Properties

Label 867.2.h.f.712.2
Level $867$
Weight $2$
Character 867.712
Analytic conductor $6.923$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [867,2,Mod(688,867)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(867, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("867.688");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 867 = 3 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 867.h (of order \(8\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.92302985525\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 51)
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 712.2
Root \(0.923880 + 0.382683i\) of defining polynomial
Character \(\chi\) \(=\) 867.712
Dual form 867.2.h.f.688.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.30656 + 1.30656i) q^{2} +(0.382683 + 0.923880i) q^{3} +1.41421i q^{4} +(1.49033 - 0.617317i) q^{5} +(-0.707107 + 1.70711i) q^{6} +(-0.140652 - 0.0582601i) q^{7} +(0.765367 - 0.765367i) q^{8} +(-0.707107 + 0.707107i) q^{9} +(2.75378 + 1.14065i) q^{10} +(1.92388 - 4.64466i) q^{11} +(-1.30656 + 0.541196i) q^{12} +3.94495i q^{13} +(-0.107651 - 0.259892i) q^{14} +(1.14065 + 1.14065i) q^{15} +4.82843 q^{16} -1.84776 q^{18} +(4.65205 + 4.65205i) q^{19} +(0.873017 + 2.10765i) q^{20} -0.152241i q^{21} +(8.58221 - 3.55487i) q^{22} +(-1.31962 + 3.18585i) q^{23} +(1.00000 + 0.414214i) q^{24} +(-1.69552 + 1.69552i) q^{25} +(-5.15432 + 5.15432i) q^{26} +(-0.923880 - 0.382683i) q^{27} +(0.0823922 - 0.198912i) q^{28} +(-2.07193 + 0.858221i) q^{29} +2.98067i q^{30} +(-0.985204 - 2.37849i) q^{31} +(4.77791 + 4.77791i) q^{32} +5.02734 q^{33} -0.245584 q^{35} +(-1.00000 - 1.00000i) q^{36} +(-4.08560 - 9.86351i) q^{37} +12.1564i q^{38} +(-3.64466 + 1.50967i) q^{39} +(0.668179 - 1.61313i) q^{40} +(0.255701 + 0.105915i) q^{41} +(0.198912 - 0.198912i) q^{42} +(-4.48502 + 4.48502i) q^{43} +(6.56854 + 2.72078i) q^{44} +(-0.617317 + 1.49033i) q^{45} +(-5.88669 + 2.43835i) q^{46} -9.82164i q^{47} +(1.84776 + 4.46088i) q^{48} +(-4.93336 - 4.93336i) q^{49} -4.43060 q^{50} -5.57900 q^{52} +(1.50339 + 1.50339i) q^{53} +(-0.707107 - 1.70711i) q^{54} -8.10973i q^{55} +(-0.152241 + 0.0630603i) q^{56} +(-2.51767 + 6.07820i) q^{57} +(-3.82843 - 1.58579i) q^{58} +(0.936078 - 0.936078i) q^{59} +(-1.61313 + 1.61313i) q^{60} +(7.64821 + 3.16799i) q^{61} +(1.82042 - 4.39488i) q^{62} +(0.140652 - 0.0582601i) q^{63} +2.82843i q^{64} +(2.43528 + 5.87929i) q^{65} +(6.56854 + 6.56854i) q^{66} -7.10973 q^{67} -3.44834 q^{69} +(-0.320871 - 0.320871i) q^{70} +(2.50548 + 6.04875i) q^{71} +1.08239i q^{72} +(-7.69258 + 3.18637i) q^{73} +(7.54920 - 18.2254i) q^{74} +(-2.21530 - 0.917608i) q^{75} +(-6.57900 + 6.57900i) q^{76} +(-0.541196 + 0.541196i) q^{77} +(-6.73445 - 2.78950i) q^{78} +(0.203713 - 0.491806i) q^{79} +(7.19597 - 2.98067i) q^{80} -1.00000i q^{81} +(0.195705 + 0.472474i) q^{82} +(1.55807 + 1.55807i) q^{83} +0.215301 q^{84} -11.7199 q^{86} +(-1.58579 - 1.58579i) q^{87} +(-2.08239 - 5.02734i) q^{88} -7.64847i q^{89} +(-2.75378 + 1.14065i) q^{90} +(0.229833 - 0.554866i) q^{91} +(-4.50548 - 1.86623i) q^{92} +(1.82042 - 1.82042i) q^{93} +(12.8326 - 12.8326i) q^{94} +(9.80490 + 4.06132i) q^{95} +(-2.58579 + 6.24264i) q^{96} +(3.33182 - 1.38009i) q^{97} -12.8915i q^{98} +(1.92388 + 4.64466i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{5} + 8 q^{7} - 8 q^{10} + 8 q^{11} + 16 q^{16} + 8 q^{19} + 16 q^{22} - 24 q^{23} + 8 q^{24} + 16 q^{25} - 16 q^{26} - 8 q^{28} - 8 q^{31} + 8 q^{33} + 32 q^{35} - 8 q^{36} + 8 q^{40} - 8 q^{41}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/867\mathbb{Z}\right)^\times\).

\(n\) \(290\) \(292\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.30656 + 1.30656i 0.923880 + 0.923880i 0.997301 0.0734215i \(-0.0233918\pi\)
−0.0734215 + 0.997301i \(0.523392\pi\)
\(3\) 0.382683 + 0.923880i 0.220942 + 0.533402i
\(4\) 1.41421i 0.707107i
\(5\) 1.49033 0.617317i 0.666498 0.276072i −0.0236722 0.999720i \(-0.507536\pi\)
0.690170 + 0.723647i \(0.257536\pi\)
\(6\) −0.707107 + 1.70711i −0.288675 + 0.696923i
\(7\) −0.140652 0.0582601i −0.0531616 0.0220202i 0.355944 0.934507i \(-0.384159\pi\)
−0.409106 + 0.912487i \(0.634159\pi\)
\(8\) 0.765367 0.765367i 0.270598 0.270598i
\(9\) −0.707107 + 0.707107i −0.235702 + 0.235702i
\(10\) 2.75378 + 1.14065i 0.870821 + 0.360706i
\(11\) 1.92388 4.64466i 0.580072 1.40042i −0.312676 0.949860i \(-0.601226\pi\)
0.892748 0.450557i \(-0.148774\pi\)
\(12\) −1.30656 + 0.541196i −0.377172 + 0.156230i
\(13\) 3.94495i 1.09413i 0.837090 + 0.547066i \(0.184255\pi\)
−0.837090 + 0.547066i \(0.815745\pi\)
\(14\) −0.107651 0.259892i −0.0287708 0.0694589i
\(15\) 1.14065 + 1.14065i 0.294515 + 0.294515i
\(16\) 4.82843 1.20711
\(17\) 0 0
\(18\) −1.84776 −0.435521
\(19\) 4.65205 + 4.65205i 1.06725 + 1.06725i 0.997569 + 0.0696854i \(0.0221995\pi\)
0.0696854 + 0.997569i \(0.477800\pi\)
\(20\) 0.873017 + 2.10765i 0.195213 + 0.471285i
\(21\) 0.152241i 0.0332217i
\(22\) 8.58221 3.55487i 1.82973 0.757900i
\(23\) −1.31962 + 3.18585i −0.275160 + 0.664296i −0.999689 0.0249490i \(-0.992058\pi\)
0.724528 + 0.689245i \(0.242058\pi\)
\(24\) 1.00000 + 0.414214i 0.204124 + 0.0845510i
\(25\) −1.69552 + 1.69552i −0.339104 + 0.339104i
\(26\) −5.15432 + 5.15432i −1.01085 + 1.01085i
\(27\) −0.923880 0.382683i −0.177801 0.0736475i
\(28\) 0.0823922 0.198912i 0.0155707 0.0375909i
\(29\) −2.07193 + 0.858221i −0.384748 + 0.159368i −0.566669 0.823945i \(-0.691768\pi\)
0.181922 + 0.983313i \(0.441768\pi\)
\(30\) 2.98067i 0.544193i
\(31\) −0.985204 2.37849i −0.176948 0.427190i 0.810376 0.585911i \(-0.199263\pi\)
−0.987324 + 0.158721i \(0.949263\pi\)
\(32\) 4.77791 + 4.77791i 0.844623 + 0.844623i
\(33\) 5.02734 0.875147
\(34\) 0 0
\(35\) −0.245584 −0.0415112
\(36\) −1.00000 1.00000i −0.166667 0.166667i
\(37\) −4.08560 9.86351i −0.671668 1.62155i −0.778775 0.627303i \(-0.784159\pi\)
0.107106 0.994248i \(-0.465841\pi\)
\(38\) 12.1564i 1.97203i
\(39\) −3.64466 + 1.50967i −0.583612 + 0.241740i
\(40\) 0.668179 1.61313i 0.105648 0.255058i
\(41\) 0.255701 + 0.105915i 0.0399338 + 0.0165411i 0.402561 0.915393i \(-0.368120\pi\)
−0.362627 + 0.931934i \(0.618120\pi\)
\(42\) 0.198912 0.198912i 0.0306928 0.0306928i
\(43\) −4.48502 + 4.48502i −0.683959 + 0.683959i −0.960890 0.276931i \(-0.910683\pi\)
0.276931 + 0.960890i \(0.410683\pi\)
\(44\) 6.56854 + 2.72078i 0.990244 + 0.410172i
\(45\) −0.617317 + 1.49033i −0.0920241 + 0.222166i
\(46\) −5.88669 + 2.43835i −0.867945 + 0.359514i
\(47\) 9.82164i 1.43263i −0.697775 0.716317i \(-0.745827\pi\)
0.697775 0.716317i \(-0.254173\pi\)
\(48\) 1.84776 + 4.46088i 0.266701 + 0.643873i
\(49\) −4.93336 4.93336i −0.704766 0.704766i
\(50\) −4.43060 −0.626582
\(51\) 0 0
\(52\) −5.57900 −0.773668
\(53\) 1.50339 + 1.50339i 0.206507 + 0.206507i 0.802781 0.596274i \(-0.203353\pi\)
−0.596274 + 0.802781i \(0.703353\pi\)
\(54\) −0.707107 1.70711i −0.0962250 0.232308i
\(55\) 8.10973i 1.09352i
\(56\) −0.152241 + 0.0630603i −0.0203441 + 0.00842678i
\(57\) −2.51767 + 6.07820i −0.333474 + 0.805077i
\(58\) −3.82843 1.58579i −0.502697 0.208224i
\(59\) 0.936078 0.936078i 0.121867 0.121867i −0.643543 0.765410i \(-0.722536\pi\)
0.765410 + 0.643543i \(0.222536\pi\)
\(60\) −1.61313 + 1.61313i −0.208254 + 0.208254i
\(61\) 7.64821 + 3.16799i 0.979253 + 0.405620i 0.814149 0.580656i \(-0.197204\pi\)
