Properties

Label 512.2.i.a.289.3
Level $512$
Weight $2$
Character 512.289
Analytic conductor $4.088$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [512,2,Mod(33,512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("512.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 512 = 2^{9} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 512.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08834058349\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 289.3
Character \(\chi\) \(=\) 512.289
Dual form 512.2.i.a.225.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.572535 - 0.856859i) q^{3} +(0.690473 + 3.47124i) q^{5} +(-0.983337 - 2.37399i) q^{7} +(0.741639 - 1.79047i) q^{9} +(1.29020 + 0.862086i) q^{11} +(0.115716 - 0.581745i) q^{13} +(2.57905 - 2.57905i) q^{15} +(4.30936 + 4.30936i) q^{17} +(3.59299 + 0.714690i) q^{19} +(-1.47118 + 2.20177i) q^{21} +(7.79200 + 3.22755i) q^{23} +(-6.95338 + 2.88018i) q^{25} +(-4.99100 + 0.992772i) q^{27} +(0.373179 - 0.249351i) q^{29} -1.08345i q^{31} -1.59910i q^{33} +(7.56172 - 5.05258i) q^{35} +(4.16040 - 0.827556i) q^{37} +(-0.564725 + 0.233917i) q^{39} +(5.15990 + 2.13730i) q^{41} +(-1.55896 + 2.33315i) q^{43} +(6.72725 + 1.33813i) q^{45} +(-6.43269 - 6.43269i) q^{47} +(0.280888 - 0.280888i) q^{49} +(1.22526 - 6.15978i) q^{51} +(1.22184 + 0.816410i) q^{53} +(-2.10166 + 5.07385i) q^{55} +(-1.44472 - 3.48787i) q^{57} +(-1.46423 - 7.36119i) q^{59} +(-6.45980 - 9.66777i) q^{61} -4.97984 q^{63} +2.09928 q^{65} +(3.30637 + 4.94834i) q^{67} +(-1.69564 - 8.52453i) q^{69} +(3.75143 + 9.05676i) q^{71} +(-1.19724 + 2.89039i) q^{73} +(6.44896 + 4.30906i) q^{75} +(0.777876 - 3.91064i) q^{77} +(0.934789 - 0.934789i) q^{79} +(-0.402918 - 0.402918i) q^{81} +(-16.5833 - 3.29862i) q^{83} +(-11.9833 + 17.9343i) q^{85} +(-0.427317 - 0.177000i) q^{87} +(-6.15337 + 2.54881i) q^{89} +(-1.49484 + 0.297343i) q^{91} +(-0.928361 + 0.620311i) q^{93} +12.9656i q^{95} -5.79443i q^{97} +(2.50041 - 1.67072i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{3} + 8 q^{5} + 8 q^{7} - 8 q^{9} - 8 q^{11} + 8 q^{13} + 8 q^{15} - 8 q^{17} - 8 q^{19} + 8 q^{21} + 8 q^{23} - 8 q^{25} - 8 q^{27} + 8 q^{29} - 8 q^{35} + 8 q^{37} + 8 q^{39} - 8 q^{41} - 8 q^{43}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/512\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(511\)
\(\chi(n)\) \(e\left(\frac{7}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.572535 0.856859i −0.330553 0.494708i 0.628548 0.777771i \(-0.283650\pi\)
−0.959101 + 0.283063i \(0.908650\pi\)
\(4\) 0 0
\(5\) 0.690473 + 3.47124i 0.308789 + 1.55239i 0.753947 + 0.656935i \(0.228147\pi\)
−0.445158 + 0.895452i \(0.646853\pi\)
\(6\) 0 0
\(7\) −0.983337 2.37399i −0.371667 0.897283i −0.993468 0.114108i \(-0.963599\pi\)
0.621802 0.783175i \(-0.286401\pi\)
\(8\) 0 0
\(9\) 0.741639 1.79047i 0.247213 0.596825i
\(10\) 0 0
\(11\) 1.29020 + 0.862086i 0.389011 + 0.259929i 0.734660 0.678435i \(-0.237341\pi\)
−0.345650 + 0.938364i \(0.612341\pi\)
\(12\) 0 0
\(13\) 0.115716 0.581745i 0.0320939 0.161347i −0.961415 0.275103i \(-0.911288\pi\)
0.993509 + 0.113756i \(0.0362881\pi\)
\(14\) 0 0
\(15\) 2.57905 2.57905i 0.665907 0.665907i
\(16\) 0 0
\(17\) 4.30936 + 4.30936i 1.04517 + 1.04517i 0.998930 + 0.0462432i \(0.0147249\pi\)
0.0462432 + 0.998930i \(0.485275\pi\)
\(18\) 0 0
\(19\) 3.59299 + 0.714690i 0.824288 + 0.163961i 0.589174 0.808006i \(-0.299453\pi\)
0.235115 + 0.971968i \(0.424453\pi\)
\(20\) 0 0
\(21\) −1.47118 + 2.20177i −0.321037 + 0.480466i
\(22\) 0 0
\(23\) 7.79200 + 3.22755i 1.62474 + 0.672991i 0.994628 0.103510i \(-0.0330075\pi\)
0.630116 + 0.776501i \(0.283007\pi\)
\(24\) 0 0
\(25\) −6.95338 + 2.88018i −1.39068 + 0.576037i
\(26\) 0 0
\(27\) −4.99100 + 0.992772i −0.960519 + 0.191059i
\(28\) 0 0
\(29\) 0.373179 0.249351i 0.0692977 0.0463032i −0.520439 0.853899i \(-0.674232\pi\)
0.589736 + 0.807596i \(0.299232\pi\)
\(30\) 0 0
\(31\) 1.08345i 0.194593i −0.995255 0.0972963i \(-0.968981\pi\)
0.995255 0.0972963i \(-0.0310195\pi\)
\(32\) 0 0
\(33\) 1.59910i 0.278367i
\(34\) 0 0
\(35\) 7.56172 5.05258i 1.27816 0.854041i
\(36\) 0 0
\(37\) 4.16040 0.827556i 0.683966 0.136049i 0.159136 0.987257i \(-0.449129\pi\)
0.524830 + 0.851207i \(0.324129\pi\)
\(38\) 0 0
\(39\) −0.564725 + 0.233917i −0.0904284 + 0.0374567i
\(40\) 0 0
\(41\) 5.15990 + 2.13730i 0.805841 + 0.333790i 0.747293 0.664494i \(-0.231353\pi\)
0.0585477 + 0.998285i \(0.481353\pi\)
\(42\) 0 0
\(43\) −1.55896 + 2.33315i −0.237739 + 0.355802i −0.931084 0.364804i \(-0.881136\pi\)
0.693345 + 0.720605i \(0.256136\pi\)
\(44\) 0 0
\(45\) 6.72725 + 1.33813i 1.00284 + 0.199477i
\(46\) 0 0
\(47\) −6.43269 6.43269i −0.938304 0.938304i 0.0599006 0.998204i \(-0.480922\pi\)
−0.998204 + 0.0599006i \(0.980922\pi\)
\(48\) 0 0
\(49\) 0.280888 0.280888i 0.0401268 0.0401268i
\(50\) 0 0
\(51\) 1.22526 6.15978i 0.171570 0.862541i
\(52\) 0 0
\(53\) 1.22184 + 0.816410i 0.167833 + 0.112143i 0.636650 0.771153i \(-0.280320\pi\)
−0.468817 + 0.883295i \(0.655320\pi\)
\(54\) 0 0
\(55\) −2.10166 + 5.07385i −0.283388 + 0.684158i
\(56\) 0 0
\(57\) −1.44472 3.48787i −0.191358 0.461980i
\(58\) 0 0
\(59\) −1.46423 7.36119i −0.190627 0.958345i −0.951078 0.308950i \(-0.900022\pi\)
0.760452 0.649395i \(-0.224978\pi\)
\(60\) 0 0
\(61\) −6.45980 9.66777i −0.827092 1.23783i −0.968781 0.247920i \(-0.920253\pi\)
0.141688 0.989911i \(-0.454747\pi\)
\(62\) 0 0
\(63\) −4.97984 −0.627401
\(64\) 0 0
\(65\) 2.09928 0.260383
\(66\) 0 0
\(67\) 3.30637 + 4.94834i 0.403938 + 0.604535i 0.976550 0.215291i \(-0.0690700\pi\)
