Properties

Label 51.2.h.a.43.1
Level $51$
Weight $2$
Character 51.43
Analytic conductor $0.407$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [51,2,Mod(19,51)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(51, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 7]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("51.19");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 51 = 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 51.h (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.407237050309\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 43.1
Root \(-0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 51.43
Dual form 51.2.h.a.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30656 + 1.30656i) q^{2} +(0.923880 + 0.382683i) q^{3} -1.41421i q^{4} +(-0.617317 + 1.49033i) q^{5} +(-1.70711 + 0.707107i) q^{6} +(0.0582601 + 0.140652i) q^{7} +(-0.765367 - 0.765367i) q^{8} +(0.707107 + 0.707107i) q^{9} +(-1.14065 - 2.75378i) q^{10} +(4.64466 - 1.92388i) q^{11} +(0.541196 - 1.30656i) q^{12} -3.94495i q^{13} +(-0.259892 - 0.107651i) q^{14} +(-1.14065 + 1.14065i) q^{15} +4.82843 q^{16} +(-1.26616 - 3.92388i) q^{17} -1.84776 q^{18} +(-4.65205 + 4.65205i) q^{19} +(2.10765 + 0.873017i) q^{20} +0.152241i q^{21} +(-3.55487 + 8.58221i) q^{22} +(-3.18585 + 1.31962i) q^{23} +(-0.414214 - 1.00000i) q^{24} +(1.69552 + 1.69552i) q^{25} +(5.15432 + 5.15432i) q^{26} +(0.382683 + 0.923880i) q^{27} +(0.198912 - 0.0823922i) q^{28} +(0.858221 - 2.07193i) q^{29} -2.98067i q^{30} +(-2.37849 - 0.985204i) q^{31} +(-4.77791 + 4.77791i) q^{32} +5.02734 q^{33} +(6.78112 + 3.47247i) q^{34} -0.245584 q^{35} +(1.00000 - 1.00000i) q^{36} +(-9.86351 - 4.08560i) q^{37} -12.1564i q^{38} +(1.50967 - 3.64466i) q^{39} +(1.61313 - 0.668179i) q^{40} +(-0.105915 - 0.255701i) q^{41} +(-0.198912 - 0.198912i) q^{42} +(4.48502 + 4.48502i) q^{43} +(-2.72078 - 6.56854i) q^{44} +(-1.49033 + 0.617317i) q^{45} +(2.43835 - 5.88669i) q^{46} +9.82164i q^{47} +(4.46088 + 1.84776i) q^{48} +(4.93336 - 4.93336i) q^{49} -4.43060 q^{50} +(0.331821 - 4.10973i) q^{51} -5.57900 q^{52} +(-1.50339 + 1.50339i) q^{53} +(-1.70711 - 0.707107i) q^{54} +8.10973i q^{55} +(0.0630603 - 0.152241i) q^{56} +(-6.07820 + 2.51767i) q^{57} +(1.58579 + 3.82843i) q^{58} +(-0.936078 - 0.936078i) q^{59} +(1.61313 + 1.61313i) q^{60} +(-3.16799 - 7.64821i) q^{61} +(4.39488 - 1.82042i) q^{62} +(-0.0582601 + 0.140652i) q^{63} -2.82843i q^{64} +(5.87929 + 2.43528i) q^{65} +(-6.56854 + 6.56854i) q^{66} -7.10973 q^{67} +(-5.54920 + 1.79063i) q^{68} -3.44834 q^{69} +(0.320871 - 0.320871i) q^{70} +(6.04875 + 2.50548i) q^{71} -1.08239i q^{72} +(3.18637 - 7.69258i) q^{73} +(18.2254 - 7.54920i) q^{74} +(0.917608 + 2.21530i) q^{75} +(6.57900 + 6.57900i) q^{76} +(0.541196 + 0.541196i) q^{77} +(2.78950 + 6.73445i) q^{78} +(0.491806 - 0.203713i) q^{79} +(-2.98067 + 7.19597i) q^{80} +1.00000i q^{81} +(0.472474 + 0.195705i) q^{82} +(-1.55807 + 1.55807i) q^{83} +0.215301 q^{84} +(6.62951 + 0.535270i) q^{85} -11.7199 q^{86} +(1.58579 - 1.58579i) q^{87} +(-5.02734 - 2.08239i) q^{88} +7.64847i q^{89} +(1.14065 - 2.75378i) q^{90} +(0.554866 - 0.229833i) q^{91} +(1.86623 + 4.50548i) q^{92} +(-1.82042 - 1.82042i) q^{93} +(-12.8326 - 12.8326i) q^{94} +(-4.06132 - 9.80490i) q^{95} +(-6.24264 + 2.58579i) q^{96} +(-1.38009 + 3.33182i) q^{97} +12.8915i q^{98} +(4.64466 + 1.92388i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{5} - 8 q^{6} + 8 q^{11} - 16 q^{14} + 16 q^{16} - 8 q^{17} - 8 q^{19} + 16 q^{20} - 8 q^{22} + 8 q^{23} + 8 q^{24} - 16 q^{25} + 16 q^{26} - 8 q^{28} + 8 q^{31} + 8 q^{33} - 8 q^{34} + 32 q^{35}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/51\mathbb{Z}\right)^\times\).

\(n\) \(35\) \(37\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30656 + 1.30656i −0.923880 + 0.923880i −0.997301 0.0734215i \(-0.976608\pi\)
0.0734215 + 0.997301i \(0.476608\pi\)
\(3\) 0.923880 + 0.382683i 0.533402 + 0.220942i
\(4\) 1.41421i 0.707107i
\(5\) −0.617317 + 1.49033i −0.276072 + 0.666498i −0.999720 0.0236722i \(-0.992464\pi\)
0.723647 + 0.690170i \(0.242464\pi\)
\(6\) −1.70711 + 0.707107i −0.696923 + 0.288675i
\(7\) 0.0582601 + 0.140652i 0.0220202 + 0.0531616i 0.934507 0.355944i \(-0.115841\pi\)
−0.912487 + 0.409106i \(0.865841\pi\)
\(8\) −0.765367 0.765367i −0.270598 0.270598i
\(9\) 0.707107 + 0.707107i 0.235702 + 0.235702i
\(10\) −1.14065 2.75378i −0.360706 0.870821i
\(11\) 4.64466 1.92388i 1.40042 0.580072i 0.450557 0.892748i \(-0.351226\pi\)
0.949860 + 0.312676i \(0.101226\pi\)
\(12\) 0.541196 1.30656i 0.156230 0.377172i
\(13\) 3.94495i 1.09413i −0.837090 0.547066i \(-0.815745\pi\)
0.837090 0.547066i \(-0.184255\pi\)
\(14\) −0.259892 0.107651i −0.0694589 0.0287708i
\(15\) −1.14065 + 1.14065i −0.294515 + 0.294515i
\(16\) 4.82843 1.20711
\(17\) −1.26616 3.92388i −0.307090 0.951681i
\(18\) −1.84776 −0.435521
\(19\) −4.65205 + 4.65205i −1.06725 + 1.06725i −0.0696854 + 0.997569i \(0.522200\pi\)
−0.997569 + 0.0696854i \(0.977800\pi\)
\(20\) 2.10765 + 0.873017i 0.471285 + 0.195213i
\(21\) 0.152241i 0.0332217i
\(22\) −3.55487 + 8.58221i −0.757900 + 1.82973i
\(23\) −3.18585 + 1.31962i −0.664296 + 0.275160i −0.689245 0.724528i \(-0.742058\pi\)
0.0249490 + 0.999689i \(0.492058\pi\)
\(24\) −0.414214 1.00000i −0.0845510 0.204124i
\(25\) 1.69552 + 1.69552i 0.339104 + 0.339104i
\(26\) 5.15432 + 5.15432i 1.01085 + 1.01085i
\(27\) 0.382683 + 0.923880i 0.0736475 + 0.177801i
\(28\) 0.198912 0.0823922i 0.0375909 0.0155707i
\(29\) 0.858221 2.07193i 0.159368 0.384748i −0.823945 0.566669i \(-0.808232\pi\)
0.983313 + 0.181922i \(0.0582317\pi\)
\(30\) 2.98067i 0.544193i
\(31\) −2.37849 0.985204i −0.427190 0.176948i 0.158721 0.987324i \(-0.449263\pi\)
−0.585911 + 0.810376i \(0.699263\pi\)
\(32\) −4.77791 + 4.77791i −0.844623 + 0.844623i
\(33\) 5.02734 0.875147
\(34\) 6.78112 + 3.47247i 1.16295 + 0.595524i
\(35\) −0.245584 −0.0415112
\(36\) 1.00000 1.00000i 0.166667 0.166667i
\(37\) −9.86351 4.08560i −1.62155 0.671668i −0.627303 0.778775i \(-0.715841\pi\)
−0.994248 + 0.107106i \(0.965841\pi\)
\(38\) 12.1564i 1.97203i
\(39\) 1.50967 3.64466i 0.241740 0.583612i
\(40\) 1.61313 0.668179i 0.255058 0.105648i
\(41\) −0.105915 0.255701i −0.0165411 0.0399338i 0.915393 0.402561i \(-0.131880\pi\)
−0.931934 + 0.362627i \(0.881880\pi\)
\(42\) −0.198912 0.198912i −0.0306928 0.0306928i
\(43\) 4.48502 + 4.48502i 0.683959 + 0.683959i 0.960890 0.276931i \(-0.0893174\pi\)
−0.276931 + 0.960890i \(0.589317\pi\)
\(44\) −2.72078 6.56854i −0.410172 0.990244i
\(45\) −1.49033 + 0.617317i −0.222166 + 0.0920241i
\(46\) 2.43835 5.88669i 0.359514 0.867945i
\(47\) 9.82164i 1.43263i 0.697775 + 0.716317i \(0.254173\pi\)
−0.697775 + 0.716317i \(0.745827\pi\)
\(48\) 4.46088 + 1.84776i 0.643873 + 0.266701i
\(49\) 4.93336 4.93336i 0.704766 0.704766i
\(50\) −4.43060 −0.626582
\(51\) 0.331821 4.10973i 0.0464643 0.575478i
\(52\) −5.57900 −0.773668
\(53\) −1.50339 + 1.50339i −0.206507 + 0.206507i −0.802781 0.596274i \(-0.796647\pi\)
0.596274 + 0.802781i \(0.296647\pi\)
\(54\) −1.70711 0.707107i −0.232308 0.0962250i
\(55\) 8.10973i 1.09352i
\(56\) 0.0630603 0.152241i 0.00842678 0.0203441i
\(57\) −6.07820 + 2.51767i −0.805077 + 0.333474i
\(58\) 1.58579 + 3.82843i 0.208224 + 0.502697i
\(59\) −0.936078 0.936078i −0.121867 0.121867i 0.643543 0.765410i \(-0.277464\pi\)
−0.765410 + 0.643543i \(0.777464\pi\)
\(60\) 1.61313 + 1.61313i 0.208254 + 0.208254i
\(61\) −3.16799 7.64821i −0.405620 0.979253i −0.986276 0.165104i \(-0.947204\pi\)
0.580656 0.814149i \(-0.302796\pi\)
\(62\) 4.39488 1.82042i 0.558151 0.231194i