0.165104 + 0.986276i \(0.447204\pi\)
\(62\) 1.82042 4.39488i 0.231194 0.558151i
\(63\) 0.140652 0.0582601i 0.0177205 0.00734008i
\(64\) 2.82843i 0.353553i
\(65\) 2.43528 + 5.87929i 0.302059 + 0.729236i
\(66\) 6.56854 + 6.56854i 0.808531 + 0.808531i
\(67\) −7.10973 −0.868592 −0.434296 0.900770i \(-0.643003\pi\)
−0.434296 + 0.900770i \(0.643003\pi\)
\(68\) 0 0
\(69\) −3.44834 −0.415132
\(70\) −0.320871 0.320871i −0.0383514 0.0383514i
\(71\) 2.50548 + 6.04875i 0.297345 + 0.717855i 0.999980 + 0.00630431i \(0.00200674\pi\)
−0.702635 + 0.711551i \(0.747993\pi\)
\(72\) 1.08239i 0.127561i
\(73\) −7.69258 + 3.18637i −0.900348 + 0.372936i −0.784354 0.620314i \(-0.787005\pi\)
−0.115994 + 0.993250i \(0.537005\pi\)
\(74\) 7.54920 18.2254i 0.877577 2.11866i
\(75\) −2.21530 0.917608i −0.255801 0.105956i
\(76\) −6.57900 + 6.57900i −0.754663 + 0.754663i
\(77\) −0.541196 + 0.541196i −0.0616750 + 0.0616750i
\(78\) −6.73445 2.78950i −0.762526 0.315849i
\(79\) 0.203713 0.491806i 0.0229195 0.0553325i −0.912005 0.410178i \(-0.865467\pi\)
0.934925 + 0.354846i \(0.115467\pi\)
\(80\) 7.19597 2.98067i 0.804534 0.333249i
\(81\) 1.00000i 0.111111i
\(82\) 0.195705 + 0.472474i 0.0216120 + 0.0521760i
\(83\) 1.55807 + 1.55807i 0.171021 + 0.171021i 0.787428 0.616407i \(-0.211412\pi\)
−0.616407 + 0.787428i \(0.711412\pi\)
\(84\) 0.215301 0.0234913
\(85\) 0 0
\(86\) −11.7199 −1.26379
\(87\) −1.58579 1.58579i −0.170014 0.170014i
\(88\) −2.08239 5.02734i −0.221984 0.535916i
\(89\) 7.64847i 0.810737i −0.914153 0.405368i \(-0.867143\pi\)
0.914153 0.405368i \(-0.132857\pi\)
\(90\) −2.75378 + 1.14065i −0.290274 + 0.120235i
\(91\) 0.229833 0.554866i 0.0240930 0.0581657i
\(92\) −4.50548 1.86623i −0.469728 0.194568i
\(93\) 1.82042 1.82042i 0.188769 0.188769i
\(94\) 12.8326 12.8326i 1.32358 1.32358i
\(95\) 9.80490 + 4.06132i 1.00596 + 0.416683i
\(96\) −2.58579 + 6.24264i −0.263911 + 0.637137i
\(97\) 3.33182 1.38009i 0.338295 0.140126i −0.207067 0.978327i \(-0.566392\pi\)
0.545363 + 0.838200i \(0.316392\pi\)
\(98\) 12.8915i 1.30224i
\(99\) 1.92388 + 4.64466i 0.193357 + 0.466805i
\(100\) −2.39782 2.39782i −0.239782 0.239782i
\(101\) −9.13707 −0.909173 −0.454586 0.890703i \(-0.650213\pi\)
−0.454586 + 0.890703i \(0.650213\pi\)
\(102\) 0 0
\(103\) 7.57862 0.746744 0.373372 0.927682i \(-0.378202\pi\)
0.373372 + 0.927682i \(0.378202\pi\)
\(104\) 3.01933 + 3.01933i 0.296070 + 0.296070i
\(105\) −0.0939809 0.226890i −0.00917159 0.0221422i
\(106\) 3.92856i 0.381575i
\(107\) −17.0610 + 7.06688i −1.64934 + 0.683181i −0.997191 0.0749059i \(-0.976134\pi\)
−0.652154 + 0.758087i \(0.726134\pi\)
\(108\) 0.541196 1.30656i 0.0520766 0.125724i
\(109\) −9.92177 4.10973i −0.950333 0.393641i −0.146977 0.989140i \(-0.546954\pi\)
−0.803356 + 0.595499i \(0.796954\pi\)
\(110\) 10.5959 10.5959i 1.01028 1.01028i
\(111\) 7.54920 7.54920i 0.716539 0.716539i
\(112\) −0.679129 0.281305i −0.0641717 0.0265808i
\(113\) 0.640982 1.54747i 0.0602985 0.145574i −0.890859 0.454281i \(-0.849896\pi\)
0.951157 + 0.308707i \(0.0998963\pi\)
\(114\) −11.2311 + 4.65205i −1.05188 + 0.435705i
\(115\) 5.56261i 0.518716i
\(116\) −1.21371 2.93015i −0.112690 0.272058i
\(117\) −2.78950 2.78950i −0.257889 0.257889i
\(118\) 2.44609 0.225181
\(119\) 0 0
\(120\) 1.74603 0.159390
\(121\) −10.0933 10.0933i −0.917577 0.917577i
\(122\) 5.85369 + 14.1320i 0.529968 + 1.27946i
\(123\) 0.276769i 0.0249554i
\(124\) 3.36370 1.39329i 0.302069 0.125121i
\(125\) −4.56680 + 11.0252i −0.408467 + 0.986127i
\(126\) 0.259892 + 0.107651i 0.0231530 + 0.00959028i
\(127\) −8.61339 + 8.61339i −0.764315 + 0.764315i −0.977099 0.212784i \(-0.931747\pi\)
0.212784 + 0.977099i \(0.431747\pi\)
\(128\) 5.86030 5.86030i 0.517982 0.517982i
\(129\) −5.85996 2.42727i −0.515940 0.213710i
\(130\) −4.49981 + 10.8635i −0.394660 + 0.952793i
\(131\) 9.65561 3.99948i 0.843614 0.349436i 0.0813367 0.996687i \(-0.474081\pi\)
0.762278 + 0.647250i \(0.224081\pi\)
\(132\) 7.10973i 0.618823i
\(133\) −0.383293 0.925351i −0.0332357 0.0802381i
\(134\) −9.28931 9.28931i −0.802474 0.802474i
\(135\) −1.61313 −0.138836
\(136\) 0 0
\(137\) 13.4928 1.15276 0.576382 0.817180i \(-0.304464\pi\)
0.576382 + 0.817180i \(0.304464\pi\)
\(138\) −4.50548 4.50548i −0.383532 0.383532i
\(139\) −2.03893 4.92241i −0.172940 0.417513i 0.813516 0.581543i \(-0.197551\pi\)
−0.986455 + 0.164030i \(0.947551\pi\)
\(140\) 0.347308i 0.0293529i
\(141\) 9.07401 3.75858i 0.764170 0.316529i
\(142\) −4.62951 + 11.1766i −0.388500 + 0.937923i
\(143\) 18.3229 + 7.58960i 1.53224 + 0.634675i
\(144\) −3.41421 + 3.41421i −0.284518 + 0.284518i
\(145\) −2.55807 + 2.55807i −0.212436 + 0.212436i
\(146\) −14.2140 5.88764i −1.17636 0.487265i
\(147\) 2.66991 6.44574i 0.220211 0.531636i
\(148\) 13.9491 5.77791i 1.14661 0.474941i
\(149\) 9.31890i 0.763434i −0.924279 0.381717i \(-0.875333\pi\)
0.924279 0.381717i \(-0.124667\pi\)
\(150\) −1.69552 4.09334i −0.138438 0.334220i
\(151\) 8.45929 + 8.45929i 0.688407 + 0.688407i 0.961880 0.273472i \(-0.0881722\pi\)
−0.273472 + 0.961880i \(0.588172\pi\)
\(152\) 7.12106 0.577594
\(153\) 0 0
\(154\) −1.41421 −0.113961
\(155\) −2.93657 2.93657i −0.235871 0.235871i
\(156\) −2.13499 5.15432i −0.170936 0.412676i
\(157\) 18.1548i 1.44891i −0.689321 0.724456i \(-0.742091\pi\)
0.689321 0.724456i \(-0.257909\pi\)
\(158\) 0.908738 0.376412i 0.0722953 0.0299457i
\(159\) −0.813631 + 1.96428i −0.0645251 + 0.155777i
\(160\) 10.0702 + 4.17120i 0.796116 + 0.329762i
\(161\) 0.371216 0.371216i 0.0292559 0.0292559i
\(162\) 1.30656 1.30656i 0.102653 0.102653i
\(163\) −19.1451 7.93015i −1.49956 0.621137i −0.526186 0.850369i \(-0.676379\pi\)
−0.973372 + 0.229232i \(0.926379\pi\)
\(164\) −0.149786 + 0.361616i −0.0116963 + 0.0282374i
\(165\) 7.49242 3.10346i 0.583284 0.241604i
\(166\) 4.07144i 0.316005i
\(167\) −3.09545 7.47308i −0.239533 0.578285i 0.757701 0.652601i \(-0.226322\pi\)
−0.997235 + 0.0743169i \(0.976322\pi\)
\(168\) −0.116520 0.116520i −0.00898973 0.00898973i
\(169\) −2.56261 −0.197124
\(170\) 0 0
\(171\) −6.57900 −0.503109
\(172\) −6.34277 6.34277i −0.483632 0.483632i
\(173\) −0.444151 1.07228i −0.0337682 0.0815236i 0.906096 0.423073i \(-0.139048\pi\)
−0.939864 + 0.341549i \(0.889048\pi\)
\(174\) 4.14386i 0.314145i
\(175\) 0.337260 0.139697i 0.0254944 0.0105601i
\(176\) 9.28931 22.4264i 0.700208 1.69045i
\(177\) 1.22304 + 0.506602i 0.0919297 + 0.0380785i
\(178\) 9.99321 9.99321i 0.749023 0.749023i
\(179\) −2.04826 + 2.04826i −0.153094 + 0.153094i −0.779499 0.626404i \(-0.784526\pi\)
0.626404 + 0.779499i \(0.284526\pi\)
\(180\) −2.10765 0.873017i −0.157095 0.0650709i
\(181\) 0.322485 0.778548i 0.0239701 0.0578690i −0.911441 0.411430i \(-0.865029\pi\)
0.935411 + 0.353561i \(0.115029\pi\)
\(182\) 1.02526 0.424676i 0.0759972 0.0314791i
\(183\) 8.27836i 0.611954i
\(184\) 1.42835 + 3.44834i 0.105299 + 0.254215i
\(185\) −12.1778 12.1778i −0.895331 0.895331i
\(186\) 4.75699 0.348799
\(187\) 0 0
\(188\) 13.8899 1.01302
\(189\) 0.107651 + 0.107651i 0.00783043 + 0.00783043i
\(190\) 7.50435 + 18.1171i 0.544423 + 1.31435i
\(191\) 9.97069i 0.721454i 0.932671 + 0.360727i \(0.117471\pi\)
−0.932671 + 0.360727i \(0.882529\pi\)
\(192\) −2.61313 + 1.08239i −0.188586 + 0.0781149i
\(193\) 1.42901 3.44993i 0.102862 0.248332i −0.864067 0.503377i \(-0.832091\pi\)
0.966929 + 0.255046i \(0.0820905\pi\)