−0.572612 + 0.819826i \(0.694070\pi\)
\(68\) 0 0
\(69\) −1.69564 8.52453i −0.204131 1.02623i
\(70\) 0 0
\(71\) 3.75143 + 9.05676i 0.445213 + 1.07484i 0.974094 + 0.226143i \(0.0726118\pi\)
−0.528881 + 0.848696i \(0.677388\pi\)
\(72\) 0 0
\(73\) −1.19724 + 2.89039i −0.140126 + 0.338295i −0.978327 0.207068i \(-0.933608\pi\)
0.838200 + 0.545362i \(0.183608\pi\)
\(74\) 0 0
\(75\) 6.44896 + 4.30906i 0.744662 + 0.497567i
\(76\) 0 0
\(77\) 0.777876 3.91064i 0.0886472 0.445659i
\(78\) 0 0
\(79\) 0.934789 0.934789i 0.105172 0.105172i −0.652563 0.757735i \(-0.726306\pi\)
0.757735 + 0.652563i \(0.226306\pi\)
\(80\) 0 0
\(81\) −0.402918 0.402918i −0.0447687 0.0447687i
\(82\) 0 0
\(83\) −16.5833 3.29862i −1.82025 0.362070i −0.837417 0.546564i \(-0.815936\pi\)
−0.982834 + 0.184494i \(0.940936\pi\)
\(84\) 0 0
\(85\) −11.9833 + 17.9343i −1.29978 + 1.94525i
\(86\) 0 0
\(87\) −0.427317 0.177000i −0.0458132 0.0189764i
\(88\) 0 0
\(89\) −6.15337 + 2.54881i −0.652256 + 0.270173i −0.684176 0.729317i \(-0.739838\pi\)
0.0319199 + 0.999490i \(0.489838\pi\)
\(90\) 0 0
\(91\) −1.49484 + 0.297343i −0.156702 + 0.0311700i
\(92\) 0 0
\(93\) −0.928361 + 0.620311i −0.0962666 + 0.0643233i
\(94\) 0 0
\(95\) 12.9656i 1.33024i
\(96\) 0 0
\(97\) 5.79443i 0.588336i −0.955754 0.294168i \(-0.904958\pi\)
0.955754 0.294168i \(-0.0950425\pi\)
\(98\) 0 0
\(99\) 2.50041 1.67072i 0.251300 0.167914i
\(100\) 0 0
\(101\) −0.921112 + 0.183220i −0.0916540 + 0.0182311i −0.240704 0.970599i \(-0.577378\pi\)
0.149050 + 0.988830i \(0.452378\pi\)
\(102\) 0 0
\(103\) −12.7902 + 5.29788i −1.26026 + 0.522015i −0.909988 0.414634i \(-0.863910\pi\)
−0.350268 + 0.936649i \(0.613910\pi\)
\(104\) 0 0
\(105\) −8.65870 3.58655i −0.845002 0.350011i
\(106\) 0 0
\(107\) −8.24793 + 12.3439i −0.797358 + 1.19333i 0.180400 + 0.983593i \(0.442261\pi\)
−0.977758 + 0.209737i \(0.932739\pi\)
\(108\) 0 0
\(109\) 6.63883 + 1.32055i 0.635885 + 0.126485i 0.502497 0.864579i \(-0.332415\pi\)
0.133387 + 0.991064i \(0.457415\pi\)
\(110\) 0 0
\(111\) −3.09108 3.09108i −0.293392 0.293392i
\(112\) 0 0
\(113\) −3.62032 + 3.62032i −0.340571 + 0.340571i −0.856582 0.516011i \(-0.827416\pi\)
0.516011 + 0.856582i \(0.327416\pi\)
\(114\) 0 0
\(115\) −5.82345 + 29.2765i −0.543039 + 2.73004i
\(116\) 0 0
\(117\) −0.955779 0.638631i −0.0883618 0.0590415i
\(118\) 0 0
\(119\) 5.99281 14.4679i 0.549360 1.32627i
\(120\) 0 0
\(121\) −3.28809 7.93814i −0.298917 0.721649i
\(122\) 0 0
\(123\) −1.12286 5.64499i −0.101245 0.508991i
\(124\) 0 0
\(125\) −4.96743 7.43428i −0.444300 0.664942i
\(126\) 0 0
\(127\) 5.27774 0.468324 0.234162 0.972198i \(-0.424765\pi\)
0.234162 + 0.972198i \(0.424765\pi\)
\(128\) 0 0
\(129\) 2.89174 0.254603
\(130\) 0 0
\(131\) −3.19779 4.78583i −0.279392 0.418140i 0.665060 0.746790i \(-0.268406\pi\)
−0.944452 + 0.328651i \(0.893406\pi\)
\(132\) 0 0
\(133\) −1.83646 9.23249i −0.159241 0.800558i
\(134\) 0 0
\(135\) −6.89231 16.6395i −0.593195 1.43210i
\(136\) 0 0
\(137\) 3.78991 9.14965i 0.323794 0.781707i −0.675233 0.737604i \(-0.735957\pi\)
0.999027 0.0441030i \(-0.0140430\pi\)
\(138\) 0 0
\(139\) −1.75609 1.17338i −0.148950 0.0995250i 0.478862 0.877890i \(-0.341049\pi\)
−0.627812 + 0.778365i \(0.716049\pi\)
\(140\) 0 0
\(141\) −1.82897 + 9.19485i −0.154027 + 0.774346i
\(142\) 0 0
\(143\) 0.650811 0.650811i 0.0544236 0.0544236i
\(144\) 0 0
\(145\) 1.12323 + 1.12323i 0.0932789 + 0.0932789i
\(146\) 0 0
\(147\) −0.401500 0.0798632i −0.0331151 0.00658701i
\(148\) 0 0
\(149\) 10.0124 14.9845i 0.820244 1.22758i −0.150772 0.988569i \(-0.548176\pi\)
0.971016 0.239013i \(-0.0768240\pi\)
\(150\) 0 0
\(151\) 4.99222 + 2.06785i 0.406261 + 0.168279i 0.576450 0.817133i \(-0.304438\pi\)
−0.170188 + 0.985412i \(0.554438\pi\)
\(152\) 0 0
\(153\) 10.9118 4.51981i 0.882166 0.365405i
\(154\) 0 0
\(155\) 3.76090 0.748090i 0.302083 0.0600881i
\(156\) 0 0
\(157\) −7.04496 + 4.70729i −0.562249 + 0.375683i −0.803976 0.594662i \(-0.797286\pi\)
0.241727 + 0.970344i \(0.422286\pi\)
\(158\) 0 0
\(159\) 1.51437i 0.120098i
\(160\) 0 0
\(161\) 21.6719i 1.70798i
\(162\) 0 0
\(163\) 0.919897 0.614656i 0.0720519 0.0481435i −0.519023 0.854761i \(-0.673704\pi\)
0.591074 + 0.806617i \(0.298704\pi\)
\(164\) 0 0
\(165\) 5.55085 1.10413i 0.432133 0.0859567i
\(166\) 0 0
\(167\) 2.61833 1.08455i 0.202612 0.0839247i −0.279070 0.960271i \(-0.590026\pi\)
0.481682 + 0.876346i \(0.340026\pi\)
\(168\) 0 0
\(169\) 11.6854 + 4.84025i 0.898877 + 0.372327i
\(170\) 0 0
\(171\) 3.94433 5.90311i 0.301631 0.451422i
\(172\) 0 0
\(173\) −10.2464 2.03813i −0.779016 0.154956i −0.210462 0.977602i \(-0.567497\pi\)
−0.568554 + 0.822646i \(0.692497\pi\)
\(174\) 0 0
\(175\) 13.6750 + 13.6750i 1.03374 + 1.03374i
\(176\) 0 0
\(177\) −5.46918 + 5.46918i −0.411089 + 0.411089i
\(178\) 0 0
\(179\) 3.79507 19.0791i 0.283657 1.42604i −0.531627 0.846979i \(-0.678419\pi\)
0.815284 0.579061i \(-0.196581\pi\)
\(180\) 0 0
\(181\) −3.32947 2.22468i −0.247477 0.165359i 0.425645 0.904890i \(-0.360047\pi\)
−0.673122 + 0.739531i \(0.735047\pi\)
\(182\) 0 0
\(183\) −4.58546 + 11.0703i −0.338967 + 0.818339i
\(184\) 0 0
\(185\) 5.74529 + 13.8704i 0.422402 + 1.01977i
\(186\) 0 0
\(187\) 1.84491 + 9.27499i 0.134913 + 0.678254i
\(188\) 0 0
\(189\) 7.26467 + 10.8723i 0.528427 + 0.790847i
\(190\) 0 0
\(191\) −16.2586 −1.17643 −0.588215 0.808704i \(-0.700169\pi\)
−0.588215 + 0.808704i \(0.700169\pi\)
\(192\) 0 0
\(193\) −24.9345 −1.79482 −0.897411 0.441196i \(-0.854554\pi\)
−0.897411 + 0.441196i \(0.854554\pi\)
\(194\) 0 0
