Properties

Label 5200.2.a.cb.1.2
Level $5200$
Weight $2$
Character 5200.1
Self dual yes
Analytic conductor $41.522$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5200,2,Mod(1,5200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 65)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.311108\) of defining polynomial
Character \(\chi\) \(=\) 5200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.31111 q^{3} -2.90321 q^{7} -1.28100 q^{9} -0.214320 q^{11} -1.00000 q^{13} +6.42864 q^{17} -2.21432 q^{19} +3.80642 q^{21} -4.68889 q^{23} +5.61285 q^{27} +8.70964 q^{29} +5.59210 q^{31} +0.280996 q^{33} +2.28100 q^{37} +1.31111 q^{39} +3.05086 q^{41} -6.36196 q^{43} -1.09679 q^{47} +1.42864 q^{49} -8.42864 q^{51} -6.23506 q^{53} +2.90321 q^{57} +9.26517 q^{59} -0.280996 q^{61} +3.71900 q^{63} +7.76049 q^{67} +6.14764 q^{69} +6.08097 q^{71} -10.2810 q^{73} +0.622216 q^{77} +14.2351 q^{79} -3.51606 q^{81} -9.52543 q^{83} -11.4193 q^{87} -5.61285 q^{89} +2.90321 q^{91} -7.33185 q^{93} -18.0415 q^{97} +0.274543 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 4 q^{3} - 2 q^{7} + 3 q^{9} + 6 q^{11} - 3 q^{13} + 6 q^{17} - 2 q^{21} - 14 q^{23} - 10 q^{27} + 6 q^{29} + 10 q^{31} - 6 q^{33} + 4 q^{39} - 4 q^{41} - 6 q^{43} - 10 q^{47} - 9 q^{49} - 12 q^{51}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.31111 −0.756968 −0.378484 0.925608i \(-0.623555\pi\)
−0.378484 + 0.925608i \(0.623555\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.90321 −1.09731 −0.548655 0.836049i \(-0.684860\pi\)
−0.548655 + 0.836049i \(0.684860\pi\)
\(8\) 0 0
\(9\) −1.28100 −0.426999
\(10\) 0 0
\(11\) −0.214320 −0.0646198 −0.0323099 0.999478i \(-0.510286\pi\)
−0.0323099 + 0.999478i \(0.510286\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 6.42864 1.55917 0.779587 0.626294i \(-0.215429\pi\)
0.779587 + 0.626294i \(0.215429\pi\)
\(18\) 0 0
\(19\) −2.21432 −0.508000 −0.254000 0.967204i \(-0.581746\pi\)
−0.254000 + 0.967204i \(0.581746\pi\)
\(20\) 0 0
\(21\) 3.80642 0.830630
\(22\) 0 0
\(23\) −4.68889 −0.977702 −0.488851 0.872367i \(-0.662584\pi\)
−0.488851 + 0.872367i \(0.662584\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.61285 1.08019
\(28\) 0 0
\(29\) 8.70964 1.61734 0.808669 0.588263i \(-0.200188\pi\)
0.808669 + 0.588263i \(0.200188\pi\)
\(30\) 0 0
\(31\) 5.59210 1.00437 0.502186 0.864760i \(-0.332529\pi\)
0.502186 + 0.864760i \(0.332529\pi\)
\(32\) 0 0
\(33\) 0.280996 0.0489152
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.28100 0.374993 0.187497 0.982265i \(-0.439963\pi\)
0.187497 + 0.982265i \(0.439963\pi\)
\(38\) 0 0
\(39\) 1.31111 0.209945
\(40\) 0 0
\(41\) 3.05086 0.476464 0.238232 0.971208i \(-0.423432\pi\)
0.238232 + 0.971208i \(0.423432\pi\)
\(42\) 0 0
\(43\) −6.36196 −0.970190 −0.485095 0.874461i \(-0.661215\pi\)
−0.485095 + 0.874461i \(0.661215\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.09679 −0.159983 −0.0799915 0.996796i \(-0.525489\pi\)
−0.0799915 + 0.996796i \(0.525489\pi\)
\(48\) 0 0
\(49\) 1.42864 0.204091
\(50\) 0 0
\(51\) −8.42864 −1.18025
\(52\) 0 0
\(53\) −6.23506 −0.856452 −0.428226 0.903672i \(-0.640861\pi\)
−0.428226 + 0.903672i \(0.640861\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.90321 0.384540
\(58\) 0 0
\(59\) 9.26517 1.20622 0.603112 0.797657i \(-0.293927\pi\)
0.603112 + 0.797657i \(0.293927\pi\)
\(60\) 0 0
\(61\) −0.280996 −0.0359779 −0.0179889 0.999838i \(-0.505726\pi\)
−0.0179889 + 0.999838i \(0.505726\pi\)
\(62\) 0 0
\(63\) 3.71900 0.468550
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 7.76049 0.948095 0.474047 0.880499i \(-0.342793\pi\)
0.474047 + 0.880499i \(0.342793\pi\)
\(68\) 0 0
\(69\) 6.14764 0.740089
\(70\) 0 0
\(71\) 6.08097 0.721678 0.360839 0.932628i \(-0.382490\pi\)
0.360839 + 0.932628i \(0.382490\pi\)
\(72\) 0 0
\(73\) −10.2810 −1.20330 −0.601650 0.798760i \(-0.705490\pi\)
−0.601650 + 0.798760i \(0.705490\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.622216 0.0709081
\(78\) 0 0
\(79\) 14.2351 1.60157 0.800785 0.598952i \(-0.204416\pi\)
0.800785 + 0.598952i \(0.204416\pi\)
\(80\) 0 0
\(81\) −3.51606 −0.390673
\(82\) 0 0
\(83\) −9.52543 −1.04555 −0.522776 0.852470i \(-0.675103\pi\)
−0.522776 + 0.852470i \(0.675103\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −11.4193 −1.22427