\(194\) 6.15640 + 2.55007i 0.442004 + 0.183084i
\(195\) −4.49981 + 4.49981i −0.322238 + 0.322238i
\(196\) 6.97682 6.97682i 0.498344 0.498344i
\(197\) 14.9718 + 6.20151i 1.06669 + 0.441839i 0.845823 0.533464i \(-0.179110\pi\)
0.220871 + 0.975303i \(0.429110\pi\)
\(198\) −3.55487 + 8.58221i −0.252633 + 0.609911i
\(199\) −15.2195 + 6.30411i −1.07888 + 0.446886i −0.850116 0.526596i \(-0.823468\pi\)
−0.228763 + 0.973482i \(0.573468\pi\)
\(200\) 2.59539i 0.183522i
\(201\) −2.72078 6.56854i −0.191909 0.463309i
\(202\) −11.9382 11.9382i −0.839966 0.839966i
\(203\) 0.341422 0.0239631
\(204\) 0 0
\(205\) 0.446463 0.0311823
\(206\) 9.90195 + 9.90195i 0.689902 + 0.689902i
\(207\) −1.31962 3.18585i −0.0917202 0.221432i
\(208\) 19.0479i 1.32073i
\(209\) 30.5572 12.6572i 2.11368 0.875517i
\(210\) 0.173654 0.419238i 0.0119833 0.0289302i
\(211\) 9.87510 + 4.09040i 0.679830 + 0.281595i 0.695756 0.718278i \(-0.255070\pi\)
−0.0159259 + 0.999873i \(0.505070\pi\)
\(212\) −2.12612 + 2.12612i −0.146023 + 0.146023i
\(213\) −4.62951 + 4.62951i −0.317209 + 0.317209i
\(214\) −31.5245 13.0579i −2.15497 0.892619i
\(215\) −3.91550 + 9.45285i −0.267035 + 0.644679i
\(216\) −1.00000 + 0.414214i −0.0680414 + 0.0281837i
\(217\) 0.391939i 0.0266065i
\(218\) −7.59379 18.3330i −0.514317 1.24167i
\(219\) −5.88764 5.88764i −0.397850 0.397850i
\(220\) 11.4689 0.773233
\(221\) 0 0
\(222\) 19.7270 1.32399
\(223\) −3.83004 3.83004i −0.256479 0.256479i 0.567142 0.823620i \(-0.308049\pi\)
−0.823620 + 0.567142i \(0.808049\pi\)
\(224\) −0.393663 0.950385i −0.0263027 0.0635003i
\(225\) 2.39782i 0.159855i
\(226\) 2.85935 1.18438i 0.190201 0.0787838i
\(227\) −4.70650 + 11.3625i −0.312381 + 0.754155i 0.687235 + 0.726436i \(0.258824\pi\)
−0.999616 + 0.0277193i \(0.991176\pi\)
\(228\) −8.59588 3.56053i −0.569276 0.235802i
\(229\) 21.2951 21.2951i 1.40722 1.40722i 0.633362 0.773856i \(-0.281674\pi\)
0.773856 0.633362i \(-0.218326\pi\)
\(230\) −7.26790 + 7.26790i −0.479231 + 0.479231i
\(231\) −0.707107 0.292893i −0.0465242 0.0192710i
\(232\) −0.928932 + 2.24264i −0.0609874 + 0.147237i
\(233\) 8.11649 3.36196i 0.531729 0.220249i −0.100631 0.994924i \(-0.532086\pi\)
0.632360 + 0.774674i \(0.282086\pi\)
\(234\) 7.28931i 0.476517i
\(235\) −6.06306 14.6375i −0.395510 0.954847i
\(236\) 1.32381 + 1.32381i 0.0861729 + 0.0861729i
\(237\) 0.532327 0.0345783
\(238\) 0 0
\(239\) 14.6501 0.947634 0.473817 0.880623i \(-0.342876\pi\)
0.473817 + 0.880623i \(0.342876\pi\)
\(240\) 5.50756 + 5.50756i 0.355511 + 0.355511i
\(241\) 6.48849 + 15.6646i 0.417960 + 1.00905i 0.982938 + 0.183939i \(0.0588849\pi\)
−0.564977 + 0.825106i \(0.691115\pi\)
\(242\) 26.3752i 1.69546i
\(243\) 0.923880 0.382683i 0.0592669 0.0245492i
\(244\) −4.48022 + 10.8162i −0.286816 + 0.692436i
\(245\) −10.3978 4.30691i −0.664291 0.275158i
\(246\) −0.361616 + 0.361616i −0.0230558 + 0.0230558i
\(247\) −18.3521 + 18.3521i −1.16772 + 1.16772i
\(248\) −2.57446 1.06638i −0.163479 0.0677150i
\(249\) −0.843223 + 2.03572i −0.0534371 + 0.129009i
\(250\) −20.3720 + 8.43835i −1.28844 + 0.533688i
\(251\) 13.9453i 0.880217i 0.897945 + 0.440109i \(0.145060\pi\)
−0.897945 + 0.440109i \(0.854940\pi\)
\(252\) 0.0823922 + 0.198912i 0.00519022 + 0.0125303i
\(253\) 12.2584 + 12.2584i 0.770678 + 0.770678i
\(254\) −22.5079 −1.41227
\(255\) 0 0
\(256\) 20.9706 1.31066
\(257\) −13.9019 13.9019i −0.867180 0.867180i 0.124980 0.992159i \(-0.460113\pi\)
−0.992159 + 0.124980i \(0.960113\pi\)
\(258\) −4.48502 10.8278i −0.279225 0.674109i
\(259\) 1.62535i 0.100994i
\(260\) −8.31457 + 3.44401i −0.515648 + 0.213588i
\(261\) 0.858221 2.07193i 0.0531226 0.128249i
\(262\) 17.8412 + 7.39008i 1.10224 + 0.456561i
\(263\) −19.7085 + 19.7085i −1.21528 + 1.21528i −0.246015 + 0.969266i \(0.579121\pi\)
−0.969266 + 0.246015i \(0.920879\pi\)
\(264\) 3.84776 3.84776i 0.236813 0.236813i
\(265\) 3.16863 + 1.31249i 0.194647 + 0.0806256i
\(266\) 0.708233 1.70983i 0.0434246 0.104836i
\(267\) 7.06627 2.92694i 0.432449 0.179126i
\(268\) 10.0547i 0.614187i
\(269\) 0.0785753 + 0.189698i 0.00479082 + 0.0115661i 0.926257 0.376893i \(-0.123008\pi\)
−0.921466 + 0.388459i \(0.873008\pi\)
\(270\) −2.10765 2.10765i −0.128268 0.128268i
\(271\) 8.21077 0.498768 0.249384 0.968405i \(-0.419772\pi\)
0.249384 + 0.968405i \(0.419772\pi\)
\(272\) 0 0
\(273\) 0.600582 0.0363489
\(274\) 17.6291 + 17.6291i 1.06502 + 1.06502i
\(275\) 4.61313 + 11.1371i 0.278182 + 0.671591i
\(276\) 4.87669i 0.293542i
\(277\) −21.7737 + 9.01896i −1.30825 + 0.541897i −0.924374 0.381486i \(-0.875412\pi\)
−0.383880 + 0.923383i \(0.625412\pi\)
\(278\) 3.76745 9.09542i 0.225957 0.545507i
\(279\) 2.37849 + 0.985204i 0.142397 + 0.0589826i
\(280\) −0.187962 + 0.187962i −0.0112329 + 0.0112329i
\(281\) 7.17941 7.17941i 0.428288 0.428288i −0.459757 0.888045i \(-0.652064\pi\)
0.888045 + 0.459757i \(0.152064\pi\)
\(282\) 16.7666 + 6.94495i 0.998436 + 0.413566i
\(283\) −3.62753 + 8.75762i −0.215634 + 0.520587i −0.994271 0.106888i \(-0.965911\pi\)
0.778637 + 0.627475i \(0.215911\pi\)
\(284\) −8.55423 + 3.54328i −0.507600 + 0.210255i
\(285\) 10.6128i 0.628645i
\(286\) 14.0238 + 33.8563i 0.829242 + 2.00197i
\(287\) −0.0297943 0.0297943i −0.00175870 0.00175870i
\(288\) −6.75699 −0.398159
\(289\) 0 0
\(290\) −6.68457 −0.392531
\(291\) 2.55007 + 2.55007i 0.149487 + 0.149487i
\(292\) −4.50621 10.8789i −0.263706 0.636642i
\(293\) 9.28515i 0.542444i 0.962517 + 0.271222i \(0.0874278\pi\)
−0.962517 + 0.271222i \(0.912572\pi\)
\(294\) 11.9102 4.93336i 0.694616 0.287719i
\(295\) 0.817212 1.97292i 0.0475799 0.114868i
\(296\) −10.6762 4.42222i −0.620541 0.257036i
\(297\) −3.55487 + 3.55487i −0.206274 + 0.206274i
\(298\) 12.1757 12.1757i 0.705321 0.705321i
\(299\) −12.5680 5.20584i −0.726827 0.301062i
\(300\) 1.29769 3.13291i 0.0749224 0.180879i
\(301\) 0.892125 0.369530i 0.0514213 0.0212994i
\(302\) 22.1052i 1.27201i
\(303\) −3.49661 8.44155i −0.200875 0.484955i
\(304\) 22.4621 + 22.4621i 1.28829 + 1.28829i
\(305\) 13.3540 0.764650
\(306\) 0 0
\(307\) −27.1418 −1.54906 −0.774531 0.632536i \(-0.782014\pi\)
−0.774531 + 0.632536i \(0.782014\pi\)
\(308\) −0.765367 0.765367i −0.0436108 0.0436108i
\(309\) 2.90021 + 7.00174i 0.164987 + 0.398315i
\(310\) 7.67362i 0.435832i
\(311\) 2.38896 0.989538i 0.135465 0.0561115i −0.313921 0.949449i \(-0.601643\pi\)
0.449386 + 0.893338i \(0.351643\pi\)
\(312\) −1.63405 + 3.94495i −0.0925099 + 0.223339i
\(313\) −23.6610 9.80071i −1.33740 0.553969i −0.404643 0.914475i \(-0.632604\pi\)
−0.932757 + 0.360506i \(0.882604\pi\)
\(314\) 23.7204 23.7204i 1.33862 1.33862i
\(315\) 0.173654 0.173654i 0.00978429 0.00978429i
\(316\) 0.695518 + 0.288093i 0.0391260 + 0.0162065i
\(317\) 9.79601 23.6497i 0.550199 1.32830i −0.367131 0.930169i \(-0.619660\pi\)
0.917330 0.398128i \(-0.130340\pi\)
\(318\) −3.62951 + 1.50339i −0.203533 + 0.0843062i
\(319\) 11.2745i 0.631252i
\(320\) 1.74603 + 4.21530i 0.0976063 + 0.235643i
\(321\) −13.0579 13.0579i −0.728820 0.728820i
\(322\) 0.970034 0.0540579
\(323\) 0 0
\(324\) 1.41421 0.0785674
\(325\) −6.68873 6.68873i −0.371024 0.371024i
\(326\) −14.6530 35.3755i −0.811555 1.95927i
\(327\) 10.7392i 0.593882i
\(328\) 0.276769 0.114641i 0.0152820 0.00633001i
\(329\) −0.572209 + 1.38144i −0.0315469 + 0.0761610i
\(330\) 13.8442 + 5.73445i 0.762097 + 0.315671i