\(195\) −1.20191 1.79878i −0.0860705 0.128814i
\(196\) 0 0
\(197\) 0.816489 + 4.10477i 0.0581724 + 0.292452i 0.998910 0.0466836i \(-0.0148653\pi\)
−0.940737 + 0.339136i \(0.889865\pi\)
\(198\) 0 0
\(199\) 0.744172 + 1.79659i 0.0527529 + 0.127357i 0.948059 0.318095i \(-0.103043\pi\)
−0.895306 + 0.445452i \(0.853043\pi\)
\(200\) 0 0
\(201\) 2.34701 5.66619i 0.165546 0.399662i
\(202\) 0 0
\(203\) −0.958916 0.640727i −0.0673027 0.0449702i
\(204\) 0 0
\(205\) −3.85632 + 19.3870i −0.269337 + 1.35405i
\(206\) 0 0
\(207\) 11.5577 11.5577i 0.803315 0.803315i
\(208\) 0 0
\(209\) 4.01956 + 4.01956i 0.278039 + 0.278039i
\(210\) 0 0
\(211\) 14.6646 + 2.91696i 1.00955 + 0.200812i 0.672044 0.740511i \(-0.265416\pi\)
0.337507 + 0.941323i \(0.390416\pi\)
\(212\) 0 0
\(213\) 5.61254 8.39976i 0.384565 0.575542i
\(214\) 0 0
\(215\) −9.17534 3.80055i −0.625753 0.259195i
\(216\) 0 0
\(217\) −2.57209 + 1.06539i −0.174605 + 0.0723236i
\(218\) 0 0
\(219\) 3.16212 0.628985i 0.213676 0.0425028i
\(220\) 0 0
\(221\) 3.00561 2.00828i 0.202179 0.135092i
\(222\) 0 0
\(223\) 14.8634i 0.995330i 0.867369 + 0.497665i \(0.165809\pi\)
−0.867369 + 0.497665i \(0.834191\pi\)
\(224\) 0 0
\(225\) 14.5859i 0.972393i
\(226\) 0 0
\(227\) −6.90248 + 4.61209i −0.458133 + 0.306115i −0.763138 0.646236i \(-0.776342\pi\)
0.305004 + 0.952351i \(0.401342\pi\)
\(228\) 0 0
\(229\) 3.63468 0.722983i 0.240187 0.0477761i −0.0735290 0.997293i \(-0.523426\pi\)
0.313716 + 0.949517i \(0.398426\pi\)
\(230\) 0 0
\(231\) −3.79623 + 1.57245i −0.249774 + 0.103460i
\(232\) 0 0
\(233\) 17.7828 + 7.36589i 1.16499 + 0.482556i 0.879534 0.475836i \(-0.157854\pi\)
0.285458 + 0.958391i \(0.407854\pi\)
\(234\) 0 0
\(235\) 17.8878 26.7710i 1.16687 1.74635i
\(236\) 0 0
\(237\) −1.33618 0.265783i −0.0867944 0.0172645i
\(238\) 0 0
\(239\) 1.69651 + 1.69651i 0.109738 + 0.109738i 0.759844 0.650106i \(-0.225275\pi\)
−0.650106 + 0.759844i \(0.725275\pi\)
\(240\) 0 0
\(241\) −12.7520 + 12.7520i −0.821432 + 0.821432i −0.986313 0.164882i \(-0.947276\pi\)
0.164882 + 0.986313i \(0.447276\pi\)
\(242\) 0 0
\(243\) −3.09288 + 15.5489i −0.198408 + 0.997465i
\(244\) 0 0
\(245\) 1.16898 + 0.781085i 0.0746831 + 0.0499017i
\(246\) 0 0
\(247\) 0.831534 2.00750i 0.0529093 0.127734i
\(248\) 0 0
\(249\) 6.66806 + 16.0981i 0.422571 + 1.02018i
\(250\) 0 0
\(251\) 0.0325488 + 0.163634i 0.00205446 + 0.0103285i 0.981799 0.189923i \(-0.0608240\pi\)
−0.979744 + 0.200252i \(0.935824\pi\)
\(252\) 0 0
\(253\) 7.27083 + 10.8816i 0.457113 + 0.684118i
\(254\) 0 0
\(255\) 22.2281 1.39198
\(256\) 0 0
\(257\) 1.30561 0.0814417 0.0407209 0.999171i \(-0.487035\pi\)
0.0407209 + 0.999171i \(0.487035\pi\)
\(258\) 0 0
\(259\) −6.05569 9.06297i −0.376282 0.563146i
\(260\) 0 0
\(261\) −0.169691 0.853096i −0.0105036 0.0528053i
\(262\) 0 0
\(263\) −4.45700 10.7602i −0.274831 0.663500i 0.724846 0.688910i \(-0.241911\pi\)
−0.999677 + 0.0254106i \(0.991911\pi\)
\(264\) 0 0
\(265\) −1.99031 + 4.80503i −0.122264 + 0.295170i
\(266\) 0 0
\(267\) 5.70699 + 3.81329i 0.349262 + 0.233370i
\(268\) 0 0
\(269\) 2.48406 12.4882i 0.151456 0.761419i −0.828153 0.560502i \(-0.810608\pi\)
0.979608 0.200916i \(-0.0643919\pi\)
\(270\) 0 0
\(271\) −5.90740 + 5.90740i −0.358849 + 0.358849i −0.863389 0.504540i \(-0.831662\pi\)
0.504540 + 0.863389i \(0.331662\pi\)
\(272\) 0 0
\(273\) 1.11063 + 1.11063i 0.0672184 + 0.0672184i
\(274\) 0 0
\(275\) −11.4542 2.27839i −0.690716 0.137392i
\(276\) 0 0
\(277\) 0.0619322 0.0926880i 0.00372114 0.00556908i −0.829604 0.558352i \(-0.811434\pi\)
0.833326 + 0.552783i \(0.186434\pi\)
\(278\) 0 0
\(279\) −1.93988 0.803526i −0.116138 0.0481058i
\(280\) 0 0
\(281\) −8.41645 + 3.48621i −0.502083 + 0.207970i −0.619327 0.785133i \(-0.712594\pi\)
0.117243 + 0.993103i \(0.462594\pi\)
\(282\) 0 0
\(283\) 11.6331 2.31397i 0.691518 0.137551i 0.163193 0.986594i \(-0.447821\pi\)
0.528324 + 0.849043i \(0.322821\pi\)
\(284\) 0 0
\(285\) 11.1097 7.42327i 0.658082 0.439717i
\(286\) 0 0
\(287\) 14.3512i 0.847126i
\(288\) 0 0
\(289\) 20.1412i 1.18478i
\(290\) 0 0
\(291\) −4.96502 + 3.31752i −0.291054 + 0.194476i
\(292\) 0 0
\(293\) −0.100300 + 0.0199510i −0.00585961 + 0.00116555i −0.198019 0.980198i \(-0.563451\pi\)
0.192160 + 0.981364i \(0.438451\pi\)
\(294\) 0 0
\(295\) 24.5415 10.1654i 1.42886 0.591853i
\(296\) 0 0
\(297\) −7.29526 3.02180i −0.423314 0.175342i
\(298\) 0 0
\(299\) 2.77927 4.15947i 0.160729 0.240549i
\(300\) 0 0
\(301\) 7.07185 + 1.40668i 0.407614 + 0.0810795i
\(302\) 0 0
\(303\) 0.684363 + 0.684363i 0.0393156 + 0.0393156i
\(304\) 0 0
\(305\) 29.0989 29.0989i 1.66620 1.66620i
\(306\) 0 0
\(307\) 4.46728 22.4585i 0.254961 1.28178i −0.614950 0.788566i \(-0.710824\pi\)
0.869911 0.493209i \(-0.164176\pi\)
\(308\) 0 0
\(309\) 11.8624 + 7.92619i 0.674827 + 0.450905i
\(310\) 0 0
\(311\) 6.48708 15.6612i 0.367848 0.888064i −0.626254 0.779619i \(-0.715413\pi\)
0.994102 0.108445i \(-0.0345873\pi\)
\(312\) 0 0
\(313\) −6.94583 16.7687i −0.392602 0.947824i −0.989371 0.145411i \(-0.953549\pi\)
0.596770 0.802413i \(-0.296451\pi\)
\(314\) 0 0
\(315\) −3.43845 17.2862i −0.193735 0.973970i
\(316\) 0 0
\(317\) 10.9936 + 16.4530i 0.617459 + 0.924093i 1.00000 0.000154534i \(4.91898e-5\pi\)
−0.382541 + 0.923939i \(0.624951\pi\)
\(318\) 0 0
\(319\) 0.696439 0.0389931
\(320\) 0 0
\(321\) 15.2992 0.853919
\(322\) 0 0
\(323\) 12.4036 + 18.5633i 0.690156 + 1.03289i
\(324\) 0 0
\(325\) 0.870913 + 4.37837i 0.0483095 + 0.242868i
\(326\) 0 0
\(327\) −2.66944 6.44460i −0.147620 0.356387i
\(328\) 0 0
\(329\) −8.94561 + 21.5966i −0.493187 + 1.19066i