\(88\) 0 0
\(89\) −5.61285 −0.594961 −0.297480 0.954728i \(-0.596146\pi\)
−0.297480 + 0.954728i \(0.596146\pi\)
\(90\) 0 0
\(91\) 2.90321 0.304339
\(92\) 0 0
\(93\) −7.33185 −0.760278
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −18.0415 −1.83184 −0.915918 0.401366i \(-0.868536\pi\)
−0.915918 + 0.401366i \(0.868536\pi\)
\(98\) 0 0
\(99\) 0.274543 0.0275926
\(100\) 0 0
\(101\) 3.93978 0.392022 0.196011 0.980602i \(-0.437201\pi\)
0.196011 + 0.980602i \(0.437201\pi\)
\(102\) 0 0
\(103\) −2.82225 −0.278084 −0.139042 0.990286i \(-0.544402\pi\)
−0.139042 + 0.990286i \(0.544402\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −17.1175 −1.65481 −0.827407 0.561603i \(-0.810185\pi\)
−0.827407 + 0.561603i \(0.810185\pi\)
\(108\) 0 0
\(109\) −16.7239 −1.60186 −0.800931 0.598757i \(-0.795662\pi\)
−0.800931 + 0.598757i \(0.795662\pi\)
\(110\) 0 0
\(111\) −2.99063 −0.283858
\(112\) 0 0
\(113\) 1.18421 0.111401 0.0557005 0.998448i \(-0.482261\pi\)
0.0557005 + 0.998448i \(0.482261\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.28100 0.118428
\(118\) 0 0
\(119\) −18.6637 −1.71090
\(120\) 0 0
\(121\) −10.9541 −0.995824
\(122\) 0 0
\(123\) −4.00000 −0.360668
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −2.30174 −0.204246 −0.102123 0.994772i \(-0.532564\pi\)
−0.102123 + 0.994772i \(0.532564\pi\)
\(128\) 0 0
\(129\) 8.34122 0.734403
\(130\) 0 0
\(131\) 13.4193 1.17245 0.586224 0.810149i \(-0.300614\pi\)
0.586224 + 0.810149i \(0.300614\pi\)
\(132\) 0 0
\(133\) 6.42864 0.557434
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 19.1526 1.63631 0.818157 0.574995i \(-0.194996\pi\)
0.818157 + 0.574995i \(0.194996\pi\)
\(138\) 0 0
\(139\) −19.0923 −1.61939 −0.809696 0.586850i \(-0.800368\pi\)
−0.809696 + 0.586850i \(0.800368\pi\)
\(140\) 0 0
\(141\) 1.43801 0.121102
\(142\) 0 0
\(143\) 0.214320 0.0179223
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −1.87310 −0.154491
\(148\) 0 0
\(149\) −3.57136 −0.292577 −0.146289 0.989242i \(-0.546733\pi\)
−0.146289 + 0.989242i \(0.546733\pi\)
\(150\) 0 0
\(151\) 1.26517 0.102958 0.0514792 0.998674i \(-0.483606\pi\)
0.0514792 + 0.998674i \(0.483606\pi\)
\(152\) 0 0
\(153\) −8.23506 −0.665765
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −5.61285 −0.447954 −0.223977 0.974594i \(-0.571904\pi\)
−0.223977 + 0.974594i \(0.571904\pi\)
\(158\) 0 0
\(159\) 8.17484 0.648307
\(160\) 0 0
\(161\) 13.6128 1.07284
\(162\) 0 0
\(163\) −3.71900 −0.291295 −0.145647 0.989337i \(-0.546527\pi\)
−0.145647 + 0.989337i \(0.546527\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.03657 0.544506 0.272253 0.962226i \(-0.412231\pi\)
0.272253 + 0.962226i \(0.412231\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 2.83654 0.216915
\(172\) 0 0
\(173\) 0.723926 0.0550391 0.0275195 0.999621i \(-0.491239\pi\)
0.0275195 + 0.999621i \(0.491239\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −12.1476 −0.913073
\(178\) 0 0
\(179\) 4.04149 0.302075 0.151037 0.988528i \(-0.451739\pi\)
0.151037 + 0.988528i \(0.451739\pi\)
\(180\) 0 0
\(181\) 2.34122 0.174021 0.0870107 0.996207i \(-0.472269\pi\)
0.0870107 + 0.996207i \(0.472269\pi\)
\(182\) 0 0
\(183\) 0.368416 0.0272341
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −1.37778 −0.100754
\(188\) 0 0
\(189\) −16.2953 −1.18531
\(190\) 0 0
\(191\) 2.10171 0.152074 0.0760372 0.997105i \(-0.475773\pi\)
0.0760372 + 0.997105i \(0.475773\pi\)
\(192\) 0 0
\(193\) 13.5210 0.973262 0.486631 0.873608i \(-0.338226\pi\)
0.486631 + 0.873608i \(0.338226\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 2.00000 0.142494 0.0712470 0.997459i \(-0.477302\pi\)
0.0712470 + 0.997459i \(0.477302\pi\)
\(198\) 0 0
\(199\) −22.1432 −1.56969 −0.784845 0.619692i \(-0.787257\pi\)
−0.784845 + 0.619692i \(0.787257\pi\)
\(200\) 0 0
\(201\) −10.1748 −0.717678
\(202\) 0 0
\(203\) −25.2859 −1.77472
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 6.00645 0.417477
\(208\) 0 0
\(209\) 0.474572 0.0328269
\(210\) 0 0
\(211\) −19.6543 −1.35306 −0.676530 0.736415i \(-0.736517\pi\)
−0.676530 + 0.736415i \(0.736517\pi\)
\(212\) 0 0
\(213\) −7.97280 −0.546287
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −16.2351 −1.10211
\(218\) 0 0
\(219\) 13.4795 0.910860
\(220\) 0 0
\(221\) −6.42864 −0.432437
\(222\) 0 0