\(63\) −0.0582601 + 0.140652i −0.00734008 + 0.0177205i
\(64\) 2.82843i 0.353553i
\(65\) 5.87929 + 2.43528i 0.729236 + 0.302059i
\(66\) −6.56854 + 6.56854i −0.808531 + 0.808531i
\(67\) −7.10973 −0.868592 −0.434296 0.900770i \(-0.643003\pi\)
−0.434296 + 0.900770i \(0.643003\pi\)
\(68\) −5.54920 + 1.79063i −0.672940 + 0.217145i
\(69\) −3.44834 −0.415132
\(70\) 0.320871 0.320871i 0.0383514 0.0383514i
\(71\) 6.04875 + 2.50548i 0.717855 + 0.297345i 0.711551 0.702635i \(-0.247993\pi\)
0.00630431 + 0.999980i \(0.497993\pi\)
\(72\) 1.08239i 0.127561i
\(73\) 3.18637 7.69258i 0.372936 0.900348i −0.620314 0.784354i \(-0.712995\pi\)
0.993250 0.115994i \(-0.0370053\pi\)
\(74\) 18.2254 7.54920i 2.11866 0.877577i
\(75\) 0.917608 + 2.21530i 0.105956 + 0.255801i
\(76\) 6.57900 + 6.57900i 0.754663 + 0.754663i
\(77\) 0.541196 + 0.541196i 0.0616750 + 0.0616750i
\(78\) 2.78950 + 6.73445i 0.315849 + 0.762526i
\(79\) 0.491806 0.203713i 0.0553325 0.0229195i −0.354846 0.934925i \(-0.615467\pi\)
0.410178 + 0.912005i \(0.365467\pi\)
\(80\) −2.98067 + 7.19597i −0.333249 + 0.804534i
\(81\) 1.00000i 0.111111i
\(82\) 0.472474 + 0.195705i 0.0521760 + 0.0216120i
\(83\) −1.55807 + 1.55807i −0.171021 + 0.171021i −0.787428 0.616407i \(-0.788588\pi\)
0.616407 + 0.787428i \(0.288588\pi\)
\(84\) 0.215301 0.0234913
\(85\) 6.62951 + 0.535270i 0.719072 + 0.0580581i
\(86\) −11.7199 −1.26379
\(87\) 1.58579 1.58579i 0.170014 0.170014i
\(88\) −5.02734 2.08239i −0.535916 0.221984i
\(89\) 7.64847i 0.810737i 0.914153 + 0.405368i \(0.132857\pi\)
−0.914153 + 0.405368i \(0.867143\pi\)
\(90\) 1.14065 2.75378i 0.120235 0.290274i
\(91\) 0.554866 0.229833i 0.0581657 0.0240930i
\(92\) 1.86623 + 4.50548i 0.194568 + 0.469728i
\(93\) −1.82042 1.82042i −0.188769 0.188769i
\(94\) −12.8326 12.8326i −1.32358 1.32358i
\(95\) −4.06132 9.80490i −0.416683 1.00596i
\(96\) −6.24264 + 2.58579i −0.637137 + 0.263911i
\(97\) −1.38009 + 3.33182i −0.140126 + 0.338295i −0.978327 0.207067i \(-0.933608\pi\)
0.838200 + 0.545363i \(0.183608\pi\)
\(98\) 12.8915i 1.30224i
\(99\) 4.64466 + 1.92388i 0.466805 + 0.193357i
\(100\) 2.39782 2.39782i 0.239782 0.239782i
\(101\) −9.13707 −0.909173 −0.454586 0.890703i \(-0.650213\pi\)
−0.454586 + 0.890703i \(0.650213\pi\)
\(102\) 4.93608 + 5.80317i 0.488745 + 0.574599i
\(103\) 7.57862 0.746744 0.373372 0.927682i \(-0.378202\pi\)
0.373372 + 0.927682i \(0.378202\pi\)
\(104\) −3.01933 + 3.01933i −0.296070 + 0.296070i
\(105\) −0.226890 0.0939809i −0.0221422 0.00917159i
\(106\) 3.92856i 0.381575i
\(107\) 7.06688 17.0610i 0.683181 1.64934i −0.0749059 0.997191i \(-0.523866\pi\)
0.758087 0.652154i \(-0.226134\pi\)
\(108\) 1.30656 0.541196i 0.125724 0.0520766i
\(109\) 4.10973 + 9.92177i 0.393641 + 0.950333i 0.989140 + 0.146977i \(0.0469544\pi\)
−0.595499 + 0.803356i \(0.703046\pi\)
\(110\) −10.5959 10.5959i −1.01028 1.01028i
\(111\) −7.54920 7.54920i −0.716539 0.716539i
\(112\) 0.281305 + 0.679129i 0.0265808 + 0.0641717i
\(113\) 1.54747 0.640982i 0.145574 0.0602985i −0.308707 0.951157i \(-0.599896\pi\)
0.454281 + 0.890859i \(0.349896\pi\)
\(114\) 4.65205 11.2311i 0.435705 1.05188i
\(115\) 5.56261i 0.518716i
\(116\) −2.93015 1.21371i −0.272058 0.112690i
\(117\) 2.78950 2.78950i 0.257889 0.257889i
\(118\) 2.44609 0.225181
\(119\) 0.478136 0.406694i 0.0438306 0.0372816i
\(120\) 1.74603 0.159390
\(121\) 10.0933 10.0933i 0.917577 0.917577i
\(122\) 14.1320 + 5.85369i 1.27946 + 0.529968i
\(123\) 0.276769i 0.0249554i
\(124\) −1.39329 + 3.36370i −0.125121 + 0.302069i
\(125\) −11.0252 + 4.56680i −0.986127 + 0.408467i
\(126\) −0.107651 0.259892i −0.00959028 0.0231530i
\(127\) 8.61339 + 8.61339i 0.764315 + 0.764315i 0.977099 0.212784i \(-0.0682532\pi\)
−0.212784 + 0.977099i \(0.568253\pi\)
\(128\) −5.86030 5.86030i −0.517982 0.517982i
\(129\) 2.42727 + 5.85996i 0.213710 + 0.515940i
\(130\) −10.8635 + 4.49981i −0.952793 + 0.394660i
\(131\) −3.99948 + 9.65561i −0.349436 + 0.843614i 0.647250 + 0.762278i \(0.275919\pi\)
−0.996687 + 0.0813367i \(0.974081\pi\)
\(132\) 7.10973i 0.618823i
\(133\) −0.925351 0.383293i −0.0802381 0.0332357i
\(134\) 9.28931 9.28931i 0.802474 0.802474i
\(135\) −1.61313 −0.138836
\(136\) −2.03413 + 3.97229i −0.174425 + 0.340621i
\(137\) 13.4928 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(138\) 4.50548 4.50548i 0.383532 0.383532i
\(139\) −4.92241 2.03893i −0.417513 0.172940i 0.164030 0.986455i \(-0.447551\pi\)
−0.581543 + 0.813516i \(0.697551\pi\)
\(140\) 0.347308i 0.0293529i
\(141\) −3.75858 + 9.07401i −0.316529 + 0.764170i
\(142\) −11.1766 + 4.62951i −0.937923 + 0.388500i
\(143\) −7.58960 18.3229i −0.634675 1.53224i
\(144\) 3.41421 + 3.41421i 0.284518 + 0.284518i
\(145\) 2.55807 + 2.55807i 0.212436 + 0.212436i
\(146\) 5.88764 + 14.2140i 0.487265 + 1.17636i
\(147\) 6.44574 2.66991i 0.531636 0.220211i
\(148\) −5.77791 + 13.9491i −0.474941 + 1.14661i
\(149\) 9.31890i 0.763434i 0.924279 + 0.381717i \(0.124667\pi\)
−0.924279 + 0.381717i \(0.875333\pi\)
\(150\) −4.09334 1.69552i −0.334220 0.138438i
\(151\) −8.45929 + 8.45929i −0.688407 + 0.688407i −0.961880 0.273472i \(-0.911828\pi\)
0.273472 + 0.961880i \(0.411828\pi\)
\(152\) 7.12106 0.577594
\(153\) 1.87929 3.66991i 0.151932 0.296695i
\(154\) −1.41421 −0.113961
\(155\) 2.93657 2.93657i 0.235871 0.235871i
\(156\) −5.15432 2.13499i −0.412676 0.170936i
\(157\) 18.1548i 1.44891i 0.689321 + 0.724456i \(0.257909\pi\)
−0.689321 + 0.724456i \(0.742091\pi\)
\(158\) −0.376412 + 0.908738i −0.0299457 + 0.0722953i
\(159\) −1.96428 + 0.813631i −0.155777 + 0.0645251i
\(160\) −4.17120 10.0702i −0.329762 0.796116i
\(161\) −0.371216 0.371216i −0.0292559 0.0292559i
\(162\) −1.30656 1.30656i −0.102653 0.102653i
\(163\) 7.93015 + 19.1451i 0.621137 + 1.49956i 0.850369 + 0.526186i \(0.176379\pi\)
−0.229232 + 0.973372i \(0.573621\pi\)
\(164\) −0.361616 + 0.149786i −0.0282374 + 0.0116963i
\(165\) −3.10346 + 7.49242i −0.241604 + 0.583284i
\(166\) 4.07144i 0.316005i
\(167\) −7.47308 3.09545i −0.578285 0.239533i 0.0743169 0.997235i \(-0.476322\pi\)
−0.652601 + 0.757701i \(0.726322\pi\)
\(168\) 0.116520 0.116520i 0.00898973 0.00898973i
\(169\) −2.56261 −0.197124
\(170\) −9.36124 + 7.96251i −0.717974 + 0.610697i
\(171\) −6.57900 −0.503109
\(172\) 6.34277 6.34277i 0.483632 0.483632i
\(173\) −1.07228 0.444151i −0.0815236 0.0337682i 0.341549 0.939864i \(-0.389048\pi\)
−0.423073 + 0.906096i \(0.639048\pi\)
\(174\) 4.14386i 0.314145i
\(175\) −0.139697 + 0.337260i −0.0105601 + 0.0254944i
\(176\) 22.4264 9.28931i 1.69045 0.700208i
\(177\) −0.506602 1.22304i −0.0380785 0.0919297i
\(178\) −9.99321 9.99321i −0.749023 0.749023i
\(179\) 2.04826 + 2.04826i 0.153094 + 0.153094i 0.779499 0.626404i \(-0.215474\pi\)
−0.626404 + 0.779499i \(0.715474\pi\)
\(180\) 0.873017 + 2.10765i 0.0650709 + 0.157095i
\(181\) 0.778548 0.322485i 0.0578690 0.0239701i −0.353561 0.935411i \(-0.615029\pi\)
0.411430 + 0.911441i \(0.365029\pi\)
\(182\) −0.424676 + 1.02526i −0.0314791 + 0.0759972i
\(183\) 8.27836i 0.611954i
\(184\) 3.44834 + 1.42835i 0.254215 + 0.105299i
\(185\) 12.1778 12.1778i 0.895331 0.895331i
\(186\) 4.75699 0.348799
\(187\) −13.4300 15.7891i −0.982096 1.15462i
\(188\) 13.8899 1.01302
\(189\) −0.107651 + 0.107651i −0.00783043 + 0.00783043i
\(190\) 18.1171 + 7.50435i 1.31435 + 0.544423i
\(191\) 9.97069i 0.721454i −0.932671 0.360727i \(-0.882529\pi\)
0.932671 0.360727i \(-0.117471\pi\)
\(192\) 1.08239 2.61313i 0.0781149 0.188586i
\(193\) 3.44993 1.42901i 0.248332 0.102862i −0.255046 0.966929i \(-0.582091\pi\)
0.503377 + 0.864067i \(0.332091\pi\)
\(194\) −2.55007 6.15640i −0.183084 0.442004i