\(330\) 0 0
\(331\) −5.97462 3.99211i −0.328395 0.219426i 0.380432 0.924809i \(-0.375775\pi\)
−0.708827 + 0.705382i \(0.750775\pi\)
\(332\) 0 0
\(333\) 1.60380 8.06284i 0.0878876 0.441841i
\(334\) 0 0
\(335\) −14.8939 + 14.8939i −0.813741 + 0.813741i
\(336\) 0 0
\(337\) −18.4718 18.4718i −1.00622 1.00622i −0.999981 0.00624304i \(-0.998013\pi\)
−0.00624304 0.999981i \(-0.501987\pi\)
\(338\) 0 0
\(339\) 5.17487 + 1.02935i 0.281060 + 0.0559064i
\(340\) 0 0
\(341\) 0.934023 1.39786i 0.0505802 0.0756986i
\(342\) 0 0
\(343\) −17.5609 7.27398i −0.948201 0.392758i
\(344\) 0 0
\(345\) 28.4199 11.7719i 1.53008 0.633779i
\(346\) 0 0
\(347\) 9.12297 1.81467i 0.489747 0.0974167i 0.0559615 0.998433i \(-0.482178\pi\)
0.433785 + 0.901016i \(0.357178\pi\)
\(348\) 0 0
\(349\) −9.46721 + 6.32579i −0.506768 + 0.338612i −0.782528 0.622615i \(-0.786070\pi\)
0.275760 + 0.961226i \(0.411070\pi\)
\(350\) 0 0
\(351\) 3.01837i 0.161109i
\(352\) 0 0
\(353\) 12.2587i 0.652465i 0.945290 + 0.326233i \(0.105779\pi\)
−0.945290 + 0.326233i \(0.894221\pi\)
\(354\) 0 0
\(355\) −28.8479 + 19.2756i −1.53109 + 1.02304i
\(356\) 0 0
\(357\) −15.8281 + 3.14840i −0.837710 + 0.166631i
\(358\) 0 0
\(359\) 6.95121 2.87929i 0.366871 0.151963i −0.191629 0.981467i \(-0.561377\pi\)
0.558500 + 0.829505i \(0.311377\pi\)
\(360\) 0 0
\(361\) −5.15492 2.13524i −0.271311 0.112381i
\(362\) 0 0
\(363\) −4.91933 + 7.36230i −0.258198 + 0.386420i
\(364\) 0 0
\(365\) −10.8599 2.16017i −0.568433 0.113068i
\(366\) 0 0
\(367\) 1.10049 + 1.10049i 0.0574452 + 0.0574452i 0.735246 0.677801i \(-0.237067\pi\)
−0.677801 + 0.735246i \(0.737067\pi\)
\(368\) 0 0
\(369\) 7.65356 7.65356i 0.398429 0.398429i
\(370\) 0 0
\(371\) 0.736662 3.70345i 0.0382456 0.192273i
\(372\) 0 0
\(373\) −29.9517 20.0131i −1.55084 1.03624i −0.975946 0.218014i \(-0.930042\pi\)
−0.574897 0.818226i \(-0.694958\pi\)
\(374\) 0 0
\(375\) −3.52611 + 8.51278i −0.182087 + 0.439598i
\(376\) 0 0
\(377\) −0.101875 0.245949i −0.00524685 0.0126670i
\(378\) 0 0
\(379\) 3.70680 + 18.6353i 0.190405 + 0.957233i 0.951279 + 0.308332i \(0.0997708\pi\)
−0.760873 + 0.648900i \(0.775229\pi\)
\(380\) 0 0
\(381\) −3.02169 4.52229i −0.154806 0.231684i
\(382\) 0 0
\(383\) 22.9884 1.17465 0.587327 0.809350i \(-0.300180\pi\)
0.587327 + 0.809350i \(0.300180\pi\)
\(384\) 0 0
\(385\) 14.1119 0.719209
\(386\) 0 0
\(387\) 3.02126 + 4.52163i 0.153579 + 0.229847i
\(388\) 0 0
\(389\) 5.01123 + 25.1931i 0.254079 + 1.27734i 0.871377 + 0.490614i \(0.163227\pi\)
−0.617298 + 0.786729i \(0.711773\pi\)
\(390\) 0 0
\(391\) 19.6698 + 47.4872i 0.994747 + 2.40153i
\(392\) 0 0
\(393\) −2.26994 + 5.48011i −0.114503 + 0.276435i
\(394\) 0 0
\(395\) 3.89033 + 2.59943i 0.195744 + 0.130792i
\(396\) 0 0
\(397\) −0.319222 + 1.60484i −0.0160213 + 0.0805445i −0.987969 0.154654i \(-0.950574\pi\)
0.971947 + 0.235198i \(0.0755739\pi\)
\(398\) 0 0
\(399\) −6.85951 + 6.85951i −0.343405 + 0.343405i
\(400\) 0 0
\(401\) −21.7278 21.7278i −1.08503 1.08503i −0.996031 0.0890025i \(-0.971632\pi\)
−0.0890025 0.996031i \(-0.528368\pi\)
\(402\) 0 0
\(403\) −0.630289 0.125372i −0.0313969 0.00624524i
\(404\) 0 0
\(405\) 1.12042 1.67683i 0.0556742 0.0833224i
\(406\) 0 0
\(407\) 6.08119 + 2.51891i 0.301433 + 0.124858i
\(408\) 0 0
\(409\) 17.9000 7.41442i 0.885097 0.366619i 0.106626 0.994299i \(-0.465995\pi\)
0.778472 + 0.627680i \(0.215995\pi\)
\(410\) 0 0
\(411\) −10.0098 + 1.99108i −0.493748 + 0.0982126i
\(412\) 0 0
\(413\) −16.0355 + 10.7146i −0.789056 + 0.527231i
\(414\) 0 0
\(415\) 59.8422i 2.93754i
\(416\) 0 0
\(417\) 2.17653i 0.106585i
\(418\) 0 0
\(419\) 27.8129 18.5840i 1.35875 0.907886i 0.359071 0.933310i \(-0.383093\pi\)
0.999677 + 0.0254236i \(0.00809346\pi\)
\(420\) 0 0
\(421\) −19.7735 + 3.93320i −0.963703 + 0.191693i −0.651774 0.758413i \(-0.725975\pi\)
−0.311929 + 0.950105i \(0.600975\pi\)
\(422\) 0 0
\(423\) −16.2883 + 6.74683i −0.791964 + 0.328042i
\(424\) 0 0
\(425\) −42.3764 17.5529i −2.05556 0.851439i
\(426\) 0 0
\(427\) −16.5990 + 24.8422i −0.803282 + 1.20220i
\(428\) 0 0
\(429\) −0.930266 0.185041i −0.0449137 0.00893388i
\(430\) 0 0
\(431\) −13.5229 13.5229i −0.651373 0.651373i 0.301950 0.953324i \(-0.402362\pi\)
−0.953324 + 0.301950i \(0.902362\pi\)
\(432\) 0 0
\(433\) −17.9120 + 17.9120i −0.860797 + 0.860797i −0.991431 0.130634i \(-0.958299\pi\)
0.130634 + 0.991431i \(0.458299\pi\)
\(434\) 0 0
\(435\) 0.319361 1.60553i 0.0153122 0.0769795i
\(436\) 0 0
\(437\) 25.6899 + 17.1654i 1.22891 + 0.821134i
\(438\) 0 0
\(439\) −2.81785 + 6.80290i −0.134489 + 0.324685i −0.976749 0.214387i \(-0.931225\pi\)
0.842260 + 0.539071i \(0.181225\pi\)
\(440\) 0 0
\(441\) −0.294605 0.711240i −0.0140288 0.0338686i
\(442\) 0 0
\(443\) 5.64485 + 28.3786i 0.268195 + 1.34831i 0.846458 + 0.532456i \(0.178731\pi\)
−0.578263 + 0.815850i \(0.696269\pi\)
\(444\) 0 0
\(445\) −13.0963 19.6000i −0.620823 0.929127i
\(446\) 0 0
\(447\) −18.5721 −0.878429
\(448\) 0 0
\(449\) −0.0955370 −0.00450867 −0.00225433 0.999997i \(-0.500718\pi\)
−0.00225433 + 0.999997i \(0.500718\pi\)
\(450\) 0 0
\(451\) 4.81478 + 7.20583i 0.226719 + 0.339309i
\(452\) 0 0
\(453\) −1.08637 5.46155i −0.0510421 0.256606i
\(454\) 0 0
\(455\) −2.06430 4.98365i −0.0967757 0.233637i
\(456\) 0 0
\(457\) 11.4359 27.6087i 0.534949 1.29148i −0.393262 0.919426i \(-0.628654\pi\)
0.928211 0.372054i \(-0.121346\pi\)
\(458\) 0 0
\(459\) −25.7862 17.2298i −1.20360 0.804219i
\(460\) 0 0
\(461\) 5.29789 26.6343i 0.246747 1.24048i −0.636390 0.771368i \(-0.719573\pi\)
