Properties

Label 512.2.i.b.289.5
Level $512$
Weight $2$
Character 512.289
Analytic conductor $4.088$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [512,2,Mod(33,512)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(512, base_ring=CyclotomicField(16))
 
chi = DirichletCharacter(H, H._module([0, 15]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("512.33");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 512 = 2^{9} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 512.i (of order \(16\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.08834058349\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(7\) over \(\Q(\zeta_{16})\)
Twist minimal: no (minimal twist has level 64)
Sato-Tate group: $\mathrm{SU}(2)[C_{16}]$

Embedding invariants

Embedding label 289.5
Character \(\chi\) \(=\) 512.289
Dual form 512.2.i.b.225.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.572535 + 0.856859i) q^{3} +(0.690473 + 3.47124i) q^{5} +(0.983337 + 2.37399i) q^{7} +(0.741639 - 1.79047i) q^{9} +(-1.29020 - 0.862086i) q^{11} +(0.115716 - 0.581745i) q^{13} +(-2.57905 + 2.57905i) q^{15} +(4.30936 + 4.30936i) q^{17} +(-3.59299 - 0.714690i) q^{19} +(-1.47118 + 2.20177i) q^{21} +(-7.79200 - 3.22755i) q^{23} +(-6.95338 + 2.88018i) q^{25} +(4.99100 - 0.992772i) q^{27} +(0.373179 - 0.249351i) q^{29} +1.08345i q^{31} -1.59910i q^{33} +(-7.56172 + 5.05258i) q^{35} +(4.16040 - 0.827556i) q^{37} +(0.564725 - 0.233917i) q^{39} +(5.15990 + 2.13730i) q^{41} +(1.55896 - 2.33315i) q^{43} +(6.72725 + 1.33813i) q^{45} +(6.43269 + 6.43269i) q^{47} +(0.280888 - 0.280888i) q^{49} +(-1.22526 + 6.15978i) q^{51} +(1.22184 + 0.816410i) q^{53} +(2.10166 - 5.07385i) q^{55} +(-1.44472 - 3.48787i) q^{57} +(1.46423 + 7.36119i) q^{59} +(-6.45980 - 9.66777i) q^{61} +4.97984 q^{63} +2.09928 q^{65} +(-3.30637 - 4.94834i) q^{67} +(-1.69564 - 8.52453i) q^{69} +(-3.75143 - 9.05676i) q^{71} +(-1.19724 + 2.89039i) q^{73} +(-6.44896 - 4.30906i) q^{75} +(0.777876 - 3.91064i) q^{77} +(-0.934789 + 0.934789i) q^{79} +(-0.402918 - 0.402918i) q^{81} +(16.5833 + 3.29862i) q^{83} +(-11.9833 + 17.9343i) q^{85} +(0.427317 + 0.177000i) q^{87} +(-6.15337 + 2.54881i) q^{89} +(1.49484 - 0.297343i) q^{91} +(-0.928361 + 0.620311i) q^{93} -12.9656i q^{95} -5.79443i q^{97} +(-2.50041 + 1.67072i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 8 q^{3} + 8 q^{5} - 8 q^{7} - 8 q^{9} + 8 q^{11} + 8 q^{13} - 8 q^{15} - 8 q^{17} + 8 q^{19} + 8 q^{21} - 8 q^{23} - 8 q^{25} + 8 q^{27} + 8 q^{29} + 8 q^{35} + 8 q^{37} - 8 q^{39} - 8 q^{41} + 8 q^{43}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/512\mathbb{Z}\right)^\times\).

\(n\) \(5\) \(511\)
\(\chi(n)\) \(e\left(\frac{7}{16}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.572535 + 0.856859i 0.330553 + 0.494708i 0.959101 0.283063i \(-0.0913505\pi\)
−0.628548 + 0.777771i \(0.716350\pi\)
\(4\) 0 0
\(5\) 0.690473 + 3.47124i 0.308789 + 1.55239i 0.753947 + 0.656935i \(0.228147\pi\)
−0.445158 + 0.895452i \(0.646853\pi\)
\(6\) 0 0
\(7\) 0.983337 + 2.37399i 0.371667 + 0.897283i 0.993468 + 0.114108i \(0.0364010\pi\)
−0.621802 + 0.783175i \(0.713599\pi\)
\(8\) 0 0
\(9\) 0.741639 1.79047i 0.247213 0.596825i
\(10\) 0 0
\(11\) −1.29020 0.862086i −0.389011 0.259929i 0.345650 0.938364i \(-0.387659\pi\)
−0.734660 + 0.678435i \(0.762659\pi\)
\(12\) 0 0
\(13\) 0.115716 0.581745i 0.0320939 0.161347i −0.961415 0.275103i \(-0.911288\pi\)
0.993509 + 0.113756i \(0.0362881\pi\)
\(14\) 0 0
\(15\) −2.57905 + 2.57905i −0.665907 + 0.665907i
\(16\) 0 0
\(17\) 4.30936 + 4.30936i 1.04517 + 1.04517i 0.998930 + 0.0462432i \(0.0147249\pi\)
0.0462432 + 0.998930i \(0.485275\pi\)
\(18\) 0 0
\(19\) −3.59299 0.714690i −0.824288 0.163961i −0.235115 0.971968i \(-0.575547\pi\)
−0.589174 + 0.808006i \(0.700547\pi\)
\(20\) 0 0
\(21\) −1.47118 + 2.20177i −0.321037 + 0.480466i
\(22\) 0 0
\(23\) −7.79200 3.22755i −1.62474 0.672991i −0.630116 0.776501i \(-0.716993\pi\)
−0.994628 + 0.103510i \(0.966993\pi\)
\(24\) 0 0
\(25\) −6.95338 + 2.88018i −1.39068 + 0.576037i
\(26\) 0 0
\(27\) 4.99100 0.992772i 0.960519 0.191059i
\(28\) 0 0
\(29\) 0.373179 0.249351i 0.0692977 0.0463032i −0.520439 0.853899i \(-0.674232\pi\)
0.589736 + 0.807596i \(0.299232\pi\)
\(30\) 0 0
\(31\) 1.08345i 0.194593i 0.995255 + 0.0972963i \(0.0310195\pi\)
−0.995255 + 0.0972963i \(0.968981\pi\)
\(32\) 0 0
\(33\) 1.59910i 0.278367i
\(34\) 0 0
\(35\) −7.56172 + 5.05258i −1.27816 + 0.854041i
\(36\) 0 0
\(37\) 4.16040 0.827556i 0.683966 0.136049i 0.159136 0.987257i \(-0.449129\pi\)
0.524830 + 0.851207i \(0.324129\pi\)
\(38\) 0 0
\(39\) 0.564725 0.233917i 0.0904284 0.0374567i
\(40\) 0 0
\(41\) 5.15990 + 2.13730i 0.805841 + 0.333790i 0.747293 0.664494i \(-0.231353\pi\)
0.0585477 + 0.998285i \(0.481353\pi\)
\(42\) 0 0
\(43\) 1.55896 2.33315i 0.237739 0.355802i −0.693345 0.720605i \(-0.743864\pi\)
0.931084 + 0.364804i \(0.118864\pi\)
\(44\) 0 0
\(45\) 6.72725 + 1.33813i 1.00284 + 0.199477i
\(46\) 0 0
\(47\) 6.43269 + 6.43269i 0.938304 + 0.938304i 0.998204 0.0599006i \(-0.0190784\pi\)
−0.0599006 + 0.998204i \(0.519078\pi\)
\(48\) 0 0
\(49\) 0.280888 0.280888i 0.0401268 0.0401268i
\(50\) 0 0
\(51\) −1.22526 + 6.15978i −0.171570 + 0.862541i
\(52\) 0 0
\(53\) 1.22184 + 0.816410i 0.167833 + 0.112143i 0.636650 0.771153i \(-0.280320\pi\)
−0.468817 + 0.883295i \(0.655320\pi\)
\(54\) 0 0
\(55\) 2.10166 5.07385i 0.283388 0.684158i
\(56\) 0 0
\(57\) −1.44472 3.48787i −0.191358 0.461980i
\(58\) 0 0
\(59\) 1.46423 + 7.36119i 0.190627 + 0.958345i 0.951078 + 0.308950i \(0.0999776\pi\)
−0.760452 + 0.649395i \(0.775022\pi\)