\(223\) 19.6686 1.31711 0.658554 0.752533i \(-0.271168\pi\)
0.658554 + 0.752533i \(0.271168\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.2716 −0.880869 −0.440434 0.897785i \(-0.645176\pi\)
−0.440434 + 0.897785i \(0.645176\pi\)
\(228\) 0 0
\(229\) −2.42864 −0.160489 −0.0802445 0.996775i \(-0.525570\pi\)
−0.0802445 + 0.996775i \(0.525570\pi\)
\(230\) 0 0
\(231\) −0.815792 −0.0536752
\(232\) 0 0
\(233\) −16.1748 −1.05965 −0.529825 0.848107i \(-0.677742\pi\)
−0.529825 + 0.848107i \(0.677742\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −18.6637 −1.21234
\(238\) 0 0
\(239\) 12.7763 0.826431 0.413215 0.910633i \(-0.364406\pi\)
0.413215 + 0.910633i \(0.364406\pi\)
\(240\) 0 0
\(241\) −5.89829 −0.379942 −0.189971 0.981790i \(-0.560839\pi\)
−0.189971 + 0.981790i \(0.560839\pi\)
\(242\) 0 0
\(243\) −12.2286 −0.784466
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.21432 0.140894
\(248\) 0 0
\(249\) 12.4889 0.791450
\(250\) 0 0
\(251\) 2.07313 0.130855 0.0654274 0.997857i \(-0.479159\pi\)
0.0654274 + 0.997857i \(0.479159\pi\)
\(252\) 0 0
\(253\) 1.00492 0.0631789
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −18.3970 −1.14757 −0.573787 0.819005i \(-0.694526\pi\)
−0.573787 + 0.819005i \(0.694526\pi\)
\(258\) 0 0
\(259\) −6.62222 −0.411484
\(260\) 0 0
\(261\) −11.1570 −0.690602
\(262\) 0 0
\(263\) 11.0257 0.679872 0.339936 0.940449i \(-0.389595\pi\)
0.339936 + 0.940449i \(0.389595\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.35905 0.450366
\(268\) 0 0
\(269\) −16.1432 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(270\) 0 0
\(271\) −13.0114 −0.790385 −0.395192 0.918598i \(-0.629322\pi\)
−0.395192 + 0.918598i \(0.629322\pi\)
\(272\) 0 0
\(273\) −3.80642 −0.230375
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −7.57136 −0.454919 −0.227459 0.973788i \(-0.573042\pi\)
−0.227459 + 0.973788i \(0.573042\pi\)
\(278\) 0 0
\(279\) −7.16346 −0.428865
\(280\) 0 0
\(281\) 6.75557 0.403003 0.201502 0.979488i \(-0.435418\pi\)
0.201502 + 0.979488i \(0.435418\pi\)
\(282\) 0 0
\(283\) 19.0859 1.13454 0.567269 0.823532i \(-0.308000\pi\)
0.567269 + 0.823532i \(0.308000\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −8.85728 −0.522829
\(288\) 0 0
\(289\) 24.3274 1.43102
\(290\) 0 0
\(291\) 23.6543 1.38664
\(292\) 0 0
\(293\) 8.08742 0.472472 0.236236 0.971696i \(-0.424086\pi\)
0.236236 + 0.971696i \(0.424086\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −1.20294 −0.0698019
\(298\) 0 0
\(299\) 4.68889 0.271166
\(300\) 0 0
\(301\) 18.4701 1.06460
\(302\) 0 0
\(303\) −5.16547 −0.296749
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −13.4336 −0.766694 −0.383347 0.923604i \(-0.625229\pi\)
−0.383347 + 0.923604i \(0.625229\pi\)
\(308\) 0 0
\(309\) 3.70027 0.210501
\(310\) 0 0
\(311\) −20.2034 −1.14563 −0.572815 0.819684i \(-0.694149\pi\)
−0.572815 + 0.819684i \(0.694149\pi\)
\(312\) 0 0
\(313\) −15.1111 −0.854129 −0.427064 0.904221i \(-0.640452\pi\)
−0.427064 + 0.904221i \(0.640452\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −22.2810 −1.25143 −0.625713 0.780054i \(-0.715192\pi\)
−0.625713 + 0.780054i \(0.715192\pi\)
\(318\) 0 0
\(319\) −1.86665 −0.104512
\(320\) 0 0
\(321\) 22.4429 1.25264
\(322\) 0 0
\(323\) −14.2351 −0.792060
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 21.9269 1.21256
\(328\) 0 0
\(329\) 3.18421 0.175551
\(330\) 0 0
\(331\) −8.25581 −0.453780 −0.226890 0.973920i \(-0.572856\pi\)
−0.226890 + 0.973920i \(0.572856\pi\)
\(332\) 0 0
\(333\) −2.92195 −0.160122
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.7462 0.748803 0.374402 0.927267i \(-0.377848\pi\)
0.374402 + 0.927267i \(0.377848\pi\)
\(338\) 0 0
\(339\) −1.55262 −0.0843270
\(340\) 0 0
\(341\) −1.19850 −0.0649023
\(342\) 0 0
\(343\) 16.1748 0.873359
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.21924 0.0654523 0.0327262 0.999464i \(-0.489581\pi\)
0.0327262 + 0.999464i \(0.489581\pi\)
\(348\) 0 0
\(349\) 22.5116 1.20502 0.602510 0.798112i \(-0.294168\pi\)
0.602510 + 0.798112i \(0.294168\pi\)
\(350\) 0 0
\(351\) −5.61285 −0.299592
\(352\) 0 0
\(353\) 14.2810 0.760101 0.380050 0.924966i \(-0.375907\pi\)
0.380050 + 0.924966i \(0.375907\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 24.4701 1.29510
\(358\) 0 0
\(359\) 12.1541 0.641469 0.320734 0.947169i \(-0.396070\pi\)