\(331\) −0.235588 + 0.235588i −0.0129491 + 0.0129491i −0.713552 0.700603i \(-0.752915\pi\)
0.700603 + 0.713552i \(0.252915\pi\)
\(332\) −2.20345 + 2.20345i −0.120930 + 0.120930i
\(333\) 9.86351 + 4.08560i 0.540517 + 0.223889i
\(334\) 5.71965 13.8085i 0.312965 0.755565i
\(335\) −10.5959 + 4.38896i −0.578914 + 0.239794i
\(336\) 0.735084i 0.0401021i
\(337\) −1.43713 3.46953i −0.0782853 0.188997i 0.879891 0.475175i \(-0.157615\pi\)
−0.958177 + 0.286178i \(0.907615\pi\)
\(338\) −3.34821 3.34821i −0.182119 0.182119i
\(339\) 1.67497 0.0909717
\(340\) 0 0
\(341\) −12.9427 −0.700886
\(342\) −8.59588 8.59588i −0.464812 0.464812i
\(343\) 0.814291 + 1.96587i 0.0439676 + 0.106147i
\(344\) 6.86537i 0.370156i
\(345\) −5.13918 + 2.12872i −0.276684 + 0.114606i
\(346\) 0.820684 1.98131i 0.0441202 0.106516i
\(347\) −3.05804 1.26668i −0.164164 0.0679989i 0.299088 0.954225i \(-0.403318\pi\)
−0.463252 + 0.886227i \(0.653318\pi\)
\(348\) 2.24264 2.24264i 0.120218 0.120218i
\(349\) −1.82779 + 1.82779i −0.0978393 + 0.0978393i −0.754332 0.656493i \(-0.772039\pi\)
0.656493 + 0.754332i \(0.272039\pi\)
\(350\) 0.623174 + 0.258127i 0.0333101 + 0.0137975i
\(351\) 1.50967 3.64466i 0.0805800 0.194537i
\(352\) 31.3839 12.9996i 1.67277 0.692882i
\(353\) 13.2848i 0.707079i −0.935420 0.353539i \(-0.884978\pi\)
0.935420 0.353539i \(-0.115022\pi\)
\(354\) 0.936078 + 2.25989i 0.0497520 + 0.120112i
\(355\) 7.46799 + 7.46799i 0.396360 + 0.396360i
\(356\) 10.8166 0.573277
\(357\) 0 0
\(358\) −5.35237 −0.282882
\(359\) 10.4143 + 10.4143i 0.549647 + 0.549647i 0.926339 0.376692i \(-0.122938\pi\)
−0.376692 + 0.926339i \(0.622938\pi\)
\(360\) 0.668179 + 1.61313i 0.0352161 + 0.0850192i
\(361\) 24.2832i 1.27806i
\(362\) 1.43857 0.595875i 0.0756095 0.0313185i
\(363\) 5.46248 13.1876i 0.286706 0.692169i
\(364\) 0.784699 + 0.325033i 0.0411294 + 0.0170364i
\(365\) −9.49751 + 9.49751i −0.497122 + 0.497122i
\(366\) −10.8162 + 10.8162i −0.565372 + 0.565372i
\(367\) 0.406470 + 0.168365i 0.0212176 + 0.00878861i 0.393267 0.919424i \(-0.371345\pi\)
−0.372049 + 0.928213i \(0.621345\pi\)
\(368\) −6.37170 + 15.3827i −0.332148 + 0.801876i
\(369\) −0.255701 + 0.105915i −0.0133113 + 0.00551370i
\(370\) 31.8222i 1.65436i
\(371\) −0.123868 0.299044i −0.00643090 0.0155256i
\(372\) 2.57446 + 2.57446i 0.133480 + 0.133480i
\(373\) 0.827899 0.0428670 0.0214335 0.999770i \(-0.493177\pi\)
0.0214335 + 0.999770i \(0.493177\pi\)
\(374\) 0 0
\(375\) −11.9336 −0.616250
\(376\) −7.51716 7.51716i −0.387668 0.387668i
\(377\) −3.38564 8.17365i −0.174369 0.420965i
\(378\) 0.281305i 0.0144687i
\(379\) −18.3005 + 7.58033i −0.940035 + 0.389375i −0.799477 0.600697i \(-0.794890\pi\)
−0.140558 + 0.990072i \(0.544890\pi\)
\(380\) −5.74358 + 13.8662i −0.294639 + 0.711323i
\(381\) −11.2539 4.66153i −0.576557 0.238818i
\(382\) −13.0273 + 13.0273i −0.666537 + 0.666537i
\(383\) 11.7966 11.7966i 0.602776 0.602776i −0.338273 0.941048i \(-0.609843\pi\)
0.941048 + 0.338273i \(0.109843\pi\)
\(384\) 7.65685 + 3.17157i 0.390737 + 0.161849i
\(385\) −0.472474 + 1.14065i −0.0240795 + 0.0581330i
\(386\) 6.37465 2.64047i 0.324461 0.134396i
\(387\) 6.34277i 0.322421i
\(388\) 1.95174 + 4.71191i 0.0990844 + 0.239211i
\(389\) 12.2315 + 12.2315i 0.620163 + 0.620163i 0.945573 0.325410i \(-0.105502\pi\)
−0.325410 + 0.945573i \(0.605502\pi\)
\(390\) −11.7586 −0.595419
\(391\) 0 0
\(392\) −7.55166 −0.381416
\(393\) 7.39008 + 7.39008i 0.372780 + 0.372780i
\(394\) 11.4589 + 27.6642i 0.577291 + 1.39370i
\(395\) 0.858710i 0.0432064i
\(396\) −6.56854 + 2.72078i −0.330081 + 0.136724i
\(397\) −2.46473 + 5.95039i −0.123701 + 0.298641i −0.973583 0.228331i \(-0.926673\pi\)
0.849882 + 0.526973i \(0.176673\pi\)
\(398\) −28.1219 11.6485i −1.40962 0.583885i
\(399\) 0.708233 0.708233i 0.0354560 0.0354560i
\(400\) −8.18669 + 8.18669i −0.409334 + 0.409334i
\(401\) 19.4684 + 8.06407i 0.972204 + 0.402700i 0.811532 0.584308i \(-0.198634\pi\)
0.160672 + 0.987008i \(0.448634\pi\)
\(402\) 5.02734 12.1371i 0.250741 0.605342i
\(403\) 9.38303 3.88658i 0.467402 0.193604i
\(404\) 12.9218i 0.642882i
\(405\) −0.617317 1.49033i −0.0306747 0.0740553i
\(406\) 0.446089 + 0.446089i 0.0221390 + 0.0221390i
\(407\) −53.6728 −2.66046
\(408\) 0 0
\(409\) −27.6232 −1.36588 −0.682939 0.730475i \(-0.739299\pi\)
−0.682939 + 0.730475i \(0.739299\pi\)
\(410\) 0.583332 + 0.583332i 0.0288087 + 0.0288087i
\(411\) 5.16346 + 12.4657i 0.254694 + 0.614887i
\(412\) 10.7178i 0.528028i
\(413\) −0.186197 + 0.0771255i −0.00916218 + 0.00379510i
\(414\) 2.43835 5.88669i 0.119838 0.289315i
\(415\) 3.28387 + 1.36023i 0.161199 + 0.0667708i
\(416\) −18.8486 + 18.8486i −0.924129 + 0.924129i
\(417\) 3.76745 3.76745i 0.184493 0.184493i
\(418\) 56.4623 + 23.3875i 2.76166 + 1.14392i
\(419\) −4.61170 + 11.1336i −0.225297 + 0.543914i −0.995594 0.0937711i \(-0.970108\pi\)
0.770297 + 0.637685i \(0.220108\pi\)
\(420\) 0.320871 0.132909i 0.0156569 0.00648529i
\(421\) 14.0183i 0.683210i −0.939844 0.341605i \(-0.889029\pi\)
0.939844 0.341605i \(-0.110971\pi\)
\(422\) 7.55807 + 18.2468i 0.367921 + 0.888240i
\(423\) 6.94495 + 6.94495i 0.337675 + 0.337675i
\(424\) 2.30130 0.111761
\(425\) 0 0
\(426\) −12.0975 −0.586126
\(427\) −0.891171 0.891171i −0.0431268 0.0431268i
\(428\) −9.99407 24.1278i −0.483082 1.16626i
\(429\) 19.8326i 0.957526i
\(430\) −17.4666 + 7.23490i −0.842314 + 0.348898i
\(431\) 1.31789 3.18166i 0.0634804 0.153255i −0.888956 0.457992i \(-0.848569\pi\)
0.952436 + 0.304737i \(0.0985687\pi\)
\(432\) −4.46088 1.84776i −0.214624 0.0889003i
\(433\) 3.93561 3.93561i 0.189133 0.189133i −0.606188 0.795321i \(-0.707302\pi\)
0.795321 + 0.606188i \(0.207302\pi\)
\(434\) −0.512092 + 0.512092i −0.0245812 + 0.0245812i
\(435\) −3.34228 1.38442i −0.160250 0.0663778i
\(436\) 5.81204 14.0315i 0.278346 0.671987i
\(437\) −20.9597 + 8.68180i −1.00264 + 0.415307i
\(438\) 15.3852i 0.735131i
\(439\) 6.73002 + 16.2477i 0.321206 + 0.775461i 0.999184 + 0.0403786i \(0.0128564\pi\)
−0.677978 + 0.735082i \(0.737144\pi\)
\(440\) −6.20692 6.20692i −0.295903 0.295903i
\(441\) 6.97682 0.332230
\(442\) 0 0
\(443\) 5.87632 0.279192 0.139596 0.990209i \(-0.455420\pi\)
0.139596 + 0.990209i \(0.455420\pi\)
\(444\) 10.6762 + 10.6762i 0.506669 + 0.506669i
\(445\) −4.72153 11.3988i −0.223822 0.540354i
\(446\) 10.0084i 0.473911i
\(447\) 8.60954 3.56619i 0.407217 0.168675i
\(448\) 0.164784 0.397825i 0.00778533 0.0187955i
\(449\) 36.9378 + 15.3001i 1.74320 + 0.722058i 0.998505 + 0.0546546i \(0.0174058\pi\)
0.744697 + 0.667403i \(0.232594\pi\)
\(450\) 3.13291 3.13291i 0.147687 0.147687i
\(451\) 0.983875 0.983875i 0.0463289 0.0463289i
\(452\) 2.18845 + 0.906486i 0.102936 + 0.0426375i
\(453\) −4.57814 + 11.0526i −0.215100 + 0.519296i
\(454\) −20.9951 + 8.69647i −0.985351 + 0.408146i
\(455\) 0.968815i 0.0454188i
\(456\) 2.72511 + 6.57900i 0.127615 + 0.308090i
\(457\) −12.5092 12.5092i −0.585154 0.585154i 0.351161 0.936315i \(-0.385787\pi\)
−0.936315 + 0.351161i \(0.885787\pi\)
\(458\) 55.6467 2.60020
\(459\) 0 0
\(460\) −7.86672 −0.366788
\(461\) −21.1186 21.1186i −0.983591 0.983591i 0.0162762 0.999868i \(-0.494819\pi\)
−0.999868 + 0.0162762i \(0.994819\pi\)
\(462\) −0.541196 1.30656i −0.0251787 0.0607868i
\(463\) 9.45213i 0.439278i 0.975581 + 0.219639i \(0.0704879\pi\)
−0.975581 + 0.219639i \(0.929512\pi\)
\(464\) −10.0042 + 4.14386i −0.464432 + 0.192374i
\(465\) 1.58926 3.83681i 0.0737001 0.177928i