\(60\) 0 0
\(61\) −6.45980 9.66777i −0.827092 1.23783i −0.968781 0.247920i \(-0.920253\pi\)
0.141688 0.989911i \(-0.454747\pi\)
\(62\) 0 0
\(63\) 4.97984 0.627401
\(64\) 0 0
\(65\) 2.09928 0.260383
\(66\) 0 0
\(67\) −3.30637 4.94834i −0.403938 0.604535i 0.572612 0.819826i \(-0.305930\pi\)
−0.976550 + 0.215291i \(0.930930\pi\)
\(68\) 0 0
\(69\) −1.69564 8.52453i −0.204131 1.02623i
\(70\) 0 0
\(71\) −3.75143 9.05676i −0.445213 1.07484i −0.974094 0.226143i \(-0.927388\pi\)
0.528881 0.848696i \(-0.322612\pi\)
\(72\) 0 0
\(73\) −1.19724 + 2.89039i −0.140126 + 0.338295i −0.978327 0.207068i \(-0.933608\pi\)
0.838200 + 0.545362i \(0.183608\pi\)
\(74\) 0 0
\(75\) −6.44896 4.30906i −0.744662 0.497567i
\(76\) 0 0
\(77\) 0.777876 3.91064i 0.0886472 0.445659i
\(78\) 0 0
\(79\) −0.934789 + 0.934789i −0.105172 + 0.105172i −0.757735 0.652563i \(-0.773694\pi\)
0.652563 + 0.757735i \(0.273694\pi\)
\(80\) 0 0
\(81\) −0.402918 0.402918i −0.0447687 0.0447687i
\(82\) 0 0
\(83\) 16.5833 + 3.29862i 1.82025 + 0.362070i 0.982834 0.184494i \(-0.0590645\pi\)
0.837417 + 0.546564i \(0.184064\pi\)
\(84\) 0 0
\(85\) −11.9833 + 17.9343i −1.29978 + 1.94525i
\(86\) 0 0
\(87\) 0.427317 + 0.177000i 0.0458132 + 0.0189764i
\(88\) 0 0
\(89\) −6.15337 + 2.54881i −0.652256 + 0.270173i −0.684176 0.729317i \(-0.739838\pi\)
0.0319199 + 0.999490i \(0.489838\pi\)
\(90\) 0 0
\(91\) 1.49484 0.297343i 0.156702 0.0311700i
\(92\) 0 0
\(93\) −0.928361 + 0.620311i −0.0962666 + 0.0643233i
\(94\) 0 0
\(95\) 12.9656i 1.33024i
\(96\) 0 0
\(97\) 5.79443i 0.588336i −0.955754 0.294168i \(-0.904958\pi\)
0.955754 0.294168i \(-0.0950425\pi\)
\(98\) 0 0
\(99\) −2.50041 + 1.67072i −0.251300 + 0.167914i
\(100\) 0 0
\(101\) −0.921112 + 0.183220i −0.0916540 + 0.0182311i −0.240704 0.970599i \(-0.577378\pi\)
0.149050 + 0.988830i \(0.452378\pi\)
\(102\) 0 0
\(103\) 12.7902 5.29788i 1.26026 0.522015i 0.350268 0.936649i \(-0.386090\pi\)
0.909988 + 0.414634i \(0.136090\pi\)
\(104\) 0 0
\(105\) −8.65870 3.58655i −0.845002 0.350011i
\(106\) 0 0
\(107\) 8.24793 12.3439i 0.797358 1.19333i −0.180400 0.983593i \(-0.557739\pi\)
0.977758 0.209737i \(-0.0672608\pi\)
\(108\) 0 0
\(109\) 6.63883 + 1.32055i 0.635885 + 0.126485i 0.502497 0.864579i \(-0.332415\pi\)
0.133387 + 0.991064i \(0.457415\pi\)
\(110\) 0 0
\(111\) 3.09108 + 3.09108i 0.293392 + 0.293392i
\(112\) 0 0
\(113\) −3.62032 + 3.62032i −0.340571 + 0.340571i −0.856582 0.516011i \(-0.827416\pi\)
0.516011 + 0.856582i \(0.327416\pi\)
\(114\) 0 0
\(115\) 5.82345 29.2765i 0.543039 2.73004i
\(116\) 0 0
\(117\) −0.955779 0.638631i −0.0883618 0.0590415i
\(118\) 0 0
\(119\) −5.99281 + 14.4679i −0.549360 + 1.32627i
\(120\) 0 0
\(121\) −3.28809 7.93814i −0.298917 0.721649i
\(122\) 0 0
\(123\) 1.12286 + 5.64499i 0.101245 + 0.508991i
\(124\) 0 0
\(125\) −4.96743 7.43428i −0.444300 0.664942i
\(126\) 0 0
\(127\) −5.27774 −0.468324 −0.234162 0.972198i \(-0.575235\pi\)
−0.234162 + 0.972198i \(0.575235\pi\)
\(128\) 0 0
\(129\) 2.89174 0.254603
\(130\) 0 0
\(131\) 3.19779 + 4.78583i 0.279392 + 0.418140i 0.944452 0.328651i \(-0.106594\pi\)
−0.665060 + 0.746790i \(0.731594\pi\)
\(132\) 0 0
\(133\) −1.83646 9.23249i −0.159241 0.800558i
\(134\) 0 0
\(135\) 6.89231 + 16.6395i 0.593195 + 1.43210i
\(136\) 0 0
\(137\) 3.78991 9.14965i 0.323794 0.781707i −0.675233 0.737604i \(-0.735957\pi\)
0.999027 0.0441030i \(-0.0140430\pi\)
\(138\) 0 0
\(139\) 1.75609 + 1.17338i 0.148950 + 0.0995250i 0.627812 0.778365i \(-0.283951\pi\)
−0.478862 + 0.877890i \(0.658951\pi\)
\(140\) 0 0
\(141\) −1.82897 + 9.19485i −0.154027 + 0.774346i
\(142\) 0 0
\(143\) −0.650811 + 0.650811i −0.0544236 + 0.0544236i
\(144\) 0 0
\(145\) 1.12323 + 1.12323i 0.0932789 + 0.0932789i
\(146\) 0 0
\(147\) 0.401500 + 0.0798632i 0.0331151 + 0.00658701i
\(148\) 0 0
\(149\) 10.0124 14.9845i 0.820244 1.22758i −0.150772 0.988569i \(-0.548176\pi\)
0.971016 0.239013i \(-0.0768240\pi\)
\(150\) 0 0
\(151\) −4.99222 2.06785i −0.406261 0.168279i 0.170188 0.985412i \(-0.445562\pi\)
−0.576450 + 0.817133i \(0.695562\pi\)
\(152\) 0 0
\(153\) 10.9118 4.51981i 0.882166 0.365405i
\(154\) 0 0
\(155\) −3.76090 + 0.748090i −0.302083 + 0.0600881i
\(156\) 0 0
\(157\) −7.04496 + 4.70729i −0.562249 + 0.375683i −0.803976 0.594662i \(-0.797286\pi\)
0.241727 + 0.970344i \(0.422286\pi\)
\(158\) 0 0
\(159\) 1.51437i 0.120098i
\(160\) 0 0
\(161\) 21.6719i 1.70798i
\(162\) 0 0
\(163\) −0.919897 + 0.614656i −0.0720519 + 0.0481435i −0.591074 0.806617i \(-0.701296\pi\)
0.519023 + 0.854761i \(0.326296\pi\)
\(164\) 0 0
\(165\) 5.55085 1.10413i 0.432133 0.0859567i
\(166\) 0 0
\(167\) −2.61833 + 1.08455i −0.202612 + 0.0839247i −0.481682 0.876346i \(-0.659974\pi\)
0.279070 + 0.960271i \(0.409974\pi\)
\(168\) 0 0
\(169\) 11.6854 + 4.84025i 0.898877 + 0.372327i
\(170\) 0 0
\(171\) −3.94433 + 5.90311i −0.301631 + 0.451422i
\(172\) 0 0
\(173\) −10.2464 2.03813i −0.779016 0.154956i −0.210462 0.977602i \(-0.567497\pi\)
−0.568554 + 0.822646i \(0.692497\pi\)
\(174\) 0 0
\(175\) −13.6750 13.6750i −1.03374 1.03374i
\(176\) 0 0
\(177\) −5.46918 + 5.46918i −0.411089 + 0.411089i
\(178\) 0 0
\(179\) −3.79507 + 19.0791i −0.283657 + 1.42604i 0.531627 + 0.846979i \(0.321581\pi\)
−0.815284 + 0.579061i \(0.803419\pi\)
\(180\) 0 0
\(181\) −3.32947 2.22468i −0.247477 0.165359i 0.425645 0.904890i \(-0.360047\pi\)
−0.673122 + 0.739531i \(0.735047\pi\)
\(182\) 0 0
\(183\) 4.58546 11.0703i 0.338967 0.818339i
\(184\) 0 0
\(185\) 5.74529 + 13.8704i 0.422402 + 1.01977i
\(186\) 0 0
\(187\) −1.84491 9.27499i −0.134913 0.678254i
\(188\) 0 0
\(189\) 7.26467 + 10.8723i 0.528427 + 0.790847i