0.883137 0.469115i \(-0.155427\pi\)
\(462\) 0 0
\(463\) −21.3463 + 21.3463i −0.992048 + 0.992048i −0.999969 0.00792071i \(-0.997479\pi\)
0.00792071 + 0.999969i \(0.497479\pi\)
\(464\) 0 0
\(465\) −2.79426 2.79426i −0.129581 0.129581i
\(466\) 0 0
\(467\) 32.0458 + 6.37431i 1.48290 + 0.294968i 0.869157 0.494535i \(-0.164662\pi\)
0.613746 + 0.789503i \(0.289662\pi\)
\(468\) 0 0
\(469\) 8.49600 12.7152i 0.392309 0.587132i
\(470\) 0 0
\(471\) 8.06697 + 3.34145i 0.371707 + 0.153966i
\(472\) 0 0
\(473\) −4.02275 + 1.66628i −0.184966 + 0.0766155i
\(474\) 0 0
\(475\) −27.0418 + 5.37896i −1.24077 + 0.246804i
\(476\) 0 0
\(477\) 2.36793 1.58220i 0.108420 0.0724439i
\(478\) 0 0
\(479\) 0.620601i 0.0283560i 0.999899 + 0.0141780i \(0.00451315\pi\)
−0.999899 + 0.0141780i \(0.995487\pi\)
\(480\) 0 0
\(481\) 2.51605i 0.114722i
\(482\) 0 0
\(483\) −18.5697 + 12.4079i −0.844953 + 0.564579i
\(484\) 0 0
\(485\) 20.1139 4.00090i 0.913325 0.181672i
\(486\) 0 0
\(487\) 11.7418 4.86361i 0.532072 0.220391i −0.100439 0.994943i \(-0.532025\pi\)
0.632510 + 0.774552i \(0.282025\pi\)
\(488\) 0 0
\(489\) −1.05335 0.436311i −0.0476340 0.0197306i
\(490\) 0 0
\(491\) −11.9335 + 17.8598i −0.538553 + 0.806002i −0.996554 0.0829501i \(-0.973566\pi\)
0.458000 + 0.888952i \(0.348566\pi\)
\(492\) 0 0
\(493\) 2.68271 + 0.533623i 0.120823 + 0.0240332i
\(494\) 0 0
\(495\) 7.52593 + 7.52593i 0.338266 + 0.338266i
\(496\) 0 0
\(497\) 17.8117 17.8117i 0.798964 0.798964i
\(498\) 0 0
\(499\) 5.81742 29.2462i 0.260424 1.30924i −0.600140 0.799895i \(-0.704888\pi\)
0.860564 0.509343i \(-0.170112\pi\)
\(500\) 0 0
\(501\) −2.42839 1.62260i −0.108492 0.0724923i
\(502\) 0 0
\(503\) −10.2519 + 24.7502i −0.457108 + 1.10356i 0.512455 + 0.858714i \(0.328736\pi\)
−0.969563 + 0.244842i \(0.921264\pi\)
\(504\) 0 0
\(505\) −1.27201 3.07089i −0.0566035 0.136653i
\(506\) 0 0
\(507\) −2.54289 12.7840i −0.112934 0.567755i
\(508\) 0 0
\(509\) 3.45815 + 5.17549i 0.153280 + 0.229399i 0.900160 0.435559i \(-0.143449\pi\)
−0.746880 + 0.664958i \(0.768449\pi\)
\(510\) 0 0
\(511\) 8.03904 0.355626
\(512\) 0 0
\(513\) −18.6421 −0.823071
\(514\) 0 0
\(515\) −27.2215 40.7399i −1.19952 1.79521i
\(516\) 0 0
\(517\) −2.75394 13.8450i −0.121118 0.608902i
\(518\) 0 0
\(519\) 4.12001 + 9.94659i 0.180848 + 0.436607i
\(520\) 0 0
\(521\) −13.3796 + 32.3011i −0.586169 + 1.41514i 0.300969 + 0.953634i \(0.402690\pi\)
−0.887138 + 0.461504i \(0.847310\pi\)
\(522\) 0 0
\(523\) −29.7773 19.8966i −1.30207 0.870016i −0.305455 0.952207i \(-0.598808\pi\)
−0.996617 + 0.0821904i \(0.973808\pi\)
\(524\) 0 0
\(525\) 3.88814 19.5470i 0.169692 0.853102i
\(526\) 0 0
\(527\) 4.66896 4.66896i 0.203383 0.203383i
\(528\) 0 0
\(529\) 34.0347 + 34.0347i 1.47977 + 1.47977i
\(530\) 0 0
\(531\) −14.2659 2.83767i −0.619089 0.123145i
\(532\) 0 0
\(533\) 1.84045 2.75442i 0.0797186 0.119307i
\(534\) 0 0
\(535\) −48.5437 20.1074i −2.09873 0.869321i
\(536\) 0 0
\(537\) −18.5209 + 7.67162i −0.799237 + 0.331055i
\(538\) 0 0
\(539\) 0.604552 0.120253i 0.0260399 0.00517966i
\(540\) 0 0
\(541\) 33.4281 22.3359i 1.43718 0.960296i 0.439099 0.898439i \(-0.355298\pi\)
0.998085 0.0618571i \(-0.0197023\pi\)
\(542\) 0 0
\(543\) 4.12659i 0.177089i
\(544\) 0 0
\(545\) 23.9568i 1.02620i
\(546\) 0 0
\(547\) −2.75272 + 1.83931i −0.117698 + 0.0786432i −0.613026 0.790063i \(-0.710048\pi\)
0.495328 + 0.868706i \(0.335048\pi\)
\(548\) 0 0
\(549\) −22.1007 + 4.39611i −0.943236 + 0.187621i
\(550\) 0 0
\(551\) 1.51904 0.629206i 0.0647132 0.0268051i
\(552\) 0 0
\(553\) −3.13839 1.29996i −0.133458 0.0552801i
\(554\) 0 0
\(555\) 8.59557 12.8642i 0.364862 0.546054i
\(556\) 0 0
\(557\) −42.1945 8.39301i −1.78784 0.355623i −0.813650 0.581355i \(-0.802523\pi\)
−0.974190 + 0.225731i \(0.927523\pi\)
\(558\) 0 0
\(559\) 1.17690 + 1.17690i 0.0497775 + 0.0497775i
\(560\) 0 0
\(561\) 6.89108 6.89108i 0.290942 0.290942i
\(562\) 0 0
\(563\) −2.34500 + 11.7891i −0.0988299 + 0.496852i 0.899387 + 0.437154i \(0.144014\pi\)
−0.998217 + 0.0596975i \(0.980986\pi\)
\(564\) 0 0
\(565\) −15.0668 10.0673i −0.633863 0.423534i
\(566\) 0 0
\(567\) −0.560318 + 1.35273i −0.0235311 + 0.0568092i
\(568\) 0 0
\(569\) −2.83292 6.83927i −0.118762 0.286717i 0.853308 0.521407i \(-0.174593\pi\)
−0.972070 + 0.234690i \(0.924593\pi\)
\(570\) 0 0
\(571\) 6.93430 + 34.8611i 0.290191 + 1.45889i 0.800725 + 0.599032i \(0.204448\pi\)
−0.510534 + 0.859858i \(0.670552\pi\)
\(572\) 0 0
\(573\) 9.30862 + 13.9313i 0.388873 + 0.581990i
\(574\) 0 0
\(575\) −63.4766 −2.64716
\(576\) 0 0
\(577\) 24.2433 1.00926 0.504632 0.863335i \(-0.331628\pi\)
0.504632 + 0.863335i \(0.331628\pi\)
\(578\) 0 0
\(579\) 14.2759 + 21.3653i 0.593284 + 0.887913i
\(580\) 0 0
\(581\) 8.47608 + 42.6121i 0.351647 + 1.76785i
\(582\) 0 0
\(583\) 0.872611 + 2.10667i 0.0361398 + 0.0872493i
\(584\) 0 0
\(585\) 1.55690 3.75870i 0.0643701 0.155403i
\(586\) 0 0
\(587\) 12.8222 + 8.56752i 0.529229 + 0.353619i 0.791299 0.611429i \(-0.209405\pi\)
−0.262070 + 0.965049i \(0.584405\pi\)
\(588\) 0 0
\(589\) 0.774328 3.89281i 0.0319056 0.160400i
\(590\) 0 0
\(591\) 3.04974 3.04974i 0.125450 0.125450i
\(592\) 0 0
\(593\) −7.17902 7.17902i −0.294807 0.294807i 0.544169 0.838976i \(-0.316845\pi\)
−0.838976 + 0.544169i \(0.816845\pi\)
\(594\) 0 0
\(595\) 54.3595 + 10.8128i 2.22852 + 0.443281i
\(596\) 0 0
\(597\) 1.11336 1.66626i 0.0455668 0.0681955i
\(598\) 0 0
\(599\) 37.8559 + 15.6804i 1.54675 + 0.640685i 0.982725 0.185073i \(-0.0592522\pi\)
0.564025 + 0.825758i \(0.309252\pi\)
\(600\) 0 0
\(601\) −32.5429 + 13.4797i −1.32745 + 0.549850i −0.929928 0.367741i \(-0.880131\pi\)
