0.438948 0.760280i
\(629\) 0 0
\(630\) 0 0
\(631\) −34.9904 9.37564i −1.39295 0.373239i −0.517139 0.855901i \(-0.673003\pi\)
−0.875806 + 0.482663i \(0.839670\pi\)
\(632\) 0 0
\(633\) 38.9711 22.5000i 1.54896 0.894295i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 42.2487 12.1962i 1.67395 0.483229i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(642\) 0 0
\(643\) −45.1147 12.0885i −1.77915 0.476722i −0.788723 0.614749i \(-0.789257\pi\)
−0.990429 + 0.138027i \(0.955924\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 8.90897 0.349170
\(652\) −7.24871 27.0526i −0.283881 1.05946i
\(653\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 8.38269 31.2846i 0.327040 1.22053i
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −6.11474 22.8205i −0.237836 0.887615i −0.976850 0.213925i \(-0.931375\pi\)
0.739014 0.673690i \(-0.235292\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) −12.1699 + 45.4186i −0.470514 + 1.75598i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −25.1147 + 43.5000i −0.968102 + 1.67680i −0.267063 + 0.963679i \(0.586053\pi\)
−0.701039 + 0.713123i \(0.747280\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 13.8564 + 22.0000i 0.532939 + 0.846154i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) −21.7679 + 37.7032i −0.835377 + 1.44692i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(684\) −13.6077 + 13.6077i −0.520303 + 0.520303i
\(685\) 0 0
\(686\) 0 0
\(687\) 1.43782 0.385263i 0.0548563 0.0146987i
\(688\) −6.92820 −0.264135
\(689\) 0 0
\(690\) 0 0
\(691\) −50.4808 + 13.5263i −1.92038 + 0.514564i −0.932024 + 0.362397i \(0.881959\pi\)
−0.988355 + 0.152167i \(0.951375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 38.3923i 1.44799i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 39.7487 + 10.6506i 1.49279 + 0.399993i 0.910679 0.413114i \(-0.135559\pi\)
0.582115 + 0.813107i \(0.302225\pi\)
\(710\) 0 0
\(711\) 18.1865 + 31.5000i 0.682048 + 1.18134i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) 0 0
\(721\) −17.6769 + 65.9711i −0.658323 + 2.45689i
\(722\) 0 0
\(723\) 36.1244 + 36.1244i 1.34348 + 1.34348i
\(724\) −6.92820 12.0000i −0.257485 0.445976i
\(725\) 0 0
\(726\) 0 0
\(727\) 49.0000 1.81731 0.908655 0.417548i \(-0.137111\pi\)
0.908655 + 0.417548i \(0.137111\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) −15.0000 25.9808i −0.554416 0.960277i
\(733\) −23.3468 + 23.3468i −0.862333 + 0.862333i −0.991609 0.129275i \(-0.958735\pi\)
0.129275 + 0.991609i \(0.458735\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 6.58142 + 24.5622i 0.242101 + 0.903534i 0.974818 + 0.223001i \(0.0715853\pi\)
−0.732717 + 0.680534i \(0.761748\pi\)
\(740\) 0 0
\(741\) −0.385263 20.0263i −0.0141530 0.735684i
\(742\) 0 0
\(743\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −15.0000 8.66025i −0.547358 0.316017i 0.200698 0.979653i \(-0.435679\pi\)
−0.748056 + 0.663636i \(0.769012\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −43.9808 + 11.7846i −1.59956 + 0.428602i
\(757\) 42.0000 + 24.2487i 1.52652 + 0.881334i 0.999505 + 0.0314762i \(0.0100208\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(762\) 0 0
\(763\) 74.2128 42.8468i 2.68668 1.55116i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 27.7128i 1.00000i
\(769\) 39.2224 10.5096i 1.41440 0.378987i 0.530904 0.847432i \(-0.321852\pi\)
0.883493 + 0.468445i \(0.155186\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.41154 + 7.41154i −0.266747 + 0.266747i
\(773\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −45.4186 + 78.6673i −1.62938 + 2.82217i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −42.2487 + 24.3923i −1.50888 + 0.871154i
\(785\) 0 0
\(786\) 0 0
\(787\) −4.61731 + 17.2321i −0.164589 + 0.614256i 0.833503 + 0.552515i \(0.186332\pi\)