\(466\) 14.9973 + 6.21209i 0.694737 + 0.287770i
\(467\) −14.1488 + 14.1488i −0.654726 + 0.654726i −0.954127 0.299401i \(-0.903213\pi\)
0.299401 + 0.954127i \(0.403213\pi\)
\(468\) 3.94495 3.94495i 0.182355 0.182355i
\(469\) 1.00000 + 0.414214i 0.0461757 + 0.0191266i
\(470\) 11.2031 27.0466i 0.516759 1.24757i
\(471\) 16.7729 6.94755i 0.772852 0.320126i
\(472\) 1.43289i 0.0659539i
\(473\) 12.2027 + 29.4600i 0.561082 + 1.35457i
\(474\) 0.695518 + 0.695518i 0.0319462 + 0.0319462i
\(475\) −15.7753 −0.723820
\(476\) 0 0
\(477\) −2.12612 −0.0973484
\(478\) 19.1412 + 19.1412i 0.875500 + 0.875500i
\(479\) 0.461402 + 1.11392i 0.0210820 + 0.0508964i 0.934070 0.357090i \(-0.116231\pi\)
−0.912988 + 0.407986i \(0.866231\pi\)
\(480\) 10.8999i 0.497509i
\(481\) 38.9110 16.1175i 1.77419 0.734894i
\(482\) −11.9892 + 28.9444i −0.546091 + 1.31838i
\(483\) 0.485017 + 0.200901i 0.0220690 + 0.00914130i
\(484\) 14.2741 14.2741i 0.648825 0.648825i
\(485\) 4.11358 4.11358i 0.186788 0.186788i
\(486\) 1.70711 + 0.707107i 0.0774359 + 0.0320750i
\(487\) 4.57738 11.0508i 0.207421 0.500759i −0.785595 0.618742i \(-0.787643\pi\)
0.993016 + 0.117983i \(0.0376428\pi\)
\(488\) 8.27836 3.42901i 0.374744 0.155224i
\(489\) 20.7225i 0.937103i
\(490\) −7.95813 19.2126i −0.359512 0.867938i
\(491\) 22.1064 + 22.1064i 0.997649 + 0.997649i 0.999997 0.00234871i \(-0.000747617\pi\)
−0.00234871 + 0.999997i \(0.500748\pi\)
\(492\) −0.391410 −0.0176461
\(493\) 0 0
\(494\) −47.9564 −2.15766
\(495\) 5.73445 + 5.73445i 0.257744 + 0.257744i
\(496\) −4.75699 11.4844i −0.213595 0.515664i
\(497\) 0.996740i 0.0447099i
\(498\) −3.76152 + 1.55807i −0.168558 + 0.0698189i
\(499\) 15.8274 38.2107i 0.708531 1.71055i 0.00489302 0.999988i \(-0.498442\pi\)
0.703638 0.710558i \(-0.251558\pi\)
\(500\) −15.5920 6.45843i −0.697297 0.288830i
\(501\) 5.71965 5.71965i 0.255535 0.255535i
\(502\) −18.2204 + 18.2204i −0.813215 + 0.813215i
\(503\) 2.84810 + 1.17972i 0.126991 + 0.0526013i 0.445274 0.895394i \(-0.353106\pi\)
−0.318283 + 0.947996i \(0.603106\pi\)
\(504\) 0.0630603 0.152241i 0.00280893 0.00678135i
\(505\) −13.6173 + 5.64047i −0.605961 + 0.250997i
\(506\) 32.0327i 1.42403i
\(507\) −0.980668 2.36754i −0.0435530 0.105146i
\(508\) −12.1812 12.1812i −0.540452 0.540452i
\(509\) 33.8077 1.49850 0.749249 0.662288i \(-0.230415\pi\)
0.749249 + 0.662288i \(0.230415\pi\)
\(510\) 0 0
\(511\) 1.26762 0.0560760
\(512\) 15.6788 + 15.6788i 0.692910 + 0.692910i
\(513\) −2.51767 6.07820i −0.111158 0.268359i
\(514\) 36.3275i 1.60234i
\(515\) 11.2947 4.67841i 0.497703 0.206155i
\(516\) 3.43268 8.28723i 0.151115 0.364825i
\(517\) −45.6181 18.8956i −2.00628 0.831030i
\(518\) −2.12363 + 2.12363i −0.0933067 + 0.0933067i
\(519\) 0.820684 0.820684i 0.0360240 0.0360240i
\(520\) 6.36370 + 2.63593i 0.279067 + 0.115593i
\(521\) −15.6731 + 37.8381i −0.686649 + 1.65772i 0.0647762 + 0.997900i \(0.479367\pi\)
−0.751425 + 0.659818i \(0.770633\pi\)
\(522\) 3.82843 1.58579i 0.167566 0.0694080i
\(523\) 9.06788i 0.396511i 0.980150 + 0.198255i \(0.0635275\pi\)
−0.980150 + 0.198255i \(0.936472\pi\)
\(524\) 5.65612 + 13.6551i 0.247089 + 0.596525i
\(525\) 0.258127 + 0.258127i 0.0112656 + 0.0112656i
\(526\) −51.5009 −2.24555
\(527\) 0 0
\(528\) 24.2741 1.05640
\(529\) 7.85521 + 7.85521i 0.341531 + 0.341531i
\(530\) 2.42516 + 5.85486i 0.105342 + 0.254319i
\(531\) 1.32381i 0.0574486i
\(532\) 1.30864 0.542058i 0.0567369 0.0235012i
\(533\) −0.417828 + 1.00873i −0.0180981 + 0.0436928i
\(534\) 13.0568 + 5.40829i 0.565021 + 0.234039i
\(535\) −21.0640 + 21.0640i −0.910677 + 0.910677i
\(536\) −5.44155 + 5.44155i −0.235039 + 0.235039i
\(537\) −2.67619 1.10851i −0.115486 0.0478359i
\(538\) −0.145188 + 0.350515i −0.00625951 + 0.0151118i
\(539\) −32.4049 + 13.4226i −1.39578 + 0.578151i
\(540\) 2.28130i 0.0981717i
\(541\) 4.95269 + 11.9569i 0.212933 + 0.514065i 0.993871 0.110543i \(-0.0352588\pi\)
−0.780939 + 0.624608i \(0.785259\pi\)
\(542\) 10.7279 + 10.7279i 0.460802 + 0.460802i
\(543\) 0.842695 0.0361635
\(544\) 0 0
\(545\) −17.3238 −0.742068
\(546\) 0.784699 + 0.784699i 0.0335820 + 0.0335820i
\(547\) 4.07934 + 9.84840i 0.174420 + 0.421087i 0.986779 0.162070i \(-0.0518171\pi\)
−0.812359 + 0.583157i \(0.801817\pi\)
\(548\) 19.0816i 0.815127i
\(549\) −7.64821 + 3.16799i −0.326418 + 0.135207i
\(550\) −8.52395 + 20.5786i −0.363462 + 0.877475i
\(551\) −13.6312 5.64624i −0.580710 0.240538i
\(552\) −2.63925 + 2.63925i −0.112334 + 0.112334i
\(553\) −0.0573053 + 0.0573053i −0.00243687 + 0.00243687i
\(554\) −40.2325 16.6649i −1.70932 0.708022i
\(555\) 6.59059 15.9111i 0.279755 0.675388i
\(556\) 6.96134 2.88348i 0.295226 0.122287i
\(557\) 30.1933i 1.27933i 0.768653 + 0.639667i \(0.220928\pi\)
−0.768653 + 0.639667i \(0.779072\pi\)
\(558\) 1.82042 + 4.39488i 0.0770645 + 0.186050i
\(559\) −17.6932 17.6932i −0.748341 0.748341i
\(560\) −1.18578 −0.0501085
\(561\) 0 0
\(562\) 18.7607 0.791372
\(563\) 21.1592 + 21.1592i 0.891755 + 0.891755i 0.994688 0.102934i \(-0.0328229\pi\)
−0.102934 + 0.994688i \(0.532823\pi\)
\(564\) 5.31543 + 12.8326i 0.223820 + 0.540349i
\(565\) 2.70193i 0.113671i
\(566\) −16.1820 + 6.70279i −0.680179 + 0.281739i
\(567\) −0.0582601 + 0.140652i −0.00244669 + 0.00590684i
\(568\) 6.54712 + 2.71191i 0.274711 + 0.113789i
\(569\) 18.1692 18.1692i 0.761694 0.761694i −0.214935 0.976628i \(-0.568954\pi\)
0.976628 + 0.214935i \(0.0689538\pi\)
\(570\) −13.8662 + 13.8662i −0.580792 + 0.580792i
\(571\) 25.8818 + 10.7206i 1.08312 + 0.448643i 0.851603 0.524187i \(-0.175631\pi\)
0.231518 + 0.972831i \(0.425631\pi\)
\(572\) −10.7333 + 25.9125i −0.448783 + 1.08346i
\(573\) −9.21172 + 3.81562i −0.384825 + 0.159400i
\(574\) 0.0778563i 0.00324966i
\(575\) −3.16423 7.63912i −0.131957 0.318573i
\(576\) −2.00000 2.00000i −0.0833333 0.0833333i
\(577\) 11.8072 0.491538 0.245769 0.969328i \(-0.420959\pi\)
0.245769 + 0.969328i \(0.420959\pi\)
\(578\) 0 0
\(579\) 3.73418 0.155187
\(580\) −3.61766 3.61766i −0.150215 0.150215i
\(581\) −0.128373 0.309920i −0.00532581 0.0128576i
\(582\) 6.66364i 0.276217i
\(583\) 9.87510 4.09040i 0.408985 0.169407i
\(584\) −3.44890 + 8.32638i −0.142717 + 0.344548i
\(585\) −5.87929 2.43528i −0.243079 0.100686i
\(586\) −12.1316 + 12.1316i −0.501153 + 0.501153i
\(587\) −5.26250 + 5.26250i −0.217207 + 0.217207i −0.807320 0.590114i \(-0.799083\pi\)
0.590114 + 0.807320i \(0.299083\pi\)
\(588\) 9.11566 + 3.77583i 0.375923 + 0.155713i
\(589\) 6.48165 15.6481i 0.267072 0.644769i
\(590\) 3.64549 1.51001i 0.150082 0.0621662i
\(591\) 16.2053i 0.666598i
\(592\) −19.7270 47.6252i −0.810776 1.95739i
\(593\) 5.41074 + 5.41074i 0.222193 + 0.222193i 0.809421 0.587229i \(-0.199781\pi\)
−0.587229 + 0.809421i \(0.699781\pi\)
\(594\) −9.28931 −0.381145
\(595\) 0 0
\(596\) 13.1789 0.539830
\(597\) −11.6485 11.6485i −0.476740 0.476740i
\(598\) −9.61915 23.2227i −0.393356 0.949646i
\(599\) 16.1547i 0.660062i 0.943970 + 0.330031i \(0.107059\pi\)
−0.943970 + 0.330031i \(0.892941\pi\)
\(600\) −2.39782 + 0.993212i −0.0978908 + 0.0405477i
\(601\) −10.9897 + 26.5316i −0.448281 + 1.08225i 0.524685 + 0.851296i \(0.324183\pi\)
−0.972966 + 0.230949i \(0.925817\pi\)
\(602\) 1.64843 + 0.682803i 0.0671851 + 0.0278290i
\(603\) 5.02734 5.02734i 0.204729 0.204729i
\(604\) −11.9632 + 11.9632i −0.486778 + 0.486778i
\(605\) −21.2732 8.81166i −0.864880 0.358245i
