Properties

Label 867.2.a.m.1.1
Level $867$
Weight $2$
Character 867.1
Self dual yes
Analytic conductor $6.923$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(1,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{16})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.84776\) of defining polynomial
Character \(\chi\) \(=\) 867.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.84776 q^{2} -1.00000 q^{3} +1.41421 q^{4} -1.61313 q^{5} +1.84776 q^{6} +0.152241 q^{7} +1.08239 q^{8} +1.00000 q^{9} +2.98067 q^{10} +5.02734 q^{11} -1.41421 q^{12} -3.94495 q^{13} -0.281305 q^{14} +1.61313 q^{15} -4.82843 q^{16} -1.84776 q^{18} -6.57900 q^{19} -2.28130 q^{20} -0.152241 q^{21} -9.28931 q^{22} +3.44834 q^{23} -1.08239 q^{24} -2.39782 q^{25} +7.28931 q^{26} -1.00000 q^{27} +0.215301 q^{28} -2.24264 q^{29} -2.98067 q^{30} -2.57446 q^{31} +6.75699 q^{32} -5.02734 q^{33} -0.245584 q^{35} +1.41421 q^{36} +10.6762 q^{37} +12.1564 q^{38} +3.94495 q^{39} -1.74603 q^{40} -0.276769 q^{41} +0.281305 q^{42} +6.34277 q^{43} +7.10973 q^{44} -1.61313 q^{45} -6.37170 q^{46} +9.82164 q^{47} +4.82843 q^{48} -6.97682 q^{49} +4.43060 q^{50} -5.57900 q^{52} -2.12612 q^{53} +1.84776 q^{54} -8.10973 q^{55} +0.164784 q^{56} +6.57900 q^{57} +4.14386 q^{58} +1.32381 q^{59} +2.28130 q^{60} +8.27836 q^{61} +4.75699 q^{62} +0.152241 q^{63} -2.82843 q^{64} +6.36370 q^{65} +9.28931 q^{66} +7.10973 q^{67} -3.44834 q^{69} +0.453780 q^{70} -6.54712 q^{71} +1.08239 q^{72} +8.32638 q^{73} -19.7270 q^{74} +2.39782 q^{75} -9.30411 q^{76} +0.765367 q^{77} -7.28931 q^{78} +0.532327 q^{79} +7.78886 q^{80} +1.00000 q^{81} +0.511402 q^{82} +2.20345 q^{83} -0.215301 q^{84} -11.7199 q^{86} +2.24264 q^{87} +5.44155 q^{88} -7.64847 q^{89} +2.98067 q^{90} -0.600582 q^{91} +4.87669 q^{92} +2.57446 q^{93} -18.1480 q^{94} +10.6128 q^{95} -6.75699 q^{96} +3.60634 q^{97} +12.8915 q^{98} +5.02734 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{3} + 4 q^{5} + 8 q^{7} + 4 q^{9} + 8 q^{10} + 4 q^{11} - 4 q^{13} + 8 q^{14} - 4 q^{15} - 8 q^{16} - 12 q^{19} - 8 q^{21} - 8 q^{22} + 12 q^{23} - 4 q^{27} + 8 q^{29} - 8 q^{30} + 8 q^{31} - 4 q^{33}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84776 −1.30656 −0.653281 0.757115i \(-0.726608\pi\)
−0.653281 + 0.757115i \(0.726608\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.41421 0.707107
\(5\) −1.61313 −0.721412 −0.360706 0.932680i \(-0.617464\pi\)
−0.360706 + 0.932680i \(0.617464\pi\)
\(6\) 1.84776 0.754344
\(7\) 0.152241 0.0575417 0.0287708 0.999586i \(-0.490841\pi\)
0.0287708 + 0.999586i \(0.490841\pi\)
\(8\) 1.08239 0.382683
\(9\) 1.00000 0.333333
\(10\) 2.98067 0.942570
\(11\) 5.02734 1.51580 0.757900 0.652371i \(-0.226226\pi\)
0.757900 + 0.652371i \(0.226226\pi\)
\(12\) −1.41421 −0.408248
\(13\) −3.94495 −1.09413 −0.547066 0.837090i \(-0.684255\pi\)
−0.547066 + 0.837090i \(0.684255\pi\)
\(14\) −0.281305 −0.0751818
\(15\) 1.61313 0.416507
\(16\) −4.82843 −1.20711
\(17\) 0 0
\(18\) −1.84776 −0.435521
\(19\) −6.57900 −1.50933 −0.754663 0.656113i \(-0.772200\pi\)
−0.754663 + 0.656113i \(0.772200\pi\)
\(20\) −2.28130 −0.510115
\(21\) −0.152241 −0.0332217
\(22\) −9.28931 −1.98049
\(23\) 3.44834 0.719029 0.359514 0.933140i \(-0.382942\pi\)
0.359514 + 0.933140i \(0.382942\pi\)
\(24\) −1.08239 −0.220942
\(25\) −2.39782 −0.479565
\(26\) 7.28931 1.42955
\(27\) −1.00000 −0.192450
\(28\) 0.215301 0.0406881
\(29\) −2.24264 −0.416448 −0.208224 0.978081i \(-0.566768\pi\)
−0.208224 + 0.978081i \(0.566768\pi\)
\(30\) −2.98067 −0.544193
\(31\) −2.57446 −0.462387 −0.231194 0.972908i \(-0.574263\pi\)
−0.231194 + 0.972908i \(0.574263\pi\)
\(32\) 6.75699 1.19448
\(33\) −5.02734 −0.875147
\(34\) 0 0
\(35\) −0.245584 −0.0415112
\(36\) 1.41421 0.235702
\(37\) 10.6762 1.75515 0.877577 0.479436i \(-0.159159\pi\)
0.877577 + 0.479436i \(0.159159\pi\)
\(38\) 12.1564 1.97203
\(39\) 3.94495 0.631697
\(40\) −1.74603 −0.276072
\(41\) −0.276769 −0.0432240 −0.0216120 0.999766i \(-0.506880\pi\)
−0.0216120 + 0.999766i \(0.506880\pi\)
\(42\) 0.281305 0.0434062
\(43\) 6.34277 0.967264 0.483632 0.875272i \(-0.339317\pi\)
0.483632 + 0.875272i \(0.339317\pi\)
\(44\) 7.10973 1.07183
\(45\) −1.61313 −0.240471
\(46\) −6.37170 −0.939457
\(47\) 9.82164 1.43263 0.716317 0.697775i \(-0.245827\pi\)
0.716317 + 0.697775i \(0.245827\pi\)
\(48\) 4.82843 0.696923
\(49\) −6.97682 −0.996689
\(50\) 4.43060 0.626582
\(51\) 0 0
\(52\) −5.57900 −0.773668
\(53\) −2.12612 −0.292045 −0.146023 0.989281i \(-0.546647\pi\)
−0.146023 + 0.989281i \(0.546647\pi\)
\(54\) 1.84776 0.251448
\(55\) −8.10973 −1.09352
\(56\) 0.164784 0.0220202
\(57\) 6.57900 0.871410
\(58\) 4.14386 0.544115
\(59\) 1.32381 0.172346 0.0861729 0.996280i \(-0.472536\pi\)
0.0861729 + 0.996280i \(0.472536\pi\)
\(60\) 2.28130 0.294515
\(61\) 8.27836 1.05994 0.529968 0.848018i \(-0.322204\pi\)
0.529968 + 0.848018i \(0.322204\pi\)
\(62\) 4.75699 0.604138
\(63\) 0.152241 0.0191806
\(64\) −2.82843 −0.353553
\(65\) 6.36370 0.789319
\(66\) 9.28931 1.14344
\(67\) 7.10973 0.868592 0.434296 0.900770i \(-0.356997\pi\)
0.434296 + 0.900770i \(0.356997\pi\)
\(68\) 0 0
\(69\) −3.44834 −0.415132
\(70\) 0.453780 0.0542370