\(190\) 0 0
\(191\) 16.2586 1.17643 0.588215 0.808704i \(-0.299831\pi\)
0.588215 + 0.808704i \(0.299831\pi\)
\(192\) 0 0
\(193\) −24.9345 −1.79482 −0.897411 0.441196i \(-0.854554\pi\)
−0.897411 + 0.441196i \(0.854554\pi\)
\(194\) 0 0
\(195\) 1.20191 + 1.79878i 0.0860705 + 0.128814i
\(196\) 0 0
\(197\) 0.816489 + 4.10477i 0.0581724 + 0.292452i 0.998910 0.0466836i \(-0.0148653\pi\)
−0.940737 + 0.339136i \(0.889865\pi\)
\(198\) 0 0
\(199\) −0.744172 1.79659i −0.0527529 0.127357i 0.895306 0.445452i \(-0.146957\pi\)
−0.948059 + 0.318095i \(0.896957\pi\)
\(200\) 0 0
\(201\) 2.34701 5.66619i 0.165546 0.399662i
\(202\) 0 0
\(203\) 0.958916 + 0.640727i 0.0673027 + 0.0449702i
\(204\) 0 0
\(205\) −3.85632 + 19.3870i −0.269337 + 1.35405i
\(206\) 0 0
\(207\) −11.5577 + 11.5577i −0.803315 + 0.803315i
\(208\) 0 0
\(209\) 4.01956 + 4.01956i 0.278039 + 0.278039i
\(210\) 0 0
\(211\) −14.6646 2.91696i −1.00955 0.200812i −0.337507 0.941323i \(-0.609584\pi\)
−0.672044 + 0.740511i \(0.734584\pi\)
\(212\) 0 0
\(213\) 5.61254 8.39976i 0.384565 0.575542i
\(214\) 0 0
\(215\) 9.17534 + 3.80055i 0.625753 + 0.259195i
\(216\) 0 0
\(217\) −2.57209 + 1.06539i −0.174605 + 0.0723236i
\(218\) 0 0
\(219\) −3.16212 + 0.628985i −0.213676 + 0.0425028i
\(220\) 0 0
\(221\) 3.00561 2.00828i 0.202179 0.135092i
\(222\) 0 0
\(223\) 14.8634i 0.995330i −0.867369 0.497665i \(-0.834191\pi\)
0.867369 0.497665i \(-0.165809\pi\)
\(224\) 0 0
\(225\) 14.5859i 0.972393i
\(226\) 0 0
\(227\) 6.90248 4.61209i 0.458133 0.306115i −0.305004 0.952351i \(-0.598658\pi\)
0.763138 + 0.646236i \(0.223658\pi\)
\(228\) 0 0
\(229\) 3.63468 0.722983i 0.240187 0.0477761i −0.0735290 0.997293i \(-0.523426\pi\)
0.313716 + 0.949517i \(0.398426\pi\)
\(230\) 0 0
\(231\) 3.79623 1.57245i 0.249774 0.103460i
\(232\) 0 0
\(233\) 17.7828 + 7.36589i 1.16499 + 0.482556i 0.879534 0.475836i \(-0.157854\pi\)
0.285458 + 0.958391i \(0.407854\pi\)
\(234\) 0 0
\(235\) −17.8878 + 26.7710i −1.16687 + 1.74635i
\(236\) 0 0
\(237\) −1.33618 0.265783i −0.0867944 0.0172645i
\(238\) 0 0
\(239\) −1.69651 1.69651i −0.109738 0.109738i 0.650106 0.759844i \(-0.274725\pi\)
−0.759844 + 0.650106i \(0.774725\pi\)
\(240\) 0 0
\(241\) −12.7520 + 12.7520i −0.821432 + 0.821432i −0.986313 0.164882i \(-0.947276\pi\)
0.164882 + 0.986313i \(0.447276\pi\)
\(242\) 0 0
\(243\) 3.09288 15.5489i 0.198408 0.997465i
\(244\) 0 0
\(245\) 1.16898 + 0.781085i 0.0746831 + 0.0499017i
\(246\) 0 0
\(247\) −0.831534 + 2.00750i −0.0529093 + 0.127734i
\(248\) 0 0
\(249\) 6.66806 + 16.0981i 0.422571 + 1.02018i
\(250\) 0 0
\(251\) −0.0325488 0.163634i −0.00205446 0.0103285i 0.979744 0.200252i \(-0.0641760\pi\)
−0.981799 + 0.189923i \(0.939176\pi\)
\(252\) 0 0
\(253\) 7.27083 + 10.8816i 0.457113 + 0.684118i
\(254\) 0 0
\(255\) −22.2281 −1.39198
\(256\) 0 0
\(257\) 1.30561 0.0814417 0.0407209 0.999171i \(-0.487035\pi\)
0.0407209 + 0.999171i \(0.487035\pi\)
\(258\) 0 0
\(259\) 6.05569 + 9.06297i 0.376282 + 0.563146i
\(260\) 0 0
\(261\) −0.169691 0.853096i −0.0105036 0.0528053i
\(262\) 0 0
\(263\) 4.45700 + 10.7602i 0.274831 + 0.663500i 0.999677 0.0254106i \(-0.00808933\pi\)
−0.724846 + 0.688910i \(0.758089\pi\)
\(264\) 0 0
\(265\) −1.99031 + 4.80503i −0.122264 + 0.295170i
\(266\) 0 0
\(267\) −5.70699 3.81329i −0.349262 0.233370i
\(268\) 0 0
\(269\) 2.48406 12.4882i 0.151456 0.761419i −0.828153 0.560502i \(-0.810608\pi\)
0.979608 0.200916i \(-0.0643919\pi\)
\(270\) 0 0
\(271\) 5.90740 5.90740i 0.358849 0.358849i −0.504540 0.863389i \(-0.668338\pi\)
0.863389 + 0.504540i \(0.168338\pi\)
\(272\) 0 0
\(273\) 1.11063 + 1.11063i 0.0672184 + 0.0672184i
\(274\) 0 0
\(275\) 11.4542 + 2.27839i 0.690716 + 0.137392i
\(276\) 0 0
\(277\) 0.0619322 0.0926880i 0.00372114 0.00556908i −0.829604 0.558352i \(-0.811434\pi\)
0.833326 + 0.552783i \(0.186434\pi\)
\(278\) 0 0
\(279\) 1.93988 + 0.803526i 0.116138 + 0.0481058i
\(280\) 0 0
\(281\) −8.41645 + 3.48621i −0.502083 + 0.207970i −0.619327 0.785133i \(-0.712594\pi\)
0.117243 + 0.993103i \(0.462594\pi\)
\(282\) 0 0
\(283\) −11.6331 + 2.31397i −0.691518 + 0.137551i −0.528324 0.849043i \(-0.677179\pi\)
−0.163193 + 0.986594i \(0.552179\pi\)
\(284\) 0 0
\(285\) 11.1097 7.42327i 0.658082 0.439717i
\(286\) 0 0
\(287\) 14.3512i 0.847126i
\(288\) 0 0
\(289\) 20.1412i 1.18478i
\(290\) 0 0
\(291\) 4.96502 3.31752i 0.291054 0.194476i
\(292\) 0 0
\(293\) −0.100300 + 0.0199510i −0.00585961 + 0.00116555i −0.198019 0.980198i \(-0.563451\pi\)
0.192160 + 0.981364i \(0.438451\pi\)
\(294\) 0 0
\(295\) −24.5415 + 10.1654i −1.42886 + 0.591853i
\(296\) 0 0
\(297\) −7.29526 3.02180i −0.423314 0.175342i
\(298\) 0 0
\(299\) −2.77927 + 4.15947i −0.160729 + 0.240549i
\(300\) 0 0
\(301\) 7.07185 + 1.40668i 0.407614 + 0.0810795i
\(302\) 0 0
\(303\) −0.684363 0.684363i −0.0393156 0.0393156i
\(304\) 0 0
\(305\) 29.0989 29.0989i 1.66620 1.66620i
\(306\) 0 0
\(307\) −4.46728 + 22.4585i −0.254961 + 1.28178i 0.614950 + 0.788566i \(0.289176\pi\)
−0.869911 + 0.493209i \(0.835824\pi\)
\(308\) 0 0
\(309\) 11.8624 + 7.92619i 0.674827 + 0.450905i
\(310\) 0 0
\(311\) −6.48708 + 15.6612i −0.367848 + 0.888064i 0.626254 + 0.779619i \(0.284587\pi\)
−0.994102 + 0.108445i \(0.965413\pi\)
\(312\) 0 0
\(313\) −6.94583 16.7687i −0.392602 0.947824i −0.989371 0.145411i \(-0.953549\pi\)
0.596770 0.802413i \(-0.296451\pi\)
\(314\) 0 0
\(315\) 3.43845 + 17.2862i 0.193735 + 0.973970i
\(316\) 0 0
\(317\) 10.9936 + 16.4530i 0.617459 + 0.924093i 1.00000 0.000154534i \(4.91898e-5\pi\)
−0.382541 + 0.923939i \(0.624951\pi\)
\(318\) 0 0
\(319\) −0.696439 −0.0389931
\(320\) 0 0