0.320734 + 0.947169i \(0.396070\pi\)
\(360\) 0 0
\(361\) −14.0968 −0.741936
\(362\) 0 0
\(363\) 14.3620 0.753808
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −4.65725 −0.243106 −0.121553 0.992585i \(-0.538788\pi\)
−0.121553 + 0.992585i \(0.538788\pi\)
\(368\) 0 0
\(369\) −3.90813 −0.203449
\(370\) 0 0
\(371\) 18.1017 0.939794
\(372\) 0 0
\(373\) −34.9403 −1.80914 −0.904569 0.426328i \(-0.859807\pi\)
−0.904569 + 0.426328i \(0.859807\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −8.70964 −0.448569
\(378\) 0 0
\(379\) 17.4717 0.897459 0.448729 0.893668i \(-0.351877\pi\)
0.448729 + 0.893668i \(0.351877\pi\)
\(380\) 0 0
\(381\) 3.01783 0.154608
\(382\) 0 0
\(383\) −18.6780 −0.954401 −0.477200 0.878794i \(-0.658348\pi\)
−0.477200 + 0.878794i \(0.658348\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 8.14965 0.414270
\(388\) 0 0
\(389\) 1.61285 0.0817746 0.0408873 0.999164i \(-0.486982\pi\)
0.0408873 + 0.999164i \(0.486982\pi\)
\(390\) 0 0
\(391\) −30.1432 −1.52441
\(392\) 0 0
\(393\) −17.5941 −0.887506
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −6.57628 −0.330054 −0.165027 0.986289i \(-0.552771\pi\)
−0.165027 + 0.986289i \(0.552771\pi\)
\(398\) 0 0
\(399\) −8.42864 −0.421960
\(400\) 0 0
\(401\) −21.9081 −1.09404 −0.547020 0.837120i \(-0.684238\pi\)
−0.547020 + 0.837120i \(0.684238\pi\)
\(402\) 0 0
\(403\) −5.59210 −0.278563
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.488863 −0.0242320
\(408\) 0 0
\(409\) −10.1936 −0.504040 −0.252020 0.967722i \(-0.581095\pi\)
−0.252020 + 0.967722i \(0.581095\pi\)
\(410\) 0 0
\(411\) −25.1111 −1.23864
\(412\) 0 0
\(413\) −26.8988 −1.32360
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 25.0321 1.22583
\(418\) 0 0
\(419\) −7.31756 −0.357486 −0.178743 0.983896i \(-0.557203\pi\)
−0.178743 + 0.983896i \(0.557203\pi\)
\(420\) 0 0
\(421\) −7.86665 −0.383397 −0.191698 0.981454i \(-0.561400\pi\)
−0.191698 + 0.981454i \(0.561400\pi\)
\(422\) 0 0
\(423\) 1.40498 0.0683125
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0.815792 0.0394789
\(428\) 0 0
\(429\) −0.280996 −0.0135666
\(430\) 0 0
\(431\) 38.9195 1.87469 0.937343 0.348407i \(-0.113277\pi\)
0.937343 + 0.348407i \(0.113277\pi\)
\(432\) 0 0
\(433\) 20.2034 0.970914 0.485457 0.874260i \(-0.338653\pi\)
0.485457 + 0.874260i \(0.338653\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 10.3827 0.496672
\(438\) 0 0
\(439\) −10.8889 −0.519700 −0.259850 0.965649i \(-0.583673\pi\)
−0.259850 + 0.965649i \(0.583673\pi\)
\(440\) 0 0
\(441\) −1.83008 −0.0871468
\(442\) 0 0
\(443\) −28.6287 −1.36019 −0.680095 0.733124i \(-0.738061\pi\)
−0.680095 + 0.733124i \(0.738061\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 4.68244 0.221472
\(448\) 0 0
\(449\) −10.9304 −0.515838 −0.257919 0.966167i \(-0.583037\pi\)
−0.257919 + 0.966167i \(0.583037\pi\)
\(450\) 0 0
\(451\) −0.653858 −0.0307890
\(452\) 0 0
\(453\) −1.65878 −0.0779363
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.4064 0.533567 0.266784 0.963756i \(-0.414039\pi\)
0.266784 + 0.963756i \(0.414039\pi\)
\(458\) 0 0
\(459\) 36.0830 1.68421
\(460\) 0 0
\(461\) −26.1334 −1.21715 −0.608576 0.793496i \(-0.708259\pi\)
−0.608576 + 0.793496i \(0.708259\pi\)
\(462\) 0 0
\(463\) −7.92242 −0.368186 −0.184093 0.982909i \(-0.558935\pi\)
−0.184093 + 0.982909i \(0.558935\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.8923 0.504036 0.252018 0.967723i \(-0.418906\pi\)
0.252018 + 0.967723i \(0.418906\pi\)
\(468\) 0 0
\(469\) −22.5303 −1.04035
\(470\) 0 0
\(471\) 7.35905 0.339087
\(472\) 0 0
\(473\) 1.36349 0.0626935
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 7.98709 0.365704
\(478\) 0 0
\(479\) 9.13182 0.417244 0.208622 0.977996i \(-0.433102\pi\)
0.208622 + 0.977996i \(0.433102\pi\)
\(480\) 0 0
\(481\) −2.28100 −0.104004
\(482\) 0 0
\(483\) −17.8479 −0.812108
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −16.1891 −0.733600 −0.366800 0.930300i \(-0.619547\pi\)
−0.366800 + 0.930300i \(0.619547\pi\)
\(488\) 0 0
\(489\) 4.87601 0.220501
\(490\) 0 0
\(491\) −26.2636 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(492\) 0 0
\(493\) 55.9911 2.52171
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −17.6543 −0.791905
\(498\) 0 0
\(499\) −30.0306 −1.34435 −0.672177 0.740391i \(-0.734641\pi\)