\(71\) −6.54712 −0.777000 −0.388500 0.921449i \(-0.627007\pi\)
−0.388500 + 0.921449i \(0.627007\pi\)
\(72\) 1.08239 0.127561
\(73\) 8.32638 0.974529 0.487265 0.873254i \(-0.337995\pi\)
0.487265 + 0.873254i \(0.337995\pi\)
\(74\) −19.7270 −2.29322
\(75\) 2.39782 0.276877
\(76\) −9.30411 −1.06725
\(77\) 0.765367 0.0872216
\(78\) −7.28931 −0.825352
\(79\) 0.532327 0.0598914 0.0299457 0.999552i \(-0.490467\pi\)
0.0299457 + 0.999552i \(0.490467\pi\)
\(80\) 7.78886 0.870821
\(81\) 1.00000 0.111111
\(82\) 0.511402 0.0564749
\(83\) 2.20345 0.241860 0.120930 0.992661i \(-0.461412\pi\)
0.120930 + 0.992661i \(0.461412\pi\)
\(84\) −0.215301 −0.0234913
\(85\) 0 0
\(86\) −11.7199 −1.26379
\(87\) 2.24264 0.240436
\(88\) 5.44155 0.580072
\(89\) −7.64847 −0.810737 −0.405368 0.914153i \(-0.632857\pi\)
−0.405368 + 0.914153i \(0.632857\pi\)
\(90\) 2.98067 0.314190
\(91\) −0.600582 −0.0629581
\(92\) 4.87669 0.508430
\(93\) 2.57446 0.266959
\(94\) −18.1480 −1.87183
\(95\) 10.6128 1.08885
\(96\) −6.75699 −0.689632
\(97\) 3.60634 0.366168 0.183084 0.983097i \(-0.441392\pi\)
0.183084 + 0.983097i \(0.441392\pi\)
\(98\) 12.8915 1.30224
\(99\) 5.02734 0.505267
\(100\) −3.39104 −0.339104
\(101\) 9.13707 0.909173 0.454586 0.890703i \(-0.349787\pi\)
0.454586 + 0.890703i \(0.349787\pi\)
\(102\) 0 0
\(103\) 7.57862 0.746744 0.373372 0.927682i \(-0.378202\pi\)
0.373372 + 0.927682i \(0.378202\pi\)
\(104\) −4.26998 −0.418706
\(105\) 0.245584 0.0239665
\(106\) 3.92856 0.381575
\(107\) 18.4666 1.78524 0.892619 0.450812i \(-0.148866\pi\)
0.892619 + 0.450812i \(0.148866\pi\)
\(108\) −1.41421 −0.136083
\(109\) 10.7392 1.02863 0.514317 0.857600i \(-0.328046\pi\)
0.514317 + 0.857600i \(0.328046\pi\)
\(110\) 14.9848 1.42875
\(111\) −10.6762 −1.01334
\(112\) −0.735084 −0.0694589
\(113\) 1.67497 0.157568 0.0787838 0.996892i \(-0.474896\pi\)
0.0787838 + 0.996892i \(0.474896\pi\)
\(114\) −12.1564 −1.13855
\(115\) −5.56261 −0.518716
\(116\) −3.17157 −0.294473
\(117\) −3.94495 −0.364711
\(118\) −2.44609 −0.225181
\(119\) 0 0
\(120\) 1.74603 0.159390
\(121\) 14.2741 1.29765
\(122\) −15.2964 −1.38487
\(123\) 0.276769 0.0249554
\(124\) −3.64084 −0.326957
\(125\) 11.9336 1.06738
\(126\) −0.281305 −0.0250606
\(127\) −12.1812 −1.08090 −0.540452 0.841375i \(-0.681747\pi\)
−0.540452 + 0.841375i \(0.681747\pi\)
\(128\) −8.28772 −0.732538
\(129\) −6.34277 −0.558450
\(130\) −11.7586 −1.03130
\(131\) 10.4512 0.913122 0.456561 0.889692i \(-0.349081\pi\)
0.456561 + 0.889692i \(0.349081\pi\)
\(132\) −7.10973 −0.618823
\(133\) −1.00159 −0.0868491
\(134\) −13.1371 −1.13487
\(135\) 1.61313 0.138836
\(136\) 0 0
\(137\) 13.4928 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(138\) 6.37170 0.542395
\(139\) 5.32798 0.451913 0.225957 0.974137i \(-0.427449\pi\)
0.225957 + 0.974137i \(0.427449\pi\)
\(140\) −0.347308 −0.0293529
\(141\) −9.82164 −0.827131
\(142\) 12.0975 1.01520
\(143\) −19.8326 −1.65848
\(144\) −4.82843 −0.402369
\(145\) 3.61766 0.300430
\(146\) −15.3852 −1.27328
\(147\) 6.97682 0.575439
\(148\) 15.0984 1.24108
\(149\) 9.31890 0.763434 0.381717 0.924279i \(-0.375333\pi\)
0.381717 + 0.924279i \(0.375333\pi\)
\(150\) −4.43060 −0.361757
\(151\) 11.9632 0.973555 0.486778 0.873526i \(-0.338172\pi\)
0.486778 + 0.873526i \(0.338172\pi\)
\(152\) −7.12106 −0.577594
\(153\) 0 0
\(154\) −1.41421 −0.113961
\(155\) 4.15293 0.333571
\(156\) 5.57900 0.446677
\(157\) −18.1548 −1.44891 −0.724456 0.689321i \(-0.757909\pi\)
−0.724456 + 0.689321i \(0.757909\pi\)
\(158\) −0.983611 −0.0782519
\(159\) 2.12612 0.168612
\(160\) −10.8999 −0.861710
\(161\) 0.524979 0.0413741
\(162\) −1.84776 −0.145174
\(163\) −20.7225 −1.62311 −0.811555 0.584276i \(-0.801379\pi\)
−0.811555 + 0.584276i \(0.801379\pi\)
\(164\) −0.391410 −0.0305640
\(165\) 8.10973 0.631342
\(166\) −4.07144 −0.316005
\(167\) −8.08881 −0.625931 −0.312965 0.949765i \(-0.601322\pi\)
−0.312965 + 0.949765i \(0.601322\pi\)
\(168\) −0.164784 −0.0127134
\(169\) 2.56261 0.197124
\(170\) 0 0
\(171\) −6.57900 −0.503109
\(172\) 8.97003 0.683959
\(173\) 1.16062 0.0882405 0.0441202 0.999026i \(-0.485952\pi\)
0.0441202 + 0.999026i \(0.485952\pi\)
\(174\) −4.14386 −0.314145
\(175\) −0.365047 −0.0275950
\(176\) −24.2741 −1.82973
\(177\) −1.32381 −0.0995039
\(178\) 14.1325 1.05928
\(179\) 2.89668 0.216508 0.108254 0.994123i \(-0.465474\pi\)
0.108254 + 0.994123i \(0.465474\pi\)
\(180\) −2.28130 −0.170038
\(181\) 0.842695 0.0626370 0.0313185 0.999509i \(-0.490029\pi\)
0.0313185 + 0.999509i \(0.490029\pi\)
\(182\) 1.10973 0.0822588
\(183\) −8.27836 −0.611954
\(184\) 3.73246 0.275160
\(185\) −17.2220 −1.26619
\(186\) −4.75699 −0.348799
\(187\) 0 0
\(188\) 13.8899 1.01302
\(189\) −0.152241 −0.0110739
\(190\) −19.6098 −1.42265
\(191\) 9.97069 0.721454 0.360727 0.932671i \(-0.382529\pi\)
0.360727 + 0.932671i \(0.382529\pi\)
\(192\) 2.82843 0.204124
\(193\) −3.73418 −0.268792 −0.134396 0.990928i \(-0.542909\pi\)
−0.134396 + 0.990928i \(0.542909\pi\)
\(194\) −6.66364 −0.478422
\(195\) −6.36370 −0.455714
\(196\) −9.86672 −0.704766
\(197\) 16.2053 1.15458 0.577291 0.816539i \(-0.304110\pi\)
0.577291 + 0.816539i \(0.304110\pi\)
\(198\) −9.28931 −0.660163
\(199\) −16.4734 −1.16777 −0.583885 0.811836i \(-0.698468\pi\)