\(606\) 6.46088 15.5980i 0.262456 0.633624i
\(607\) 23.8480 9.87815i 0.967959 0.400942i 0.158007 0.987438i \(-0.449493\pi\)
0.809952 + 0.586496i \(0.199493\pi\)
\(608\) 44.4542i 1.80286i
\(609\) 0.130656 + 0.315433i 0.00529447 + 0.0127820i
\(610\) 17.4479 + 17.4479i 0.706445 + 0.706445i
\(611\) 38.7458 1.56749
\(612\) 0 0
\(613\) 49.1769 1.98623 0.993117 0.117123i \(-0.0373670\pi\)
0.993117 + 0.117123i \(0.0373670\pi\)
\(614\) −35.4624 35.4624i −1.43115 1.43115i
\(615\) 0.170854 + 0.412478i 0.00688949 + 0.0166327i
\(616\) 0.828427i 0.0333783i
\(617\) −3.28044 + 1.35880i −0.132066 + 0.0547034i −0.447738 0.894165i \(-0.647770\pi\)
0.315672 + 0.948868i \(0.397770\pi\)
\(618\) −5.35890 + 12.9375i −0.215566 + 0.520423i
\(619\) 32.5216 + 13.4709i 1.30715 + 0.541440i 0.924052 0.382266i \(-0.124856\pi\)
0.383101 + 0.923707i \(0.374856\pi\)
\(620\) 4.15293 4.15293i 0.166786 0.166786i
\(621\) 2.43835 2.43835i 0.0978474 0.0978474i
\(622\) 4.41421 + 1.82843i 0.176994 + 0.0733132i
\(623\) −0.445601 + 1.07578i −0.0178526 + 0.0431000i
\(624\) −17.5980 + 7.28931i −0.704482 + 0.291806i
\(625\) 7.26131i 0.290453i
\(626\) −18.1094 43.7199i −0.723796 1.74740i
\(627\) 23.3875 + 23.3875i 0.934005 + 0.934005i
\(628\) 25.6748 1.02454
\(629\) 0 0
\(630\) 0.453780 0.0180790
\(631\) 22.2124 + 22.2124i 0.884262 + 0.884262i 0.993964 0.109702i \(-0.0349898\pi\)
−0.109702 + 0.993964i \(0.534990\pi\)
\(632\) −0.220497 0.532327i −0.00877089 0.0211748i
\(633\) 10.6887i 0.424839i
\(634\) 43.6989 18.1007i 1.73550 0.718869i
\(635\) −7.51964 + 18.1540i −0.298408 + 0.720420i
\(636\) −2.77791 1.15065i −0.110151 0.0456262i
\(637\) 19.4618 19.4618i 0.771106 0.771106i
\(638\) −14.7309 + 14.7309i −0.583201 + 0.583201i
\(639\) −6.04875 2.50548i −0.239285 0.0991151i
\(640\) 5.11615 12.3515i 0.202233 0.488235i
\(641\) −24.5525 + 10.1700i −0.969767 + 0.401691i −0.810625 0.585565i \(-0.800873\pi\)
−0.159141 + 0.987256i \(0.550873\pi\)
\(642\) 34.1219i 1.34668i
\(643\) −6.13238 14.8049i −0.241837 0.583847i 0.755628 0.655001i \(-0.227332\pi\)
−0.997465 + 0.0711538i \(0.977332\pi\)
\(644\) 0.524979 + 0.524979i 0.0206871 + 0.0206871i
\(645\) −10.2317 −0.402872
\(646\) 0 0
\(647\) 41.6554 1.63764 0.818822 0.574048i \(-0.194628\pi\)
0.818822 + 0.574048i \(0.194628\pi\)
\(648\) −0.765367 0.765367i −0.0300665 0.0300665i
\(649\) −2.54686 6.14866i −0.0999729 0.241356i
\(650\) 17.4785i 0.685563i
\(651\) −0.362104 + 0.149988i −0.0141920 + 0.00587851i
\(652\) 11.2149 27.0752i 0.439210 1.06035i
\(653\) 11.3881 + 4.71711i 0.445652 + 0.184595i 0.594212 0.804308i \(-0.297464\pi\)
−0.148560 + 0.988903i \(0.547464\pi\)
\(654\) 14.0315 14.0315i 0.548675 0.548675i
\(655\) 11.9211 11.9211i 0.465797 0.465797i
\(656\) 1.23463 + 0.511402i 0.0482043 + 0.0199669i
\(657\) 3.18637 7.69258i 0.124312 0.300116i
\(658\) −2.55256 + 1.05731i −0.0995092 + 0.0412181i
\(659\) 3.46449i 0.134957i −0.997721 0.0674786i \(-0.978505\pi\)
0.997721 0.0674786i \(-0.0214955\pi\)
\(660\) 4.38896 + 10.5959i 0.170840 + 0.412444i
\(661\) −20.0276 20.0276i −0.778984 0.778984i 0.200674 0.979658i \(-0.435687\pi\)
−0.979658 + 0.200674i \(0.935687\pi\)
\(662\) −0.615621 −0.0239268
\(663\) 0 0
\(664\) 2.38500 0.0925558
\(665\) −1.14247 1.14247i −0.0443031 0.0443031i
\(666\) 7.54920 + 18.2254i 0.292526 + 0.706220i
\(667\) 7.73339i 0.299438i
\(668\) 10.5685 4.37763i 0.408909 0.169376i
\(669\) 2.07280 5.00419i 0.0801392 0.193473i
\(670\) −19.5786 8.10973i −0.756388 0.313306i
\(671\) 29.4285 29.4285i 1.13607 1.13607i
\(672\) 0.727394 0.727394i 0.0280598 0.0280598i
\(673\) −26.2461 10.8715i −1.01171 0.419065i −0.185634 0.982619i \(-0.559434\pi\)
−0.826079 + 0.563554i \(0.809434\pi\)
\(674\) 2.65546 6.41086i 0.102285 0.246937i
\(675\) 2.21530 0.917608i 0.0852670 0.0353187i
\(676\) 3.62408i 0.139388i
\(677\) 7.38512 + 17.8293i 0.283833 + 0.685234i 0.999918 0.0127789i \(-0.00406775\pi\)
−0.716085 + 0.698013i \(0.754068\pi\)
\(678\) 2.18845 + 2.18845i 0.0840469 + 0.0840469i
\(679\) −0.549032 −0.0210699
\(680\) 0 0
\(681\) −12.2987 −0.471286
\(682\) −16.9104 16.9104i −0.647534 0.647534i
\(683\) 7.45441 + 17.9965i 0.285235 + 0.688618i 0.999942 0.0108060i \(-0.00343973\pi\)
−0.714707 + 0.699424i \(0.753440\pi\)
\(684\) 9.30411i 0.355751i
\(685\) 20.1087 8.32930i 0.768315 0.318246i
\(686\) −1.50461 + 3.63246i −0.0574464 + 0.138688i
\(687\) 27.8233 + 11.5248i 1.06153 + 0.439699i
\(688\) −21.6556 + 21.6556i −0.825611 + 0.825611i
\(689\) −5.93081 + 5.93081i −0.225946 + 0.225946i
\(690\) −9.49597 3.93336i −0.361505 0.149740i
\(691\) −2.88520 + 6.96550i −0.109758 + 0.264980i −0.969209 0.246238i \(-0.920806\pi\)
0.859451 + 0.511218i \(0.170806\pi\)
\(692\) 1.51643 0.628124i 0.0576459 0.0238777i
\(693\) 0.765367i 0.0290739i
\(694\) −2.34052 5.65051i −0.0888449 0.214491i
\(695\) −6.07737 6.07737i −0.230528 0.230528i
\(696\) −2.42742 −0.0920110
\(697\) 0 0
\(698\) −4.77624 −0.180783
\(699\) 6.21209 + 6.21209i 0.234963 + 0.234963i
\(700\) 0.197562 + 0.476957i 0.00746714 + 0.0180273i
\(701\) 39.0875i 1.47632i −0.674628 0.738158i \(-0.735696\pi\)
0.674628 0.738158i \(-0.264304\pi\)
\(702\) 6.73445 2.78950i 0.254175 0.105283i
\(703\) 26.8792 64.8920i 1.01377 2.44745i
\(704\) 13.1371 + 5.44155i 0.495122 + 0.205086i
\(705\) 11.2031 11.2031i 0.421932 0.421932i
\(706\) 17.3574 17.3574i 0.653256 0.653256i
\(707\) 1.28515 + 0.532327i 0.0483330 + 0.0200202i
\(708\) −0.716443 + 1.72965i −0.0269256 + 0.0650041i
\(709\) 6.20186 2.56889i 0.232916 0.0964768i −0.263173 0.964749i \(-0.584769\pi\)
0.496089 + 0.868272i \(0.334769\pi\)
\(710\) 19.5148i 0.732377i
\(711\) 0.203713 + 0.491806i 0.00763982 + 0.0184442i
\(712\) −5.85389 5.85389i −0.219384 0.219384i
\(713\) 8.87762 0.332470
\(714\) 0 0
\(715\) 31.9925 1.19645
\(716\) −2.89668 2.89668i −0.108254 0.108254i
\(717\) 5.60634 + 13.5349i 0.209373 + 0.505470i
\(718\) 27.2140i 1.01562i
\(719\) −6.84246 + 2.83424i −0.255181 + 0.105699i −0.506607 0.862177i \(-0.669100\pi\)
0.251426 + 0.967876i \(0.419100\pi\)
\(720\) −2.98067 + 7.19597i −0.111083 + 0.268178i
\(721\) −1.06595 0.441531i −0.0396981 0.0164435i
\(722\) −31.7275 + 31.7275i −1.18078 + 1.18078i
\(723\) −11.9892 + 11.9892i −0.445882 + 0.445882i
\(724\) 1.10103 + 0.456063i 0.0409196 + 0.0169494i
\(725\) 2.05786 4.96812i 0.0764272 0.184512i
\(726\) 24.3675 10.0933i 0.904362 0.374599i
\(727\) 6.36054i 0.235899i 0.993020 + 0.117950i \(0.0376322\pi\)
−0.993020 + 0.117950i \(0.962368\pi\)
\(728\) −0.248769 0.600582i −0.00922001 0.0222591i
\(729\) 0.707107 + 0.707107i 0.0261891 + 0.0261891i
\(730\) −24.8182 −0.918562
\(731\) 0 0
\(732\) −11.7074 −0.432717
\(733\) 29.2273 + 29.2273i 1.07954 + 1.07954i 0.996551 + 0.0829857i \(0.0264456\pi\)
0.0829857 + 0.996551i \(0.473554\pi\)
\(734\) 0.311099 + 0.751059i 0.0114829 + 0.0277221i
\(735\) 11.2545i 0.415128i
\(736\) −21.5268 + 8.91667i −0.793487 + 0.328673i
\(737\) −13.6783 + 33.0223i −0.503845 + 1.21639i
\(738\) −0.472474 0.195705i −0.0173920 0.00720400i
\(739\) 16.3803 16.3803i 0.602561 0.602561i −0.338430 0.940991i \(-0.609896\pi\)
0.940991 + 0.338430i \(0.109896\pi\)
\(740\) 17.2220 17.2220i 0.633095 0.633095i
\(741\) −23.9782 9.93209i −0.880861 0.364864i
\(742\) 0.228878 0.552561i 0.00840238 0.0202851i
\(743\) 35.2464 14.5995i 1.29307 0.535606i 0.373168 0.927764i \(-0.378271\pi\)
0.919898 + 0.392158i \(0.128271\pi\)