−0.672177 + 0.740391i \(0.734641\pi\)
\(500\) 0 0
\(501\) −9.22570 −0.412174
\(502\) 0 0
\(503\) −16.7304 −0.745971 −0.372985 0.927837i \(-0.621666\pi\)
−0.372985 + 0.927837i \(0.621666\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −1.31111 −0.0582283
\(508\) 0 0
\(509\) −11.9684 −0.530488 −0.265244 0.964181i \(-0.585453\pi\)
−0.265244 + 0.964181i \(0.585453\pi\)
\(510\) 0 0
\(511\) 29.8479 1.32039
\(512\) 0 0
\(513\) −12.4286 −0.548738
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0.235063 0.0103381
\(518\) 0 0
\(519\) −0.949145 −0.0416628
\(520\) 0 0
\(521\) 5.75065 0.251940 0.125970 0.992034i \(-0.459796\pi\)
0.125970 + 0.992034i \(0.459796\pi\)
\(522\) 0 0
\(523\) −20.8035 −0.909674 −0.454837 0.890575i \(-0.650302\pi\)
−0.454837 + 0.890575i \(0.650302\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 35.9496 1.56599
\(528\) 0 0
\(529\) −1.01429 −0.0440996
\(530\) 0 0
\(531\) −11.8687 −0.515056
\(532\) 0 0
\(533\) −3.05086 −0.132147
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −5.29883 −0.228661
\(538\) 0 0
\(539\) −0.306186 −0.0131883
\(540\) 0 0
\(541\) 16.6222 0.714645 0.357322 0.933981i \(-0.383690\pi\)
0.357322 + 0.933981i \(0.383690\pi\)
\(542\) 0 0
\(543\) −3.06959 −0.131729
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −29.9748 −1.28163 −0.640815 0.767695i \(-0.721404\pi\)
−0.640815 + 0.767695i \(0.721404\pi\)
\(548\) 0 0
\(549\) 0.359955 0.0153625
\(550\) 0 0
\(551\) −19.2859 −0.821608
\(552\) 0 0
\(553\) −41.3274 −1.75742
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.03657 0.213406 0.106703 0.994291i \(-0.465971\pi\)
0.106703 + 0.994291i \(0.465971\pi\)
\(558\) 0 0
\(559\) 6.36196 0.269082
\(560\) 0 0
\(561\) 1.80642 0.0762673
\(562\) 0 0
\(563\) 2.88247 0.121482 0.0607408 0.998154i \(-0.480654\pi\)
0.0607408 + 0.998154i \(0.480654\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 10.2079 0.428690
\(568\) 0 0
\(569\) −4.37286 −0.183320 −0.0916600 0.995790i \(-0.529217\pi\)
−0.0916600 + 0.995790i \(0.529217\pi\)
\(570\) 0 0
\(571\) 1.58120 0.0661714 0.0330857 0.999453i \(-0.489467\pi\)
0.0330857 + 0.999453i \(0.489467\pi\)
\(572\) 0 0
\(573\) −2.75557 −0.115116
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 7.61729 0.317112 0.158556 0.987350i \(-0.449316\pi\)
0.158556 + 0.987350i \(0.449316\pi\)
\(578\) 0 0
\(579\) −17.7275 −0.736728
\(580\) 0 0
\(581\) 27.6543 1.14730
\(582\) 0 0
\(583\) 1.33630 0.0553438
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −46.8243 −1.93264 −0.966322 0.257336i \(-0.917155\pi\)
−0.966322 + 0.257336i \(0.917155\pi\)
\(588\) 0 0
\(589\) −12.3827 −0.510221
\(590\) 0 0
\(591\) −2.62222 −0.107864
\(592\) 0 0
\(593\) 15.9398 0.654568 0.327284 0.944926i \(-0.393867\pi\)
0.327284 + 0.944926i \(0.393867\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 29.0321 1.18821
\(598\) 0 0
\(599\) −18.4889 −0.755434 −0.377717 0.925921i \(-0.623291\pi\)
−0.377717 + 0.925921i \(0.623291\pi\)
\(600\) 0 0
\(601\) 20.7556 0.846637 0.423319 0.905981i \(-0.360865\pi\)
0.423319 + 0.905981i \(0.360865\pi\)
\(602\) 0 0
\(603\) −9.94116 −0.404835
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 36.0765 1.46430 0.732150 0.681143i \(-0.238517\pi\)
0.732150 + 0.681143i \(0.238517\pi\)
\(608\) 0 0
\(609\) 33.1526 1.34341
\(610\) 0 0
\(611\) 1.09679 0.0443713
\(612\) 0 0
\(613\) −9.94962 −0.401861 −0.200931 0.979605i \(-0.564397\pi\)
−0.200931 + 0.979605i \(0.564397\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −2.09187 −0.0842154 −0.0421077 0.999113i \(-0.513407\pi\)
−0.0421077 + 0.999113i \(0.513407\pi\)
\(618\) 0 0
\(619\) −18.4681 −0.742296 −0.371148 0.928574i \(-0.621036\pi\)
−0.371148 + 0.928574i \(0.621036\pi\)
\(620\) 0 0
\(621\) −26.3180 −1.05611
\(622\) 0 0
\(623\) 16.2953 0.652857
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −0.622216 −0.0248489
\(628\) 0 0
\(629\) 14.6637 0.584680
\(630\) 0 0
\(631\) 38.6657 1.53926 0.769629 0.638492i \(-0.220441\pi\)
0.769629 + 0.638492i \(0.220441\pi\)
\(632\) 0 0
\(633\) 25.7690 1.02422
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.42864 −0.0566048
\(638\) 0 0
\(639\) −7.78970 −0.308156
\(640\) 0 0
\(641\) 24.5718 0.970529 0.485265 0.874367i \(-0.338723\pi\)
0.485265 + 0.874367i \(0.338723\pi\)
\(642\) 0 0
