Properties

Label 845.2.d.a.844.6
Level $845$
Weight $2$
Character 845.844
Analytic conductor $6.747$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [845,2,Mod(844,845)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(845, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("845.844");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 845 = 5 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 845.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.74735897080\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 844.6
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 845.844
Dual form 845.2.d.a.844.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.21432 q^{2} +1.31111i q^{3} -0.525428 q^{4} +(-0.311108 + 2.21432i) q^{5} +1.59210i q^{6} +2.90321 q^{7} -3.06668 q^{8} +1.28100 q^{9} +(-0.377784 + 2.68889i) q^{10} +0.214320i q^{11} -0.688892i q^{12} +3.52543 q^{14} +(-2.90321 - 0.407896i) q^{15} -2.67307 q^{16} +6.42864i q^{17} +1.55554 q^{18} +2.21432i q^{19} +(0.163465 - 1.16346i) q^{20} +3.80642i q^{21} +0.260253i q^{22} -4.68889i q^{23} -4.02074i q^{24} +(-4.80642 - 1.37778i) q^{25} +5.61285i q^{27} -1.52543 q^{28} -8.70964 q^{29} +(-3.52543 - 0.495316i) q^{30} +5.59210i q^{31} +2.88739 q^{32} -0.280996 q^{33} +7.80642i q^{34} +(-0.903212 + 6.42864i) q^{35} -0.673071 q^{36} +2.28100 q^{37} +2.68889i q^{38} +(0.954067 - 6.79060i) q^{40} -3.05086i q^{41} +4.62222i q^{42} -6.36196i q^{43} -0.112610i q^{44} +(-0.398528 + 2.83654i) q^{45} -5.69381i q^{46} +1.09679 q^{47} -3.50468i q^{48} +1.42864 q^{49} +(-5.83654 - 1.67307i) q^{50} -8.42864 q^{51} -6.23506i q^{53} +6.81579i q^{54} +(-0.474572 - 0.0666765i) q^{55} -8.90321 q^{56} -2.90321 q^{57} -10.5763 q^{58} +9.26517i q^{59} +(1.52543 + 0.214320i) q^{60} -0.280996 q^{61} +6.79060i q^{62} +3.71900 q^{63} +8.85236 q^{64} -0.341219 q^{66} +7.76049 q^{67} -3.37778i q^{68} +6.14764 q^{69} +(-1.09679 + 7.80642i) q^{70} +6.08097i q^{71} -3.92840 q^{72} +10.2810 q^{73} +2.76986 q^{74} +(1.80642 - 6.30174i) q^{75} -1.16346i q^{76} +0.622216i q^{77} +14.2351 q^{79} +(0.831613 - 5.91903i) q^{80} -3.51606 q^{81} -3.70471i q^{82} +9.52543 q^{83} -2.00000i q^{84} +(-14.2351 - 2.00000i) q^{85} -7.72546i q^{86} -11.4193i q^{87} -0.657249i q^{88} +5.61285i q^{89} +(-0.483940 + 3.44446i) q^{90} +2.46367i q^{92} -7.33185 q^{93} +1.33185 q^{94} +(-4.90321 - 0.688892i) q^{95} +3.78568i q^{96} +18.0415 q^{97} +1.73483 q^{98} +0.274543i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 10 q^{4} - 2 q^{5} + 4 q^{7} - 18 q^{8} - 6 q^{9} - 2 q^{10} + 8 q^{14} - 4 q^{15} + 10 q^{16} + 10 q^{18} + 14 q^{20} - 2 q^{25} + 4 q^{28} - 12 q^{29} - 8 q^{30} - 22 q^{32} + 12 q^{33}+ \cdots + 50 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/845\mathbb{Z}\right)^\times\).