\(195\) 4.49981 + 4.49981i 0.322238 + 0.322238i
\(196\) −6.97682 6.97682i −0.498344 0.498344i
\(197\) −6.20151 14.9718i −0.441839 1.06669i −0.975303 0.220871i \(-0.929110\pi\)
0.533464 0.845823i \(-0.320890\pi\)
\(198\) −8.58221 + 3.55487i −0.609911 + 0.252633i
\(199\) 6.30411 15.2195i 0.446886 1.07888i −0.526596 0.850116i \(-0.676532\pi\)
0.973482 0.228763i \(-0.0734682\pi\)
\(200\) 2.59539i 0.183522i
\(201\) −6.56854 2.72078i −0.463309 0.191909i
\(202\) 11.9382 11.9382i 0.839966 0.839966i
\(203\) 0.341422 0.0239631
\(204\) −5.81204 0.469266i −0.406924 0.0328552i
\(205\) 0.446463 0.0311823
\(206\) −9.90195 + 9.90195i −0.689902 + 0.689902i
\(207\) −3.18585 1.31962i −0.221432 0.0917202i
\(208\) 19.0479i 1.32073i
\(209\) −12.6572 + 30.5572i −0.875517 + 2.11368i
\(210\) 0.419238 0.173654i 0.0289302 0.0119833i
\(211\) −4.09040 9.87510i −0.281595 0.679830i 0.718278 0.695756i \(-0.244930\pi\)
−0.999873 + 0.0159259i \(0.994930\pi\)
\(212\) 2.12612 + 2.12612i 0.146023 + 0.146023i
\(213\) 4.62951 + 4.62951i 0.317209 + 0.317209i
\(214\) 13.0579 + 31.5245i 0.892619 + 2.15497i
\(215\) −9.45285 + 3.91550i −0.644679 + 0.267035i
\(216\) 0.414214 1.00000i 0.0281837 0.0680414i
\(217\) 0.391939i 0.0266065i
\(218\) −18.3330 7.59379i −1.24167 0.514317i
\(219\) 5.88764 5.88764i 0.397850 0.397850i
\(220\) 11.4689 0.773233
\(221\) −15.4795 + 4.99495i −1.04126 + 0.335997i
\(222\) 19.7270 1.32399
\(223\) 3.83004 3.83004i 0.256479 0.256479i −0.567142 0.823620i \(-0.691951\pi\)
0.823620 + 0.567142i \(0.191951\pi\)
\(224\) −0.950385 0.393663i −0.0635003 0.0263027i
\(225\) 2.39782i 0.159855i
\(226\) −1.18438 + 2.85935i −0.0787838 + 0.190201i
\(227\) −11.3625 + 4.70650i −0.754155 + 0.312381i −0.726436 0.687235i \(-0.758824\pi\)
−0.0277193 + 0.999616i \(0.508824\pi\)
\(228\) 3.56053 + 8.59588i 0.235802 + 0.569276i
\(229\) −21.2951 21.2951i −1.40722 1.40722i −0.773856 0.633362i \(-0.781674\pi\)
−0.633362 0.773856i \(-0.718326\pi\)
\(230\) 7.26790 + 7.26790i 0.479231 + 0.479231i
\(231\) 0.292893 + 0.707107i 0.0192710 + 0.0465242i
\(232\) −2.24264 + 0.928932i −0.147237 + 0.0609874i
\(233\) −3.36196 + 8.11649i −0.220249 + 0.531729i −0.994924 0.100631i \(-0.967914\pi\)
0.774674 + 0.632360i \(0.217914\pi\)
\(234\) 7.28931i 0.476517i
\(235\) −14.6375 6.06306i −0.954847 0.395510i
\(236\) −1.32381 + 1.32381i −0.0861729 + 0.0861729i
\(237\) 0.532327 0.0345783
\(238\) −0.0933429 + 1.15609i −0.00605052 + 0.0749379i
\(239\) 14.6501 0.947634 0.473817 0.880623i \(-0.342876\pi\)
0.473817 + 0.880623i \(0.342876\pi\)
\(240\) −5.50756 + 5.50756i −0.355511 + 0.355511i
\(241\) 15.6646 + 6.48849i 1.00905 + 0.417960i 0.825106 0.564977i \(-0.191115\pi\)
0.183939 + 0.982938i \(0.441115\pi\)
\(242\) 26.3752i 1.69546i
\(243\) −0.382683 + 0.923880i −0.0245492 + 0.0592669i
\(244\) −10.8162 + 4.48022i −0.692436 + 0.286816i
\(245\) 4.30691 + 10.3978i 0.275158 + 0.664291i
\(246\) 0.361616 + 0.361616i 0.0230558 + 0.0230558i
\(247\) 18.3521 + 18.3521i 1.16772 + 1.16772i
\(248\) 1.06638 + 2.57446i 0.0677150 + 0.163479i
\(249\) −2.03572 + 0.843223i −0.129009 + 0.0534371i
\(250\) 8.43835 20.3720i 0.533688 1.28844i
\(251\) 13.9453i 0.880217i −0.897945 0.440109i \(-0.854940\pi\)
0.897945 0.440109i \(-0.145060\pi\)
\(252\) 0.198912 + 0.0823922i 0.0125303 + 0.00519022i
\(253\) −12.2584 + 12.2584i −0.770678 + 0.770678i
\(254\) −22.5079 −1.41227
\(255\) 5.92003 + 3.03153i 0.370727 + 0.189842i
\(256\) 20.9706 1.31066
\(257\) 13.9019 13.9019i 0.867180 0.867180i −0.124980 0.992159i \(-0.539887\pi\)
0.992159 + 0.124980i \(0.0398865\pi\)
\(258\) −10.8278 4.48502i −0.674109 0.279225i
\(259\) 1.62535i 0.100994i
\(260\) 3.44401 8.31457i 0.213588 0.515648i
\(261\) 2.07193 0.858221i 0.128249 0.0531226i
\(262\) −7.39008 17.8412i −0.456561 1.10224i
\(263\) 19.7085 + 19.7085i 1.21528 + 1.21528i 0.969266 + 0.246015i \(0.0791213\pi\)
0.246015 + 0.969266i \(0.420879\pi\)
\(264\) −3.84776 3.84776i −0.236813 0.236813i
\(265\) −1.31249 3.16863i −0.0806256 0.194647i
\(266\) 1.70983 0.708233i 0.104836 0.0434246i
\(267\) −2.92694 + 7.06627i −0.179126 + 0.432449i
\(268\) 10.0547i 0.614187i
\(269\) 0.189698 + 0.0785753i 0.0115661 + 0.00479082i 0.388459 0.921466i \(-0.373008\pi\)
−0.376893 + 0.926257i \(0.623008\pi\)
\(270\) 2.10765 2.10765i 0.128268 0.128268i
\(271\) 8.21077 0.498768 0.249384 0.968405i \(-0.419772\pi\)
0.249384 + 0.968405i \(0.419772\pi\)
\(272\) −6.11358 18.9462i −0.370690 1.14878i
\(273\) 0.600582 0.0363489
\(274\) −17.6291 + 17.6291i −1.06502 + 1.06502i
\(275\) 11.1371 + 4.61313i 0.671591 + 0.278182i
\(276\) 4.87669i 0.293542i
\(277\) 9.01896 21.7737i 0.541897 1.30825i −0.381486 0.924374i \(-0.624588\pi\)
0.923383 0.383880i \(-0.125412\pi\)
\(278\) 9.09542 3.76745i 0.545507 0.225957i
\(279\) −0.985204 2.37849i −0.0589826 0.142397i
\(280\) 0.187962 + 0.187962i 0.0112329 + 0.0112329i
\(281\) −7.17941 7.17941i −0.428288 0.428288i 0.459757 0.888045i \(-0.347936\pi\)
−0.888045 + 0.459757i \(0.847936\pi\)
\(282\) −6.94495 16.7666i −0.413566 0.998436i
\(283\) −8.75762 + 3.62753i −0.520587 + 0.215634i −0.627475 0.778637i \(-0.715911\pi\)
0.106888 + 0.994271i \(0.465911\pi\)
\(284\) 3.54328 8.55423i 0.210255 0.507600i
\(285\) 10.6128i 0.628645i
\(286\) 33.8563 + 14.0238i 2.00197 + 0.829242i
\(287\) 0.0297943 0.0297943i 0.00175870 0.00175870i
\(288\) −6.75699 −0.398159
\(289\) −13.7937 + 9.93654i −0.811392 + 0.584503i
\(290\) −6.68457 −0.392531
\(291\) −2.55007 + 2.55007i −0.149487 + 0.149487i
\(292\) −10.8789 4.50621i −0.636642 0.263706i
\(293\) 9.28515i 0.542444i −0.962517 0.271222i \(-0.912572\pi\)
0.962517 0.271222i \(-0.0874278\pi\)
\(294\) −4.93336 + 11.9102i −0.287719 + 0.694616i
\(295\) 1.97292 0.817212i 0.114868 0.0475799i
\(296\) 4.42222 + 10.6762i 0.257036 + 0.620541i
\(297\) 3.55487 + 3.55487i 0.206274 + 0.206274i
\(298\) −12.1757 12.1757i −0.705321 0.705321i
\(299\) 5.20584 + 12.5680i 0.301062 + 0.726827i
\(300\) 3.13291 1.29769i 0.180879 0.0749224i
\(301\) −0.369530 + 0.892125i −0.0212994 + 0.0514213i
\(302\) 22.1052i 1.27201i
\(303\) −8.44155 3.49661i −0.484955 0.200875i
\(304\) −22.4621 + 22.4621i −1.28829 + 1.28829i
\(305\) 13.3540 0.764650
\(306\) 2.33956 + 7.25038i 0.133744 + 0.414477i
\(307\) −27.1418 −1.54906 −0.774531 0.632536i \(-0.782014\pi\)
−0.774531 + 0.632536i \(0.782014\pi\)
\(308\) 0.765367 0.765367i 0.0436108 0.0436108i
\(309\) 7.00174 + 2.90021i 0.398315 + 0.164987i
\(310\) 7.67362i 0.435832i
\(311\) −0.989538 + 2.38896i −0.0561115 + 0.135465i −0.949449 0.313921i \(-0.898357\pi\)
0.893338 + 0.449386i \(0.148357\pi\)
\(312\) −3.94495 + 1.63405i −0.223339 + 0.0925099i
\(313\) 9.80071 + 23.6610i 0.553969 + 1.33740i 0.914475 + 0.404643i \(0.132604\pi\)
−0.360506 + 0.932757i \(0.617396\pi\)
\(314\) −23.7204 23.7204i −1.33862 1.33862i
\(315\) −0.173654 0.173654i −0.00978429 0.00978429i
\(316\) −0.288093 0.695518i −0.0162065 0.0391260i
\(317\) 23.6497 9.79601i 1.32830 0.550199i 0.398128 0.917330i \(-0.369660\pi\)
0.930169 + 0.367131i \(0.119660\pi\)
\(318\) 1.50339 3.62951i 0.0843062 0.203533i
\(319\) 11.2745i 0.631252i
\(320\) 4.21530 + 1.74603i 0.235643 + 0.0976063i
\(321\) 13.0579 13.0579i 0.728820 0.728820i
\(322\) 0.970034 0.0540579
\(323\) 24.1444 + 12.3638i 1.34343 + 0.687942i
\(324\) 1.41421 0.0785674
\(325\) 6.68873 6.68873i 0.371024 0.371024i
\(326\) −35.3755 14.6530i −1.95927 0.811555i
\(327\) 10.7392i 0.593882i
\(328\) −0.114641 + 0.276769i −0.00633001 + 0.0152820i
\(329\) −1.38144 + 0.572209i −0.0761610 + 0.0315469i
\(330\) −5.73445 13.8442i −0.315671 0.762097i
\(331\) 0.235588 + 0.235588i 0.0129491 + 0.0129491i 0.713552 0.700603i \(-0.247085\pi\)