\(643\) 27.4938 1.08425 0.542125 0.840298i \(-0.317620\pi\)
0.542125 + 0.840298i \(0.317620\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 13.7812 0.541796 0.270898 0.962608i \(-0.412679\pi\)
0.270898 + 0.962608i \(0.412679\pi\)
\(648\) 0 0
\(649\) −1.98571 −0.0779459
\(650\) 0 0
\(651\) 21.2859 0.834261
\(652\) 0 0
\(653\) 2.12045 0.0829795 0.0414897 0.999139i \(-0.486790\pi\)
0.0414897 + 0.999139i \(0.486790\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 13.1699 0.513807
\(658\) 0 0
\(659\) −33.8894 −1.32014 −0.660072 0.751203i \(-0.729474\pi\)
−0.660072 + 0.751203i \(0.729474\pi\)
\(660\) 0 0
\(661\) −37.3689 −1.45348 −0.726741 0.686912i \(-0.758966\pi\)
−0.726741 + 0.686912i \(0.758966\pi\)
\(662\) 0 0
\(663\) 8.42864 0.327341
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −40.8385 −1.58127
\(668\) 0 0
\(669\) −25.7877 −0.997010
\(670\) 0 0
\(671\) 0.0602231 0.00232489
\(672\) 0 0
\(673\) 35.4608 1.36691 0.683456 0.729992i \(-0.260476\pi\)
0.683456 + 0.729992i \(0.260476\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −15.3047 −0.588206 −0.294103 0.955774i \(-0.595021\pi\)
−0.294103 + 0.955774i \(0.595021\pi\)
\(678\) 0 0
\(679\) 52.3783 2.01009
\(680\) 0 0
\(681\) 17.4005 0.666790
\(682\) 0 0
\(683\) −13.0968 −0.501135 −0.250567 0.968099i \(-0.580617\pi\)
−0.250567 + 0.968099i \(0.580617\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3.18421 0.121485
\(688\) 0 0
\(689\) 6.23506 0.237537
\(690\) 0 0
\(691\) 18.4079 0.700269 0.350135 0.936699i \(-0.386136\pi\)
0.350135 + 0.936699i \(0.386136\pi\)
\(692\) 0 0
\(693\) −0.797056 −0.0302777
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 19.6128 0.742890
\(698\) 0 0
\(699\) 21.2070 0.802121
\(700\) 0 0
\(701\) −31.3689 −1.18479 −0.592393 0.805649i \(-0.701817\pi\)
−0.592393 + 0.805649i \(0.701817\pi\)
\(702\) 0 0
\(703\) −5.05086 −0.190497
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −11.4380 −0.430171
\(708\) 0 0
\(709\) 9.47949 0.356010 0.178005 0.984030i \(-0.443036\pi\)
0.178005 + 0.984030i \(0.443036\pi\)
\(710\) 0 0
\(711\) −18.2351 −0.683868
\(712\) 0 0
\(713\) −26.2208 −0.981976
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −16.7511 −0.625582
\(718\) 0 0
\(719\) 29.6227 1.10474 0.552370 0.833599i \(-0.313724\pi\)
0.552370 + 0.833599i \(0.313724\pi\)
\(720\) 0 0
\(721\) 8.19358 0.305145
\(722\) 0 0
\(723\) 7.73329 0.287604
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 42.6702 1.58255 0.791274 0.611461i \(-0.209418\pi\)
0.791274 + 0.611461i \(0.209418\pi\)
\(728\) 0 0
\(729\) 26.5812 0.984489
\(730\) 0 0
\(731\) −40.8988 −1.51270
\(732\) 0 0
\(733\) −26.0830 −0.963397 −0.481698 0.876337i \(-0.659980\pi\)
−0.481698 + 0.876337i \(0.659980\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −1.66323 −0.0612657
\(738\) 0 0
\(739\) 28.2687 1.03988 0.519941 0.854202i \(-0.325954\pi\)
0.519941 + 0.854202i \(0.325954\pi\)
\(740\) 0 0
\(741\) −2.90321 −0.106652
\(742\) 0 0
\(743\) 20.6681 0.758241 0.379120 0.925347i \(-0.376227\pi\)
0.379120 + 0.925347i \(0.376227\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 12.2020 0.446449
\(748\) 0 0
\(749\) 49.6958 1.81585
\(750\) 0 0
\(751\) −2.46028 −0.0897770 −0.0448885 0.998992i \(-0.514293\pi\)
−0.0448885 + 0.998992i \(0.514293\pi\)
\(752\) 0 0
\(753\) −2.71810 −0.0990530
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 48.6035 1.76652 0.883262 0.468880i \(-0.155342\pi\)
0.883262 + 0.468880i \(0.155342\pi\)
\(758\) 0 0
\(759\) −1.31756 −0.0478244
\(760\) 0 0
\(761\) −13.8252 −0.501162 −0.250581 0.968096i \(-0.580622\pi\)
−0.250581 + 0.968096i \(0.580622\pi\)
\(762\) 0 0
\(763\) 48.5531 1.75774
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −9.26517 −0.334546
\(768\) 0 0
\(769\) −38.9688 −1.40525 −0.702626 0.711559i \(-0.747989\pi\)
−0.702626 + 0.711559i \(0.747989\pi\)
\(770\) 0 0
\(771\) 24.1204 0.868677
\(772\) 0 0
\(773\) 0.445992 0.0160412 0.00802061 0.999968i \(-0.497447\pi\)
0.00802061 + 0.999968i \(0.497447\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 8.68244 0.311481
\(778\) 0 0
\(779\) −6.75557 −0.242043
\(780\) 0 0
\(781\) −1.30327 −0.0466347
\(782\) 0 0
\(783\) 48.8859 1.74704
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −33.9037 −1.20854 −0.604268 0.796781i \(-0.706534\pi\)