−0.998092 + 0.0617409i \(0.980335\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 30.3109 + 7.50000i 1.07637 + 0.266333i
\(794\) 0 0
\(795\) 0 0
\(796\) 17.0000 29.4449i 0.602549 1.04365i
\(797\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −14.6603 54.7128i −0.517027 1.92957i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(810\) 0 0
\(811\) 36.3468 + 36.3468i 1.27631 + 1.27631i 0.942718 + 0.333590i \(0.108260\pi\)
0.333590 + 0.942718i \(0.391740\pi\)
\(812\) 0 0
\(813\) 14.1340 52.7487i 0.495700 1.84998i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −5.36603 + 1.43782i −0.187733 + 0.0503030i
\(818\) 0 0
\(819\) 22.9019 41.4904i 0.800258 1.44979i
\(820\) 0 0
\(821\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(822\) 0 0
\(823\) −12.1244 21.0000i −0.422628 0.732014i 0.573567 0.819159i \(-0.305559\pi\)
−0.996196 + 0.0871445i \(0.972226\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 0 0
\(829\) −45.8993 26.5000i −1.59415 0.920383i −0.992584 0.121560i \(-0.961210\pi\)
−0.601566 0.798823i \(-0.705456\pi\)
\(830\) 0 0
\(831\) 36.0000i 1.24883i
\(832\) −20.7846 20.0000i −0.720577 0.693375i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 4.31347 4.31347i 0.149095 0.149095i
\(838\) 0 0
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) 0 0
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 51.9615i 1.78859i
\(845\) 0 0
\(846\) 0 0
\(847\) −12.4737 46.5526i −0.428602 1.59956i
\(848\) 0 0
\(849\) −37.5000 + 21.6506i −1.28700 + 0.743048i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 40.8827 + 40.8827i 1.39980 + 1.39980i 0.800608 + 0.599189i \(0.204510\pi\)
0.599189 + 0.800608i \(0.295490\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 57.1577 1.95019 0.975097 0.221777i \(-0.0711857\pi\)
0.975097 + 0.221777i \(0.0711857\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 25.5000 14.7224i 0.866025 0.500000i
\(868\) 5.14359 8.90897i 0.174585 0.302390i
\(869\) 0 0
\(870\) 0 0
\(871\) 51.6147 + 28.4904i 1.74890 + 0.965360i
\(872\) 0 0
\(873\) 7.71539 + 28.7942i 0.261126 + 0.974537i
\(874\) 0 0
\(875\) 0 0
\(876\) −26.4449 26.4449i −0.893489 0.893489i
\(877\) −9.90192 2.65321i −0.334364 0.0895926i 0.0877308 0.996144i \(-0.472038\pi\)
−0.422095 + 0.906552i \(0.638705\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 0 0
\(883\) 55.0000 1.85090 0.925449 0.378873i \(-0.123688\pi\)
0.925449 + 0.378873i \(0.123688\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(888\) 0 0
\(889\) 3.09808 + 3.09808i 0.103906 + 0.103906i
\(890\) 0 0
\(891\) 0 0
\(892\) 38.3923 + 38.3923i 1.28547 + 1.28547i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) −12.6962 3.40192i −0.422501 0.113209i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 20.0000 34.6410i 0.664089 1.15024i −0.315442 0.948945i \(-0.602153\pi\)
0.979531 0.201291i \(-0.0645138\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 5.75129 + 21.4641i 0.190444 + 0.710747i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.444864 1.66025i 0.0146987 0.0548563i
\(917\) 0 0
\(918\) 0 0
\(919\) 15.5885 + 27.0000i 0.514216 + 0.890648i 0.999864 + 0.0164935i \(0.00525028\pi\)
−0.485648 + 0.874154i \(0.661416\pi\)
\(920\) 0 0
\(921\) 11.6436 + 43.4545i 0.383669 + 1.43187i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 23.3827 + 40.5000i 0.767988 + 1.33019i
\(928\) 0 0
\(929\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(930\) 0 0
\(931\) −27.6603 + 27.6603i −0.906528 + 0.906528i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 55.4256i 1.81068i −0.424691 0.905338i \(-0.639617\pi\)
0.424691 0.905338i \(-0.360383\pi\)
\(938\) 0 0
\(939\) 28.5000 49.3634i 0.930062 1.61092i
\(940\) 0 0
\(941\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(948\) 42.0000 1.36410