\(321\) 15.2992 0.853919
\(322\) 0 0
\(323\) −12.4036 18.5633i −0.690156 1.03289i
\(324\) 0 0
\(325\) 0.870913 + 4.37837i 0.0483095 + 0.242868i
\(326\) 0 0
\(327\) 2.66944 + 6.44460i 0.147620 + 0.356387i
\(328\) 0 0
\(329\) −8.94561 + 21.5966i −0.493187 + 1.19066i
\(330\) 0 0
\(331\) 5.97462 + 3.99211i 0.328395 + 0.219426i 0.708827 0.705382i \(-0.249225\pi\)
−0.380432 + 0.924809i \(0.624225\pi\)
\(332\) 0 0
\(333\) 1.60380 8.06284i 0.0878876 0.441841i
\(334\) 0 0
\(335\) 14.8939 14.8939i 0.813741 0.813741i
\(336\) 0 0
\(337\) −18.4718 18.4718i −1.00622 1.00622i −0.999981 0.00624304i \(-0.998013\pi\)
−0.00624304 0.999981i \(-0.501987\pi\)
\(338\) 0 0
\(339\) −5.17487 1.02935i −0.281060 0.0559064i
\(340\) 0 0
\(341\) 0.934023 1.39786i 0.0505802 0.0756986i
\(342\) 0 0
\(343\) 17.5609 + 7.27398i 0.948201 + 0.392758i
\(344\) 0 0
\(345\) 28.4199 11.7719i 1.53008 0.633779i
\(346\) 0 0
\(347\) −9.12297 + 1.81467i −0.489747 + 0.0974167i −0.433785 0.901016i \(-0.642822\pi\)
−0.0559615 + 0.998433i \(0.517822\pi\)
\(348\) 0 0
\(349\) −9.46721 + 6.32579i −0.506768 + 0.338612i −0.782528 0.622615i \(-0.786070\pi\)
0.275760 + 0.961226i \(0.411070\pi\)
\(350\) 0 0
\(351\) 3.01837i 0.161109i
\(352\) 0 0
\(353\) 12.2587i 0.652465i 0.945290 + 0.326233i \(0.105779\pi\)
−0.945290 + 0.326233i \(0.894221\pi\)
\(354\) 0 0
\(355\) 28.8479 19.2756i 1.53109 1.02304i
\(356\) 0 0
\(357\) −15.8281 + 3.14840i −0.837710 + 0.166631i
\(358\) 0 0
\(359\) −6.95121 + 2.87929i −0.366871 + 0.151963i −0.558500 0.829505i \(-0.688623\pi\)
0.191629 + 0.981467i \(0.438623\pi\)
\(360\) 0 0
\(361\) −5.15492 2.13524i −0.271311 0.112381i
\(362\) 0 0
\(363\) 4.91933 7.36230i 0.258198 0.386420i
\(364\) 0 0
\(365\) −10.8599 2.16017i −0.568433 0.113068i
\(366\) 0 0
\(367\) −1.10049 1.10049i −0.0574452 0.0574452i 0.677801 0.735246i \(-0.262933\pi\)
−0.735246 + 0.677801i \(0.762933\pi\)
\(368\) 0 0
\(369\) 7.65356 7.65356i 0.398429 0.398429i
\(370\) 0 0
\(371\) −0.736662 + 3.70345i −0.0382456 + 0.192273i
\(372\) 0 0
\(373\) −29.9517 20.0131i −1.55084 1.03624i −0.975946 0.218014i \(-0.930042\pi\)
−0.574897 0.818226i \(-0.694958\pi\)
\(374\) 0 0
\(375\) 3.52611 8.51278i 0.182087 0.439598i
\(376\) 0 0
\(377\) −0.101875 0.245949i −0.00524685 0.0126670i
\(378\) 0 0
\(379\) −3.70680 18.6353i −0.190405 0.957233i −0.951279 0.308332i \(-0.900229\pi\)
0.760873 0.648900i \(-0.224771\pi\)
\(380\) 0 0
\(381\) −3.02169 4.52229i −0.154806 0.231684i
\(382\) 0 0
\(383\) −22.9884 −1.17465 −0.587327 0.809350i \(-0.699820\pi\)
−0.587327 + 0.809350i \(0.699820\pi\)
\(384\) 0 0
\(385\) 14.1119 0.719209
\(386\) 0 0
\(387\) −3.02126 4.52163i −0.153579 0.229847i
\(388\) 0 0
\(389\) 5.01123 + 25.1931i 0.254079 + 1.27734i 0.871377 + 0.490614i \(0.163227\pi\)
−0.617298 + 0.786729i \(0.711773\pi\)
\(390\) 0 0
\(391\) −19.6698 47.4872i −0.994747 2.40153i
\(392\) 0 0
\(393\) −2.26994 + 5.48011i −0.114503 + 0.276435i
\(394\) 0 0
\(395\) −3.89033 2.59943i −0.195744 0.130792i
\(396\) 0 0
\(397\) −0.319222 + 1.60484i −0.0160213 + 0.0805445i −0.987969 0.154654i \(-0.950574\pi\)
0.971947 + 0.235198i \(0.0755739\pi\)
\(398\) 0 0
\(399\) 6.85951 6.85951i 0.343405 0.343405i
\(400\) 0 0
\(401\) −21.7278 21.7278i −1.08503 1.08503i −0.996031 0.0890025i \(-0.971632\pi\)
−0.0890025 0.996031i \(-0.528368\pi\)
\(402\) 0 0
\(403\) 0.630289 + 0.125372i 0.0313969 + 0.00624524i
\(404\) 0 0
\(405\) 1.12042 1.67683i 0.0556742 0.0833224i
\(406\) 0 0
\(407\) −6.08119 2.51891i −0.301433 0.124858i
\(408\) 0 0
\(409\) 17.9000 7.41442i 0.885097 0.366619i 0.106626 0.994299i \(-0.465995\pi\)
0.778472 + 0.627680i \(0.215995\pi\)
\(410\) 0 0
\(411\) 10.0098 1.99108i 0.493748 0.0982126i
\(412\) 0 0
\(413\) −16.0355 + 10.7146i −0.789056 + 0.527231i
\(414\) 0 0
\(415\) 59.8422i 2.93754i
\(416\) 0 0
\(417\) 2.17653i 0.106585i
\(418\) 0 0
\(419\) −27.8129 + 18.5840i −1.35875 + 0.907886i −0.999677 0.0254236i \(-0.991907\pi\)
−0.359071 + 0.933310i \(0.616907\pi\)
\(420\) 0 0
\(421\) −19.7735 + 3.93320i −0.963703 + 0.191693i −0.651774 0.758413i \(-0.725975\pi\)
−0.311929 + 0.950105i \(0.600975\pi\)
\(422\) 0 0
\(423\) 16.2883 6.74683i 0.791964 0.328042i
\(424\) 0 0
\(425\) −42.3764 17.5529i −2.05556 0.851439i
\(426\) 0 0
\(427\) 16.5990 24.8422i 0.803282 1.20220i
\(428\) 0 0
\(429\) −0.930266 0.185041i −0.0449137 0.00893388i
\(430\) 0 0
\(431\) 13.5229 + 13.5229i 0.651373 + 0.651373i 0.953324 0.301950i \(-0.0976377\pi\)
−0.301950 + 0.953324i \(0.597638\pi\)
\(432\) 0 0
\(433\) −17.9120 + 17.9120i −0.860797 + 0.860797i −0.991431 0.130634i \(-0.958299\pi\)
0.130634 + 0.991431i \(0.458299\pi\)
\(434\) 0 0
\(435\) −0.319361 + 1.60553i −0.0153122 + 0.0769795i
\(436\) 0 0
\(437\) 25.6899 + 17.1654i 1.22891 + 0.821134i
\(438\) 0 0
\(439\) 2.81785 6.80290i 0.134489 0.324685i −0.842260 0.539071i \(-0.818775\pi\)
0.976749 + 0.214387i \(0.0687753\pi\)
\(440\) 0 0
\(441\) −0.294605 0.711240i −0.0140288 0.0338686i
\(442\) 0 0
\(443\) −5.64485 28.3786i −0.268195 1.34831i −0.846458 0.532456i \(-0.821269\pi\)
0.578263 0.815850i \(-0.303731\pi\)
\(444\) 0 0
\(445\) −13.0963 19.6000i −0.620823 0.929127i
\(446\) 0 0
\(447\) 18.5721 0.878429
\(448\) 0 0
\(449\) −0.0955370 −0.00450867 −0.00225433 0.999997i \(-0.500718\pi\)
−0.00225433 + 0.999997i \(0.500718\pi\)
\(450\) 0 0
\(451\) −4.81478 7.20583i −0.226719 0.339309i
\(452\) 0 0
\(453\) −1.08637 5.46155i −0.0510421 0.256606i
\(454\) 0 0
\(455\) 2.06430 + 4.98365i 0.0967757 + 0.233637i
\(456\) 0 0
\(457\) 11.4359 27.6087i 0.534949 1.29148i −0.393262 0.919426i \(-0.628654\pi\)
0.928211 0.372054i \(-0.121346\pi\)