−0.604268 + 0.796781i \(0.706534\pi\)
\(788\) 0 0
\(789\) −14.4558 −0.514641
\(790\) 0 0
\(791\) −3.43801 −0.122241
\(792\) 0 0
\(793\) 0.280996 0.00997847
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.2953 −0.364678 −0.182339 0.983236i \(-0.558367\pi\)
−0.182339 + 0.983236i \(0.558367\pi\)
\(798\) 0 0
\(799\) −7.05086 −0.249441
\(800\) 0 0
\(801\) 7.19004 0.254047
\(802\) 0 0
\(803\) 2.20342 0.0777570
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 21.1655 0.745060
\(808\) 0 0
\(809\) 7.94422 0.279304 0.139652 0.990201i \(-0.455402\pi\)
0.139652 + 0.990201i \(0.455402\pi\)
\(810\) 0 0
\(811\) 8.12245 0.285218 0.142609 0.989779i \(-0.454451\pi\)
0.142609 + 0.989779i \(0.454451\pi\)
\(812\) 0 0
\(813\) 17.0593 0.598296
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 14.0874 0.492856
\(818\) 0 0
\(819\) −3.71900 −0.129953
\(820\) 0 0
\(821\) −22.2065 −0.775012 −0.387506 0.921867i \(-0.626663\pi\)
−0.387506 + 0.921867i \(0.626663\pi\)
\(822\) 0 0
\(823\) −11.1175 −0.387533 −0.193766 0.981048i \(-0.562070\pi\)
−0.193766 + 0.981048i \(0.562070\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −23.1570 −0.805248 −0.402624 0.915365i \(-0.631902\pi\)
−0.402624 + 0.915365i \(0.631902\pi\)
\(828\) 0 0
\(829\) −27.1195 −0.941901 −0.470950 0.882160i \(-0.656089\pi\)
−0.470950 + 0.882160i \(0.656089\pi\)
\(830\) 0 0
\(831\) 9.92687 0.344359
\(832\) 0 0
\(833\) 9.18421 0.318214
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 31.3876 1.08492
\(838\) 0 0
\(839\) −25.3955 −0.876749 −0.438374 0.898792i \(-0.644446\pi\)
−0.438374 + 0.898792i \(0.644446\pi\)
\(840\) 0 0
\(841\) 46.8578 1.61578
\(842\) 0 0
\(843\) −8.85728 −0.305061
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 31.8020 1.09273
\(848\) 0 0
\(849\) −25.0237 −0.858810
\(850\) 0 0
\(851\) −10.6953 −0.366632
\(852\) 0 0
\(853\) 25.0651 0.858214 0.429107 0.903254i \(-0.358828\pi\)
0.429107 + 0.903254i \(0.358828\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.61285 0.260050 0.130025 0.991511i \(-0.458494\pi\)
0.130025 + 0.991511i \(0.458494\pi\)
\(858\) 0 0
\(859\) −42.1432 −1.43791 −0.718954 0.695058i \(-0.755379\pi\)
−0.718954 + 0.695058i \(0.755379\pi\)
\(860\) 0 0
\(861\) 11.6128 0.395765
\(862\) 0 0
\(863\) −51.5768 −1.75569 −0.877847 0.478942i \(-0.841020\pi\)
−0.877847 + 0.478942i \(0.841020\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −31.8959 −1.08324
\(868\) 0 0
\(869\) −3.05086 −0.103493
\(870\) 0 0
\(871\) −7.76049 −0.262954
\(872\) 0 0
\(873\) 23.1111 0.782191
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −34.0701 −1.15046 −0.575232 0.817990i \(-0.695088\pi\)
−0.575232 + 0.817990i \(0.695088\pi\)
\(878\) 0 0
\(879\) −10.6035 −0.357646
\(880\) 0 0
\(881\) 3.71900 0.125296 0.0626482 0.998036i \(-0.480045\pi\)
0.0626482 + 0.998036i \(0.480045\pi\)
\(882\) 0 0
\(883\) 42.0163 1.41396 0.706981 0.707233i \(-0.250057\pi\)
0.706981 + 0.707233i \(0.250057\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 40.3116 1.35353 0.676765 0.736199i \(-0.263381\pi\)
0.676765 + 0.736199i \(0.263381\pi\)
\(888\) 0 0
\(889\) 6.68244 0.224122
\(890\) 0 0
\(891\) 0.753561 0.0252452
\(892\) 0 0
\(893\) 2.42864 0.0812713
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −6.14764 −0.205264
\(898\) 0 0
\(899\) 48.7052 1.62441
\(900\) 0 0
\(901\) −40.0830 −1.33536
\(902\) 0 0
\(903\) −24.2163 −0.805869
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −34.8419 −1.15691 −0.578454 0.815715i \(-0.696344\pi\)
−0.578454 + 0.815715i \(0.696344\pi\)
\(908\) 0 0
\(909\) −5.04684 −0.167393
\(910\) 0 0
\(911\) −23.2672 −0.770876 −0.385438 0.922734i \(-0.625950\pi\)
−0.385438 + 0.922734i \(0.625950\pi\)
\(912\) 0 0
\(913\) 2.04149 0.0675634
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −38.9590 −1.28654
\(918\) 0 0
\(919\) 3.22570 0.106406 0.0532029 0.998584i \(-0.483057\pi\)
0.0532029 + 0.998584i \(0.483057\pi\)
\(920\) 0 0
\(921\) 17.6128 0.580363
\(922\) 0 0
\(923\) −6.08097 −0.200157
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 3.61529 0.118742
\(928\) 0 0
\(929\) −39.3461 −1.29091 −0.645453 0.763800i \(-0.723331\pi\)
−0.645453 + 0.763800i \(0.723331\pi\)
\(930\) 0 0
\(931\) −3.16346 −0.103678
\(932\) 0 0
\(933\) 26.4889 0.867206
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −51.6040 −1.68583 −0.842914 0.538048i \(-0.819162\pi\)