\(744\) 2.78658i 0.102161i
\(745\) −5.75271 13.8883i −0.210763 0.508827i
\(746\) 1.08170 + 1.08170i 0.0396039 + 0.0396039i
\(747\) −2.20345 −0.0806200
\(748\) 0 0
\(749\) 2.81138 0.102726
\(750\) −15.5920 15.5920i −0.569340 0.569340i
\(751\) −13.0906 31.6034i −0.477681 1.15322i −0.960694 0.277611i \(-0.910457\pi\)
0.483013 0.875613i \(-0.339543\pi\)
\(752\) 47.4231i 1.72934i
\(753\) −12.8837 + 5.33662i −0.469510 + 0.194477i
\(754\) 6.25584 15.1029i 0.227824 0.550017i
\(755\) 17.8292 + 7.38511i 0.648872 + 0.268772i
\(756\) −0.152241 + 0.152241i −0.00553695 + 0.00553695i
\(757\) 4.96523 4.96523i 0.180465 0.180465i −0.611094 0.791558i \(-0.709270\pi\)
0.791558 + 0.611094i \(0.209270\pi\)
\(758\) −33.8150 14.0066i −1.22821 0.508743i
\(759\) −6.63419 + 16.0164i −0.240806 + 0.581357i
\(760\) 10.6128 4.39595i 0.384965 0.159458i
\(761\) 47.2917i 1.71432i −0.515048 0.857161i \(-0.672226\pi\)
0.515048 0.857161i \(-0.327774\pi\)
\(762\) −8.61339 20.7946i −0.312030 0.753308i
\(763\) 1.15609 + 1.15609i 0.0418531 + 0.0418531i
\(764\) −14.1007 −0.510145
\(765\) 0 0
\(766\) 30.8259 1.11378
\(767\) 3.69278 + 3.69278i 0.133338 + 0.133338i
\(768\) 8.02509 + 19.3743i 0.289580 + 0.699109i
\(769\) 6.39156i 0.230486i 0.993337 + 0.115243i \(0.0367646\pi\)
−0.993337 + 0.115243i \(0.963235\pi\)
\(770\) −2.10765 + 0.873017i −0.0759545 + 0.0314614i
\(771\) 7.52368 18.1638i 0.270959 0.654152i
\(772\) 4.87894 + 2.02092i 0.175597 + 0.0727347i
\(773\) 2.60024 2.60024i 0.0935241 0.0935241i −0.658797 0.752321i \(-0.728934\pi\)
0.752321 + 0.658797i \(0.228934\pi\)
\(774\) 8.28723 8.28723i 0.297878 0.297878i
\(775\) 5.70321 + 2.36235i 0.204865 + 0.0848580i
\(776\) 1.49379 3.60634i 0.0536241 0.129460i
\(777\) −1.50163 + 0.621995i −0.0538707 + 0.0223140i
\(778\) 31.9625i 1.14591i
\(779\) 0.696813 + 1.68226i 0.0249659 + 0.0602731i
\(780\) −6.36370 6.36370i −0.227857 0.227857i
\(781\) 32.9146 1.17778
\(782\) 0 0
\(783\) 2.24264 0.0801454
\(784\) −23.8204 23.8204i −0.850727 0.850727i
\(785\) −11.2073 27.0567i −0.400004 0.965696i
\(786\) 19.3112i 0.688808i
\(787\) 3.75473 1.55526i 0.133842 0.0554391i −0.314757 0.949172i \(-0.601923\pi\)
0.448599 + 0.893733i \(0.351923\pi\)
\(788\) −8.77026 + 21.1733i −0.312428 + 0.754267i
\(789\) −25.7505 10.6662i −0.916741 0.379726i
\(790\) 1.12196 1.12196i 0.0399175 0.0399175i
\(791\) −0.180311 + 0.180311i −0.00641113 + 0.00641113i
\(792\) 5.02734 + 2.08239i 0.178639 + 0.0739946i
\(793\) −12.4976 + 30.1718i −0.443801 + 1.07143i
\(794\) −10.9949 + 4.55423i −0.390194 + 0.161623i
\(795\) 3.42970i 0.121639i
\(796\) −8.91536 21.5236i −0.315996 0.762883i
\(797\) −9.76205 9.76205i −0.345790 0.345790i 0.512749 0.858539i \(-0.328627\pi\)
−0.858539 + 0.512749i \(0.828627\pi\)
\(798\) 1.85070 0.0655141
\(799\) 0 0
\(800\) −16.2021 −0.572830
\(801\) 5.40829 + 5.40829i 0.191092 + 0.191092i
\(802\) 14.9004 + 35.9729i 0.526153 + 1.27025i
\(803\) 41.8596i 1.47719i
\(804\) 9.28931 3.84776i 0.327609 0.135700i
\(805\) 0.324078 0.782394i 0.0114223 0.0275758i
\(806\) 17.3376 + 7.18146i 0.610690 + 0.252956i
\(807\) −0.145188 + 0.145188i −0.00511087 + 0.00511087i
\(808\) −6.99321 + 6.99321i −0.246020 + 0.246020i
\(809\) −17.4142 7.21319i −0.612250 0.253602i 0.0549401 0.998490i \(-0.482503\pi\)
−0.667190 + 0.744887i \(0.732503\pi\)
\(810\) 1.14065 2.75378i 0.0400784 0.0967579i
\(811\) 2.40167 0.994804i 0.0843340 0.0349323i −0.340118 0.940383i \(-0.610467\pi\)
0.424452 + 0.905451i \(0.360467\pi\)
\(812\) 0.482843i 0.0169445i
\(813\) 3.14212 + 7.58576i 0.110199 + 0.266044i
\(814\) −70.1269 70.1269i −2.45795 2.45795i
\(815\) −33.4280 −1.17093
\(816\) 0 0
\(817\) −41.7291 −1.45992
\(818\) −36.0914 36.0914i −1.26191 1.26191i
\(819\) 0.229833 + 0.554866i 0.00803101 + 0.0193886i
\(820\) 0.631394i 0.0220492i
\(821\) −12.0172 + 4.97770i −0.419404 + 0.173723i −0.582397 0.812904i \(-0.697885\pi\)
0.162993 + 0.986627i \(0.447885\pi\)
\(822\) −9.54082 + 23.0336i −0.332774 + 0.803388i
\(823\) 20.0060 + 8.28676i 0.697366 + 0.288858i 0.703065 0.711125i \(-0.251814\pi\)
−0.00569929 + 0.999984i \(0.501814\pi\)
\(824\) 5.80043 5.80043i 0.202067 0.202067i
\(825\) −8.52395 + 8.52395i −0.296766 + 0.296766i
\(826\) −0.344048 0.142509i −0.0119710 0.00495853i
\(827\) −18.3207 + 44.2300i −0.637072 + 1.53803i 0.193490 + 0.981102i \(0.438019\pi\)
−0.830562 + 0.556926i \(0.811981\pi\)
\(828\) 4.50548 1.86623i 0.156576 0.0648559i
\(829\) 12.9906i 0.451181i −0.974222 0.225590i \(-0.927569\pi\)
0.974222 0.225590i \(-0.0724311\pi\)
\(830\) 2.51337 + 6.06781i 0.0872403 + 0.210617i
\(831\) −16.6649 16.6649i −0.578098 0.578098i
\(832\) −11.1580 −0.386834
\(833\) 0 0
\(834\) 9.84482 0.340898
\(835\) −9.22652 9.22652i −0.319297 0.319297i
\(836\) 17.9000 + 43.2144i 0.619084 + 1.49460i
\(837\) 2.57446i 0.0889864i
\(838\) −20.5723 + 8.52132i −0.710658 + 0.294364i
\(839\) 7.22226 17.4361i 0.249340 0.601961i −0.748808 0.662787i \(-0.769374\pi\)
0.998148 + 0.0608263i \(0.0193736\pi\)
\(840\) −0.245584 0.101724i −0.00847345 0.00350982i
\(841\) −16.9497 + 16.9497i −0.584474 + 0.584474i
\(842\) 18.3158 18.3158i 0.631204 0.631204i
\(843\) 9.38035 + 3.88547i 0.323076 + 0.133823i
\(844\) −5.78470 + 13.9655i −0.199118 + 0.480712i
\(845\) −3.81914 + 1.58194i −0.131383 + 0.0544204i
\(846\) 18.1480i 0.623942i
\(847\) 0.831613 + 2.00769i 0.0285746 + 0.0689851i
\(848\) 7.25903 + 7.25903i 0.249276 + 0.249276i
\(849\) −9.47918 −0.325325
\(850\) 0 0
\(851\) 36.8151 1.26201
\(852\) −6.54712 6.54712i −0.224301 0.224301i
\(853\) 2.30984 + 5.57645i 0.0790875 + 0.190934i 0.958478 0.285168i \(-0.0920493\pi\)
−0.879390 + 0.476102i \(0.842049\pi\)
\(854\) 2.32874i 0.0796879i
\(855\) −9.80490 + 4.06132i −0.335321 + 0.138894i
\(856\) −7.64913 + 18.4666i −0.261442 + 0.631177i
\(857\) −14.8592 6.15488i −0.507581 0.210247i 0.114171 0.993461i \(-0.463579\pi\)
−0.621752 + 0.783214i \(0.713579\pi\)
\(858\) −25.9125 + 25.9125i −0.884639 + 0.884639i
\(859\) 40.9101 40.9101i 1.39583 1.39583i 0.584285 0.811548i \(-0.301375\pi\)
0.811548 0.584285i \(-0.198625\pi\)
\(860\) −13.3683 5.53735i −0.455857 0.188822i
\(861\) 0.0161246 0.0389281i 0.000549524 0.00132667i
\(862\) 5.87894 2.43514i 0.200238 0.0829411i
\(863\) 7.56067i 0.257368i 0.991686 + 0.128684i \(0.0410753\pi\)
−0.991686 + 0.128684i \(0.958925\pi\)
\(864\) −2.58579 6.24264i −0.0879702 0.212379i
\(865\) −1.32387 1.32387i −0.0450128 0.0450128i
\(866\) 10.2842 0.349473
\(867\) 0 0
\(868\) −0.554285 −0.0188137
\(869\) −1.89235 1.89235i −0.0641936 0.0641936i
\(870\) −2.55807 6.17574i −0.0867268 0.209377i
\(871\) 28.0475i 0.950354i
\(872\) −10.7392 + 4.44834i −0.363677 + 0.150640i
\(873\) −1.38009 + 3.33182i −0.0467088 + 0.112765i
\(874\) −38.7285 16.0419i −1.31001 0.542624i
\(875\) 1.28466 1.28466i 0.0434295 0.0434295i
\(876\) 8.32638 8.32638i 0.281322 0.281322i
\(877\) −16.0441 6.64567i −0.541770 0.224408i 0.0949797 0.995479i \(-0.469721\pi\)
−0.636749 + 0.771071i \(0.719721\pi\)
\(878\) −12.4355 + 30.0218i −0.419676 + 1.01319i
\(879\) −8.57836 + 3.55327i −0.289341 + 0.119849i
\(880\) 39.1572i 1.31999i
\(881\) 15.7290 + 37.9731i 0.529923 + 1.27935i 0.931573 + 0.363554i \(0.118437\pi\)
−0.401650 + 0.915793i \(0.631563\pi\)
\(882\) 9.11566 + 9.11566i 0.306940 + 0.306940i
\(883\) −28.3729 −0.954824 −0.477412 0.878680i \(-0.658425\pi\)
−0.477412 + 0.878680i \(0.658425\pi\)