−0.700603 + 0.713552i \(0.747085\pi\)
\(332\) 2.20345 + 2.20345i 0.120930 + 0.120930i
\(333\) −4.08560 9.86351i −0.223889 0.540517i
\(334\) 13.8085 5.71965i 0.755565 0.312965i
\(335\) 4.38896 10.5959i 0.239794 0.578914i
\(336\) 0.735084i 0.0401021i
\(337\) −3.46953 1.43713i −0.188997 0.0782853i 0.286178 0.958177i \(-0.407615\pi\)
−0.475175 + 0.879891i \(0.657615\pi\)
\(338\) 3.34821 3.34821i 0.182119 0.182119i
\(339\) 1.67497 0.0909717
\(340\) 0.756986 9.37555i 0.0410533 0.508461i
\(341\) −12.9427 −0.700886
\(342\) 8.59588 8.59588i 0.464812 0.464812i
\(343\) 1.96587 + 0.814291i 0.106147 + 0.0439676i
\(344\) 6.86537i 0.370156i
\(345\) 2.12872 5.13918i 0.114606 0.276684i
\(346\) 1.98131 0.820684i 0.106516 0.0441202i
\(347\) 1.26668 + 3.05804i 0.0679989 + 0.164164i 0.954225 0.299088i \(-0.0966825\pi\)
−0.886227 + 0.463252i \(0.846682\pi\)
\(348\) −2.24264 2.24264i −0.120218 0.120218i
\(349\) 1.82779 + 1.82779i 0.0978393 + 0.0978393i 0.754332 0.656493i \(-0.227961\pi\)
−0.656493 + 0.754332i \(0.727961\pi\)
\(350\) −0.258127 0.623174i −0.0137975 0.0333101i
\(351\) 3.64466 1.50967i 0.194537 0.0805800i
\(352\) −12.9996 + 31.3839i −0.692882 + 1.67277i
\(353\) 13.2848i 0.707079i 0.935420 + 0.353539i \(0.115022\pi\)
−0.935420 + 0.353539i \(0.884978\pi\)
\(354\) 2.25989 + 0.936078i 0.120112 + 0.0497520i
\(355\) −7.46799 + 7.46799i −0.396360 + 0.396360i
\(356\) 10.8166 0.573277
\(357\) 0.597375 0.192762i 0.0316164 0.0102020i
\(358\) −5.35237 −0.282882
\(359\) −10.4143 + 10.4143i −0.549647 + 0.549647i −0.926339 0.376692i \(-0.877062\pi\)
0.376692 + 0.926339i \(0.377062\pi\)
\(360\) 1.61313 + 0.668179i 0.0850192 + 0.0352161i
\(361\) 24.2832i 1.27806i
\(362\) −0.595875 + 1.43857i −0.0313185 + 0.0756095i
\(363\) 13.1876 5.46248i 0.692169 0.286706i
\(364\) −0.325033 0.784699i −0.0170364 0.0411294i
\(365\) 9.49751 + 9.49751i 0.497122 + 0.497122i
\(366\) 10.8162 + 10.8162i 0.565372 + 0.565372i
\(367\) −0.168365 0.406470i −0.00878861 0.0212176i 0.919424 0.393267i \(-0.128655\pi\)
−0.928213 + 0.372049i \(0.878655\pi\)
\(368\) −15.3827 + 6.37170i −0.801876 + 0.332148i
\(369\) 0.105915 0.255701i 0.00551370 0.0133113i
\(370\) 31.8222i 1.65436i
\(371\) −0.299044 0.123868i −0.0155256 0.00643090i
\(372\) −2.57446 + 2.57446i −0.133480 + 0.133480i
\(373\) 0.827899 0.0428670 0.0214335 0.999770i \(-0.493177\pi\)
0.0214335 + 0.999770i \(0.493177\pi\)
\(374\) 38.1766 + 3.08239i 1.97406 + 0.159387i
\(375\) −11.9336 −0.616250
\(376\) 7.51716 7.51716i 0.387668 0.387668i
\(377\) −8.17365 3.38564i −0.420965 0.174369i
\(378\) 0.281305i 0.0144687i
\(379\) 7.58033 18.3005i 0.389375 0.940035i −0.600697 0.799477i \(-0.705110\pi\)
0.990072 0.140558i \(-0.0448897\pi\)
\(380\) −13.8662 + 5.74358i −0.711323 + 0.294639i
\(381\) 4.66153 + 11.2539i 0.238818 + 0.576557i
\(382\) 13.0273 + 13.0273i 0.666537 + 0.666537i
\(383\) −11.7966 11.7966i −0.602776 0.602776i 0.338273 0.941048i \(-0.390157\pi\)
−0.941048 + 0.338273i \(0.890157\pi\)
\(384\) −3.17157 7.65685i −0.161849 0.390737i
\(385\) −1.14065 + 0.472474i −0.0581330 + 0.0240795i
\(386\) −2.64047 + 6.37465i −0.134396 + 0.324461i
\(387\) 6.34277i 0.322421i
\(388\) 4.71191 + 1.95174i 0.239211 + 0.0990844i
\(389\) −12.2315 + 12.2315i −0.620163 + 0.620163i −0.945573 0.325410i \(-0.894498\pi\)
0.325410 + 0.945573i \(0.394498\pi\)
\(390\) −11.7586 −0.595419
\(391\) 9.21185 + 10.8300i 0.465863 + 0.547699i
\(392\) −7.55166 −0.381416
\(393\) −7.39008 + 7.39008i −0.372780 + 0.372780i
\(394\) 27.6642 + 11.4589i 1.39370 + 0.577291i
\(395\) 0.858710i 0.0432064i
\(396\) 2.72078 6.56854i 0.136724 0.330081i
\(397\) −5.95039 + 2.46473i −0.298641 + 0.123701i −0.526973 0.849882i \(-0.676673\pi\)
0.228331 + 0.973583i \(0.426673\pi\)
\(398\) 11.6485 + 28.1219i 0.583885 + 1.40962i
\(399\) −0.708233 0.708233i −0.0354560 0.0354560i
\(400\) 8.18669 + 8.18669i 0.409334 + 0.409334i
\(401\) −8.06407 19.4684i −0.402700 0.972204i −0.987008 0.160672i \(-0.948634\pi\)
0.584308 0.811532i \(-0.301366\pi\)
\(402\) 12.1371 5.02734i 0.605342 0.250741i
\(403\) −3.88658 + 9.38303i −0.193604 + 0.467402i
\(404\) 12.9218i 0.642882i
\(405\) −1.49033 0.617317i −0.0740553 0.0306747i
\(406\) −0.446089 + 0.446089i −0.0221390 + 0.0221390i
\(407\) −53.6728 −2.66046
\(408\) −3.39942 + 2.89149i −0.168296 + 0.143150i
\(409\) −27.6232 −1.36588 −0.682939 0.730475i \(-0.739299\pi\)
−0.682939 + 0.730475i \(0.739299\pi\)
\(410\) −0.583332 + 0.583332i −0.0288087 + 0.0288087i
\(411\) 12.4657 + 5.16346i 0.614887 + 0.254694i
\(412\) 10.7178i 0.528028i
\(413\) 0.0771255 0.186197i 0.00379510 0.00916218i
\(414\) 5.88669 2.43835i 0.289315 0.119838i
\(415\) −1.36023 3.28387i −0.0667708 0.161199i
\(416\) 18.8486 + 18.8486i 0.924129 + 0.924129i
\(417\) −3.76745 3.76745i −0.184493 0.184493i
\(418\) −23.3875 56.4623i −1.14392 2.76166i
\(419\) −11.1336 + 4.61170i −0.543914 + 0.225297i −0.637685 0.770297i \(-0.720108\pi\)
0.0937711 + 0.995594i \(0.470108\pi\)
\(420\) −0.132909 + 0.320871i −0.00648529 + 0.0156569i
\(421\) 14.0183i 0.683210i 0.939844 + 0.341605i \(0.110971\pi\)
−0.939844 + 0.341605i \(0.889029\pi\)
\(422\) 18.2468 + 7.55807i 0.888240 + 0.367921i
\(423\) −6.94495 + 6.94495i −0.337675 + 0.337675i
\(424\) 2.30130 0.111761
\(425\) 4.50621 8.79981i 0.218583 0.426854i
\(426\) −12.0975 −0.586126
\(427\) 0.891171 0.891171i 0.0431268 0.0431268i
\(428\) −24.1278 9.99407i −1.16626 0.483082i
\(429\) 19.8326i 0.957526i
\(430\) 7.23490 17.4666i 0.348898 0.842314i
\(431\) 3.18166 1.31789i 0.153255 0.0634804i −0.304737 0.952436i \(-0.598569\pi\)
0.457992 + 0.888956i \(0.348569\pi\)
\(432\) 1.84776 + 4.46088i 0.0889003 + 0.214624i
\(433\) −3.93561 3.93561i −0.189133 0.189133i 0.606188 0.795321i \(-0.292698\pi\)
−0.795321 + 0.606188i \(0.792698\pi\)
\(434\) 0.512092 + 0.512092i 0.0245812 + 0.0245812i
\(435\) 1.38442 + 3.34228i 0.0663778 + 0.160250i
\(436\) 14.0315 5.81204i 0.671987 0.278346i
\(437\) 8.68180 20.9597i 0.415307 1.00264i
\(438\) 15.3852i 0.735131i
\(439\) 16.2477 + 6.73002i 0.775461 + 0.321206i 0.735082 0.677978i \(-0.237144\pi\)
0.0403786 + 0.999184i \(0.487144\pi\)
\(440\) 6.20692 6.20692i 0.295903 0.295903i
\(441\) 6.97682 0.332230
\(442\) 13.6987 26.7512i 0.651582 1.27242i
\(443\) 5.87632 0.279192 0.139596 0.990209i \(-0.455420\pi\)
0.139596 + 0.990209i \(0.455420\pi\)
\(444\) −10.6762 + 10.6762i −0.506669 + 0.506669i
\(445\) −11.3988 4.72153i −0.540354 0.223822i
\(446\) 10.0084i 0.473911i
\(447\) −3.56619 + 8.60954i −0.168675 + 0.407217i
\(448\) 0.397825 0.164784i 0.0187955 0.00778533i
\(449\) −15.3001 36.9378i −0.722058 1.74320i −0.667403 0.744697i \(-0.732594\pi\)
−0.0546546 0.998505i \(-0.517406\pi\)
\(450\) −3.13291 3.13291i −0.147687 0.147687i
\(451\) −0.983875 0.983875i −0.0463289 0.0463289i
\(452\) −0.906486 2.18845i −0.0426375 0.102936i
\(453\) −11.0526 + 4.57814i −0.519296 + 0.215100i
\(454\) 8.69647 20.9951i 0.408146 0.985351i
\(455\) 0.968815i 0.0454188i
\(456\) 6.57900 + 2.72511i 0.308090 + 0.127615i
\(457\) 12.5092 12.5092i 0.585154 0.585154i −0.351161 0.936315i \(-0.614213\pi\)
0.936315 + 0.351161i \(0.114213\pi\)
\(458\) 55.6467 2.60020
\(459\) 3.14065 2.67139i 0.146593 0.124690i
\(460\) −7.86672 −0.366788
\(461\) 21.1186 21.1186i 0.983591 0.983591i −0.0162762 0.999868i \(-0.505181\pi\)
0.999868 + 0.0162762i \(0.00518111\pi\)
\(462\) −1.30656 0.541196i −0.0607868 0.0251787i
\(463\) 9.45213i 0.439278i −0.975581 0.219639i \(-0.929512\pi\)
0.975581 0.219639i \(-0.0704879\pi\)
\(464\) 4.14386 10.0042i 0.192374 0.464432i
\(465\) 3.83681 1.58926i 0.177928 0.0737001i
\(466\) −6.21209 14.9973i −0.287770 0.694737i