−0.397526 + 0.917591i \(0.630131\pi\)
\(602\) 0 0
\(603\) 11.3120 2.25010i 0.460660 0.0916310i
\(604\) 0 0
\(605\) 25.2849 16.8948i 1.02798 0.686872i
\(606\) 0 0
\(607\) 37.4709i 1.52090i 0.649399 + 0.760448i \(0.275021\pi\)
−0.649399 + 0.760448i \(0.724979\pi\)
\(608\) 0 0
\(609\) 1.18850i 0.0481603i
\(610\) 0 0
\(611\) −4.48655 + 2.99781i −0.181506 + 0.121279i
\(612\) 0 0
\(613\) −3.83710 + 0.763246i −0.154979 + 0.0308272i −0.271970 0.962306i \(-0.587675\pi\)
0.116991 + 0.993133i \(0.462675\pi\)
\(614\) 0 0
\(615\) 18.8198 7.79543i 0.758889 0.314342i
\(616\) 0 0
\(617\) −37.8776 15.6894i −1.52490 0.631633i −0.546331 0.837569i \(-0.683976\pi\)
−0.978565 + 0.205937i \(0.933976\pi\)
\(618\) 0 0
\(619\) 22.0632 33.0200i 0.886796 1.32718i −0.0575877 0.998340i \(-0.518341\pi\)
0.944384 0.328844i \(-0.106659\pi\)
\(620\) 0 0
\(621\) −42.0941 8.37304i −1.68918 0.335998i
\(622\) 0 0
\(623\) 12.1017 + 12.1017i 0.484843 + 0.484843i
\(624\) 0 0
\(625\) −4.23310 + 4.23310i −0.169324 + 0.169324i
\(626\) 0 0
\(627\) 1.14286 5.74554i 0.0456414 0.229455i
\(628\) 0 0
\(629\) 21.4949 + 14.3624i 0.857058 + 0.572668i
\(630\) 0 0
\(631\) 0.295581 0.713596i 0.0117669 0.0284078i −0.917887 0.396842i \(-0.870106\pi\)
0.929654 + 0.368434i \(0.120106\pi\)
\(632\) 0 0
\(633\) −5.89655 14.2355i −0.234367 0.565812i
\(634\) 0 0
\(635\) 3.64414 + 18.3203i 0.144613 + 0.727020i
\(636\) 0 0
\(637\) −0.130902 0.195908i −0.00518652 0.00776217i
\(638\) 0 0
\(639\) 18.9981 0.751553
\(640\) 0 0
\(641\) 20.3094 0.802172 0.401086 0.916040i \(-0.368633\pi\)
0.401086 + 0.916040i \(0.368633\pi\)
\(642\) 0 0
\(643\) −6.26132 9.37072i −0.246922 0.369545i 0.687218 0.726451i \(-0.258832\pi\)
−0.934140 + 0.356906i \(0.883832\pi\)
\(644\) 0 0
\(645\) 1.99667 + 10.0379i 0.0786187 + 0.395243i
\(646\) 0 0
\(647\) 0.189930 + 0.458531i 0.00746691 + 0.0180267i 0.927569 0.373652i \(-0.121895\pi\)
−0.920102 + 0.391679i \(0.871895\pi\)
\(648\) 0 0
\(649\) 4.45682 10.7597i 0.174945 0.422356i
\(650\) 0 0
\(651\) 2.38550 + 1.59394i 0.0934952 + 0.0624715i
\(652\) 0 0
\(653\) −4.73978 + 23.8285i −0.185482 + 0.932481i 0.770138 + 0.637878i \(0.220187\pi\)
−0.955620 + 0.294603i \(0.904813\pi\)
\(654\) 0 0
\(655\) 14.4048 14.4048i 0.562842 0.562842i
\(656\) 0 0
\(657\) 4.28725 + 4.28725i 0.167262 + 0.167262i
\(658\) 0 0
\(659\) −38.0620 7.57099i −1.48268 0.294924i −0.613611 0.789609i \(-0.710284\pi\)
−0.869073 + 0.494685i \(0.835284\pi\)
\(660\) 0 0
\(661\) −5.84250 + 8.74392i −0.227247 + 0.340099i −0.927518 0.373778i \(-0.878062\pi\)
0.700271 + 0.713877i \(0.253062\pi\)
\(662\) 0 0
\(663\) −3.44164 1.42557i −0.133662 0.0553646i
\(664\) 0 0
\(665\) 30.7802 12.7496i 1.19360 0.494407i
\(666\) 0 0
\(667\) 3.71261 0.738483i 0.143753 0.0285942i
\(668\) 0 0
\(669\) 12.7359 8.50984i 0.492398 0.329010i
\(670\) 0 0
\(671\) 18.0423i 0.696515i
\(672\) 0 0
\(673\) 40.4801i 1.56039i −0.625534 0.780197i \(-0.715119\pi\)
0.625534 0.780197i \(-0.284881\pi\)
\(674\) 0 0
\(675\) 31.8450 21.2781i 1.22571 0.818995i
\(676\) 0 0
\(677\) −28.0273 + 5.57498i −1.07718 + 0.214264i −0.701632 0.712540i \(-0.747545\pi\)
−0.375546 + 0.926804i \(0.622545\pi\)
\(678\) 0 0
\(679\) −13.7559 + 5.69788i −0.527903 + 0.218665i
\(680\) 0 0
\(681\) 7.90382 + 3.27387i 0.302875 + 0.125455i
\(682\) 0 0
\(683\) 10.1966 15.2603i 0.390163 0.583920i −0.583443 0.812154i \(-0.698295\pi\)
0.973606 + 0.228234i \(0.0732950\pi\)
\(684\) 0 0
\(685\) 34.3775 + 6.83811i 1.31350 + 0.261271i
\(686\) 0 0
\(687\) −2.70048 2.70048i −0.103030 0.103030i
\(688\) 0 0
\(689\) 0.616329 0.616329i 0.0234803 0.0234803i
\(690\) 0 0
\(691\) −0.695696 + 3.49750i −0.0264655 + 0.133051i −0.991759 0.128115i \(-0.959107\pi\)
0.965294 + 0.261167i \(0.0841072\pi\)
\(692\) 0 0
\(693\) −6.42501 4.29305i −0.244066 0.163080i
\(694\) 0 0
\(695\) 2.86056 6.90601i 0.108507 0.261960i
\(696\) 0 0
\(697\) 13.0255 + 31.4463i 0.493375 + 1.19111i
\(698\) 0 0
\(699\) −3.86976 19.4546i −0.146368 0.735841i
\(700\) 0 0
\(701\) −8.71090 13.0368i −0.329006 0.492393i 0.629681 0.776853i \(-0.283185\pi\)
−0.958688 + 0.284461i \(0.908185\pi\)
\(702\) 0 0
\(703\) 15.5397 0.586092
\(704\) 0 0
\(705\) −33.1804 −1.24965
\(706\) 0 0
\(707\) 1.34073 + 2.00654i 0.0504232 + 0.0754637i
\(708\) 0 0
\(709\) 0.737183 + 3.70607i 0.0276855 + 0.139184i 0.992156 0.125006i \(-0.0398952\pi\)
−0.964470 + 0.264191i \(0.914895\pi\)
\(710\) 0 0
\(711\) −0.980440 2.36699i −0.0367694 0.0887692i
\(712\) 0 0
\(713\) 3.49688 8.44221i 0.130959 0.316163i
\(714\) 0 0
\(715\) 2.70849 + 1.80976i 0.101292 + 0.0676810i
\(716\) 0 0
\(717\) 0.482359 2.42498i 0.0180140 0.0905627i
\(718\) 0 0
\(719\) 36.7070 36.7070i 1.36894 1.36894i 0.506985 0.861955i \(-0.330760\pi\)
0.861955 0.506985i \(-0.169240\pi\)
\(720\) 0 0
\(721\) 25.1542 + 25.1542i 0.936790 + 0.936790i
\(722\) 0 0
\(723\) 18.2277 + 3.62572i 0.677896 + 0.134842i
\(724\) 0 0
\(725\) −1.87668 + 2.80865i −0.0696982 + 0.104311i
\(726\) 0 0
\(727\) 3.90063 + 1.61569i 0.144666 + 0.0599228i 0.453842 0.891082i \(-0.350053\pi\)
−0.309176 + 0.951005i \(0.600053\pi\)
\(728\) 0 0
\(729\) 13.5147 5.59798i 0.500545 0.207333i
\(730\) 0 0
\(731\) −16.7725 + 3.33626i −0.620353 + 0.123396i
\(732\) 0 0
\(733\) −10.5958 + 7.07991i −0.391366 + 0.261502i −0.735648 0.677364i \(-0.763122\pi\)
0.344282 + 0.938866i \(0.388122\pi\)
\(734\) 0 0
\(735\) 1.44885i 0.0534415i
\(736\) 0 0
\(737\) 9.23473i 0.340166i
\(738\) 0 0
\(739\) −5.97439 + 3.99196i −0.219772 + 0.146847i −0.660583 0.750753i \(-0.729691\pi\)