−0.842914 + 0.538048i \(0.819162\pi\)
\(938\) 0 0
\(939\) 19.8123 0.646548
\(940\) 0 0
\(941\) 37.5081 1.22273 0.611364 0.791349i \(-0.290621\pi\)
0.611364 + 0.791349i \(0.290621\pi\)
\(942\) 0 0
\(943\) −14.3051 −0.465839
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −38.1160 −1.23860 −0.619302 0.785153i \(-0.712584\pi\)
−0.619302 + 0.785153i \(0.712584\pi\)
\(948\) 0 0
\(949\) 10.2810 0.333735
\(950\) 0 0
\(951\) 29.2128 0.947290
\(952\) 0 0
\(953\) 28.7368 0.930877 0.465439 0.885080i \(-0.345897\pi\)
0.465439 + 0.885080i \(0.345897\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.44738 0.0791124
\(958\) 0 0
\(959\) −55.6040 −1.79555
\(960\) 0 0
\(961\) 0.271628 0.00876221
\(962\) 0 0
\(963\) 21.9275 0.706604
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 29.0593 0.934485 0.467242 0.884129i \(-0.345248\pi\)
0.467242 + 0.884129i \(0.345248\pi\)
\(968\) 0 0
\(969\) 18.6637 0.599565
\(970\) 0 0
\(971\) 39.8578 1.27910 0.639548 0.768751i \(-0.279121\pi\)
0.639548 + 0.768751i \(0.279121\pi\)
\(972\) 0 0
\(973\) 55.4291 1.77698
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 12.8617 0.411483 0.205742 0.978606i \(-0.434039\pi\)
0.205742 + 0.978606i \(0.434039\pi\)
\(978\) 0 0
\(979\) 1.20294 0.0384463
\(980\) 0 0
\(981\) 21.4233 0.683993
\(982\) 0 0
\(983\) 45.4880 1.45084 0.725420 0.688306i \(-0.241645\pi\)
0.725420 + 0.688306i \(0.241645\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −4.17484 −0.132887
\(988\) 0 0
\(989\) 29.8306 0.948557
\(990\) 0 0
\(991\) −8.07007 −0.256354 −0.128177 0.991751i \(-0.540913\pi\)
−0.128177 + 0.991751i \(0.540913\pi\)
\(992\) 0 0
\(993\) 10.8243 0.343497
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 32.8158 1.03929 0.519643 0.854383i \(-0.326065\pi\)
0.519643 + 0.854383i \(0.326065\pi\)
\(998\) 0 0
\(999\) 12.8029 0.405065
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5200.2.a.cb.1.2 3
4.3 odd 2 325.2.a.k.1.1 3
5.2 odd 4 1040.2.d.c.209.5 6
5.3 odd 4 1040.2.d.c.209.2 6
5.4 even 2 5200.2.a.cj.1.2 3
12.11 even 2 2925.2.a.bf.1.3 3
20.3 even 4 65.2.b.a.14.4 yes 6
20.7 even 4 65.2.b.a.14.3 6
20.19 odd 2 325.2.a.j.1.3 3
52.51 odd 2 4225.2.a.ba.1.3 3
60.23 odd 4 585.2.c.b.469.3 6
60.47 odd 4 585.2.c.b.469.4 6
60.59 even 2 2925.2.a.bj.1.1 3
260.3 even 12 845.2.n.f.529.3 12
260.7 odd 12 845.2.l.e.699.1 12
260.23 even 12 845.2.n.g.529.4 12
260.43 even 12 845.2.n.g.484.3 12
260.47 odd 4 845.2.d.a.844.5 6
260.63 odd 12 845.2.l.d.654.5 12
260.67 odd 12 845.2.l.d.654.6 12
260.83 odd 4 845.2.d.a.844.6 6
260.87 even 12 845.2.n.f.484.3 12
260.103 even 4 845.2.b.c.339.3 6
260.107 even 12 845.2.n.f.529.4 12
260.123 odd 12 845.2.l.e.699.2 12
260.127 even 12 845.2.n.g.529.3 12
260.147 even 12 845.2.n.g.484.4 12
260.163 odd 12 845.2.l.d.699.6 12
260.167 odd 12 845.2.l.e.654.2 12
260.187 odd 4 845.2.d.b.844.1 6
260.203 odd 4 845.2.d.b.844.2 6
260.207 even 4 845.2.b.c.339.4 6
260.223 odd 12 845.2.l.e.654.1 12
260.227 odd 12 845.2.l.d.699.5 12
260.243 even 12 845.2.n.f.484.4 12
260.259 odd 2 4225.2.a.bh.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.3 6 20.7 even 4
65.2.b.a.14.4 yes 6 20.3 even 4
325.2.a.j.1.3 3 20.19 odd 2
325.2.a.k.1.1 3 4.3 odd 2
585.2.c.b.469.3 6 60.23 odd 4
585.2.c.b.469.4 6 60.47 odd 4
845.2.b.c.339.3 6 260.103 even 4
845.2.b.c.339.4 6 260.207 even 4
845.2.d.a.844.5 6 260.47 odd 4
845.2.d.a.844.6 6 260.83 odd 4
845.2.d.b.844.1 6 260.187 odd 4
845.2.d.b.844.2 6 260.203 odd 4
845.2.l.d.654.5 12 260.63 odd 12
845.2.l.d.654.6 12 260.67 odd 12
845.2.l.d.699.5 12 260.227 odd 12
845.2.l.d.699.6 12 260.163 odd 12
845.2.l.e.654.1 12 260.223 odd 12
845.2.l.e.654.2 12 260.167 odd 12
845.2.l.e.699.1 12 260.7 odd 12
845.2.l.e.699.2 12 260.123 odd 12
845.2.n.f.484.3 12 260.87 even 12
845.2.n.f.484.4 12 260.243 even 12
845.2.n.f.529.3 12 260.3 even 12
845.2.n.f.529.4 12 260.107 even 12
845.2.n.g.484.3 12 260.43 even 12
845.2.n.g.484.4 12 260.147 even 12
845.2.n.g.529.3 12 260.127 even 12
845.2.n.g.529.4 12 260.23 even 12
1040.2.d.c.209.2 6 5.3 odd 4
1040.2.d.c.209.5 6 5.2 odd 4
2925.2.a.bf.1.3 3 12.11 even 2
2925.2.a.bj.1.1 3 60.59 even 2
4225.2.a.ba.1.3 3 52.51 odd 2
4225.2.a.bh.1.1 3 260.259 odd 2
5200.2.a.cb.1.2 3 1.1 even 1 trivial
5200.2.a.cj.1.2 3 5.4 even 2