\(467\) 14.1488 + 14.1488i 0.654726 + 0.654726i 0.954127 0.299401i \(-0.0967869\pi\)
−0.299401 + 0.954127i \(0.596787\pi\)
\(468\) −3.94495 3.94495i −0.182355 0.182355i
\(469\) −0.414214 1.00000i −0.0191266 0.0461757i
\(470\) 27.0466 11.2031i 1.24757 0.516759i
\(471\) −6.94755 + 16.7729i −0.320126 + 0.772852i
\(472\) 1.43289i 0.0659539i
\(473\) 29.4600 + 12.2027i 1.35457 + 0.561082i
\(474\) −0.695518 + 0.695518i −0.0319462 + 0.0319462i
\(475\) −15.7753 −0.723820
\(476\) −0.575153 0.676186i −0.0263621 0.0309929i
\(477\) −2.12612 −0.0973484
\(478\) −19.1412 + 19.1412i −0.875500 + 0.875500i
\(479\) 1.11392 + 0.461402i 0.0508964 + 0.0210820i 0.407986 0.912988i \(-0.366231\pi\)
−0.357090 + 0.934070i \(0.616231\pi\)
\(480\) 10.8999i 0.497509i
\(481\) −16.1175 + 38.9110i −0.734894 + 1.77419i
\(482\) −28.9444 + 11.9892i −1.31838 + 0.546091i
\(483\) −0.200901 0.485017i −0.00914130 0.0220690i
\(484\) −14.2741 14.2741i −0.648825 0.648825i
\(485\) −4.11358 4.11358i −0.186788 0.186788i
\(486\) −0.707107 1.70711i −0.0320750 0.0774359i
\(487\) 11.0508 4.57738i 0.500759 0.207421i −0.117983 0.993016i \(-0.537643\pi\)
0.618742 + 0.785595i \(0.287643\pi\)
\(488\) −3.42901 + 8.27836i −0.155224 + 0.374744i
\(489\) 20.7225i 0.937103i
\(490\) −19.2126 7.95813i −0.867938 0.359512i
\(491\) −22.1064 + 22.1064i −0.997649 + 0.997649i −0.999997 0.00234871i \(-0.999252\pi\)
0.00234871 + 0.999997i \(0.499252\pi\)
\(492\) −0.391410 −0.0176461
\(493\) −9.21665 0.744156i −0.415097 0.0335151i
\(494\) −47.9564 −2.15766
\(495\) −5.73445 + 5.73445i −0.257744 + 0.257744i
\(496\) −11.4844 4.75699i −0.515664 0.213595i
\(497\) 0.996740i 0.0447099i
\(498\) 1.55807 3.76152i 0.0698189 0.168558i
\(499\) 38.2107 15.8274i 1.71055 0.708531i 0.710558 0.703638i \(-0.248442\pi\)
0.999988 0.00489302i \(-0.00155750\pi\)
\(500\) 6.45843 + 15.5920i 0.288830 + 0.697297i
\(501\) −5.71965 5.71965i −0.255535 0.255535i
\(502\) 18.2204 + 18.2204i 0.813215 + 0.813215i
\(503\) −1.17972 2.84810i −0.0526013 0.126991i 0.895394 0.445274i \(-0.146894\pi\)
−0.947996 + 0.318283i \(0.896894\pi\)
\(504\) 0.152241 0.0630603i 0.00678135 0.00280893i
\(505\) 5.64047 13.6173i 0.250997 0.605961i
\(506\) 32.0327i 1.42403i
\(507\) −2.36754 0.980668i −0.105146 0.0435530i
\(508\) 12.1812 12.1812i 0.540452 0.540452i
\(509\) 33.8077 1.49850 0.749249 0.662288i \(-0.230415\pi\)
0.749249 + 0.662288i \(0.230415\pi\)
\(510\) −11.6958 + 3.77401i −0.517898 + 0.167116i
\(511\) 1.26762 0.0560760
\(512\) −15.6788 + 15.6788i −0.692910 + 0.692910i
\(513\) −6.07820 2.51767i −0.268359 0.111158i
\(514\) 36.3275i 1.60234i
\(515\) −4.67841 + 11.2947i −0.206155 + 0.497703i
\(516\) 8.28723 3.43268i 0.364825 0.151115i
\(517\) 18.8956 + 45.6181i 0.831030 + 2.00628i
\(518\) 2.12363 + 2.12363i 0.0933067 + 0.0933067i
\(519\) −0.820684 0.820684i −0.0360240 0.0360240i
\(520\) −2.63593 6.36370i −0.115593 0.279067i
\(521\) −37.8381 + 15.6731i −1.65772 + 0.686649i −0.997900 0.0647762i \(-0.979367\pi\)
−0.659818 + 0.751425i \(0.729367\pi\)
\(522\) −1.58579 + 3.82843i −0.0694080 + 0.167566i
\(523\) 9.06788i 0.396511i −0.980150 0.198255i \(-0.936472\pi\)
0.980150 0.198255i \(-0.0635275\pi\)
\(524\) 13.6551 + 5.65612i 0.596525 + 0.247089i
\(525\) −0.258127 + 0.258127i −0.0112656 + 0.0112656i
\(526\) −51.5009 −2.24555
\(527\) −0.854262 + 10.5803i −0.0372122 + 0.460887i
\(528\) 24.2741 1.05640
\(529\) −7.85521 + 7.85521i −0.341531 + 0.341531i
\(530\) 5.85486 + 2.42516i 0.254319 + 0.105342i
\(531\) 1.32381i 0.0574486i
\(532\) −0.542058 + 1.30864i −0.0235012 + 0.0567369i
\(533\) −1.00873 + 0.417828i −0.0436928 + 0.0180981i
\(534\) −5.40829 13.0568i −0.234039 0.565021i
\(535\) 21.0640 + 21.0640i 0.910677 + 0.910677i
\(536\) 5.44155 + 5.44155i 0.235039 + 0.235039i
\(537\) 1.10851 + 2.67619i 0.0478359 + 0.115486i
\(538\) −0.350515 + 0.145188i −0.0151118 + 0.00625951i
\(539\) 13.4226 32.4049i 0.578151 1.39578i
\(540\) 2.28130i 0.0981717i
\(541\) 11.9569 + 4.95269i 0.514065 + 0.212933i 0.624608 0.780939i \(-0.285259\pi\)
−0.110543 + 0.993871i \(0.535259\pi\)
\(542\) −10.7279 + 10.7279i −0.460802 + 0.460802i
\(543\) 0.842695 0.0361635
\(544\) 24.7976 + 12.6983i 1.06319 + 0.544436i
\(545\) −17.3238 −0.742068
\(546\) −0.784699 + 0.784699i −0.0335820 + 0.0335820i
\(547\) 9.84840 + 4.07934i 0.421087 + 0.174420i 0.583157 0.812359i \(-0.301817\pi\)
−0.162070 + 0.986779i \(0.551817\pi\)
\(548\) 19.0816i 0.815127i
\(549\) 3.16799 7.64821i 0.135207 0.326418i
\(550\) −20.5786 + 8.52395i −0.877475 + 0.363462i
\(551\) 5.64624 + 13.6312i 0.240538 + 0.580710i
\(552\) 2.63925 + 2.63925i 0.112334 + 0.112334i
\(553\) 0.0573053 + 0.0573053i 0.00243687 + 0.00243687i
\(554\) 16.6649 + 40.2325i 0.708022 + 1.70932i
\(555\) 15.9111 6.59059i 0.675388 0.279755i
\(556\) −2.88348 + 6.96134i −0.122287 + 0.295226i
\(557\) 30.1933i 1.27933i −0.768653 0.639667i \(-0.779072\pi\)
0.768653 0.639667i \(-0.220928\pi\)
\(558\) 4.39488 + 1.82042i 0.186050 + 0.0770645i
\(559\) 17.6932 17.6932i 0.748341 0.748341i
\(560\) −1.18578 −0.0501085
\(561\) −6.36543 19.7267i −0.268749 0.832861i
\(562\) 18.7607 0.791372
\(563\) −21.1592 + 21.1592i −0.891755 + 0.891755i −0.994688 0.102934i \(-0.967177\pi\)
0.102934 + 0.994688i \(0.467177\pi\)
\(564\) 12.8326 + 5.31543i 0.540349 + 0.223820i
\(565\) 2.70193i 0.113671i
\(566\) 6.70279 16.1820i 0.281739 0.680179i
\(567\) −0.140652 + 0.0582601i −0.00590684 + 0.00244669i
\(568\) −2.71191 6.54712i −0.113789 0.274711i
\(569\) −18.1692 18.1692i −0.761694 0.761694i 0.214935 0.976628i \(-0.431046\pi\)
−0.976628 + 0.214935i \(0.931046\pi\)
\(570\) 13.8662 + 13.8662i 0.580792 + 0.580792i
\(571\) −10.7206 25.8818i −0.448643 1.08312i −0.972831 0.231518i \(-0.925631\pi\)
0.524187 0.851603i \(-0.324369\pi\)
\(572\) −25.9125 + 10.7333i −1.08346 + 0.448783i
\(573\) 3.81562 9.21172i 0.159400 0.384825i
\(574\) 0.0778563i 0.00324966i
\(575\) −7.63912 3.16423i −0.318573 0.131957i
\(576\) 2.00000 2.00000i 0.0833333 0.0833333i
\(577\) 11.8072 0.491538 0.245769 0.969328i \(-0.420959\pi\)
0.245769 + 0.969328i \(0.420959\pi\)
\(578\) 5.03957 31.0050i 0.209618 1.28964i
\(579\) 3.73418 0.155187
\(580\) 3.61766 3.61766i 0.150215 0.150215i
\(581\) −0.309920 0.128373i −0.0128576 0.00532581i
\(582\) 6.66364i 0.276217i
\(583\) −4.09040 + 9.87510i −0.169407 + 0.408985i
\(584\) −8.32638 + 3.44890i −0.344548 + 0.142717i
\(585\) 2.43528 + 5.87929i 0.100686 + 0.243079i
\(586\) 12.1316 + 12.1316i 0.501153 + 0.501153i
\(587\) 5.26250 + 5.26250i 0.217207 + 0.217207i 0.807320 0.590114i \(-0.200917\pi\)
−0.590114 + 0.807320i \(0.700917\pi\)
\(588\) −3.77583 9.11566i −0.155713 0.375923i
\(589\) 15.6481 6.48165i 0.644769 0.267072i
\(590\) −1.51001 + 3.64549i −0.0621662 + 0.150082i
\(591\) 16.2053i 0.666598i
\(592\) −47.6252 19.7270i −1.95739 0.810776i
\(593\) −5.41074 + 5.41074i −0.222193 + 0.222193i −0.809421 0.587229i \(-0.800219\pi\)
0.587229 + 0.809421i \(0.300219\pi\)
\(594\) −9.28931 −0.381145
\(595\) 0.310949 + 0.963641i 0.0127477 + 0.0395054i
\(596\) 13.1789 0.539830
\(597\) 11.6485 11.6485i 0.476740 0.476740i
\(598\) −23.2227 9.61915i −0.949646 0.393356i
\(599\) 16.1547i 0.660062i −0.943970 0.330031i \(-0.892941\pi\)
0.943970 0.330031i \(-0.107059\pi\)
\(600\) 0.993212 2.39782i 0.0405477 0.0978908i
\(601\) −26.5316 + 10.9897i −1.08225 + 0.448281i −0.851296 0.524685i \(-0.824183\pi\)
−0.230949 + 0.972966i \(0.574183\pi\)
\(602\) −0.682803 1.64843i −0.0278290 0.0671851i
\(603\) −5.02734 5.02734i −0.204729 0.204729i
\(604\) 11.9632 + 11.9632i 0.486778 + 0.486778i
\(605\) 8.81166 + 21.2732i 0.358245 + 0.864880i
\(606\) 15.5980 6.46088i 0.633624 0.262456i