\(458\) 0 0
\(459\) 25.7862 + 17.2298i 1.20360 + 0.804219i
\(460\) 0 0
\(461\) 5.29789 26.6343i 0.246747 1.24048i −0.636390 0.771368i \(-0.719573\pi\)
0.883137 0.469115i \(-0.155427\pi\)
\(462\) 0 0
\(463\) 21.3463 21.3463i 0.992048 0.992048i −0.00792071 0.999969i \(-0.502521\pi\)
0.999969 + 0.00792071i \(0.00252127\pi\)
\(464\) 0 0
\(465\) −2.79426 2.79426i −0.129581 0.129581i
\(466\) 0 0
\(467\) −32.0458 6.37431i −1.48290 0.294968i −0.613746 0.789503i \(-0.710338\pi\)
−0.869157 + 0.494535i \(0.835338\pi\)
\(468\) 0 0
\(469\) 8.49600 12.7152i 0.392309 0.587132i
\(470\) 0 0
\(471\) −8.06697 3.34145i −0.371707 0.153966i
\(472\) 0 0
\(473\) −4.02275 + 1.66628i −0.184966 + 0.0766155i
\(474\) 0 0
\(475\) 27.0418 5.37896i 1.24077 0.246804i
\(476\) 0 0
\(477\) 2.36793 1.58220i 0.108420 0.0724439i
\(478\) 0 0
\(479\) 0.620601i 0.0283560i −0.999899 0.0141780i \(-0.995487\pi\)
0.999899 0.0141780i \(-0.00451315\pi\)
\(480\) 0 0
\(481\) 2.51605i 0.114722i
\(482\) 0 0
\(483\) 18.5697 12.4079i 0.844953 0.564579i
\(484\) 0 0
\(485\) 20.1139 4.00090i 0.913325 0.181672i
\(486\) 0 0
\(487\) −11.7418 + 4.86361i −0.532072 + 0.220391i −0.632510 0.774552i \(-0.717975\pi\)
0.100439 + 0.994943i \(0.467975\pi\)
\(488\) 0 0
\(489\) −1.05335 0.436311i −0.0476340 0.0197306i
\(490\) 0 0
\(491\) 11.9335 17.8598i 0.538553 0.806002i −0.458000 0.888952i \(-0.651434\pi\)
0.996554 + 0.0829501i \(0.0264342\pi\)
\(492\) 0 0
\(493\) 2.68271 + 0.533623i 0.120823 + 0.0240332i
\(494\) 0 0
\(495\) −7.52593 7.52593i −0.338266 0.338266i
\(496\) 0 0
\(497\) 17.8117 17.8117i 0.798964 0.798964i
\(498\) 0 0
\(499\) −5.81742 + 29.2462i −0.260424 + 1.30924i 0.600140 + 0.799895i \(0.295112\pi\)
−0.860564 + 0.509343i \(0.829888\pi\)
\(500\) 0 0
\(501\) −2.42839 1.62260i −0.108492 0.0724923i
\(502\) 0 0
\(503\) 10.2519 24.7502i 0.457108 1.10356i −0.512455 0.858714i \(-0.671264\pi\)
0.969563 0.244842i \(-0.0787362\pi\)
\(504\) 0 0
\(505\) −1.27201 3.07089i −0.0566035 0.136653i
\(506\) 0 0
\(507\) 2.54289 + 12.7840i 0.112934 + 0.567755i
\(508\) 0 0
\(509\) 3.45815 + 5.17549i 0.153280 + 0.229399i 0.900160 0.435559i \(-0.143449\pi\)
−0.746880 + 0.664958i \(0.768449\pi\)
\(510\) 0 0
\(511\) −8.03904 −0.355626
\(512\) 0 0
\(513\) −18.6421 −0.823071
\(514\) 0 0
\(515\) 27.2215 + 40.7399i 1.19952 + 1.79521i
\(516\) 0 0
\(517\) −2.75394 13.8450i −0.121118 0.608902i
\(518\) 0 0
\(519\) −4.12001 9.94659i −0.180848 0.436607i
\(520\) 0 0
\(521\) −13.3796 + 32.3011i −0.586169 + 1.41514i 0.300969 + 0.953634i \(0.402690\pi\)
−0.887138 + 0.461504i \(0.847310\pi\)
\(522\) 0 0
\(523\) 29.7773 + 19.8966i 1.30207 + 0.870016i 0.996617 0.0821904i \(-0.0261916\pi\)
0.305455 + 0.952207i \(0.401192\pi\)
\(524\) 0 0
\(525\) 3.88814 19.5470i 0.169692 0.853102i
\(526\) 0 0
\(527\) −4.66896 + 4.66896i −0.203383 + 0.203383i
\(528\) 0 0
\(529\) 34.0347 + 34.0347i 1.47977 + 1.47977i
\(530\) 0 0
\(531\) 14.2659 + 2.83767i 0.619089 + 0.123145i
\(532\) 0 0
\(533\) 1.84045 2.75442i 0.0797186 0.119307i
\(534\) 0 0
\(535\) 48.5437 + 20.1074i 2.09873 + 0.869321i
\(536\) 0 0
\(537\) −18.5209 + 7.67162i −0.799237 + 0.331055i
\(538\) 0 0
\(539\) −0.604552 + 0.120253i −0.0260399 + 0.00517966i
\(540\) 0 0
\(541\) 33.4281 22.3359i 1.43718 0.960296i 0.439099 0.898439i \(-0.355298\pi\)
0.998085 0.0618571i \(-0.0197023\pi\)
\(542\) 0 0
\(543\) 4.12659i 0.177089i
\(544\) 0 0
\(545\) 23.9568i 1.02620i
\(546\) 0 0
\(547\) 2.75272 1.83931i 0.117698 0.0786432i −0.495328 0.868706i \(-0.664952\pi\)
0.613026 + 0.790063i \(0.289952\pi\)
\(548\) 0 0
\(549\) −22.1007 + 4.39611i −0.943236 + 0.187621i
\(550\) 0 0
\(551\) −1.51904 + 0.629206i −0.0647132 + 0.0268051i
\(552\) 0 0
\(553\) −3.13839 1.29996i −0.133458 0.0552801i
\(554\) 0 0
\(555\) −8.59557 + 12.8642i −0.364862 + 0.546054i
\(556\) 0 0
\(557\) −42.1945 8.39301i −1.78784 0.355623i −0.813650 0.581355i \(-0.802523\pi\)
−0.974190 + 0.225731i \(0.927523\pi\)
\(558\) 0 0
\(559\) −1.17690 1.17690i −0.0497775 0.0497775i
\(560\) 0 0
\(561\) 6.89108 6.89108i 0.290942 0.290942i
\(562\) 0 0
\(563\) 2.34500 11.7891i 0.0988299 0.496852i −0.899387 0.437154i \(-0.855986\pi\)
0.998217 0.0596975i \(-0.0190136\pi\)
\(564\) 0 0
\(565\) −15.0668 10.0673i −0.633863 0.423534i
\(566\) 0 0
\(567\) 0.560318 1.35273i 0.0235311 0.0568092i
\(568\) 0 0
\(569\) −2.83292 6.83927i −0.118762 0.286717i 0.853308 0.521407i \(-0.174593\pi\)
−0.972070 + 0.234690i \(0.924593\pi\)
\(570\) 0 0
\(571\) −6.93430 34.8611i −0.290191 1.45889i −0.800725 0.599032i \(-0.795552\pi\)
0.510534 0.859858i \(-0.329448\pi\)
\(572\) 0 0
\(573\) 9.30862 + 13.9313i 0.388873 + 0.581990i
\(574\) 0 0
\(575\) 63.4766 2.64716
\(576\) 0 0
\(577\) 24.2433 1.00926 0.504632 0.863335i \(-0.331628\pi\)
0.504632 + 0.863335i \(0.331628\pi\)
\(578\) 0 0
\(579\) −14.2759 21.3653i −0.593284 0.887913i
\(580\) 0 0
\(581\) 8.47608 + 42.6121i 0.351647 + 1.76785i
\(582\) 0 0
\(583\) −0.872611 2.10667i −0.0361398 0.0872493i
\(584\) 0 0
\(585\) 1.55690 3.75870i 0.0643701 0.155403i
\(586\) 0 0
\(587\) −12.8222 8.56752i −0.529229 0.353619i 0.262070 0.965049i \(-0.415595\pi\)
−0.791299 + 0.611429i \(0.790595\pi\)
\(588\) 0 0
\(589\) 0.774328 3.89281i 0.0319056 0.160400i
\(590\) 0 0
\(591\) −3.04974 + 3.04974i −0.125450 + 0.125450i
\(592\) 0 0
\(593\) −7.17902 7.17902i −0.294807 0.294807i 0.544169 0.838976i \(-0.316845\pi\)
−0.838976 + 0.544169i \(0.816845\pi\)
\(594\) 0 0
\(595\) −54.3595 10.8128i −2.22852 0.443281i
\(596\) 0 0
\(597\) 1.11336 1.66626i 0.0455668 0.0681955i
\(598\) 0 0
\(599\) −37.8559 15.6804i −1.54675 0.640685i −0.564025 0.825758i \(-0.690748\pi\)