−0.583885 + 0.811836i \(0.698468\pi\)
\(200\) −2.59539 −0.183522
\(201\) −7.10973 −0.501482
\(202\) −16.8831 −1.18789
\(203\) −0.341422 −0.0239631
\(204\) 0 0
\(205\) 0.446463 0.0311823
\(206\) −14.0035 −0.975668
\(207\) 3.44834 0.239676
\(208\) 19.0479 1.32073
\(209\) −33.0749 −2.28784
\(210\) −0.453780 −0.0313138
\(211\) −10.6887 −0.735842 −0.367921 0.929857i \(-0.619930\pi\)
−0.367921 + 0.929857i \(0.619930\pi\)
\(212\) −3.00679 −0.206507
\(213\) 6.54712 0.448601
\(214\) −34.1219 −2.33253
\(215\) −10.2317 −0.697795
\(216\) −1.08239 −0.0736475
\(217\) −0.391939 −0.0266065
\(218\) −19.8435 −1.34397
\(219\) −8.32638 −0.562645
\(220\) −11.4689 −0.773233
\(221\) 0 0
\(222\) 19.7270 1.32399
\(223\) 5.41650 0.362715 0.181358 0.983417i \(-0.441951\pi\)
0.181358 + 0.983417i \(0.441951\pi\)
\(224\) 1.02869 0.0687322
\(225\) −2.39782 −0.159855
\(226\) −3.09494 −0.205872
\(227\) 12.2987 0.816291 0.408146 0.912917i \(-0.366176\pi\)
0.408146 + 0.912917i \(0.366176\pi\)
\(228\) 9.30411 0.616180
\(229\) 30.1158 1.99011 0.995053 0.0993441i \(-0.0316745\pi\)
0.995053 + 0.0993441i \(0.0316745\pi\)
\(230\) 10.2784 0.677735
\(231\) −0.765367 −0.0503574
\(232\) −2.42742 −0.159368
\(233\) 8.78523 0.575539 0.287770 0.957700i \(-0.407086\pi\)
0.287770 + 0.957700i \(0.407086\pi\)
\(234\) 7.28931 0.476517
\(235\) −15.8435 −1.03352
\(236\) 1.87216 0.121867
\(237\) −0.532327 −0.0345783
\(238\) 0 0
\(239\) 14.6501 0.947634 0.473817 0.880623i \(-0.342876\pi\)
0.473817 + 0.880623i \(0.342876\pi\)
\(240\) −7.78886 −0.502769
\(241\) −16.9552 −1.09218 −0.546091 0.837726i \(-0.683885\pi\)
−0.546091 + 0.837726i \(0.683885\pi\)
\(242\) −26.3752 −1.69546
\(243\) −1.00000 −0.0641500
\(244\) 11.7074 0.749488
\(245\) 11.2545 0.719023
\(246\) −0.511402 −0.0326058
\(247\) 25.9538 1.65140
\(248\) −2.78658 −0.176948
\(249\) −2.20345 −0.139638
\(250\) −22.0505 −1.39459
\(251\) −13.9453 −0.880217 −0.440109 0.897945i \(-0.645060\pi\)
−0.440109 + 0.897945i \(0.645060\pi\)
\(252\) 0.215301 0.0135627
\(253\) 17.3360 1.08990
\(254\) 22.5079 1.41227
\(255\) 0 0
\(256\) 20.9706 1.31066
\(257\) 19.6603 1.22638 0.613189 0.789936i \(-0.289887\pi\)
0.613189 + 0.789936i \(0.289887\pi\)
\(258\) 11.7199 0.729650
\(259\) 1.62535 0.100994
\(260\) 8.99963 0.558133
\(261\) −2.24264 −0.138816
\(262\) −19.3112 −1.19305
\(263\) −27.8721 −1.71867 −0.859334 0.511415i \(-0.829121\pi\)
−0.859334 + 0.511415i \(0.829121\pi\)
\(264\) −5.44155 −0.334904
\(265\) 3.42970 0.210685
\(266\) 1.85070 0.113474
\(267\) 7.64847 0.468079
\(268\) 10.0547 0.614187
\(269\) 0.205327 0.0125190 0.00625951 0.999980i \(-0.498008\pi\)
0.00625951 + 0.999980i \(0.498008\pi\)
\(270\) −2.98067 −0.181398
\(271\) −8.21077 −0.498768 −0.249384 0.968405i \(-0.580228\pi\)
−0.249384 + 0.968405i \(0.580228\pi\)
\(272\) 0 0
\(273\) 0.600582 0.0363489
\(274\) −24.9314 −1.50616
\(275\) −12.0547 −0.726924
\(276\) −4.87669 −0.293542
\(277\) 23.5677 1.41604 0.708022 0.706190i \(-0.249588\pi\)
0.708022 + 0.706190i \(0.249588\pi\)
\(278\) −9.84482 −0.590453
\(279\) −2.57446 −0.154129
\(280\) −0.265818 −0.0158857
\(281\) −10.1532 −0.605690 −0.302845 0.953040i \(-0.597936\pi\)
−0.302845 + 0.953040i \(0.597936\pi\)
\(282\) 18.1480 1.08070
\(283\) −9.47918 −0.563479 −0.281739 0.959491i \(-0.590911\pi\)
−0.281739 + 0.959491i \(0.590911\pi\)
\(284\) −9.25903 −0.549422
\(285\) −10.6128 −0.628645
\(286\) 36.6458 2.16691
\(287\) −0.0421355 −0.00248718
\(288\) 6.75699 0.398159
\(289\) 0 0
\(290\) −6.68457 −0.392531
\(291\) −3.60634 −0.211407
\(292\) 11.7753 0.689096
\(293\) 9.28515 0.542444 0.271222 0.962517i \(-0.412572\pi\)
0.271222 + 0.962517i \(0.412572\pi\)
\(294\) −12.8915 −0.751847
\(295\) −2.13548 −0.124332
\(296\) 11.5558 0.671668
\(297\) −5.02734 −0.291716
\(298\) −17.2191 −0.997475
\(299\) −13.6035 −0.786712
\(300\) 3.39104 0.195782
\(301\) 0.965630 0.0556580
\(302\) −22.1052 −1.27201
\(303\) −9.13707 −0.524911
\(304\) 31.7662 1.82192
\(305\) −13.3540 −0.764650
\(306\) 0 0
\(307\) −27.1418 −1.54906 −0.774531 0.632536i \(-0.782014\pi\)
−0.774531 + 0.632536i \(0.782014\pi\)
\(308\) 1.08239 0.0616750
\(309\) −7.57862 −0.431133
\(310\) −7.67362 −0.435832
\(311\) −2.58579 −0.146626 −0.0733132 0.997309i \(-0.523357\pi\)
−0.0733132 + 0.997309i \(0.523357\pi\)
\(312\) 4.26998 0.241740
\(313\) 25.6105 1.44759 0.723796 0.690015i \(-0.242396\pi\)
0.723796 + 0.690015i \(0.242396\pi\)
\(314\) 33.5457 1.89309
\(315\) −0.245584 −0.0138371
\(316\) 0.752823 0.0423496
\(317\) 25.5982 1.43774 0.718869 0.695146i \(-0.244660\pi\)
0.718869 + 0.695146i \(0.244660\pi\)
\(318\) −3.92856 −0.220303
\(319\) −11.2745 −0.631252
\(320\) 4.56261 0.255058
\(321\) −18.4666 −1.03071
\(322\) −0.970034 −0.0540579
\(323\) 0 0
\(324\) 1.41421 0.0785674
\(325\) 9.45929 0.524707
\(326\) 38.2902 2.12070
\(327\) −10.7392 −0.593882
\(328\) −0.299572 −0.0165411
\(329\) 1.49526 0.0824361
\(330\) −14.9848 −0.824888
\(331\) −0.333172 −0.0183128 −0.00915639 0.999958i \(-0.502915\pi\)
−0.00915639 + 0.999958i \(0.502915\pi\)
\(332\) 3.11615 0.171021
\(333\) 10.6762 0.585051
\(334\) 14.9462 0.817818
\(335\) −11.4689 −0.626613
\(336\) 0.735084 0.0401021