\(607\) −9.87815 + 23.8480i −0.400942 + 0.967959i 0.586496 + 0.809952i \(0.300507\pi\)
−0.987438 + 0.158007i \(0.949493\pi\)
\(608\) 44.4542i 1.80286i
\(609\) 0.315433 + 0.130656i 0.0127820 + 0.00529447i
\(610\) −17.4479 + 17.4479i −0.706445 + 0.706445i
\(611\) 38.7458 1.56749
\(612\) −5.19004 2.65772i −0.209795 0.107432i
\(613\) 49.1769 1.98623 0.993117 0.117123i \(-0.0373670\pi\)
0.993117 + 0.117123i \(0.0373670\pi\)
\(614\) 35.4624 35.4624i 1.43115 1.43115i
\(615\) 0.412478 + 0.170854i 0.0166327 + 0.00688949i
\(616\) 0.828427i 0.0333783i
\(617\) 1.35880 3.28044i 0.0547034 0.132066i −0.894165 0.447738i \(-0.852230\pi\)
0.948868 + 0.315672i \(0.102230\pi\)
\(618\) −12.9375 + 5.35890i −0.520423 + 0.215566i
\(619\) −13.4709 32.5216i −0.541440 1.30715i −0.923707 0.383101i \(-0.874856\pi\)
0.382266 0.924052i \(-0.375144\pi\)
\(620\) −4.15293 4.15293i −0.166786 0.166786i
\(621\) −2.43835 2.43835i −0.0978474 0.0978474i
\(622\) −1.82843 4.41421i −0.0733132 0.176994i
\(623\) −1.07578 + 0.445601i −0.0431000 + 0.0178526i
\(624\) 7.28931 17.5980i 0.291806 0.704482i
\(625\) 7.26131i 0.290453i
\(626\) −43.7199 18.1094i −1.74740 0.723796i
\(627\) −23.3875 + 23.3875i −0.934005 + 0.934005i
\(628\) 25.6748 1.02454
\(629\) −3.54259 + 43.8763i −0.141252 + 1.74946i
\(630\) 0.453780 0.0180790
\(631\) −22.2124 + 22.2124i −0.884262 + 0.884262i −0.993964 0.109702i \(-0.965010\pi\)
0.109702 + 0.993964i \(0.465010\pi\)
\(632\) −0.532327 0.220497i −0.0211748 0.00877089i
\(633\) 10.6887i 0.424839i
\(634\) −18.1007 + 43.6989i −0.718869 + 1.73550i
\(635\) −18.1540 + 7.51964i −0.720420 + 0.298408i
\(636\) 1.15065 + 2.77791i 0.0456262 + 0.110151i
\(637\) −19.4618 19.4618i −0.771106 0.771106i
\(638\) 14.7309 + 14.7309i 0.583201 + 0.583201i
\(639\) 2.50548 + 6.04875i 0.0991151 + 0.239285i
\(640\) 12.3515 5.11615i 0.488235 0.202233i
\(641\) 10.1700 24.5525i 0.401691 0.969767i −0.585565 0.810625i \(-0.699127\pi\)
0.987256 0.159141i \(-0.0508726\pi\)
\(642\) 34.1219i 1.34668i
\(643\) −14.8049 6.13238i −0.583847 0.241837i 0.0711538 0.997465i \(-0.477332\pi\)
−0.655001 + 0.755628i \(0.727332\pi\)
\(644\) −0.524979 + 0.524979i −0.0206871 + 0.0206871i
\(645\) −10.2317 −0.402872
\(646\) −47.7003 + 15.3920i −1.87674 + 0.605590i
\(647\) 41.6554 1.63764 0.818822 0.574048i \(-0.194628\pi\)
0.818822 + 0.574048i \(0.194628\pi\)
\(648\) 0.765367 0.765367i 0.0300665 0.0300665i
\(649\) −6.14866 2.54686i −0.241356 0.0999729i
\(650\) 17.4785i 0.685563i
\(651\) 0.149988 0.362104i 0.00587851 0.0141920i
\(652\) 27.0752 11.2149i 1.06035 0.439210i
\(653\) −4.71711 11.3881i −0.184595 0.445652i 0.804308 0.594212i \(-0.202536\pi\)
−0.988903 + 0.148560i \(0.952536\pi\)
\(654\) −14.0315 14.0315i −0.548675 0.548675i
\(655\) −11.9211 11.9211i −0.465797 0.465797i
\(656\) −0.511402 1.23463i −0.0199669 0.0482043i
\(657\) 7.69258 3.18637i 0.300116 0.124312i
\(658\) 1.05731 2.55256i 0.0412181 0.0995092i
\(659\) 3.46449i 0.134957i 0.997721 + 0.0674786i \(0.0214955\pi\)
−0.997721 + 0.0674786i \(0.978505\pi\)
\(660\) 10.5959 + 4.38896i 0.412444 + 0.170840i
\(661\) 20.0276 20.0276i 0.778984 0.778984i −0.200674 0.979658i \(-0.564313\pi\)
0.979658 + 0.200674i \(0.0643134\pi\)
\(662\) −0.615621 −0.0239268
\(663\) −16.2127 1.30902i −0.629648 0.0508380i
\(664\) 2.38500 0.0925558
\(665\) 1.14247 1.14247i 0.0443031 0.0443031i
\(666\) 18.2254 + 7.54920i 0.706220 + 0.292526i
\(667\) 7.73339i 0.299438i
\(668\) −4.37763 + 10.5685i −0.169376 + 0.408909i
\(669\) 5.00419 2.07280i 0.193473 0.0801392i
\(670\) 8.10973 + 19.5786i 0.313306 + 0.756388i
\(671\) −29.4285 29.4285i −1.13607 1.13607i
\(672\) −0.727394 0.727394i −0.0280598 0.0280598i
\(673\) 10.8715 + 26.2461i 0.419065 + 1.01171i 0.982619 + 0.185634i \(0.0594338\pi\)
−0.563554 + 0.826079i \(0.690566\pi\)
\(674\) 6.41086 2.65546i 0.246937 0.102285i
\(675\) −0.917608 + 2.21530i −0.0353187 + 0.0852670i
\(676\) 3.62408i 0.139388i
\(677\) 17.8293 + 7.38512i 0.685234 + 0.283833i 0.698013 0.716085i \(-0.254068\pi\)
−0.0127789 + 0.999918i \(0.504068\pi\)
\(678\) −2.18845 + 2.18845i −0.0840469 + 0.0840469i
\(679\) −0.549032 −0.0210699
\(680\) −4.66433 5.48369i −0.178869 0.210290i
\(681\) −12.2987 −0.471286
\(682\) 16.9104 16.9104i 0.647534 0.647534i
\(683\) 17.9965 + 7.45441i 0.688618 + 0.285235i 0.699424 0.714707i \(-0.253440\pi\)
−0.0108060 + 0.999942i \(0.503440\pi\)
\(684\) 9.30411i 0.355751i
\(685\) −8.32930 + 20.1087i −0.318246 + 0.768315i
\(686\) −3.63246 + 1.50461i −0.138688 + 0.0574464i
\(687\) −11.5248 27.8233i −0.439699 1.06153i
\(688\) 21.6556 + 21.6556i 0.825611 + 0.825611i
\(689\) 5.93081 + 5.93081i 0.225946 + 0.225946i
\(690\) 3.93336 + 9.49597i 0.149740 + 0.361505i
\(691\) −6.96550 + 2.88520i −0.264980 + 0.109758i −0.511218 0.859451i \(-0.670806\pi\)
0.246238 + 0.969209i \(0.420806\pi\)
\(692\) −0.628124 + 1.51643i −0.0238777 + 0.0576459i
\(693\) 0.765367i 0.0290739i
\(694\) −5.65051 2.34052i −0.214491 0.0888449i
\(695\) 6.07737 6.07737i 0.230528 0.230528i
\(696\) −2.42742 −0.0920110
\(697\) −0.869234 + 0.739356i −0.0329246 + 0.0280051i
\(698\) −4.77624 −0.180783
\(699\) −6.21209 + 6.21209i −0.234963 + 0.234963i
\(700\) 0.476957 + 0.197562i 0.0180273 + 0.00746714i
\(701\) 39.0875i 1.47632i 0.674628 + 0.738158i \(0.264304\pi\)
−0.674628 + 0.738158i \(0.735696\pi\)
\(702\) −2.78950 + 6.73445i −0.105283 + 0.254175i
\(703\) 64.8920 26.8792i 2.44745 1.01377i
\(704\) −5.44155 13.1371i −0.205086 0.495122i
\(705\) −11.2031 11.2031i −0.421932 0.421932i
\(706\) −17.3574 17.3574i −0.653256 0.653256i
\(707\) −0.532327 1.28515i −0.0200202 0.0483330i
\(708\) −1.72965 + 0.716443i −0.0650041 + 0.0269256i
\(709\) −2.56889 + 6.20186i −0.0964768 + 0.232916i −0.964749 0.263173i \(-0.915231\pi\)
0.868272 + 0.496089i \(0.165231\pi\)
\(710\) 19.5148i 0.732377i
\(711\) 0.491806 + 0.203713i 0.0184442 + 0.00763982i
\(712\) 5.85389 5.85389i 0.219384 0.219384i
\(713\) 8.87762 0.332470
\(714\) −0.528653 + 1.03236i −0.0197843 + 0.0386352i
\(715\) 31.9925 1.19645
\(716\) 2.89668 2.89668i 0.108254 0.108254i
\(717\) 13.5349 + 5.60634i 0.505470 + 0.209373i
\(718\) 27.2140i 1.01562i
\(719\) 2.83424 6.84246i 0.105699 0.255181i −0.862177 0.506607i \(-0.830900\pi\)
0.967876 + 0.251426i \(0.0808995\pi\)
\(720\) −7.19597 + 2.98067i −0.268178 + 0.111083i
\(721\) 0.441531 + 1.06595i 0.0164435 + 0.0396981i
\(722\) 31.7275 + 31.7275i 1.18078 + 1.18078i
\(723\) 11.9892 + 11.9892i 0.445882 + 0.445882i
\(724\) −0.456063 1.10103i −0.0169494 0.0409196i
\(725\) 4.96812 2.05786i 0.184512 0.0764272i
\(726\) −10.0933 + 24.3675i −0.374599 + 0.904362i
\(727\) 6.36054i 0.235899i −0.993020 0.117950i \(-0.962368\pi\)
0.993020 0.117950i \(-0.0376322\pi\)
\(728\) −0.600582 0.248769i −0.0222591 0.00922001i
\(729\) −0.707107 + 0.707107i −0.0261891 + 0.0261891i
\(730\) −24.8182 −0.918562
\(731\) 11.9199 23.2774i 0.440874 0.860947i
\(732\) −11.7074 −0.432717
\(733\) −29.2273 + 29.2273i −1.07954 + 1.07954i −0.0829857 + 0.996551i \(0.526446\pi\)
−0.996551 + 0.0829857i \(0.973554\pi\)
\(734\) 0.751059 + 0.311099i 0.0277221 + 0.0114829i
\(735\) 11.2545i 0.415128i
\(736\) 8.91667 21.5268i 0.328673 0.793487i
\(737\) −33.0223 + 13.6783i −1.21639 + 0.503845i
\(738\) 0.195705 + 0.472474i 0.00720400 + 0.0173920i
\(739\) −16.3803 16.3803i −0.602561 0.602561i 0.338430 0.940991i \(-0.390104\pi\)
−0.940991 + 0.338430i \(0.890104\pi\)
\(740\) −17.2220 17.2220i −0.633095 0.633095i
\(741\) 9.93209 + 23.9782i 0.364864 + 0.880861i
\(742\) 0.552561 0.228878i 0.0202851 0.00840238i
\(743\) −14.5995 + 35.2464i −0.535606 + 1.29307i 0.392158 + 0.919898i \(0.371729\pi\)