−0.982725 + 0.185073i \(0.940748\pi\)
\(600\) 0 0
\(601\) −32.5429 + 13.4797i −1.32745 + 0.549850i −0.929928 0.367741i \(-0.880131\pi\)
−0.397526 + 0.917591i \(0.630131\pi\)
\(602\) 0 0
\(603\) −11.3120 + 2.25010i −0.460660 + 0.0916310i
\(604\) 0 0
\(605\) 25.2849 16.8948i 1.02798 0.686872i
\(606\) 0 0
\(607\) 37.4709i 1.52090i −0.649399 0.760448i \(-0.724979\pi\)
0.649399 0.760448i \(-0.275021\pi\)
\(608\) 0 0
\(609\) 1.18850i 0.0481603i
\(610\) 0 0
\(611\) 4.48655 2.99781i 0.181506 0.121279i
\(612\) 0 0
\(613\) −3.83710 + 0.763246i −0.154979 + 0.0308272i −0.271970 0.962306i \(-0.587675\pi\)
0.116991 + 0.993133i \(0.462675\pi\)
\(614\) 0 0
\(615\) −18.8198 + 7.79543i −0.758889 + 0.314342i
\(616\) 0 0
\(617\) −37.8776 15.6894i −1.52490 0.631633i −0.546331 0.837569i \(-0.683976\pi\)
−0.978565 + 0.205937i \(0.933976\pi\)
\(618\) 0 0
\(619\) −22.0632 + 33.0200i −0.886796 + 1.32718i 0.0575877 + 0.998340i \(0.481659\pi\)
−0.944384 + 0.328844i \(0.893341\pi\)
\(620\) 0 0
\(621\) −42.0941 8.37304i −1.68918 0.335998i
\(622\) 0 0
\(623\) −12.1017 12.1017i −0.484843 0.484843i
\(624\) 0 0
\(625\) −4.23310 + 4.23310i −0.169324 + 0.169324i
\(626\) 0 0
\(627\) −1.14286 + 5.74554i −0.0456414 + 0.229455i
\(628\) 0 0
\(629\) 21.4949 + 14.3624i 0.857058 + 0.572668i
\(630\) 0 0
\(631\) −0.295581 + 0.713596i −0.0117669 + 0.0284078i −0.929654 0.368434i \(-0.879894\pi\)
0.917887 + 0.396842i \(0.129894\pi\)
\(632\) 0 0
\(633\) −5.89655 14.2355i −0.234367 0.565812i
\(634\) 0 0
\(635\) −3.64414 18.3203i −0.144613 0.727020i
\(636\) 0 0
\(637\) −0.130902 0.195908i −0.00518652 0.00776217i
\(638\) 0 0
\(639\) −18.9981 −0.751553
\(640\) 0 0
\(641\) 20.3094 0.802172 0.401086 0.916040i \(-0.368633\pi\)
0.401086 + 0.916040i \(0.368633\pi\)
\(642\) 0 0
\(643\) 6.26132 + 9.37072i 0.246922 + 0.369545i 0.934140 0.356906i \(-0.116168\pi\)
−0.687218 + 0.726451i \(0.741168\pi\)
\(644\) 0 0
\(645\) 1.99667 + 10.0379i 0.0786187 + 0.395243i
\(646\) 0 0
\(647\) −0.189930 0.458531i −0.00746691 0.0180267i 0.920102 0.391679i \(-0.128105\pi\)
−0.927569 + 0.373652i \(0.878105\pi\)
\(648\) 0 0
\(649\) 4.45682 10.7597i 0.174945 0.422356i
\(650\) 0 0
\(651\) −2.38550 1.59394i −0.0934952 0.0624715i
\(652\) 0 0
\(653\) −4.73978 + 23.8285i −0.185482 + 0.932481i 0.770138 + 0.637878i \(0.220187\pi\)
−0.955620 + 0.294603i \(0.904813\pi\)
\(654\) 0 0
\(655\) −14.4048 + 14.4048i −0.562842 + 0.562842i
\(656\) 0 0
\(657\) 4.28725 + 4.28725i 0.167262 + 0.167262i
\(658\) 0 0
\(659\) 38.0620 + 7.57099i 1.48268 + 0.294924i 0.869073 0.494685i \(-0.164716\pi\)
0.613611 + 0.789609i \(0.289716\pi\)
\(660\) 0 0
\(661\) −5.84250 + 8.74392i −0.227247 + 0.340099i −0.927518 0.373778i \(-0.878062\pi\)
0.700271 + 0.713877i \(0.253062\pi\)
\(662\) 0 0
\(663\) 3.44164 + 1.42557i 0.133662 + 0.0553646i
\(664\) 0 0
\(665\) 30.7802 12.7496i 1.19360 0.494407i
\(666\) 0 0
\(667\) −3.71261 + 0.738483i −0.143753 + 0.0285942i
\(668\) 0 0
\(669\) 12.7359 8.50984i 0.492398 0.329010i
\(670\) 0 0
\(671\) 18.0423i 0.696515i
\(672\) 0 0
\(673\) 40.4801i 1.56039i −0.625534 0.780197i \(-0.715119\pi\)
0.625534 0.780197i \(-0.284881\pi\)
\(674\) 0 0
\(675\) −31.8450 + 21.2781i −1.22571 + 0.818995i
\(676\) 0 0
\(677\) −28.0273 + 5.57498i −1.07718 + 0.214264i −0.701632 0.712540i \(-0.747545\pi\)
−0.375546 + 0.926804i \(0.622545\pi\)
\(678\) 0 0
\(679\) 13.7559 5.69788i 0.527903 0.218665i
\(680\) 0 0
\(681\) 7.90382 + 3.27387i 0.302875 + 0.125455i
\(682\) 0 0
\(683\) −10.1966 + 15.2603i −0.390163 + 0.583920i −0.973606 0.228234i \(-0.926705\pi\)
0.583443 + 0.812154i \(0.301705\pi\)
\(684\) 0 0
\(685\) 34.3775 + 6.83811i 1.31350 + 0.261271i
\(686\) 0 0
\(687\) 2.70048 + 2.70048i 0.103030 + 0.103030i
\(688\) 0 0
\(689\) 0.616329 0.616329i 0.0234803 0.0234803i
\(690\) 0 0
\(691\) 0.695696 3.49750i 0.0264655 0.133051i −0.965294 0.261167i \(-0.915893\pi\)
0.991759 + 0.128115i \(0.0408928\pi\)
\(692\) 0 0
\(693\) −6.42501 4.29305i −0.244066 0.163080i
\(694\) 0 0
\(695\) −2.86056 + 6.90601i −0.108507 + 0.261960i
\(696\) 0 0
\(697\) 13.0255 + 31.4463i 0.493375 + 1.19111i
\(698\) 0 0
\(699\) 3.86976 + 19.4546i 0.146368 + 0.735841i
\(700\) 0 0
\(701\) −8.71090 13.0368i −0.329006 0.492393i 0.629681 0.776853i \(-0.283185\pi\)
−0.958688 + 0.284461i \(0.908185\pi\)
\(702\) 0 0
\(703\) −15.5397 −0.586092
\(704\) 0 0
\(705\) −33.1804 −1.24965
\(706\) 0 0
\(707\) −1.34073 2.00654i −0.0504232 0.0754637i
\(708\) 0 0
\(709\) 0.737183 + 3.70607i 0.0276855 + 0.139184i 0.992156 0.125006i \(-0.0398952\pi\)
−0.964470 + 0.264191i \(0.914895\pi\)
\(710\) 0 0
\(711\) 0.980440 + 2.36699i 0.0367694 + 0.0887692i
\(712\) 0 0
\(713\) 3.49688 8.44221i 0.130959 0.316163i
\(714\) 0 0
\(715\) −2.70849 1.80976i −0.101292 0.0676810i
\(716\) 0 0
\(717\) 0.482359 2.42498i 0.0180140 0.0905627i
\(718\) 0 0
\(719\) −36.7070 + 36.7070i −1.36894 + 1.36894i −0.506985 + 0.861955i \(0.669240\pi\)
−0.861955 + 0.506985i \(0.830760\pi\)
\(720\) 0 0
\(721\) 25.1542 + 25.1542i 0.936790 + 0.936790i
\(722\) 0 0
\(723\) −18.2277 3.62572i −0.677896 0.134842i
\(724\) 0 0
\(725\) −1.87668 + 2.80865i −0.0696982 + 0.104311i
\(726\) 0 0
\(727\) −3.90063 1.61569i −0.144666 0.0599228i 0.309176 0.951005i \(-0.399947\pi\)
−0.453842 + 0.891082i \(0.649947\pi\)
\(728\) 0 0
\(729\) 13.5147 5.59798i 0.500545 0.207333i
\(730\) 0 0
\(731\) 16.7725 3.33626i 0.620353 0.123396i
\(732\) 0 0
\(733\) −10.5958 + 7.07991i −0.391366 + 0.261502i −0.735648 0.677364i \(-0.763122\pi\)
0.344282 + 0.938866i \(0.388122\pi\)
\(734\) 0 0
\(735\) 1.44885i 0.0534415i
\(736\) 0 0
\(737\) 9.23473i 0.340166i