0.440811 + 0.897600i \(0.354691\pi\)
\(740\) 0 0
\(741\) −2.19623 + 0.436857i −0.0806805 + 0.0160483i
\(742\) 0 0
\(743\) 16.8050 6.96086i 0.616515 0.255369i −0.0524960 0.998621i \(-0.516718\pi\)
0.669011 + 0.743252i \(0.266718\pi\)
\(744\) 0 0
\(745\) 58.9283 + 24.4089i 2.15896 + 0.894272i
\(746\) 0 0
\(747\) −18.2049 + 27.2455i −0.666082 + 0.996862i
\(748\) 0 0
\(749\) 37.4148 + 7.44226i 1.36711 + 0.271934i
\(750\) 0 0
\(751\) −25.4171 25.4171i −0.927482 0.927482i 0.0700603 0.997543i \(-0.477681\pi\)
−0.997543 + 0.0700603i \(0.977681\pi\)
\(752\) 0 0
\(753\) 0.121576 0.121576i 0.00443047 0.00443047i
\(754\) 0 0
\(755\) −3.73100 + 18.7570i −0.135785 + 0.682638i
\(756\) 0 0
\(757\) 28.3377 + 18.9346i 1.02995 + 0.688192i 0.951160 0.308700i \(-0.0998938\pi\)
0.0787918 + 0.996891i \(0.474894\pi\)
\(758\) 0 0
\(759\) 5.16117 12.4602i 0.187338 0.452275i
\(760\) 0 0
\(761\) 3.25313 + 7.85375i 0.117926 + 0.284698i 0.971810 0.235765i \(-0.0757594\pi\)
−0.853884 + 0.520463i \(0.825759\pi\)
\(762\) 0 0
\(763\) −3.39325 17.0590i −0.122844 0.617578i
\(764\) 0 0
\(765\) 23.2237 + 34.7567i 0.839653 + 1.25663i
\(766\) 0 0
\(767\) −4.45177 −0.160744
\(768\) 0 0
\(769\) 0.673777 0.0242970 0.0121485 0.999926i \(-0.496133\pi\)
0.0121485 + 0.999926i \(0.496133\pi\)
\(770\) 0 0
\(771\) −0.747508 1.11872i −0.0269208 0.0402899i
\(772\) 0 0
\(773\) −9.93498 49.9465i −0.357336 1.79645i −0.572534 0.819881i \(-0.694040\pi\)
0.215198 0.976570i \(-0.430960\pi\)
\(774\) 0 0
\(775\) 3.12052 + 7.53361i 0.112092 + 0.270615i
\(776\) 0 0
\(777\) −4.29860 + 10.3777i −0.154211 + 0.372299i
\(778\) 0 0
\(779\) 17.0120 + 11.3670i 0.609517 + 0.407266i
\(780\) 0 0
\(781\) −2.96760 + 14.9191i −0.106189 + 0.533848i
\(782\) 0 0
\(783\) −1.61499 + 1.61499i −0.0577151 + 0.0577151i
\(784\) 0 0
\(785\) −21.2045 21.2045i −0.756821 0.756821i
\(786\) 0 0
\(787\) −50.7402 10.0929i −1.80869 0.359772i −0.828840 0.559486i \(-0.810999\pi\)
−0.979854 + 0.199715i \(0.935999\pi\)
\(788\) 0 0
\(789\) −6.66815 + 9.97959i −0.237393 + 0.355283i
\(790\) 0 0
\(791\) 12.1546 + 5.03460i 0.432168 + 0.179010i
\(792\) 0 0
\(793\) −6.37168 + 2.63924i −0.226265 + 0.0937220i
\(794\) 0 0
\(795\) 5.25675 1.04563i 0.186438 0.0370848i
\(796\) 0 0
\(797\) −39.8300 + 26.6136i −1.41085 + 0.942701i −0.411339 + 0.911482i \(0.634939\pi\)
−0.999513 + 0.0312188i \(0.990061\pi\)
\(798\) 0 0
\(799\) 55.4415i 1.96138i
\(800\) 0 0
\(801\) 12.9077i 0.456073i
\(802\) 0 0
\(803\) −4.03644 + 2.69707i −0.142443 + 0.0951774i
\(804\) 0 0
\(805\) 75.2283 14.9638i 2.65145 0.527406i
\(806\) 0 0
\(807\) −12.1228 + 5.02144i −0.426744 + 0.176763i
\(808\) 0 0
\(809\) 14.9757 + 6.20314i 0.526518 + 0.218091i 0.630077 0.776532i \(-0.283023\pi\)
−0.103559 + 0.994623i \(0.533023\pi\)
\(810\) 0 0
\(811\) 0.427422 0.639682i 0.0150088 0.0224623i −0.823889 0.566751i \(-0.808200\pi\)
0.838898 + 0.544288i \(0.183200\pi\)
\(812\) 0 0
\(813\) 8.44401 + 1.67962i 0.296144 + 0.0589068i
\(814\) 0 0
\(815\) 2.76878 + 2.76878i 0.0969863 + 0.0969863i
\(816\) 0 0
\(817\) −7.26880 + 7.26880i −0.254303 + 0.254303i
\(818\) 0 0
\(819\) −0.576248 + 2.89700i −0.0201358 + 0.101229i
\(820\) 0 0
\(821\) −11.8401 7.91128i −0.413221 0.276105i 0.331534 0.943443i \(-0.392434\pi\)
−0.744755 + 0.667338i \(0.767434\pi\)
\(822\) 0 0
\(823\) 20.8253 50.2767i 0.725924 1.75254i 0.0702021 0.997533i \(-0.477636\pi\)
0.655722 0.755003i \(-0.272364\pi\)
\(824\) 0 0
\(825\) 4.60569 + 11.1191i 0.160350 + 0.387118i
\(826\) 0 0
\(827\) −5.39604 27.1277i −0.187639 0.943323i −0.953747 0.300611i \(-0.902809\pi\)
0.766108 0.642712i \(-0.222191\pi\)
\(828\) 0 0
\(829\) −4.05663 6.07118i −0.140893 0.210861i 0.754312 0.656516i \(-0.227971\pi\)
−0.895205 + 0.445656i \(0.852971\pi\)
\(830\) 0 0
\(831\) −0.114879 −0.00398511
\(832\) 0 0
\(833\) 2.42089 0.0838790
\(834\) 0 0
\(835\) 5.57261 + 8.34000i 0.192848 + 0.288618i
\(836\) 0 0
\(837\) 1.07562 + 5.40748i 0.0371787 + 0.186910i
\(838\) 0 0
\(839\) −9.19848 22.2071i −0.317567 0.766674i −0.999382 0.0351498i \(-0.988809\pi\)
0.681815 0.731524i \(-0.261191\pi\)
\(840\) 0 0
\(841\) −11.0207 + 26.6064i −0.380025 + 0.917462i
\(842\) 0 0
\(843\) 7.80591 + 5.21574i 0.268850 + 0.179640i
\(844\) 0 0
\(845\) −8.73323 + 43.9049i −0.300432 + 1.51038i
\(846\) 0 0
\(847\) −15.6117 + 15.6117i −0.536426 + 0.536426i
\(848\) 0 0
\(849\) −8.64313 8.64313i −0.296631 0.296631i
\(850\) 0 0
\(851\) 35.0888 + 6.97960i 1.20283 + 0.239258i
\(852\) 0 0
\(853\) −2.19782 + 3.28928i −0.0752521 + 0.112623i −0.867187 0.497983i \(-0.834074\pi\)
0.791935 + 0.610606i \(0.209074\pi\)
\(854\) 0 0
\(855\) 23.2146 + 9.61580i 0.793923 + 0.328853i
\(856\) 0 0
\(857\) 25.6461 10.6230i 0.876055 0.362874i 0.101089 0.994877i \(-0.467767\pi\)
0.774966 + 0.632003i \(0.217767\pi\)
\(858\) 0 0
\(859\) 48.0526 9.55825i 1.63953 0.326123i 0.712663 0.701506i \(-0.247489\pi\)
0.926870 + 0.375383i \(0.122489\pi\)
\(860\) 0 0
\(861\) −12.2970 + 8.21658i −0.419080 + 0.280020i
\(862\) 0 0
\(863\) 49.1366i 1.67263i 0.548250 + 0.836314i \(0.315294\pi\)
−0.548250 + 0.836314i \(0.684706\pi\)
\(864\) 0 0
\(865\) 36.9749i 1.25718i
\(866\) 0 0
\(867\) 17.2582 11.5315i 0.586118 0.391631i
\(868\) 0 0
\(869\) 2.01194 0.400199i 0.0682503 0.0135758i
\(870\) 0 0
\(871\) 3.26127 1.35086i 0.110504 0.0457722i
\(872\) 0 0
\(873\) −10.3748 4.29738i −0.351133 0.145444i
\(874\) 0 0
\(875\) −12.7642 + 19.1030i −0.431510 + 0.645800i
\(876\) 0 0
\(877\) 19.6791 + 3.91441i 0.664515 + 0.132180i 0.515812 0.856702i \(-0.327490\pi\)
0.148703 + 0.988882i \(0.452490\pi\)