−0.927764 + 0.373168i \(0.878271\pi\)
\(744\) 2.78658i 0.102161i
\(745\) −13.8883 5.75271i −0.508827 0.210763i
\(746\) −1.08170 + 1.08170i −0.0396039 + 0.0396039i
\(747\) −2.20345 −0.0806200
\(748\) −22.3292 + 18.9928i −0.816436 + 0.694447i
\(749\) 2.81138 0.102726
\(750\) 15.5920 15.5920i 0.569340 0.569340i
\(751\) −31.6034 13.0906i −1.15322 0.477681i −0.277611 0.960694i \(-0.589543\pi\)
−0.875613 + 0.483013i \(0.839543\pi\)
\(752\) 47.4231i 1.72934i
\(753\) 5.33662 12.8837i 0.194477 0.469510i
\(754\) 15.1029 6.25584i 0.550017 0.227824i
\(755\) −7.38511 17.8292i −0.268772 0.648872i
\(756\) 0.152241 + 0.152241i 0.00553695 + 0.00553695i
\(757\) −4.96523 4.96523i −0.180465 0.180465i 0.611094 0.791558i \(-0.290730\pi\)
−0.791558 + 0.611094i \(0.790730\pi\)
\(758\) 14.0066 + 33.8150i 0.508743 + 1.22821i
\(759\) −16.0164 + 6.63419i −0.581357 + 0.240806i
\(760\) −4.39595 + 10.6128i −0.159458 + 0.384965i
\(761\) 47.2917i 1.71432i 0.515048 + 0.857161i \(0.327774\pi\)
−0.515048 + 0.857161i \(0.672226\pi\)
\(762\) −20.7946 8.61339i −0.753308 0.312030i
\(763\) −1.15609 + 1.15609i −0.0418531 + 0.0418531i
\(764\) −14.1007 −0.510145
\(765\) 4.30928 + 5.06627i 0.155802 + 0.183171i
\(766\) 30.8259 1.11378
\(767\) −3.69278 + 3.69278i −0.133338 + 0.133338i
\(768\) 19.3743 + 8.02509i 0.699109 + 0.289580i
\(769\) 6.39156i 0.230486i −0.993337 0.115243i \(-0.963235\pi\)
0.993337 0.115243i \(-0.0367646\pi\)
\(770\) 0.873017 2.10765i 0.0314614 0.0759545i
\(771\) 18.1638 7.52368i 0.654152 0.270959i
\(772\) −2.02092 4.87894i −0.0727347 0.175597i
\(773\) −2.60024 2.60024i −0.0935241 0.0935241i 0.658797 0.752321i \(-0.271066\pi\)
−0.752321 + 0.658797i \(0.771066\pi\)
\(774\) −8.28723 8.28723i −0.297878 0.297878i
\(775\) −2.36235 5.70321i −0.0848580 0.204865i
\(776\) 3.60634 1.49379i 0.129460 0.0536241i
\(777\) 0.621995 1.50163i 0.0223140 0.0538707i
\(778\) 31.9625i 1.14591i
\(779\) 1.68226 + 0.696813i 0.0602731 + 0.0249659i
\(780\) 6.36370 6.36370i 0.227857 0.227857i
\(781\) 32.9146 1.17778
\(782\) −26.1860 2.11427i −0.936409 0.0756061i
\(783\) 2.24264 0.0801454
\(784\) 23.8204 23.8204i 0.850727 0.850727i
\(785\) −27.0567 11.2073i −0.965696 0.400004i
\(786\) 19.3112i 0.688808i
\(787\) −1.55526 + 3.75473i −0.0554391 + 0.133842i −0.949172 0.314757i \(-0.898077\pi\)
0.893733 + 0.448599i \(0.148077\pi\)
\(788\) −21.1733 + 8.77026i −0.754267 + 0.312428i
\(789\) 10.6662 + 25.7505i 0.379726 + 0.916741i
\(790\) −1.12196 1.12196i −0.0399175 0.0399175i
\(791\) 0.180311 + 0.180311i 0.00641113 + 0.00641113i
\(792\) −2.08239 5.02734i −0.0739946 0.178639i
\(793\) −30.1718 + 12.4976i −1.07143 + 0.443801i
\(794\) 4.55423 10.9949i 0.161623 0.390194i
\(795\) 3.42970i 0.121639i
\(796\) −21.5236 8.91536i −0.762883 0.315996i
\(797\) 9.76205 9.76205i 0.345790 0.345790i −0.512749 0.858539i \(-0.671373\pi\)
0.858539 + 0.512749i \(0.171373\pi\)
\(798\) 1.85070 0.0655141
\(799\) 38.5389 12.4358i 1.36341 0.439947i
\(800\) −16.2021 −0.572830
\(801\) −5.40829 + 5.40829i −0.191092 + 0.191092i
\(802\) 35.9729 + 14.9004i 1.27025 + 0.526153i
\(803\) 41.8596i 1.47719i
\(804\) −3.84776 + 9.28931i −0.135700 + 0.327609i
\(805\) 0.782394 0.324078i 0.0275758 0.0114223i
\(806\) −7.18146 17.3376i −0.252956 0.610690i
\(807\) 0.145188 + 0.145188i 0.00511087 + 0.00511087i
\(808\) 6.99321 + 6.99321i 0.246020 + 0.246020i
\(809\) 7.21319 + 17.4142i 0.253602 + 0.612250i 0.998490 0.0549401i \(-0.0174968\pi\)
−0.744887 + 0.667190i \(0.767497\pi\)
\(810\) 2.75378 1.14065i 0.0967579 0.0400784i
\(811\) −0.994804 + 2.40167i −0.0349323 + 0.0843340i −0.940383 0.340118i \(-0.889533\pi\)
0.905451 + 0.424452i \(0.139533\pi\)
\(812\) 0.482843i 0.0169445i
\(813\) 7.58576 + 3.14212i 0.266044 + 0.110199i
\(814\) 70.1269 70.1269i 2.45795 2.45795i
\(815\) −33.4280 −1.17093
\(816\) 1.60218 19.8435i 0.0560874 0.694663i
\(817\) −41.7291 −1.45992
\(818\) 36.0914 36.0914i 1.26191 1.26191i
\(819\) 0.554866 + 0.229833i 0.0193886 + 0.00803101i
\(820\) 0.631394i 0.0220492i
\(821\) 4.97770 12.0172i 0.173723 0.419404i −0.812904 0.582397i \(-0.802115\pi\)
0.986627 + 0.162993i \(0.0521149\pi\)
\(822\) −23.0336 + 9.54082i −0.803388 + 0.332774i
\(823\) −8.28676 20.0060i −0.288858 0.697366i 0.711125 0.703065i \(-0.248186\pi\)
−0.999984 + 0.00569929i \(0.998186\pi\)
\(824\) −5.80043 5.80043i −0.202067 0.202067i
\(825\) 8.52395 + 8.52395i 0.296766 + 0.296766i
\(826\) 0.142509 + 0.344048i 0.00495853 + 0.0119710i
\(827\) −44.2300 + 18.3207i −1.53803 + 0.637072i −0.981102 0.193490i \(-0.938019\pi\)
−0.556926 + 0.830562i \(0.688019\pi\)
\(828\) −1.86623 + 4.50548i −0.0648559 + 0.156576i
\(829\) 12.9906i 0.451181i 0.974222 + 0.225590i \(0.0724311\pi\)
−0.974222 + 0.225590i \(0.927569\pi\)
\(830\) 6.06781 + 2.51337i 0.210617 + 0.0872403i
\(831\) 16.6649 16.6649i 0.578098 0.578098i
\(832\) −11.1580 −0.386834
\(833\) −25.6043 13.1115i −0.887138 0.454285i
\(834\) 9.84482 0.340898
\(835\) 9.22652 9.22652i 0.319297 0.319297i
\(836\) 43.2144 + 17.9000i 1.49460 + 0.619084i
\(837\) 2.57446i 0.0889864i
\(838\) 8.52132 20.5723i 0.294364 0.710658i
\(839\) 17.4361 7.22226i 0.601961 0.249340i −0.0608263 0.998148i \(-0.519374\pi\)
0.662787 + 0.748808i \(0.269374\pi\)
\(840\) 0.101724 + 0.245584i 0.00350982 + 0.00847345i
\(841\) 16.9497 + 16.9497i 0.584474 + 0.584474i
\(842\) −18.3158 18.3158i −0.631204 0.631204i
\(843\) −3.88547 9.38035i −0.133823 0.323076i
\(844\) −13.9655 + 5.78470i −0.480712 + 0.199118i
\(845\) 1.58194 3.81914i 0.0544204 0.131383i
\(846\) 18.1480i 0.623942i
\(847\) 2.00769 + 0.831613i 0.0689851 + 0.0285746i
\(848\) −7.25903 + 7.25903i −0.249276 + 0.249276i
\(849\) −9.47918 −0.325325
\(850\) 5.60987 + 17.3852i 0.192417 + 0.596306i
\(851\) 36.8151 1.26201
\(852\) 6.54712 6.54712i 0.224301 0.224301i
\(853\) 5.57645 + 2.30984i 0.190934 + 0.0790875i 0.476102 0.879390i \(-0.342049\pi\)
−0.285168 + 0.958478i \(0.592049\pi\)
\(854\) 2.32874i 0.0796879i
\(855\) 4.06132 9.80490i 0.138894 0.335321i
\(856\) −18.4666 + 7.64913i −0.631177 + 0.261442i
\(857\) 6.15488 + 14.8592i 0.210247 + 0.507581i 0.993461 0.114171i \(-0.0364213\pi\)
−0.783214 + 0.621752i \(0.786421\pi\)
\(858\) 25.9125 + 25.9125i 0.884639 + 0.884639i
\(859\) −40.9101 40.9101i −1.39583 1.39583i −0.811548 0.584285i \(-0.801375\pi\)
−0.584285 0.811548i \(-0.698625\pi\)
\(860\) 5.53735 + 13.3683i 0.188822 + 0.455857i
\(861\) 0.0389281 0.0161246i 0.00132667 0.000549524i
\(862\) −2.43514 + 5.87894i −0.0829411 + 0.200238i
\(863\) 7.56067i 0.257368i −0.991686 0.128684i \(-0.958925\pi\)
0.991686 0.128684i \(-0.0410753\pi\)
\(864\) −6.24264 2.58579i −0.212379 0.0879702i
\(865\) 1.32387 1.32387i 0.0450128 0.0450128i
\(866\) 10.2842 0.349473
\(867\) −16.5462 + 3.90156i −0.561940 + 0.132504i
\(868\) −0.554285 −0.0188137
\(869\) 1.89235 1.89235i 0.0641936 0.0641936i
\(870\) −6.17574 2.55807i −0.209377 0.0867268i
\(871\) 28.0475i 0.950354i
\(872\) 4.44834 10.7392i 0.150640 0.363677i
\(873\) −3.33182 + 1.38009i −0.112765 + 0.0467088i
\(874\) 16.0419 + 38.7285i 0.542624 + 1.31001i
\(875\) −1.28466 1.28466i −0.0434295 0.0434295i
\(876\) −8.32638 8.32638i −0.281322 0.281322i
\(877\) 6.64567 + 16.0441i 0.224408 + 0.541770i 0.995479 0.0949797i \(-0.0302786\pi\)
−0.771071 + 0.636749i \(0.780279\pi\)
\(878\) −30.0218 + 12.4355i −1.01319 + 0.419676i
\(879\) 3.55327 8.57836i 0.119849 0.289341i
\(880\) 39.1572i 1.31999i
\(881\) 37.9731 + 15.7290i 1.27935 + 0.529923i 0.915793 0.401650i \(-0.131563\pi\)
0.363554 + 0.931573i \(0.381563\pi\)
\(882\) −9.11566 + 9.11566i −0.306940 + 0.306940i
\(883\) −28.3729 −0.954824 −0.477412 0.878680i \(-0.658425\pi\)