\(337\) −3.75539 −0.204569 −0.102285 0.994755i \(-0.532615\pi\)
−0.102285 + 0.994755i \(0.532615\pi\)
\(338\) −4.73508 −0.257555
\(339\) −1.67497 −0.0909717
\(340\) 0 0
\(341\) −12.9427 −0.700886
\(342\) 12.1564 0.657343
\(343\) −2.12784 −0.114893
\(344\) 6.86537 0.370156
\(345\) 5.56261 0.299481
\(346\) −2.14455 −0.115292
\(347\) 3.30999 0.177690 0.0888449 0.996045i \(-0.471682\pi\)
0.0888449 + 0.996045i \(0.471682\pi\)
\(348\) 3.17157 0.170014
\(349\) 2.58488 0.138366 0.0691828 0.997604i \(-0.477961\pi\)
0.0691828 + 0.997604i \(0.477961\pi\)
\(350\) 0.674519 0.0360546
\(351\) 3.94495 0.210566
\(352\) 33.9697 1.81059
\(353\) 13.2848 0.707079 0.353539 0.935420i \(-0.384978\pi\)
0.353539 + 0.935420i \(0.384978\pi\)
\(354\) 2.44609 0.130008
\(355\) 10.5613 0.560537
\(356\) −10.8166 −0.573277
\(357\) 0 0
\(358\) −5.35237 −0.282882
\(359\) −14.7281 −0.777319 −0.388659 0.921382i \(-0.627062\pi\)
−0.388659 + 0.921382i \(0.627062\pi\)
\(360\) −1.74603 −0.0920241
\(361\) 24.2832 1.27806
\(362\) −1.55710 −0.0818392
\(363\) −14.2741 −0.749198
\(364\) −0.849352 −0.0445181
\(365\) −13.4315 −0.703037
\(366\) 15.2964 0.799557
\(367\) 0.439960 0.0229657 0.0114829 0.999934i \(-0.496345\pi\)
0.0114829 + 0.999934i \(0.496345\pi\)
\(368\) −16.6501 −0.867945
\(369\) −0.276769 −0.0144080
\(370\) 31.8222 1.65436
\(371\) −0.323683 −0.0168048
\(372\) 3.64084 0.188769
\(373\) −0.827899 −0.0428670 −0.0214335 0.999770i \(-0.506823\pi\)
−0.0214335 + 0.999770i \(0.506823\pi\)
\(374\) 0 0
\(375\) −11.9336 −0.616250
\(376\) 10.6309 0.548245
\(377\) 8.84710 0.455649
\(378\) 0.281305 0.0144687
\(379\) 19.8083 1.01749 0.508743 0.860918i \(-0.330110\pi\)
0.508743 + 0.860918i \(0.330110\pi\)
\(380\) 15.0087 0.769930
\(381\) 12.1812 0.624060
\(382\) −18.4234 −0.942625
\(383\) −16.6828 −0.852453 −0.426227 0.904616i \(-0.640157\pi\)
−0.426227 + 0.904616i \(0.640157\pi\)
\(384\) 8.28772 0.422931
\(385\) −1.23463 −0.0629227
\(386\) 6.89987 0.351194
\(387\) 6.34277 0.322421
\(388\) 5.10013 0.258920
\(389\) 17.2980 0.877042 0.438521 0.898721i \(-0.355502\pi\)
0.438521 + 0.898721i \(0.355502\pi\)
\(390\) 11.7586 0.595419
\(391\) 0 0
\(392\) −7.55166 −0.381416
\(393\) −10.4512 −0.527191
\(394\) −29.9435 −1.50853
\(395\) −0.858710 −0.0432064
\(396\) 7.10973 0.357277
\(397\) 6.44065 0.323247 0.161623 0.986852i \(-0.448327\pi\)
0.161623 + 0.986852i \(0.448327\pi\)
\(398\) 30.4389 1.52577
\(399\) 1.00159 0.0501424
\(400\) 11.5777 0.578886
\(401\) 21.0724 1.05231 0.526153 0.850390i \(-0.323634\pi\)
0.526153 + 0.850390i \(0.323634\pi\)
\(402\) 13.1371 0.655218
\(403\) 10.1561 0.505912
\(404\) 12.9218 0.642882
\(405\) −1.61313 −0.0801569
\(406\) 0.630865 0.0313093
\(407\) 53.6728 2.66046
\(408\) 0 0
\(409\) −27.6232 −1.36588 −0.682939 0.730475i \(-0.739299\pi\)
−0.682939 + 0.730475i \(0.739299\pi\)
\(410\) −0.824955 −0.0407416
\(411\) −13.4928 −0.665549
\(412\) 10.7178 0.528028
\(413\) 0.201539 0.00991707
\(414\) −6.37170 −0.313152
\(415\) −3.55444 −0.174481
\(416\) −26.6560 −1.30692
\(417\) −5.32798 −0.260912
\(418\) 61.1144 2.98920
\(419\) −12.0510 −0.588728 −0.294364 0.955693i \(-0.595108\pi\)
−0.294364 + 0.955693i \(0.595108\pi\)
\(420\) 0.347308 0.0169469
\(421\) 14.0183 0.683210 0.341605 0.939844i \(-0.389029\pi\)
0.341605 + 0.939844i \(0.389029\pi\)
\(422\) 19.7502 0.961425
\(423\) 9.82164 0.477544
\(424\) −2.30130 −0.111761
\(425\) 0 0
\(426\) −12.0975 −0.586126
\(427\) 1.26031 0.0609905
\(428\) 26.1158 1.26235
\(429\) 19.8326 0.957526
\(430\) 18.9057 0.911714
\(431\) −3.44381 −0.165882 −0.0829411 0.996554i \(-0.526431\pi\)
−0.0829411 + 0.996554i \(0.526431\pi\)
\(432\) 4.82843 0.232308
\(433\) 5.56579 0.267475 0.133738 0.991017i \(-0.457302\pi\)
0.133738 + 0.991017i \(0.457302\pi\)
\(434\) 0.724208 0.0347631
\(435\) −3.61766 −0.173454
\(436\) 15.1876 0.727354
\(437\) −22.6866 −1.08525
\(438\) 15.3852 0.735131
\(439\) 17.5864 0.839353 0.419676 0.907674i \(-0.362144\pi\)
0.419676 + 0.907674i \(0.362144\pi\)
\(440\) −8.77791 −0.418470
\(441\) −6.97682 −0.332230
\(442\) 0 0
\(443\) 5.87632 0.279192 0.139596 0.990209i \(-0.455420\pi\)
0.139596 + 0.990209i \(0.455420\pi\)
\(444\) −15.0984 −0.716539
\(445\) 12.3380 0.584875
\(446\) −10.0084 −0.473911
\(447\) −9.31890 −0.440769
\(448\) −0.430602 −0.0203441
\(449\) −39.9812 −1.88683 −0.943414 0.331617i \(-0.892406\pi\)
−0.943414 + 0.331617i \(0.892406\pi\)
\(450\) 4.43060 0.208861
\(451\) −1.39141 −0.0655189
\(452\) 2.36876 0.111417
\(453\) −11.9632 −0.562082
\(454\) −22.7250 −1.06654
\(455\) 0.968815 0.0454188
\(456\) 7.12106 0.333474
\(457\) −17.6906 −0.827533 −0.413767 0.910383i \(-0.635787\pi\)
−0.413767 + 0.910383i \(0.635787\pi\)
\(458\) −55.6467 −2.60020
\(459\) 0 0
\(460\) −7.86672 −0.366788
\(461\) 29.8662 1.39101 0.695504 0.718522i \(-0.255181\pi\)
0.695504 + 0.718522i \(0.255181\pi\)
\(462\) 1.41421 0.0657952
\(463\) 9.45213 0.439278 0.219639 0.975581i \(-0.429512\pi\)
0.219639 + 0.975581i \(0.429512\pi\)
\(464\) 10.8284 0.502697
\(465\) −4.15293 −0.192588
\(466\) −16.2330 −0.751978
\(467\) −20.0094 −0.925923 −0.462961 0.886378i \(-0.653213\pi\)
−0.462961 + 0.886378i \(0.653213\pi\)
\(468\) −5.57900 −0.257889
\(469\) 1.08239 0.0499802