\(738\) 0 0
\(739\) 5.97439 3.99196i 0.219772 0.146847i −0.440811 0.897600i \(-0.645309\pi\)
0.660583 + 0.750753i \(0.270309\pi\)
\(740\) 0 0
\(741\) −2.19623 + 0.436857i −0.0806805 + 0.0160483i
\(742\) 0 0
\(743\) −16.8050 + 6.96086i −0.616515 + 0.255369i −0.669011 0.743252i \(-0.733282\pi\)
0.0524960 + 0.998621i \(0.483282\pi\)
\(744\) 0 0
\(745\) 58.9283 + 24.4089i 2.15896 + 0.894272i
\(746\) 0 0
\(747\) 18.2049 27.2455i 0.666082 0.996862i
\(748\) 0 0
\(749\) 37.4148 + 7.44226i 1.36711 + 0.271934i
\(750\) 0 0
\(751\) 25.4171 + 25.4171i 0.927482 + 0.927482i 0.997543 0.0700603i \(-0.0223192\pi\)
−0.0700603 + 0.997543i \(0.522319\pi\)
\(752\) 0 0
\(753\) 0.121576 0.121576i 0.00443047 0.00443047i
\(754\) 0 0
\(755\) 3.73100 18.7570i 0.135785 0.682638i
\(756\) 0 0
\(757\) 28.3377 + 18.9346i 1.02995 + 0.688192i 0.951160 0.308700i \(-0.0998938\pi\)
0.0787918 + 0.996891i \(0.474894\pi\)
\(758\) 0 0
\(759\) −5.16117 + 12.4602i −0.187338 + 0.452275i
\(760\) 0 0
\(761\) 3.25313 + 7.85375i 0.117926 + 0.284698i 0.971810 0.235765i \(-0.0757594\pi\)
−0.853884 + 0.520463i \(0.825759\pi\)
\(762\) 0 0
\(763\) 3.39325 + 17.0590i 0.122844 + 0.617578i
\(764\) 0 0
\(765\) 23.2237 + 34.7567i 0.839653 + 1.25663i
\(766\) 0 0
\(767\) 4.45177 0.160744
\(768\) 0 0
\(769\) 0.673777 0.0242970 0.0121485 0.999926i \(-0.496133\pi\)
0.0121485 + 0.999926i \(0.496133\pi\)
\(770\) 0 0
\(771\) 0.747508 + 1.11872i 0.0269208 + 0.0402899i
\(772\) 0 0
\(773\) −9.93498 49.9465i −0.357336 1.79645i −0.572534 0.819881i \(-0.694040\pi\)
0.215198 0.976570i \(-0.430960\pi\)
\(774\) 0 0
\(775\) −3.12052 7.53361i −0.112092 0.270615i
\(776\) 0 0
\(777\) −4.29860 + 10.3777i −0.154211 + 0.372299i
\(778\) 0 0
\(779\) −17.0120 11.3670i −0.609517 0.407266i
\(780\) 0 0
\(781\) −2.96760 + 14.9191i −0.106189 + 0.533848i
\(782\) 0 0
\(783\) 1.61499 1.61499i 0.0577151 0.0577151i
\(784\) 0 0
\(785\) −21.2045 21.2045i −0.756821 0.756821i
\(786\) 0 0
\(787\) 50.7402 + 10.0929i 1.80869 + 0.359772i 0.979854 0.199715i \(-0.0640015\pi\)
0.828840 + 0.559486i \(0.189001\pi\)
\(788\) 0 0
\(789\) −6.66815 + 9.97959i −0.237393 + 0.355283i
\(790\) 0 0
\(791\) −12.1546 5.03460i −0.432168 0.179010i
\(792\) 0 0
\(793\) −6.37168 + 2.63924i −0.226265 + 0.0937220i
\(794\) 0 0
\(795\) −5.25675 + 1.04563i −0.186438 + 0.0370848i
\(796\) 0 0
\(797\) −39.8300 + 26.6136i −1.41085 + 0.942701i −0.411339 + 0.911482i \(0.634939\pi\)
−0.999513 + 0.0312188i \(0.990061\pi\)
\(798\) 0 0
\(799\) 55.4415i 1.96138i
\(800\) 0 0
\(801\) 12.9077i 0.456073i
\(802\) 0 0
\(803\) 4.03644 2.69707i 0.142443 0.0951774i
\(804\) 0 0
\(805\) 75.2283 14.9638i 2.65145 0.527406i
\(806\) 0 0
\(807\) 12.1228 5.02144i 0.426744 0.176763i
\(808\) 0 0
\(809\) 14.9757 + 6.20314i 0.526518 + 0.218091i 0.630077 0.776532i \(-0.283023\pi\)
−0.103559 + 0.994623i \(0.533023\pi\)
\(810\) 0 0
\(811\) −0.427422 + 0.639682i −0.0150088 + 0.0224623i −0.838898 0.544288i \(-0.816800\pi\)
0.823889 + 0.566751i \(0.191800\pi\)
\(812\) 0 0
\(813\) 8.44401 + 1.67962i 0.296144 + 0.0589068i
\(814\) 0 0
\(815\) −2.76878 2.76878i −0.0969863 0.0969863i
\(816\) 0 0
\(817\) −7.26880 + 7.26880i −0.254303 + 0.254303i
\(818\) 0 0
\(819\) 0.576248 2.89700i 0.0201358 0.101229i
\(820\) 0 0
\(821\) −11.8401 7.91128i −0.413221 0.276105i 0.331534 0.943443i \(-0.392434\pi\)
−0.744755 + 0.667338i \(0.767434\pi\)
\(822\) 0 0
\(823\) −20.8253 + 50.2767i −0.725924 + 1.75254i −0.0702021 + 0.997533i \(0.522364\pi\)
−0.655722 + 0.755003i \(0.727636\pi\)
\(824\) 0 0
\(825\) 4.60569 + 11.1191i 0.160350 + 0.387118i
\(826\) 0 0
\(827\) 5.39604 + 27.1277i 0.187639 + 0.943323i 0.953747 + 0.300611i \(0.0971906\pi\)
−0.766108 + 0.642712i \(0.777809\pi\)
\(828\) 0 0
\(829\) −4.05663 6.07118i −0.140893 0.210861i 0.754312 0.656516i \(-0.227971\pi\)
−0.895205 + 0.445656i \(0.852971\pi\)
\(830\) 0 0
\(831\) 0.114879 0.00398511
\(832\) 0 0
\(833\) 2.42089 0.0838790
\(834\) 0 0
\(835\) −5.57261 8.34000i −0.192848 0.288618i
\(836\) 0 0
\(837\) 1.07562 + 5.40748i 0.0371787 + 0.186910i
\(838\) 0 0
\(839\) 9.19848 + 22.2071i 0.317567 + 0.766674i 0.999382 + 0.0351498i \(0.0111908\pi\)
−0.681815 + 0.731524i \(0.738809\pi\)
\(840\) 0 0
\(841\) −11.0207 + 26.6064i −0.380025 + 0.917462i
\(842\) 0 0
\(843\) −7.80591 5.21574i −0.268850 0.179640i
\(844\) 0 0
\(845\) −8.73323 + 43.9049i −0.300432 + 1.51038i
\(846\) 0 0
\(847\) 15.6117 15.6117i 0.536426 0.536426i
\(848\) 0 0
\(849\) −8.64313 8.64313i −0.296631 0.296631i
\(850\) 0 0
\(851\) −35.0888 6.97960i −1.20283 0.239258i
\(852\) 0 0
\(853\) −2.19782 + 3.28928i −0.0752521 + 0.112623i −0.867187 0.497983i \(-0.834074\pi\)
0.791935 + 0.610606i \(0.209074\pi\)
\(854\) 0 0
\(855\) −23.2146 9.61580i −0.793923 0.328853i
\(856\) 0 0
\(857\) 25.6461 10.6230i 0.876055 0.362874i 0.101089 0.994877i \(-0.467767\pi\)
0.774966 + 0.632003i \(0.217767\pi\)
\(858\) 0 0
\(859\) −48.0526 + 9.55825i −1.63953 + 0.326123i −0.926870 0.375383i \(-0.877511\pi\)
−0.712663 + 0.701506i \(0.752511\pi\)
\(860\) 0 0
\(861\) −12.2970 + 8.21658i −0.419080 + 0.280020i
\(862\) 0 0
\(863\) 49.1366i 1.67263i −0.548250 0.836314i \(-0.684706\pi\)
0.548250 0.836314i \(-0.315294\pi\)
\(864\) 0 0
\(865\) 36.9749i 1.25718i
\(866\) 0 0
\(867\) −17.2582 + 11.5315i −0.586118 + 0.391631i
\(868\) 0 0
\(869\) 2.01194 0.400199i 0.0682503 0.0135758i
\(870\) 0 0
\(871\) −3.26127 + 1.35086i −0.110504 + 0.0457722i
\(872\) 0 0
\(873\) −10.3748 4.29738i −0.351133 0.145444i
\(874\) 0 0
\(875\) 12.7642 19.1030i 0.431510 0.645800i
\(876\) 0 0
\(877\) 19.6791 + 3.91441i 0.664515 + 0.132180i 0.515812 0.856702i \(-0.327490\pi\)