\(n\) \(171\) \(677\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21432 0.858654 0.429327 0.903149i \(-0.358751\pi\)
0.429327 + 0.903149i \(0.358751\pi\)
\(3\) 1.31111i 0.756968i 0.925608 + 0.378484i \(0.123555\pi\)
−0.925608 + 0.378484i \(0.876445\pi\)
\(4\) −0.525428 −0.262714
\(5\) −0.311108 + 2.21432i −0.139132 + 0.990274i
\(6\) 1.59210i 0.649974i
\(7\) 2.90321 1.09731 0.548655 0.836049i \(-0.315140\pi\)
0.548655 + 0.836049i \(0.315140\pi\)
\(8\) −3.06668 −1.08423
\(9\) 1.28100 0.426999
\(10\) −0.377784 + 2.68889i −0.119466 + 0.850302i
\(11\) 0.214320i 0.0646198i 0.999478 + 0.0323099i \(0.0102864\pi\)
−0.999478 + 0.0323099i \(0.989714\pi\)
\(12\) 0.688892i 0.198866i
\(13\) 0 0
\(14\) 3.52543 0.942210
\(15\) −2.90321 0.407896i −0.749606 0.105318i
\(16\) −2.67307 −0.668268
\(17\) 6.42864i 1.55917i 0.626294 + 0.779587i \(0.284571\pi\)
−0.626294 + 0.779587i \(0.715429\pi\)
\(18\) 1.55554 0.366644
\(19\) 2.21432i 0.508000i 0.967204 + 0.254000i \(0.0817463\pi\)
−0.967204 + 0.254000i \(0.918254\pi\)
\(20\) 0.163465 1.16346i 0.0365518 0.260159i
\(21\) 3.80642i 0.830630i
\(22\) 0.260253i 0.0554861i
\(23\) 4.68889i 0.977702i −0.872367 0.488851i \(-0.837416\pi\)
0.872367 0.488851i \(-0.162584\pi\)
\(24\) 4.02074i 0.820731i
\(25\) −4.80642 1.37778i −0.961285 0.275557i
\(26\) 0 0
\(27\) 5.61285i 1.08019i
\(28\) −1.52543 −0.288279
\(29\) −8.70964 −1.61734 −0.808669 0.588263i \(-0.799812\pi\)
−0.808669 + 0.588263i \(0.799812\pi\)
\(30\) −3.52543 0.495316i −0.643652 0.0904319i
\(31\) 5.59210i 1.00437i 0.864760 + 0.502186i \(0.167471\pi\)
−0.864760 + 0.502186i \(0.832529\pi\)
\(32\) 2.88739 0.510423
\(33\) −0.280996 −0.0489152
\(34\) 7.80642i 1.33879i
\(35\) −0.903212 + 6.42864i −0.152671 + 1.08664i
\(36\) −0.673071 −0.112178
\(37\) 2.28100 0.374993 0.187497 0.982265i \(-0.439963\pi\)
0.187497 + 0.982265i \(0.439963\pi\)
\(38\) 2.68889i 0.436196i
\(39\) 0 0
\(40\) 0.954067 6.79060i 0.150851 1.07369i
\(41\) 3.05086i 0.476464i −0.971208 0.238232i \(-0.923432\pi\)
0.971208 0.238232i \(-0.0765678\pi\)
\(42\) 4.62222i 0.713223i
\(43\) 6.36196i 0.970190i −0.874461 0.485095i \(-0.838785\pi\)
0.874461 0.485095i \(-0.161215\pi\)
\(44\) 0.112610i 0.0169765i
\(45\) −0.398528 + 2.83654i −0.0594090 + 0.422846i
\(46\) 5.69381i 0.839507i
\(47\) 1.09679 0.159983 0.0799915 0.996796i \(-0.474511\pi\)
0.0799915 + 0.996796i \(0.474511\pi\)
\(48\) 3.50468i 0.505858i
\(49\) 1.42864 0.204091
\(50\) −5.83654 1.67307i −0.825411 0.236608i
\(51\) −8.42864 −1.18025
\(52\) 0 0
\(53\) 6.23506i 0.856452i −0.903672 0.428226i \(-0.859139\pi\)
0.903672 0.428226i \(-0.140861\pi\)