\(470\) 29.2750 1.35036
\(471\) 18.1548 0.836530
\(472\) 1.43289 0.0659539
\(473\) 31.8873 1.46618
\(474\) 0.983611 0.0451788
\(475\) 15.7753 0.723820
\(476\) 0 0
\(477\) −2.12612 −0.0973484
\(478\) −27.0698 −1.23814
\(479\) −1.20570 −0.0550899 −0.0275449 0.999621i \(-0.508769\pi\)
−0.0275449 + 0.999621i \(0.508769\pi\)
\(480\) 10.8999 0.497509
\(481\) −42.1170 −1.92037
\(482\) 31.3292 1.42701
\(483\) −0.524979 −0.0238874
\(484\) 20.1867 0.917577
\(485\) −5.81748 −0.264158
\(486\) 1.84776 0.0838161
\(487\) 11.9613 0.542017 0.271009 0.962577i \(-0.412643\pi\)
0.271009 + 0.962577i \(0.412643\pi\)
\(488\) 8.96043 0.405620
\(489\) 20.7225 0.937103
\(490\) −20.7956 −0.939449
\(491\) 31.2632 1.41089 0.705444 0.708766i \(-0.250748\pi\)
0.705444 + 0.708766i \(0.250748\pi\)
\(492\) 0.391410 0.0176461
\(493\) 0 0
\(494\) −47.9564 −2.15766
\(495\) −8.10973 −0.364505
\(496\) 12.4306 0.558151
\(497\) −0.996740 −0.0447099
\(498\) 4.07144 0.182446
\(499\) −41.3590 −1.85148 −0.925741 0.378158i \(-0.876558\pi\)
−0.925741 + 0.378158i \(0.876558\pi\)
\(500\) 16.8767 0.754749
\(501\) 8.08881 0.361381
\(502\) 25.7675 1.15006
\(503\) 3.08277 0.137454 0.0687269 0.997636i \(-0.478106\pi\)
0.0687269 + 0.997636i \(0.478106\pi\)
\(504\) 0.164784 0.00734008
\(505\) −14.7392 −0.655888
\(506\) −32.0327 −1.42403
\(507\) −2.56261 −0.113809
\(508\) −17.2268 −0.764315
\(509\) −33.8077 −1.49850 −0.749249 0.662288i \(-0.769585\pi\)
−0.749249 + 0.662288i \(0.769585\pi\)
\(510\) 0 0
\(511\) 1.26762 0.0560760
\(512\) −22.1731 −0.979922
\(513\) 6.57900 0.290470
\(514\) −36.3275 −1.60234
\(515\) −12.2253 −0.538710
\(516\) −8.97003 −0.394884
\(517\) 49.3767 2.17159
\(518\) −3.00326 −0.131956
\(519\) −1.16062 −0.0509457
\(520\) 6.88802 0.302059
\(521\) −40.9557 −1.79430 −0.897150 0.441725i \(-0.854367\pi\)
−0.897150 + 0.441725i \(0.854367\pi\)
\(522\) 4.14386 0.181372
\(523\) −9.06788 −0.396511 −0.198255 0.980150i \(-0.563528\pi\)
−0.198255 + 0.980150i \(0.563528\pi\)
\(524\) 14.7802 0.645674
\(525\) 0.365047 0.0159320
\(526\) 51.5009 2.24555
\(527\) 0 0
\(528\) 24.2741 1.05640
\(529\) −11.1089 −0.482997
\(530\) −6.33726 −0.275273
\(531\) 1.32381 0.0574486
\(532\) −1.41647 −0.0614116
\(533\) 1.09184 0.0472927
\(534\) −14.1325 −0.611575
\(535\) −29.7890 −1.28789
\(536\) 7.69552 0.332396
\(537\) −2.89668 −0.125001
\(538\) −0.379395 −0.0163569
\(539\) −35.0749 −1.51078
\(540\) 2.28130 0.0981717
\(541\) 12.9420 0.556420 0.278210 0.960520i \(-0.410259\pi\)
0.278210 + 0.960520i \(0.410259\pi\)
\(542\) 15.1715 0.651672
\(543\) −0.842695 −0.0361635
\(544\) 0 0
\(545\) −17.3238 −0.742068
\(546\) −1.10973 −0.0474921
\(547\) −10.6598 −0.455781 −0.227891 0.973687i \(-0.573183\pi\)
−0.227891 + 0.973687i \(0.573183\pi\)
\(548\) 19.0816 0.815127
\(549\) 8.27836 0.353312
\(550\) 22.2741 0.949773
\(551\) 14.7543 0.628556
\(552\) −3.73246 −0.158864
\(553\) 0.0810419 0.00344625
\(554\) −43.5474 −1.85015
\(555\) 17.2220 0.731035
\(556\) 7.53490 0.319551
\(557\) −30.1933 −1.27933 −0.639667 0.768653i \(-0.720928\pi\)
−0.639667 + 0.768653i \(0.720928\pi\)
\(558\) 4.75699 0.201379
\(559\) −25.0219 −1.05831
\(560\) 1.18578 0.0501085
\(561\) 0 0
\(562\) 18.7607 0.791372
\(563\) −29.9236 −1.26113 −0.630566 0.776136i \(-0.717177\pi\)
−0.630566 + 0.776136i \(0.717177\pi\)
\(564\) −13.8899 −0.584870
\(565\) −2.70193 −0.113671
\(566\) 17.5152 0.736221
\(567\) 0.152241 0.00639352
\(568\) −7.08655 −0.297345
\(569\) 25.6952 1.07720 0.538599 0.842562i \(-0.318954\pi\)
0.538599 + 0.842562i \(0.318954\pi\)
\(570\) 19.6098 0.821365
\(571\) 28.0143 1.17236 0.586181 0.810180i \(-0.300631\pi\)
0.586181 + 0.810180i \(0.300631\pi\)
\(572\) −28.0475 −1.17273
\(573\) −9.97069 −0.416532
\(574\) 0.0778563 0.00324966
\(575\) −8.26852 −0.344821
\(576\) −2.82843 −0.117851
\(577\) −11.8072 −0.491538 −0.245769 0.969328i \(-0.579041\pi\)
−0.245769 + 0.969328i \(0.579041\pi\)
\(578\) 0 0
\(579\) 3.73418 0.155187
\(580\) 5.11615 0.212436
\(581\) 0.335455 0.0139170
\(582\) 6.66364 0.276217
\(583\) −10.6887 −0.442682
\(584\) 9.01241 0.372936
\(585\) 6.36370 0.263106
\(586\) −17.1567 −0.708738
\(587\) 7.44230 0.307177 0.153588 0.988135i \(-0.450917\pi\)
0.153588 + 0.988135i \(0.450917\pi\)
\(588\) 9.86672 0.406897
\(589\) 16.9374 0.697893
\(590\) 3.94585 0.162448
\(591\) −16.2053 −0.666598
\(592\) −51.5492 −2.11866
\(593\) 7.65194 0.314228 0.157114 0.987580i \(-0.449781\pi\)
0.157114 + 0.987580i \(0.449781\pi\)
\(594\) 9.28931 0.381145
\(595\) 0 0
\(596\) 13.1789 0.539830
\(597\) 16.4734 0.674213
\(598\) 25.1360 1.02789
\(599\) 16.1547 0.660062 0.330031 0.943970i \(-0.392941\pi\)
0.330031 + 0.943970i \(0.392941\pi\)
\(600\) 2.59539 0.105956
\(601\) 28.7176 1.17141 0.585707 0.810523i \(-0.300817\pi\)
0.585707 + 0.810523i \(0.300817\pi\)
\(602\) −1.78425 −0.0727206
\(603\) 7.10973 0.289531
\(604\) 16.9186 0.688407
\(605\) −23.0260 −0.936140
\(606\) 16.8831 0.685829
\(607\) 25.8129 1.04771 0.523856 0.851807i \(-0.324493\pi\)
0.523856 + 0.851807i \(0.324493\pi\)
\(608\) −44.4542 −1.80286
\(609\) 0.341422 0.0138351
\(610\) 24.6750 0.999063
\(611\) −38.7458 −1.56749
\(612\) 0 0
\(613\) 49.1769 1.98623 0.993117 0.117123i \(-0.0373670\pi\)