0.148703 + 0.988882i \(0.452490\pi\)
\(878\) 0 0
\(879\) −0.0745207 0.0745207i −0.00251352 0.00251352i
\(880\) 0 0
\(881\) −11.5209 + 11.5209i −0.388150 + 0.388150i −0.874027 0.485877i \(-0.838500\pi\)
0.485877 + 0.874027i \(0.338500\pi\)
\(882\) 0 0
\(883\) 2.44651 12.2994i 0.0823317 0.413909i −0.917536 0.397652i \(-0.869825\pi\)
0.999868 0.0162569i \(-0.00517497\pi\)
\(884\) 0 0
\(885\) −22.7612 15.2085i −0.765108 0.511229i
\(886\) 0 0
\(887\) 17.4593 42.1504i 0.586224 1.41527i −0.300862 0.953668i \(-0.597274\pi\)
0.887087 0.461603i \(-0.152726\pi\)
\(888\) 0 0
\(889\) −5.18980 12.5293i −0.174060 0.420219i
\(890\) 0 0
\(891\) 0.172496 + 0.867196i 0.00577883 + 0.0290522i
\(892\) 0 0
\(893\) −18.5152 27.7100i −0.619587 0.927278i
\(894\) 0 0
\(895\) −68.8486 −2.30136
\(896\) 0 0
\(897\) −5.15531 −0.172131
\(898\) 0 0
\(899\) 0.270158 + 0.404320i 0.00901027 + 0.0134848i
\(900\) 0 0
\(901\) 1.74716 + 8.78357i 0.0582064 + 0.292623i
\(902\) 0 0
\(903\) 2.84356 + 6.86495i 0.0946276 + 0.228451i
\(904\) 0 0
\(905\) 5.42350 13.0935i 0.180283 0.435242i
\(906\) 0 0
\(907\) 15.0921 + 10.0842i 0.501125 + 0.334841i 0.780306 0.625398i \(-0.215063\pi\)
−0.279182 + 0.960238i \(0.590063\pi\)
\(908\) 0 0
\(909\) −0.355080 + 1.78511i −0.0117773 + 0.0592084i
\(910\) 0 0
\(911\) 36.0258 36.0258i 1.19359 1.19359i 0.217537 0.976052i \(-0.430198\pi\)
0.976052 0.217537i \(-0.0698022\pi\)
\(912\) 0 0
\(913\) −18.5521 18.5521i −0.613985 0.613985i
\(914\) 0 0
\(915\) 41.5938 + 8.27351i 1.37505 + 0.273514i
\(916\) 0 0
\(917\) −8.21699 + 12.2976i −0.271349 + 0.406102i
\(918\) 0 0
\(919\) 23.4993 + 9.73374i 0.775171 + 0.321086i 0.734965 0.678105i \(-0.237199\pi\)
0.0402060 + 0.999191i \(0.487199\pi\)
\(920\) 0 0
\(921\) −21.8015 + 9.03046i −0.718383 + 0.297564i
\(922\) 0 0
\(923\) −5.70282 + 1.13436i −0.187711 + 0.0373380i
\(924\) 0 0
\(925\) −26.5453 + 17.7370i −0.872805 + 0.583190i
\(926\) 0 0
\(927\) 26.8296i 0.881201i
\(928\) 0 0
\(929\) 14.5115i 0.476107i 0.971252 + 0.238053i \(0.0765094\pi\)
−0.971252 + 0.238053i \(0.923491\pi\)
\(930\) 0 0
\(931\) −1.20998 + 0.808480i −0.0396553 + 0.0264968i
\(932\) 0 0
\(933\) −17.1335 + 3.40807i −0.560926 + 0.111575i
\(934\) 0 0
\(935\) 30.9219 12.8083i 1.01125 0.418875i
\(936\) 0 0
\(937\) 15.1545 + 6.27722i 0.495077 + 0.205068i 0.616230 0.787566i \(-0.288659\pi\)
−0.121153 + 0.992634i \(0.538659\pi\)
\(938\) 0 0
\(939\) 10.3917 15.5523i 0.339120 0.507530i
\(940\) 0 0
\(941\) 32.7794 + 6.52023i 1.06858 + 0.212553i 0.697891 0.716204i \(-0.254122\pi\)
0.370688 + 0.928758i \(0.379122\pi\)
\(942\) 0 0
\(943\) −33.3077 33.3077i −1.08465 1.08465i
\(944\) 0 0
\(945\) −32.7245 + 32.7245i −1.06453 + 1.06453i
\(946\) 0 0
\(947\) −1.24368 + 6.25242i −0.0404143 + 0.203176i −0.995717 0.0924528i \(-0.970529\pi\)
0.955303 + 0.295629i \(0.0955293\pi\)
\(948\) 0 0
\(949\) 1.54293 + 1.03095i 0.0500856 + 0.0334661i
\(950\) 0 0
\(951\) −7.80372 + 18.8399i −0.253053 + 0.610924i
\(952\) 0 0
\(953\) 0.417863 + 1.00881i 0.0135359 + 0.0326786i 0.930503 0.366284i \(-0.119370\pi\)
−0.916967 + 0.398963i \(0.869370\pi\)
\(954\) 0 0
\(955\) 11.2261 + 56.4375i 0.363269 + 1.82628i
\(956\) 0 0
\(957\) −0.398736 0.596750i −0.0128893 0.0192902i
\(958\) 0 0
\(959\) 25.4479 0.821756
\(960\) 0 0
\(961\) 29.8261 0.962134
\(962\) 0 0
\(963\) −15.9845 23.9224i −0.515092 0.770890i
\(964\) 0 0
\(965\) −17.2166 86.5536i −0.554221 2.78626i
\(966\) 0 0
\(967\) 12.0473 + 29.0848i 0.387416 + 0.935305i 0.990486 + 0.137617i \(0.0439442\pi\)
−0.603069 + 0.797689i \(0.706056\pi\)
\(968\) 0 0
\(969\) 8.80466 21.2563i 0.282847 0.682852i
\(970\) 0 0
\(971\) −25.2097 16.8446i −0.809017 0.540568i 0.0808828 0.996724i \(-0.474226\pi\)
−0.889900 + 0.456156i \(0.849226\pi\)
\(972\) 0 0
\(973\) −1.05876 + 5.32277i −0.0339424 + 0.170640i
\(974\) 0 0
\(975\) −3.25302 + 3.25302i −0.104180 + 0.104180i
\(976\) 0 0
\(977\) 27.6449 + 27.6449i 0.884440 + 0.884440i 0.993982 0.109543i \(-0.0349386\pi\)
−0.109543 + 0.993982i \(0.534939\pi\)
\(978\) 0 0
\(979\) 10.1364 + 2.01625i 0.323960 + 0.0644397i
\(980\) 0 0
\(981\) 7.28802 10.9073i 0.232688 0.348243i
\(982\) 0 0
\(983\) 25.5539 + 10.5848i 0.815043 + 0.337602i 0.750964 0.660343i \(-0.229589\pi\)
0.0640791 + 0.997945i \(0.479589\pi\)
\(984\) 0 0
\(985\) −13.6849 + 5.66846i −0.436036 + 0.180612i
\(986\) 0 0
\(987\) −23.6269 + 4.69969i −0.752054 + 0.149593i
\(988\) 0 0
\(989\) −19.6778 + 13.1483i −0.625717 + 0.418090i
\(990\) 0 0
\(991\) 31.6905i 1.00668i −0.864088 0.503340i \(-0.832104\pi\)
0.864088 0.503340i \(-0.167896\pi\)
\(992\) 0 0
\(993\) 7.40504i 0.234992i
\(994\) 0 0
\(995\) 5.72257 3.82370i 0.181418 0.121219i
\(996\) 0 0
\(997\) 21.6259 4.30166i 0.684900 0.136235i 0.159638 0.987176i \(-0.448967\pi\)
0.525262 + 0.850941i \(0.323967\pi\)
\(998\) 0 0
\(999\) 19.9430 8.26066i 0.630969 0.261356i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 512.2.i.b.289.5 56
4.3 odd 2 512.2.i.a.289.3 56
8.3 odd 2 256.2.i.a.17.5 56
8.5 even 2 64.2.i.a.45.4 yes 56
24.5 odd 2 576.2.bd.a.109.4 56
64.5 even 16 64.2.i.a.37.4 56
64.27 odd 16 512.2.i.a.225.3 56
64.37 even 16 inner 512.2.i.b.225.5 56
64.59 odd 16 256.2.i.a.241.5 56
192.5 odd 16 576.2.bd.a.37.4 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
64.2.i.a.37.4 56 64.5 even 16
64.2.i.a.45.4 yes 56 8.5 even 2
256.2.i.a.17.5 56 8.3 odd 2
256.2.i.a.241.5 56 64.59 odd 16
512.2.i.a.225.3 56 64.27 odd 16
512.2.i.a.289.3 56 4.3 odd 2
512.2.i.b.225.5 56 64.37 even 16 inner
512.2.i.b.289.5 56 1.1 even 1 trivial
576.2.bd.a.37.4 56 192.5 odd 16
576.2.bd.a.109.4 56 24.5 odd 2