\(878\) 0 0
\(879\) 0.0745207 + 0.0745207i 0.00251352 + 0.00251352i
\(880\) 0 0
\(881\) −11.5209 + 11.5209i −0.388150 + 0.388150i −0.874027 0.485877i \(-0.838500\pi\)
0.485877 + 0.874027i \(0.338500\pi\)
\(882\) 0 0
\(883\) −2.44651 + 12.2994i −0.0823317 + 0.413909i 0.917536 + 0.397652i \(0.130175\pi\)
−0.999868 + 0.0162569i \(0.994825\pi\)
\(884\) 0 0
\(885\) −22.7612 15.2085i −0.765108 0.511229i
\(886\) 0 0
\(887\) −17.4593 + 42.1504i −0.586224 + 1.41527i 0.300862 + 0.953668i \(0.402726\pi\)
−0.887087 + 0.461603i \(0.847274\pi\)
\(888\) 0 0
\(889\) −5.18980 12.5293i −0.174060 0.420219i
\(890\) 0 0
\(891\) −0.172496 0.867196i −0.00577883 0.0290522i
\(892\) 0 0
\(893\) −18.5152 27.7100i −0.619587 0.927278i
\(894\) 0 0
\(895\) 68.8486 2.30136
\(896\) 0 0
\(897\) −5.15531 −0.172131
\(898\) 0 0
\(899\) −0.270158 0.404320i −0.00901027 0.0134848i
\(900\) 0 0
\(901\) 1.74716 + 8.78357i 0.0582064 + 0.292623i
\(902\) 0 0
\(903\) −2.84356 6.86495i −0.0946276 0.228451i
\(904\) 0 0
\(905\) 5.42350 13.0935i 0.180283 0.435242i
\(906\) 0 0
\(907\) −15.0921 10.0842i −0.501125 0.334841i 0.279182 0.960238i \(-0.409937\pi\)
−0.780306 + 0.625398i \(0.784937\pi\)
\(908\) 0 0
\(909\) −0.355080 + 1.78511i −0.0117773 + 0.0592084i
\(910\) 0 0
\(911\) −36.0258 + 36.0258i −1.19359 + 1.19359i −0.217537 + 0.976052i \(0.569802\pi\)
−0.976052 + 0.217537i \(0.930198\pi\)
\(912\) 0 0
\(913\) −18.5521 18.5521i −0.613985 0.613985i
\(914\) 0 0
\(915\) −41.5938 8.27351i −1.37505 0.273514i
\(916\) 0 0
\(917\) −8.21699 + 12.2976i −0.271349 + 0.406102i
\(918\) 0 0
\(919\) −23.4993 9.73374i −0.775171 0.321086i −0.0402060 0.999191i \(-0.512801\pi\)
−0.734965 + 0.678105i \(0.762801\pi\)
\(920\) 0 0
\(921\) −21.8015 + 9.03046i −0.718383 + 0.297564i
\(922\) 0 0
\(923\) 5.70282 1.13436i 0.187711 0.0373380i
\(924\) 0 0
\(925\) −26.5453 + 17.7370i −0.872805 + 0.583190i
\(926\) 0 0
\(927\) 26.8296i 0.881201i
\(928\) 0 0
\(929\) 14.5115i 0.476107i 0.971252 + 0.238053i \(0.0765094\pi\)
−0.971252 + 0.238053i \(0.923491\pi\)
\(930\) 0 0
\(931\) 1.20998 0.808480i 0.0396553 0.0264968i
\(932\) 0 0
\(933\) −17.1335 + 3.40807i −0.560926 + 0.111575i
\(934\) 0 0
\(935\) −30.9219 + 12.8083i −1.01125 + 0.418875i
\(936\) 0 0
\(937\) 15.1545 + 6.27722i 0.495077 + 0.205068i 0.616230 0.787566i \(-0.288659\pi\)
−0.121153 + 0.992634i \(0.538659\pi\)
\(938\) 0 0
\(939\) −10.3917 + 15.5523i −0.339120 + 0.507530i
\(940\) 0 0
\(941\) 32.7794 + 6.52023i 1.06858 + 0.212553i 0.697891 0.716204i \(-0.254122\pi\)
0.370688 + 0.928758i \(0.379122\pi\)
\(942\) 0 0
\(943\) 33.3077 + 33.3077i 1.08465 + 1.08465i
\(944\) 0 0
\(945\) −32.7245 + 32.7245i −1.06453 + 1.06453i
\(946\) 0 0
\(947\) 1.24368 6.25242i 0.0404143 0.203176i −0.955303 0.295629i \(-0.904471\pi\)
0.995717 + 0.0924528i \(0.0294707\pi\)
\(948\) 0 0
\(949\) 1.54293 + 1.03095i 0.0500856 + 0.0334661i
\(950\) 0 0
\(951\) 7.80372 18.8399i 0.253053 0.610924i
\(952\) 0 0
\(953\) 0.417863 + 1.00881i 0.0135359 + 0.0326786i 0.930503 0.366284i \(-0.119370\pi\)
−0.916967 + 0.398963i \(0.869370\pi\)
\(954\) 0 0
\(955\) −11.2261 56.4375i −0.363269 1.82628i
\(956\) 0 0
\(957\) −0.398736 0.596750i −0.0128893 0.0192902i
\(958\) 0 0
\(959\) −25.4479 −0.821756
\(960\) 0 0
\(961\) 29.8261 0.962134
\(962\) 0 0
\(963\) 15.9845 + 23.9224i 0.515092 + 0.770890i
\(964\) 0 0
\(965\) −17.2166 86.5536i −0.554221 2.78626i
\(966\) 0 0
\(967\) −12.0473 29.0848i −0.387416 0.935305i −0.990486 0.137617i \(-0.956056\pi\)
0.603069 0.797689i \(-0.293944\pi\)
\(968\) 0 0
\(969\) 8.80466 21.2563i 0.282847 0.682852i
\(970\) 0 0
\(971\) 25.2097 + 16.8446i 0.809017 + 0.540568i 0.889900 0.456156i \(-0.150774\pi\)
−0.0808828 + 0.996724i \(0.525774\pi\)
\(972\) 0 0
\(973\) −1.05876 + 5.32277i −0.0339424 + 0.170640i
\(974\) 0 0
\(975\) 3.25302 3.25302i 0.104180 0.104180i
\(976\) 0 0
\(977\) 27.6449 + 27.6449i 0.884440 + 0.884440i 0.993982 0.109543i \(-0.0349386\pi\)
−0.109543 + 0.993982i \(0.534939\pi\)
\(978\) 0 0
\(979\) −10.1364 2.01625i −0.323960 0.0644397i
\(980\) 0 0
\(981\) 7.28802 10.9073i 0.232688 0.348243i
\(982\) 0 0
\(983\) −25.5539 10.5848i −0.815043 0.337602i −0.0640791 0.997945i \(-0.520411\pi\)
−0.750964 + 0.660343i \(0.770411\pi\)
\(984\) 0 0
\(985\) −13.6849 + 5.66846i −0.436036 + 0.180612i
\(986\) 0 0
\(987\) 23.6269 4.69969i 0.752054 0.149593i
\(988\) 0 0
\(989\) −19.6778 + 13.1483i −0.625717 + 0.418090i
\(990\) 0 0
\(991\) 31.6905i 1.00668i 0.864088 + 0.503340i \(0.167896\pi\)
−0.864088 + 0.503340i \(0.832104\pi\)
\(992\) 0 0
\(993\) 7.40504i 0.234992i
\(994\) 0 0
\(995\) −5.72257 + 3.82370i −0.181418 + 0.121219i
\(996\) 0 0
\(997\) 21.6259 4.30166i 0.684900 0.136235i 0.159638 0.987176i \(-0.448967\pi\)
0.525262 + 0.850941i \(0.323967\pi\)
\(998\) 0 0
\(999\) −19.9430 + 8.26066i −0.630969 + 0.261356i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 512.2.i.a.289.3 56
4.3 odd 2 512.2.i.b.289.5 56
8.3 odd 2 64.2.i.a.45.4 yes 56
8.5 even 2 256.2.i.a.17.5 56
24.11 even 2 576.2.bd.a.109.4 56
64.5 even 16 256.2.i.a.241.5 56
64.27 odd 16 512.2.i.b.225.5 56
64.37 even 16 inner 512.2.i.a.225.3 56
64.59 odd 16 64.2.i.a.37.4 56
192.59 even 16 576.2.bd.a.37.4 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.37.4 56 64.59 odd 16
64.2.i.a.45.4 yes 56 8.3 odd 2
256.2.i.a.17.5 56 8.5 even 2
256.2.i.a.241.5 56 64.5 even 16
512.2.i.a.225.3 56 64.37 even 16 inner
512.2.i.a.289.3 56 1.1 even 1 trivial
512.2.i.b.225.5 56 64.27 odd 16
512.2.i.b.289.5 56 4.3 odd 2
576.2.bd.a.37.4 56 192.59 even 16
576.2.bd.a.109.4 56 24.11 even 2