0.993117 + 0.117123i \(0.0373670\pi\)
\(614\) 50.1514 2.02395
\(615\) −0.446463 −0.0180031
\(616\) 0.828427 0.0333783
\(617\) 3.55073 0.142947 0.0714734 0.997443i \(-0.477230\pi\)
0.0714734 + 0.997443i \(0.477230\pi\)
\(618\) 14.0035 0.563302
\(619\) −35.2011 −1.41485 −0.707426 0.706787i \(-0.750144\pi\)
−0.707426 + 0.706787i \(0.750144\pi\)
\(620\) 5.87313 0.235871
\(621\) −3.44834 −0.138377
\(622\) 4.77791 0.191577
\(623\) −1.16441 −0.0466511
\(624\) −19.0479 −0.762526
\(625\) −7.26131 −0.290453
\(626\) −47.3220 −1.89137
\(627\) 33.0749 1.32088
\(628\) −25.6748 −1.02454
\(629\) 0 0
\(630\) 0.453780 0.0180790
\(631\) −31.4131 −1.25054 −0.625268 0.780410i \(-0.715010\pi\)
−0.625268 + 0.780410i \(0.715010\pi\)
\(632\) 0.576186 0.0229195
\(633\) 10.6887 0.424839
\(634\) −47.2993 −1.87850
\(635\) 19.6498 0.779777
\(636\) 3.00679 0.119227
\(637\) 27.5232 1.09051
\(638\) 20.8326 0.824770
\(639\) −6.54712 −0.259000
\(640\) 13.3691 0.528461
\(641\) −26.5755 −1.04967 −0.524834 0.851205i \(-0.675873\pi\)
−0.524834 + 0.851205i \(0.675873\pi\)
\(642\) 34.1219 1.34668
\(643\) −16.0247 −0.631952 −0.315976 0.948767i \(-0.602332\pi\)
−0.315976 + 0.948767i \(0.602332\pi\)
\(644\) 0.742432 0.0292559
\(645\) 10.2317 0.402872
\(646\) 0 0
\(647\) 41.6554 1.63764 0.818822 0.574048i \(-0.194628\pi\)
0.818822 + 0.574048i \(0.194628\pi\)
\(648\) 1.08239 0.0425204
\(649\) 6.65526 0.261242
\(650\) −17.4785 −0.685563
\(651\) 0.391939 0.0153613
\(652\) −29.3060 −1.14771
\(653\) −12.3264 −0.482370 −0.241185 0.970479i \(-0.577536\pi\)
−0.241185 + 0.970479i \(0.577536\pi\)
\(654\) 19.8435 0.775944
\(655\) −16.8590 −0.658737
\(656\) 1.33636 0.0521760
\(657\) 8.32638 0.324843
\(658\) −2.76287 −0.107708
\(659\) 3.46449 0.134957 0.0674786 0.997721i \(-0.478505\pi\)
0.0674786 + 0.997721i \(0.478505\pi\)
\(660\) 11.4689 0.446426
\(661\) −28.3233 −1.10165 −0.550825 0.834621i \(-0.685687\pi\)
−0.550825 + 0.834621i \(0.685687\pi\)
\(662\) 0.615621 0.0239268
\(663\) 0 0
\(664\) 2.38500 0.0925558
\(665\) 1.61570 0.0626540
\(666\) −19.7270 −0.764406
\(667\) −7.73339 −0.299438
\(668\) −11.4393 −0.442600
\(669\) −5.41650 −0.209414
\(670\) 21.1918 0.818709
\(671\) 41.6181 1.60665
\(672\) −1.02869 −0.0396826
\(673\) −28.4086 −1.09507 −0.547535 0.836783i \(-0.684434\pi\)
−0.547535 + 0.836783i \(0.684434\pi\)
\(674\) 6.93906 0.267283
\(675\) 2.39782 0.0922923
\(676\) 3.62408 0.139388
\(677\) 19.2983 0.741692 0.370846 0.928694i \(-0.379068\pi\)
0.370846 + 0.928694i \(0.379068\pi\)
\(678\) 3.09494 0.118860
\(679\) 0.549032 0.0210699
\(680\) 0 0
\(681\) −12.2987 −0.471286
\(682\) 23.9150 0.915752
\(683\) −19.4793 −0.745355 −0.372678 0.927961i \(-0.621560\pi\)
−0.372678 + 0.927961i \(0.621560\pi\)
\(684\) −9.30411 −0.355751
\(685\) −21.7655 −0.831618
\(686\) 3.93174 0.150115
\(687\) −30.1158 −1.14899
\(688\) −30.6256 −1.16759
\(689\) 8.38743 0.319536
\(690\) −10.2784 −0.391291
\(691\) −7.53940 −0.286812 −0.143406 0.989664i \(-0.545806\pi\)
−0.143406 + 0.989664i \(0.545806\pi\)
\(692\) 1.64137 0.0623954
\(693\) 0.765367 0.0290739
\(694\) −6.11607 −0.232163
\(695\) −8.59470 −0.326015
\(696\) 2.42742 0.0920110
\(697\) 0 0
\(698\) −4.77624 −0.180783
\(699\) −8.78523 −0.332288
\(700\) −0.516255 −0.0195126
\(701\) −39.0875 −1.47632 −0.738158 0.674628i \(-0.764304\pi\)
−0.738158 + 0.674628i \(0.764304\pi\)
\(702\) −7.28931 −0.275117
\(703\) −70.2386 −2.64910
\(704\) −14.2195 −0.535916
\(705\) 15.8435 0.596702
\(706\) −24.5471 −0.923843
\(707\) 1.39104 0.0523153
\(708\) −1.87216 −0.0703599
\(709\) 6.71284 0.252106 0.126053 0.992024i \(-0.459769\pi\)
0.126053 + 0.992024i \(0.459769\pi\)
\(710\) −19.5148 −0.732377
\(711\) 0.532327 0.0199638
\(712\) −8.27865 −0.310255
\(713\) −8.87762 −0.332470
\(714\) 0 0
\(715\) 31.9925 1.19645
\(716\) 4.09653 0.153094
\(717\) −14.6501 −0.547117
\(718\) 27.2140 1.01562
\(719\) 7.40623 0.276206 0.138103 0.990418i \(-0.455900\pi\)
0.138103 + 0.990418i \(0.455900\pi\)
\(720\) 7.78886 0.290274
\(721\) 1.15378 0.0429689
\(722\) −44.8695 −1.66987
\(723\) 16.9552 0.630572
\(724\) 1.19175 0.0442910
\(725\) 5.37746 0.199714
\(726\) 26.3752 0.978875
\(727\) −6.36054 −0.235899 −0.117950 0.993020i \(-0.537632\pi\)
−0.117950 + 0.993020i \(0.537632\pi\)
\(728\) −0.650066 −0.0240930
\(729\) 1.00000 0.0370370
\(730\) 24.8182 0.918562
\(731\) 0 0
\(732\) −11.7074 −0.432717
\(733\) −41.3337 −1.52670 −0.763348 0.645988i \(-0.776446\pi\)
−0.763348 + 0.645988i \(0.776446\pi\)
\(734\) −0.812941 −0.0300062
\(735\) −11.2545 −0.415128
\(736\) 23.3004 0.858864
\(737\) 35.7430 1.31661
\(738\) 0.511402 0.0188250
\(739\) 23.1653 0.852150 0.426075 0.904688i \(-0.359896\pi\)
0.426075 + 0.904688i \(0.359896\pi\)
\(740\) −24.3556 −0.895331
\(741\) −25.9538 −0.953437
\(742\) 0.598087 0.0219565
\(743\) 38.1505 1.39960 0.699802 0.714337i \(-0.253271\pi\)
0.699802 + 0.714337i \(0.253271\pi\)
\(744\) 2.78658 0.102161
\(745\) −15.0326 −0.550751
\(746\) 1.52976 0.0560084
\(747\) 2.20345 0.0806200
\(748\) 0 0
\(749\) 2.81138 0.102726
\(750\) 22.0505 0.805169
\(751\) 34.2073 1.24824 0.624120 0.781328i \(-0.285457\pi\)
0.624120 + 0.781328i \(0.285457\pi\)
\(752\) −47.4231 −1.72934
\(753\) 13.9453 0.508194