\(949\) 38.9186 0.748711i 1.26335 0.0243042i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 29.6218i 0.955541i
\(962\) 0 0
\(963\) 0 0
\(964\) 56.9808 15.2679i 1.83523 0.491748i
\(965\) 0 0
\(966\) 0 0
\(967\) −39.4449 + 39.4449i −1.26846 + 1.26846i −0.321578 + 0.946883i \(0.604213\pi\)
−0.946883 + 0.321578i \(0.895787\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(972\) −15.5885 + 27.0000i −0.500000 + 0.866025i
\(973\) 29.6244 7.93782i 0.949713 0.254475i
\(974\) 0 0
\(975\) 0 0
\(976\) −34.6410 −1.10883
\(977\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 15.1865 56.6769i 0.484869 1.80955i
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −20.2487 11.1769i −0.644197 0.355585i
\(989\) 0 0
\(990\) 0 0
\(991\) −22.0000 + 38.1051i −0.698853 + 1.21045i 0.270011 + 0.962857i \(0.412973\pi\)
−0.968864 + 0.247592i \(0.920361\pi\)
\(992\) 0 0
\(993\) −10.3468 + 10.3468i −0.328345 + 0.328345i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51.0955 29.5000i 1.61821 0.934274i 0.630828 0.775923i \(-0.282715\pi\)
0.987383 0.158352i \(-0.0506179\pi\)
\(998\) 0 0
\(999\) 16.0981 + 60.0788i 0.509321 + 1.90081i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 975.2.bp.a.449.1 4
3.2 odd 2 CM 975.2.bp.a.449.1 4
5.2 odd 4 39.2.k.a.20.1 yes 4
5.3 odd 4 975.2.bo.c.176.1 4
5.4 even 2 975.2.bp.d.449.1 4
13.2 odd 12 975.2.bp.d.899.1 4
15.2 even 4 39.2.k.a.20.1 yes 4
15.8 even 4 975.2.bo.c.176.1 4
15.14 odd 2 975.2.bp.d.449.1 4
20.7 even 4 624.2.cn.b.449.1 4
39.2 even 12 975.2.bp.d.899.1 4
60.47 odd 4 624.2.cn.b.449.1 4
65.2 even 12 39.2.k.a.2.1 4
65.7 even 12 507.2.f.b.239.2 4
65.12 odd 4 507.2.k.c.488.1 4
65.17 odd 12 507.2.f.b.437.2 4
65.22 odd 12 507.2.f.c.437.2 4
65.28 even 12 975.2.bo.c.626.1 4
65.32 even 12 507.2.f.c.239.2 4
65.37 even 12 507.2.k.c.80.1 4
65.42 odd 12 507.2.k.b.89.1 4
65.47 even 4 507.2.k.a.188.1 4
65.54 odd 12 inner 975.2.bp.a.899.1 4
65.57 even 4 507.2.k.b.188.1 4
65.62 odd 12 507.2.k.a.89.1 4
195.2 odd 12 39.2.k.a.2.1 4
195.17 even 12 507.2.f.b.437.2 4
195.32 odd 12 507.2.f.c.239.2 4
195.47 odd 4 507.2.k.a.188.1 4
195.62 even 12 507.2.k.a.89.1 4
195.77 even 4 507.2.k.c.488.1 4
195.107 even 12 507.2.k.b.89.1 4
195.119 even 12 inner 975.2.bp.a.899.1 4
195.122 odd 4 507.2.k.b.188.1 4
195.137 odd 12 507.2.f.b.239.2 4
195.152 even 12 507.2.f.c.437.2 4
195.158 odd 12 975.2.bo.c.626.1 4
195.167 odd 12 507.2.k.c.80.1 4
260.67 odd 12 624.2.cn.b.353.1 4
780.587 even 12 624.2.cn.b.353.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.2.k.a.2.1 4 65.2 even 12
39.2.k.a.2.1 4 195.2 odd 12
39.2.k.a.20.1 yes 4 5.2 odd 4
39.2.k.a.20.1 yes 4 15.2 even 4
507.2.f.b.239.2 4 65.7 even 12
507.2.f.b.239.2 4 195.137 odd 12
507.2.f.b.437.2 4 65.17 odd 12
507.2.f.b.437.2 4 195.17 even 12
507.2.f.c.239.2 4 65.32 even 12
507.2.f.c.239.2 4 195.32 odd 12
507.2.f.c.437.2 4 65.22 odd 12
507.2.f.c.437.2 4 195.152 even 12
507.2.k.a.89.1 4 65.62 odd 12
507.2.k.a.89.1 4 195.62 even 12
507.2.k.a.188.1 4 65.47 even 4
507.2.k.a.188.1 4 195.47 odd 4
507.2.k.b.89.1 4 65.42 odd 12
507.2.k.b.89.1 4 195.107 even 12
507.2.k.b.188.1 4 65.57 even 4
507.2.k.b.188.1 4 195.122 odd 4
507.2.k.c.80.1 4 65.37 even 12
507.2.k.c.80.1 4 195.167 odd 12
507.2.k.c.488.1 4 65.12 odd 4
507.2.k.c.488.1 4 195.77 even 4
624.2.cn.b.353.1 4 260.67 odd 12
624.2.cn.b.353.1 4 780.587 even 12
624.2.cn.b.449.1 4 20.7 even 4
624.2.cn.b.449.1 4 60.47 odd 4
975.2.bo.c.176.1 4 5.3 odd 4
975.2.bo.c.176.1 4 15.8 even 4
975.2.bo.c.626.1 4 65.28 even 12
975.2.bo.c.626.1 4 195.158 odd 12
975.2.bp.a.449.1 4 1.1 even 1 trivial
975.2.bp.a.449.1 4 3.2 odd 2 CM
975.2.bp.a.899.1 4 65.54 odd 12 inner
975.2.bp.a.899.1 4 195.119 even 12 inner
975.2.bp.d.449.1 4 5.4 even 2
975.2.bp.d.449.1 4 15.14 odd 2
975.2.bp.d.899.1 4 13.2 odd 12
975.2.bp.d.899.1 4 39.2 even 12