−0.477412 + 0.878680i \(0.658425\pi\)
\(884\) 7.06392 + 21.8913i 0.237585 + 0.736285i
\(885\) 2.13548 0.0717833
\(886\) −7.67778 + 7.67778i −0.257940 + 0.257940i
\(887\) −19.8638 8.22786i −0.666961 0.276264i 0.0234033 0.999726i \(-0.492550\pi\)
−0.690364 + 0.723462i \(0.742550\pi\)
\(888\) 11.5558i 0.387788i
\(889\) −0.709676 + 1.71331i −0.0238018 + 0.0574626i
\(890\) 21.0622 8.72425i 0.706006 0.292437i
\(891\) 1.92388 + 4.64466i 0.0644524 + 0.155602i
\(892\) −5.41650 5.41650i −0.181358 0.181358i
\(893\) −45.6908 45.6908i −1.52898 1.52898i
\(894\) −6.58946 15.9084i −0.220385 0.532055i
\(895\) −4.31703 + 1.78817i −0.144302 + 0.0597719i
\(896\) 0.482843 1.16569i 0.0161307 0.0389429i
\(897\) 13.6035i 0.454208i
\(898\) 68.2521 + 28.2710i 2.27760 + 0.943414i
\(899\) −4.08255 + 4.08255i −0.136161 + 0.136161i
\(900\) 3.39104 0.113035
\(901\) 7.80268 + 3.99560i 0.259945 + 0.133113i
\(902\) 2.57099 0.0856046
\(903\) −0.682803 + 0.682803i −0.0227223 + 0.0227223i
\(904\) −1.67497 0.693794i −0.0557086 0.0230752i
\(905\) 1.35937i 0.0451871i
\(906\) 8.45929 20.4225i 0.281041 0.678493i
\(907\) −13.6798 + 5.66635i −0.454229 + 0.188148i −0.598055 0.801455i \(-0.704060\pi\)
0.143826 + 0.989603i \(0.454060\pi\)
\(908\) 6.65599 + 16.0690i 0.220887 + 0.533268i
\(909\) −6.46088 6.46088i −0.214294 0.214294i
\(910\) −1.26582 1.26582i −0.0419615 0.0419615i
\(911\) 18.1855 + 43.9036i 0.602512 + 1.45459i 0.870987 + 0.491306i \(0.163480\pi\)
−0.268475 + 0.963287i \(0.586520\pi\)
\(912\) −29.3482 + 12.1564i −0.971814 + 0.402539i
\(913\) −4.23917 + 10.2343i −0.140296 + 0.338705i
\(914\) 32.6880i 1.08122i
\(915\) 12.3375 + 5.11037i 0.407866 + 0.168944i
\(916\) −30.1158 + 30.1158i −0.995053 + 0.995053i
\(917\) −1.59109 −0.0525425
\(918\) −0.613126 + 7.59379i −0.0202362 + 0.250633i
\(919\) −52.4090 −1.72881 −0.864407 0.502793i \(-0.832306\pi\)
−0.864407 + 0.502793i \(0.832306\pi\)
\(920\) −4.25744 + 4.25744i −0.140364 + 0.140364i
\(921\) −25.0757 10.3867i −0.826273 0.342253i
\(922\) 55.1856i 1.81744i
\(923\) 9.88397 23.8620i 0.325335 0.785428i
\(924\) 1.00000 0.414214i 0.0328976 0.0136266i
\(925\) −9.79655 23.6510i −0.322109 0.777639i
\(926\) 12.3498 + 12.3498i 0.405840 + 0.405840i
\(927\) 5.35890 + 5.35890i 0.176009 + 0.176009i
\(928\) 5.79899 + 14.0000i 0.190361 + 0.459573i
\(929\) 42.4038 17.5642i 1.39122 0.576263i 0.443764 0.896143i \(-0.353643\pi\)
0.947458 + 0.319880i \(0.103643\pi\)
\(930\) −2.93657 + 7.08950i −0.0962938 + 0.232474i
\(931\) 45.9005i 1.50433i
\(932\) 11.4785 + 4.75453i 0.375989 + 0.155740i
\(933\) −1.82843 + 1.82843i −0.0598600 + 0.0598600i
\(934\) −36.9725 −1.20978
\(935\) 31.8216 10.2682i 1.04068 0.335807i
\(936\) −4.26998 −0.139569
\(937\) 15.3852 15.3852i 0.502611 0.502611i −0.409637 0.912248i \(-0.634345\pi\)
0.912248 + 0.409637i \(0.134345\pi\)
\(938\) 1.84776 + 0.765367i 0.0603315 + 0.0249901i
\(939\) 25.6105i 0.835767i
\(940\) −8.57446 + 20.7006i −0.279668 + 0.675179i
\(941\) 49.9839 20.7040i 1.62943 0.674932i 0.634261 0.773119i \(-0.281304\pi\)
0.995168 + 0.0981874i \(0.0313045\pi\)
\(942\) −12.8374 30.9922i −0.418265 1.00978i
\(943\) 0.674858 + 0.674858i 0.0219764 + 0.0219764i
\(944\) −4.51978 4.51978i −0.147106 0.147106i
\(945\) −0.0939809 0.226890i −0.00305720 0.00738073i
\(946\) −54.4350 + 22.5477i −1.76983 + 0.733089i
\(947\) 2.21041 5.33640i 0.0718286 0.173410i −0.883888 0.467699i \(-0.845083\pi\)
0.955716 + 0.294290i \(0.0950830\pi\)
\(948\) 0.752823i 0.0244506i
\(949\) −30.3468 12.5701i −0.985099 0.408041i
\(950\) 20.6114 20.6114i 0.668722 0.668722i
\(951\) 25.5982 0.830078
\(952\) −0.677220 0.0546790i −0.0219488 0.00177216i
\(953\) −31.4698 −1.01941 −0.509704 0.860350i \(-0.670245\pi\)
−0.509704 + 0.860350i \(0.670245\pi\)
\(954\) 2.77791 2.77791i 0.0899382 0.0899382i
\(955\) 14.8597 + 6.15507i 0.480847 + 0.199174i
\(956\) 20.7183i 0.670078i
\(957\) 4.31457 10.4163i 0.139470 0.336711i
\(958\) −2.05826 + 0.852559i −0.0664994 + 0.0275449i
\(959\) 0.786089 + 1.89779i 0.0253841 + 0.0612828i
\(960\) 3.22625 + 3.22625i 0.104127 + 0.104127i
\(961\) −17.2337 17.2337i −0.555926 0.555926i
\(962\) −29.7812 71.8982i −0.960185 2.31809i
\(963\) 17.0610 7.06688i 0.549781 0.227727i
\(964\) 9.17611 22.1531i 0.295543 0.713503i
\(965\) 6.02371i 0.193910i
\(966\) 0.896195 + 0.371216i 0.0288346 + 0.0119437i
\(967\) 4.11626 4.11626i 0.132370 0.132370i −0.637818 0.770187i \(-0.720163\pi\)
0.770187 + 0.637818i \(0.220163\pi\)
\(968\) −15.4502 −0.496589
\(969\) 17.5750 + 20.6623i 0.564592 + 0.663770i
\(970\) 10.7493 0.345139
\(971\) 15.4891 15.4891i 0.497070 0.497070i −0.413455 0.910525i \(-0.635678\pi\)
0.910525 + 0.413455i \(0.135678\pi\)
\(972\) 1.30656 + 0.541196i 0.0419080 + 0.0173589i
\(973\) 0.811136i 0.0260038i
\(974\) −8.45790 + 20.4192i −0.271009 + 0.654273i
\(975\) 8.73925 3.61991i 0.279880 0.115930i
\(976\) −15.2964 36.9288i −0.489626 1.18206i
\(977\) 19.8324 + 19.8324i 0.634495 + 0.634495i 0.949192 0.314697i \(-0.101903\pi\)
−0.314697 + 0.949192i \(0.601903\pi\)
\(978\) −27.0752 27.0752i −0.865770 0.865770i
\(979\) 14.7147 + 35.5245i 0.470285 + 1.13537i
\(980\) 14.7047 6.09089i 0.469725 0.194566i
\(981\) −4.10973 + 9.92177i −0.131214 + 0.316778i
\(982\) 57.7668i 1.84341i
\(983\) −28.9425 11.9884i −0.923121 0.382369i −0.130056 0.991507i \(-0.541516\pi\)
−0.793065 + 0.609137i \(0.791516\pi\)
\(984\) −0.211830 + 0.211830i −0.00675288 + 0.00675288i
\(985\) 26.1412 0.832929
\(986\) 13.0144 11.0698i 0.414464 0.352536i
\(987\) −1.49526 −0.0475945
\(988\) 25.9538 25.9538i 0.825700 0.825700i
\(989\) −20.2071 8.37007i −0.642549 0.266153i
\(990\) 14.9848i 0.476249i
\(991\) 6.88802 16.6291i 0.218805 0.528242i −0.775919 0.630833i \(-0.782713\pi\)
0.994724 + 0.102591i \(0.0327133\pi\)
\(992\) 16.0714 6.65701i 0.510269 0.211360i
\(993\) 0.127499 + 0.307810i 0.00404607 + 0.00976807i
\(994\) −1.30230 1.30230i −0.0413066 0.0413066i
\(995\) 18.7905 + 18.7905i 0.595697 + 0.595697i
\(996\) 1.19250 + 2.87894i 0.0377857 + 0.0912228i
\(997\) 51.3369 21.2644i 1.62586 0.673451i 0.631097 0.775704i \(-0.282605\pi\)
0.994758 + 0.102253i \(0.0326050\pi\)
\(998\) −29.2452 + 70.6042i −0.925741 + 2.23494i
\(999\) 10.6762i 0.337780i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 51.2.h.a.43.1 yes 8
3.2 odd 2 153.2.l.e.145.2 8
4.3 odd 2 816.2.bq.a.145.1 8
17.2 even 8 inner 51.2.h.a.19.1 8
17.3 odd 16 867.2.e.i.829.4 8
17.4 even 4 867.2.h.f.688.2 8
17.5 odd 16 867.2.e.h.616.1 8
17.6 odd 16 867.2.a.n.1.1 4
17.7 odd 16 867.2.d.e.577.7 8
17.8 even 8 867.2.h.b.712.2 8
17.9 even 8 867.2.h.f.712.2 8
17.10 odd 16 867.2.d.e.577.8 8
17.11 odd 16 867.2.a.m.1.1 4
17.12 odd 16 867.2.e.i.616.1 8
17.13 even 4 867.2.h.b.688.2 8
17.14 odd 16 867.2.e.h.829.4 8
17.15 even 8 867.2.h.g.733.1 8
17.16 even 2 867.2.h.g.757.1 8
51.2 odd 8 153.2.l.e.19.2 8
51.11 even 16 2601.2.a.bc.1.4 4
51.23 even 16 2601.2.a.bd.1.4 4
68.19 odd 8 816.2.bq.a.529.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.1 8 17.2 even 8 inner
51.2.h.a.43.1 yes 8 1.1 even 1 trivial
153.2.l.e.19.2 8 51.2 odd 8
153.2.l.e.145.2 8 3.2 odd 2
816.2.bq.a.145.1 8 4.3 odd 2
816.2.bq.a.529.1 8 68.19 odd 8
867.2.a.m.1.1 4 17.11 odd 16
867.2.a.n.1.1 4 17.6 odd 16
867.2.d.e.577.7 8 17.7 odd 16
867.2.d.e.577.8 8 17.10 odd 16
867.2.e.h.616.1 8 17.5 odd 16
867.2.e.h.829.4 8 17.14 odd 16
867.2.e.i.616.1 8 17.12 odd 16
867.2.e.i.829.4 8 17.3 odd 16
867.2.h.b.688.2 8 17.13 even 4
867.2.h.b.712.2 8 17.8 even 8
867.2.h.f.688.2 8 17.4 even 4
867.2.h.f.712.2 8 17.9 even 8
867.2.h.g.733.1 8 17.15 even 8
867.2.h.g.757.1 8 17.16 even 2
2601.2.a.bc.1.4 4 51.11 even 16
2601.2.a.bd.1.4 4 51.23 even 16