\(754\) −16.3473 −0.595334
\(755\) −19.2982 −0.702334
\(756\) −0.215301 −0.00783043
\(757\) −7.02190 −0.255215 −0.127608 0.991825i \(-0.540730\pi\)
−0.127608 + 0.991825i \(0.540730\pi\)
\(758\) −36.6011 −1.32941
\(759\) −17.3360 −0.629256
\(760\) 11.4872 0.416683
\(761\) 47.2917 1.71432 0.857161 0.515048i \(-0.172226\pi\)
0.857161 + 0.515048i \(0.172226\pi\)
\(762\) −22.5079 −0.815374
\(763\) 1.63495 0.0591893
\(764\) 14.1007 0.510145
\(765\) 0 0
\(766\) 30.8259 1.11378
\(767\) −5.22238 −0.188569
\(768\) −20.9706 −0.756710
\(769\) 6.39156 0.230486 0.115243 0.993337i \(-0.463235\pi\)
0.115243 + 0.993337i \(0.463235\pi\)
\(770\) 2.28130 0.0822125
\(771\) −19.6603 −0.708049
\(772\) −5.28093 −0.190065
\(773\) 3.67729 0.132263 0.0661315 0.997811i \(-0.478934\pi\)
0.0661315 + 0.997811i \(0.478934\pi\)
\(774\) −11.7199 −0.421264
\(775\) 6.17311 0.221745
\(776\) 3.90347 0.140126
\(777\) −1.62535 −0.0583092
\(778\) −31.9625 −1.14591
\(779\) 1.82086 0.0652391
\(780\) −8.99963 −0.322238
\(781\) −32.9146 −1.17778
\(782\) 0 0
\(783\) 2.24264 0.0801454
\(784\) 33.6871 1.20311
\(785\) 29.2860 1.04526
\(786\) 19.3112 0.688808
\(787\) −4.06409 −0.144869 −0.0724346 0.997373i \(-0.523077\pi\)
−0.0724346 + 0.997373i \(0.523077\pi\)
\(788\) 22.9178 0.816413
\(789\) 27.8721 0.992273
\(790\) 1.58669 0.0564519
\(791\) 0.254999 0.00906670
\(792\) 5.44155 0.193357
\(793\) −32.6577 −1.15971
\(794\) −11.9008 −0.422343
\(795\) −3.42970 −0.121639
\(796\) −23.2969 −0.825738
\(797\) −13.8056 −0.489020 −0.244510 0.969647i \(-0.578627\pi\)
−0.244510 + 0.969647i \(0.578627\pi\)
\(798\) −1.85070 −0.0655141
\(799\) 0 0
\(800\) −16.2021 −0.572830
\(801\) −7.64847 −0.270246
\(802\) −38.9368 −1.37490
\(803\) 41.8596 1.47719
\(804\) −10.0547 −0.354601
\(805\) −0.846857 −0.0298478
\(806\) −18.7661 −0.661006
\(807\) −0.205327 −0.00722786
\(808\) 9.88989 0.347925
\(809\) −18.8490 −0.662695 −0.331347 0.943509i \(-0.607503\pi\)
−0.331347 + 0.943509i \(0.607503\pi\)
\(810\) 2.98067 0.104730
\(811\) 2.59955 0.0912825 0.0456413 0.998958i \(-0.485467\pi\)
0.0456413 + 0.998958i \(0.485467\pi\)
\(812\) −0.482843 −0.0169445
\(813\) 8.21077 0.287964
\(814\) −99.1744 −3.47606
\(815\) 33.4280 1.17093
\(816\) 0 0
\(817\) −41.7291 −1.45992
\(818\) 51.0410 1.78461
\(819\) −0.600582 −0.0209860
\(820\) 0.631394 0.0220492
\(821\) 13.0073 0.453960 0.226980 0.973899i \(-0.427115\pi\)
0.226980 + 0.973899i \(0.427115\pi\)
\(822\) 24.9314 0.869581
\(823\) −21.6544 −0.754824 −0.377412 0.926046i \(-0.623186\pi\)
−0.377412 + 0.926046i \(0.623186\pi\)
\(824\) 8.20304 0.285767
\(825\) 12.0547 0.419690
\(826\) −0.372395 −0.0129573
\(827\) −47.8742 −1.66475 −0.832375 0.554213i \(-0.813019\pi\)
−0.832375 + 0.554213i \(0.813019\pi\)
\(828\) 4.87669 0.169477
\(829\) 12.9906 0.451181 0.225590 0.974222i \(-0.427569\pi\)
0.225590 + 0.974222i \(0.427569\pi\)
\(830\) 6.56775 0.227970
\(831\) −23.5677 −0.817554
\(832\) 11.1580 0.386834
\(833\) 0 0
\(834\) 9.84482 0.340898
\(835\) 13.0483 0.451554
\(836\) −46.7749 −1.61774
\(837\) 2.57446 0.0889864
\(838\) 22.2673 0.769210
\(839\) −18.8727 −0.651557 −0.325779 0.945446i \(-0.605626\pi\)
−0.325779 + 0.945446i \(0.605626\pi\)
\(840\) 0.265818 0.00917159
\(841\) −23.9706 −0.826571
\(842\) −25.9024 −0.892657
\(843\) 10.1532 0.349695
\(844\) −15.1161 −0.520319
\(845\) −4.13381 −0.142207
\(846\) −18.1480 −0.623942
\(847\) 2.17311 0.0746689
\(848\) 10.2658 0.352530
\(849\) 9.47918 0.325325
\(850\) 0 0
\(851\) 36.8151 1.26201
\(852\) 9.25903 0.317209
\(853\) −6.03591 −0.206665 −0.103333 0.994647i \(-0.532951\pi\)
−0.103333 + 0.994647i \(0.532951\pi\)
\(854\) −2.32874 −0.0796879
\(855\) 10.6128 0.362948
\(856\) 19.9881 0.683181
\(857\) 16.0835 0.549401 0.274701 0.961530i \(-0.411421\pi\)
0.274701 + 0.961530i \(0.411421\pi\)
\(858\) −36.6458 −1.25107
\(859\) −57.8556 −1.97401 −0.987003 0.160699i \(-0.948625\pi\)
−0.987003 + 0.160699i \(0.948625\pi\)
\(860\) −14.4698 −0.493416
\(861\) 0.0421355 0.00143597
\(862\) 6.36332 0.216736
\(863\) −7.56067 −0.257368 −0.128684 0.991686i \(-0.541075\pi\)
−0.128684 + 0.991686i \(0.541075\pi\)
\(864\) −6.75699 −0.229877
\(865\) −1.87223 −0.0636577
\(866\) −10.2842 −0.349473
\(867\) 0 0
\(868\) −0.554285 −0.0188137
\(869\) 2.67619 0.0907834
\(870\) 6.68457 0.226628
\(871\) −28.0475 −0.950354
\(872\) 11.6241 0.393641
\(873\) 3.60634 0.122056
\(874\) 41.9194 1.41795
\(875\) 1.81679 0.0614186
\(876\) −11.7753 −0.397850
\(877\) −17.3660 −0.586407 −0.293204 0.956050i \(-0.594721\pi\)
−0.293204 + 0.956050i \(0.594721\pi\)
\(878\) −32.4954 −1.09667
\(879\) −9.28515 −0.313180
\(880\) 39.1572 1.31999
\(881\) 41.1018 1.38476 0.692378 0.721535i \(-0.256563\pi\)
0.692378 + 0.721535i \(0.256563\pi\)
\(882\) 12.8915 0.434079
\(883\) 28.3729 0.954824 0.477412 0.878680i \(-0.341575\pi\)
0.477412 + 0.878680i \(0.341575\pi\)
\(884\) 0 0
\(885\) 2.13548 0.0717833
\(886\) −10.8580 −0.364782
\(887\) 21.5004 0.721914 0.360957 0.932583i \(-0.382450\pi\)
0.360957 + 0.932583i \(0.382450\pi\)
\(888\) −11.5558 −0.387788
\(889\) −1.85447 −0.0621970
\(890\) −22.7976 −0.764176
\(891\) 5.02734 0.168422
\(892\) 7.66008 0.256479
\(893\) −64.6165 −2.16231
\(894\) 17.2191 0.575893