\(884\) 0 0
\(885\) 2.13548 0.0717833
\(886\) 7.67778 + 7.67778i 0.257940 + 0.257940i
\(887\) −8.22786 19.8638i −0.276264 0.666961i 0.723462 0.690364i \(-0.242550\pi\)
−0.999726 + 0.0234033i \(0.992550\pi\)
\(888\) 11.5558i 0.387788i
\(889\) 1.71331 0.709676i 0.0574626 0.0238018i
\(890\) 8.72425 21.0622i 0.292437 0.706006i
\(891\) −4.64466 1.92388i −0.155602 0.0644524i
\(892\) 5.41650 5.41650i 0.181358 0.181358i
\(893\) 45.6908 45.6908i 1.52898 1.52898i
\(894\) 15.9084 + 6.58946i 0.532055 + 0.220385i
\(895\) −1.78817 + 4.31703i −0.0597719 + 0.144302i
\(896\) −1.16569 + 0.482843i −0.0389429 + 0.0161307i
\(897\) 13.6035i 0.454208i
\(898\) 28.2710 + 68.2521i 0.943414 + 2.27760i
\(899\) 4.08255 + 4.08255i 0.136161 + 0.136161i
\(900\) 3.39104 0.113035
\(901\) 0 0
\(902\) 2.57099 0.0856046
\(903\) 0.682803 + 0.682803i 0.0227223 + 0.0227223i
\(904\) −0.693794 1.67497i −0.0230752 0.0557086i
\(905\) 1.35937i 0.0451871i
\(906\) −20.4225 + 8.45929i −0.678493 + 0.281041i
\(907\) −5.66635 + 13.6798i −0.188148 + 0.454229i −0.989603 0.143826i \(-0.954060\pi\)
0.801455 + 0.598055i \(0.204060\pi\)
\(908\) −16.0690 6.65599i −0.533268 0.220887i
\(909\) 6.46088 6.46088i 0.214294 0.214294i
\(910\) 1.26582 1.26582i 0.0419615 0.0419615i
\(911\) −43.9036 18.1855i −1.45459 0.602512i −0.491306 0.870987i \(-0.663480\pi\)
−0.963287 + 0.268475i \(0.913480\pi\)
\(912\) −12.1564 + 29.3482i −0.402539 + 0.971814i
\(913\) 10.2343 4.23917i 0.338705 0.140296i
\(914\) 32.6880i 1.08122i
\(915\) 5.11037 + 12.3375i 0.168944 + 0.407866i
\(916\) 30.1158 + 30.1158i 0.995053 + 0.995053i
\(917\) −1.59109 −0.0525425
\(918\) 0 0
\(919\) −52.4090 −1.72881 −0.864407 0.502793i \(-0.832306\pi\)
−0.864407 + 0.502793i \(0.832306\pi\)
\(920\) 4.25744 + 4.25744i 0.140364 + 0.140364i
\(921\) −10.3867 25.0757i −0.342253 0.826273i
\(922\) 55.1856i 1.81744i
\(923\) −23.8620 + 9.88397i −0.785428 + 0.325335i
\(924\) 0.414214 1.00000i 0.0136266 0.0328976i
\(925\) 23.6510 + 9.79655i 0.777639 + 0.322109i
\(926\) −12.3498 + 12.3498i −0.405840 + 0.405840i
\(927\) −5.35890 + 5.35890i −0.176009 + 0.176009i
\(928\) −14.0000 5.79899i −0.459573 0.190361i
\(929\) 17.5642 42.4038i 0.576263 1.39122i −0.319880 0.947458i \(-0.603643\pi\)
0.896143 0.443764i \(-0.146357\pi\)
\(930\) 7.08950 2.93657i 0.232474 0.0962938i
\(931\) 45.9005i 1.50433i
\(932\) 4.75453 + 11.4785i 0.155740 + 0.375989i
\(933\) 1.82843 + 1.82843i 0.0598600 + 0.0598600i
\(934\) −36.9725 −1.20978
\(935\) 0 0
\(936\) −4.26998 −0.139569
\(937\) −15.3852 15.3852i −0.502611 0.502611i 0.409637 0.912248i \(-0.365655\pi\)
−0.912248 + 0.409637i \(0.865655\pi\)
\(938\) 0.765367 + 1.84776i 0.0249901 + 0.0603315i
\(939\) 25.6105i 0.835767i
\(940\) 20.7006 8.57446i 0.675179 0.279668i
\(941\) 20.7040 49.9839i 0.674932 1.62943i −0.0981874 0.995168i \(-0.531304\pi\)
0.773119 0.634261i \(-0.218696\pi\)
\(942\) 30.9922 + 12.8374i 1.00978 + 0.418265i
\(943\) −0.674858 + 0.674858i −0.0219764 + 0.0219764i
\(944\) 4.51978 4.51978i 0.147106 0.147106i
\(945\) 0.226890 + 0.0939809i 0.00738073 + 0.00305720i
\(946\) −22.5477 + 54.4350i −0.733089 + 1.76983i
\(947\) −5.33640 + 2.21041i −0.173410 + 0.0718286i −0.467699 0.883888i \(-0.654917\pi\)
0.294290 + 0.955716i \(0.404917\pi\)
\(948\) 0.752823i 0.0244506i
\(949\) −12.5701 30.3468i −0.408041 0.985099i
\(950\) −20.6114 20.6114i −0.668722 0.668722i
\(951\) 25.5982 0.830078
\(952\) 0 0
\(953\) −31.4698 −1.01941 −0.509704 0.860350i \(-0.670245\pi\)
−0.509704 + 0.860350i \(0.670245\pi\)
\(954\) −2.77791 2.77791i −0.0899382 0.0899382i
\(955\) 6.15507 + 14.8597i 0.199174 + 0.480847i
\(956\) 20.7183i 0.670078i
\(957\) −10.4163 + 4.31457i −0.336711 + 0.139470i
\(958\) −0.852559 + 2.05826i −0.0275449 + 0.0664994i
\(959\) −1.89779 0.786089i −0.0612828 0.0253841i
\(960\) −3.22625 + 3.22625i −0.104127 + 0.104127i
\(961\) 17.2337 17.2337i 0.555926 0.555926i
\(962\) 71.8982 + 29.7812i 2.31809 + 0.960185i
\(963\) 7.06688 17.0610i 0.227727 0.549781i
\(964\) −22.1531 + 9.17611i −0.713503 + 0.295543i
\(965\) 6.02371i 0.193910i
\(966\) 0.371216 + 0.896195i 0.0119437 + 0.0288346i
\(967\) −4.11626 4.11626i −0.132370 0.132370i 0.637818 0.770187i \(-0.279837\pi\)
−0.770187 + 0.637818i \(0.779837\pi\)
\(968\) −15.4502 −0.496589
\(969\) 0 0
\(970\) 10.7493 0.345139
\(971\) −15.4891 15.4891i −0.497070 0.497070i 0.413455 0.910525i \(-0.364322\pi\)
−0.910525 + 0.413455i \(0.864322\pi\)
\(972\) 0.541196 + 1.30656i 0.0173589 + 0.0419080i
\(973\) 0.811136i 0.0260038i
\(974\) 20.4192 8.45790i 0.654273 0.271009i
\(975\) 3.61991 8.73925i 0.115930 0.279880i
\(976\) 36.9288 + 15.2964i 1.18206 + 0.489626i
\(977\) −19.8324 + 19.8324i −0.634495 + 0.634495i −0.949192 0.314697i \(-0.898097\pi\)
0.314697 + 0.949192i \(0.398097\pi\)
\(978\) 27.0752 27.0752i 0.865770 0.865770i
\(979\) −35.5245 14.7147i −1.13537 0.470285i
\(980\) 6.09089 14.7047i 0.194566 0.469725i
\(981\) 9.92177 4.10973i 0.316778 0.131214i
\(982\) 57.7668i 1.84341i
\(983\) −11.9884 28.9425i −0.382369 0.923121i −0.991507 0.130056i \(-0.958484\pi\)
0.609137 0.793065i \(-0.291516\pi\)
\(984\) 0.211830 + 0.211830i 0.00675288 + 0.00675288i
\(985\) 26.1412 0.832929
\(986\) 0 0
\(987\) −1.49526 −0.0475945
\(988\) −25.9538 25.9538i −0.825700 0.825700i
\(989\) −8.37007 20.2071i −0.266153 0.642549i
\(990\) 14.9848i 0.476249i
\(991\) −16.6291 + 6.88802i −0.528242 + 0.218805i −0.630833 0.775919i \(-0.717287\pi\)
0.102591 + 0.994724i \(0.467287\pi\)
\(992\) 6.65701 16.0714i 0.211360 0.510269i
\(993\) −0.307810 0.127499i −0.00976807 0.00404607i
\(994\) 1.30230 1.30230i 0.0413066 0.0413066i
\(995\) −18.7905 + 18.7905i −0.595697 + 0.595697i
\(996\) −2.87894 1.19250i −0.0912228 0.0377857i
\(997\) 21.2644 51.3369i 0.673451 1.62586i −0.102253 0.994758i \(-0.532605\pi\)
0.775704 0.631097i \(-0.217395\pi\)
\(998\) 70.6042 29.2452i 2.23494 0.925741i
\(999\) 10.6762i 0.337780i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 867.2.h.f.712.2 8
17.2 even 8 51.2.h.a.43.1 yes 8
17.3 odd 16 867.2.d.e.577.8 8
17.4 even 4 51.2.h.a.19.1 8
17.5 odd 16 867.2.a.m.1.1 4
17.6 odd 16 867.2.e.i.829.4 8
17.7 odd 16 867.2.e.i.616.1 8
17.8 even 8 inner 867.2.h.f.688.2 8
17.9 even 8 867.2.h.b.688.2 8
17.10 odd 16 867.2.e.h.616.1 8
17.11 odd 16 867.2.e.h.829.4 8
17.12 odd 16 867.2.a.n.1.1 4
17.13 even 4 867.2.h.g.733.1 8
17.14 odd 16 867.2.d.e.577.7 8
17.15 even 8 867.2.h.g.757.1 8
17.16 even 2 867.2.h.b.712.2 8
51.2 odd 8 153.2.l.e.145.2 8
51.5 even 16 2601.2.a.bc.1.4 4
51.29 even 16 2601.2.a.bd.1.4 4
51.38 odd 4 153.2.l.e.19.2 8
68.19 odd 8 816.2.bq.a.145.1 8
68.55 odd 4 816.2.bq.a.529.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
51.2.h.a.19.1 8 17.4 even 4
51.2.h.a.43.1 yes 8 17.2 even 8
153.2.l.e.19.2 8 51.38 odd 4
153.2.l.e.145.2 8 51.2 odd 8
816.2.bq.a.145.1 8 68.19 odd 8
816.2.bq.a.529.1 8 68.55 odd 4
867.2.a.m.1.1 4 17.5 odd 16
867.2.a.n.1.1 4 17.12 odd 16
867.2.d.e.577.7 8 17.14 odd 16
867.2.d.e.577.8 8 17.3 odd 16
867.2.e.h.616.1 8 17.10 odd 16
867.2.e.h.829.4 8 17.11 odd 16
867.2.e.i.616.1 8 17.7 odd 16
867.2.e.i.829.4 8 17.6 odd 16
867.2.h.b.688.2 8 17.9 even 8
867.2.h.b.712.2 8 17.16 even 2
867.2.h.f.688.2 8 17.8 even 8 inner
867.2.h.f.712.2 8 1.1 even 1 trivial
867.2.h.g.733.1 8 17.13 even 4
867.2.h.g.757.1 8 17.15 even 8
2601.2.a.bc.1.4 4 51.5 even 16
2601.2.a.bd.1.4 4 51.29 even 16