\(895\) −4.67271 −0.156192
\(896\) −1.26173 −0.0421514
\(897\) 13.6035 0.454208
\(898\) 73.8756 2.46526
\(899\) 5.77359 0.192560
\(900\) −3.39104 −0.113035
\(901\) 0 0
\(902\) 2.57099 0.0856046
\(903\) −0.965630 −0.0321341
\(904\) 1.81297 0.0602985
\(905\) −1.35937 −0.0451871
\(906\) 22.1052 0.734396
\(907\) 14.8069 0.491654 0.245827 0.969314i \(-0.420940\pi\)
0.245827 + 0.969314i \(0.420940\pi\)
\(908\) 17.3929 0.577205
\(909\) 9.13707 0.303058
\(910\) −1.79014 −0.0593425
\(911\) −47.5209 −1.57444 −0.787220 0.616673i \(-0.788480\pi\)
−0.787220 + 0.616673i \(0.788480\pi\)
\(912\) −31.7662 −1.05188
\(913\) 11.0775 0.366611
\(914\) 32.6880 1.08122
\(915\) 13.3540 0.441471
\(916\) 42.5901 1.40722
\(917\) 1.59109 0.0525425
\(918\) 0 0
\(919\) −52.4090 −1.72881 −0.864407 0.502793i \(-0.832306\pi\)
−0.864407 + 0.502793i \(0.832306\pi\)
\(920\) −6.02092 −0.198504
\(921\) 27.1418 0.894351
\(922\) −55.1856 −1.81744
\(923\) 25.8281 0.850141
\(924\) −1.08239 −0.0356081
\(925\) −25.5996 −0.841710
\(926\) −17.4653 −0.573944
\(927\) 7.57862 0.248915
\(928\) −15.1535 −0.497438
\(929\) 45.8975 1.50585 0.752924 0.658107i \(-0.228643\pi\)
0.752924 + 0.658107i \(0.228643\pi\)
\(930\) 7.67362 0.251628
\(931\) 45.9005 1.50433
\(932\) 12.4242 0.406968
\(933\) 2.58579 0.0846548
\(934\) 36.9725 1.20978
\(935\) 0 0
\(936\) −4.26998 −0.139569
\(937\) 21.7579 0.710799 0.355400 0.934714i \(-0.384345\pi\)
0.355400 + 0.934714i \(0.384345\pi\)
\(938\) −2.00000 −0.0653023
\(939\) −25.6105 −0.835767
\(940\) −22.4061 −0.730808
\(941\) −54.1022 −1.76368 −0.881841 0.471548i \(-0.843696\pi\)
−0.881841 + 0.471548i \(0.843696\pi\)
\(942\) −33.5457 −1.09298
\(943\) −0.954393 −0.0310793
\(944\) −6.39194 −0.208040
\(945\) 0.245584 0.00798884
\(946\) −58.9200 −1.91565
\(947\) −5.77608 −0.187697 −0.0938486 0.995586i \(-0.529917\pi\)
−0.0938486 + 0.995586i \(0.529917\pi\)
\(948\) −0.752823 −0.0244506
\(949\) −32.8471 −1.06626
\(950\) −29.1489 −0.945716
\(951\) −25.5982 −0.830078
\(952\) 0 0
\(953\) −31.4698 −1.01941 −0.509704 0.860350i \(-0.670245\pi\)
−0.509704 + 0.860350i \(0.670245\pi\)
\(954\) 3.92856 0.127192
\(955\) −16.0840 −0.520466
\(956\) 20.7183 0.670078
\(957\) 11.2745 0.364453
\(958\) 2.22784 0.0719784
\(959\) 2.05415 0.0663320
\(960\) −4.56261 −0.147258
\(961\) −24.3721 −0.786198
\(962\) 77.8221 2.50908
\(963\) 18.4666 0.595079
\(964\) −23.9783 −0.772290
\(965\) 6.02371 0.193910
\(966\) 0.970034 0.0312103
\(967\) −5.82126 −0.187199 −0.0935996 0.995610i \(-0.529837\pi\)
−0.0935996 + 0.995610i \(0.529837\pi\)
\(968\) 15.4502 0.496589
\(969\) 0 0
\(970\) 10.7493 0.345139
\(971\) 21.9049 0.702963 0.351481 0.936195i \(-0.385678\pi\)
0.351481 + 0.936195i \(0.385678\pi\)
\(972\) −1.41421 −0.0453609
\(973\) 0.811136 0.0260038
\(974\) −22.1016 −0.708180
\(975\) −9.45929 −0.302940
\(976\) −39.9715 −1.27946
\(977\) −28.0473 −0.897312 −0.448656 0.893705i \(-0.648097\pi\)
−0.448656 + 0.893705i \(0.648097\pi\)
\(978\) −38.2902 −1.22438
\(979\) −38.4515 −1.22891
\(980\) 15.9163 0.508426
\(981\) 10.7392 0.342878
\(982\) −57.7668 −1.84341
\(983\) −31.3271 −0.999179 −0.499590 0.866262i \(-0.666516\pi\)
−0.499590 + 0.866262i \(0.666516\pi\)
\(984\) 0.299572 0.00955001
\(985\) −26.1412 −0.832929
\(986\) 0 0
\(987\) −1.49526 −0.0475945
\(988\) 36.7042 1.16772
\(989\) 21.8720 0.695491
\(990\) 14.9848 0.476249
\(991\) 17.9993 0.571765 0.285883 0.958265i \(-0.407713\pi\)
0.285883 + 0.958265i \(0.407713\pi\)
\(992\) −17.3956 −0.552311
\(993\) 0.333172 0.0105729
\(994\) 1.84174 0.0584163
\(995\) 26.5737 0.842443
\(996\) −3.11615 −0.0987389
\(997\) 55.5666 1.75981 0.879907 0.475147i \(-0.157605\pi\)
0.879907 + 0.475147i \(0.157605\pi\)
\(998\) 76.4214 2.41908
\(999\) −10.6762 −0.337780
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.a.m.1.1 4
3.2 odd 2 2601.2.a.bc.1.4 4
17.2 even 8 867.2.e.h.616.1 8
17.3 odd 16 867.2.h.g.757.1 8
17.4 even 4 867.2.d.e.577.8 8
17.5 odd 16 867.2.h.f.688.2 8
17.6 odd 16 867.2.h.g.733.1 8
17.7 odd 16 867.2.h.f.712.2 8
17.8 even 8 867.2.e.i.829.4 8
17.9 even 8 867.2.e.h.829.4 8
17.10 odd 16 867.2.h.b.712.2 8
17.11 odd 16 51.2.h.a.19.1 8
17.12 odd 16 867.2.h.b.688.2 8
17.13 even 4 867.2.d.e.577.7 8
17.14 odd 16 51.2.h.a.43.1 yes 8
17.15 even 8 867.2.e.i.616.1 8
17.16 even 2 867.2.a.n.1.1 4
51.11 even 16 153.2.l.e.19.2 8
51.14 even 16 153.2.l.e.145.2 8
51.50 odd 2 2601.2.a.bd.1.4 4
68.11 even 16 816.2.bq.a.529.1 8
68.31 even 16 816.2.bq.a.145.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.1 8 17.11 odd 16
51.2.h.a.43.1 yes 8 17.14 odd 16
153.2.l.e.19.2 8 51.11 even 16
153.2.l.e.145.2 8 51.14 even 16
816.2.bq.a.145.1 8 68.31 even 16
816.2.bq.a.529.1 8 68.11 even 16
867.2.a.m.1.1 4 1.1 even 1 trivial
867.2.a.n.1.1 4 17.16 even 2
867.2.d.e.577.7 8 17.13 even 4
867.2.d.e.577.8 8 17.4 even 4
867.2.e.h.616.1 8 17.2 even 8
867.2.e.h.829.4 8 17.9 even 8
867.2.e.i.616.1 8 17.15 even 8
867.2.e.i.829.4 8 17.8 even 8
867.2.h.b.688.2 8 17.12 odd 16
867.2.h.b.712.2 8 17.10 odd 16
867.2.h.f.688.2 8 17.5 odd 16
867.2.h.f.712.2 8 17.7 odd 16
867.2.h.g.733.1 8 17.6 odd 16
867.2.h.g.757.1 8 17.3 odd 16
2601.2.a.bc.1.4 4 3.2 odd 2
2601.2.a.bd.1.4 4 51.50 odd 2