\(54\) 6.81579i 0.927512i
\(55\) −0.474572 0.0666765i −0.0639913 0.00899066i
\(56\) −8.90321 −1.18974
\(57\) −2.90321 −0.384540
\(58\) −10.5763 −1.38873
\(59\) 9.26517i 1.20622i 0.797657 + 0.603112i \(0.206073\pi\)
−0.797657 + 0.603112i \(0.793927\pi\)
\(60\) 1.52543 + 0.214320i 0.196932 + 0.0276686i
\(61\) −0.280996 −0.0359779 −0.0179889 0.999838i \(-0.505726\pi\)
−0.0179889 + 0.999838i \(0.505726\pi\)
\(62\) 6.79060i 0.862407i
\(63\) 3.71900 0.468550
\(64\) 8.85236 1.10654
\(65\) 0 0
\(66\) −0.341219 −0.0420012
\(67\) 7.76049 0.948095 0.474047 0.880499i \(-0.342793\pi\)
0.474047 + 0.880499i \(0.342793\pi\)
\(68\) 3.37778i 0.409617i
\(69\) 6.14764 0.740089
\(70\) −1.09679 + 7.80642i −0.131091 + 0.933046i
\(71\) 6.08097i 0.721678i 0.932628 + 0.360839i \(0.117510\pi\)
−0.932628 + 0.360839i \(0.882490\pi\)
\(72\) −3.92840 −0.462967
\(73\) 10.2810 1.20330 0.601650 0.798760i \(-0.294510\pi\)
0.601650 + 0.798760i \(0.294510\pi\)
\(74\) 2.76986 0.321990
\(75\) 1.80642 6.30174i 0.208588 0.727662i
\(76\) 1.16346i 0.133459i
\(77\) 0.622216i 0.0709081i
\(78\) 0 0
\(79\) 14.2351 1.60157 0.800785 0.598952i \(-0.204416\pi\)
0.800785 + 0.598952i \(0.204416\pi\)
\(80\) 0.831613 5.91903i 0.0929772 0.661768i
\(81\) −3.51606 −0.390673
\(82\) 3.70471i 0.409117i
\(83\) 9.52543 1.04555 0.522776 0.852470i \(-0.324897\pi\)
0.522776 + 0.852470i \(0.324897\pi\)
\(84\) 2.00000i 0.218218i
\(85\) −14.2351 2.00000i −1.54401 0.216930i
\(86\) 7.72546i 0.833057i
\(87\) 11.4193i 1.22427i
\(88\) 0.657249i 0.0700630i
\(89\) 5.61285i 0.594961i 0.954728 + 0.297480i \(0.0961463\pi\)
−0.954728 + 0.297480i \(0.903854\pi\)
\(90\) −0.483940 + 3.44446i −0.0510118 + 0.363078i
\(91\) 0 0
\(92\) 2.46367i 0.256856i
\(93\) −7.33185 −0.760278
\(94\) 1.33185 0.137370
\(95\) −4.90321 0.688892i −0.503059 0.0706788i
\(96\) 3.78568i 0.386374i
\(97\) 18.0415 1.83184 0.915918 0.401366i \(-0.131464\pi\)
0.915918 + 0.401366i \(0.131464\pi\)
\(98\) 1.73483 0.175244
\(99\) 0.274543i 0.0275926i
\(100\) 2.52543 + 0.723926i 0.252543 + 0.0723926i
\(101\) −3.93978 −0.392022 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(102\) −10.2351 −1.01342
\(103\) 2.82225i 0.278084i −0.990286 0.139042i \(-0.955598\pi\)
0.990286 0.139042i \(-0.0444023\pi\)
\(104\) 0 0
\(105\) −8.42864 1.18421i −0.822551 0.115567i
\(106\) 7.57136i 0.735396i
\(107\) 17.1175i 1.65481i −0.561603 0.827407i \(-0.689815\pi\)
0.561603 0.827407i \(-0.310185\pi\)
\(108\) 2.94914i 0.283782i
\(109\) 16.7239i 1.60186i −0.598757 0.800931i \(-0.704338\pi\)
0.598757 0.800931i \(-0.295662\pi\)
\(110\) −0.576283 0.0809666i −0.0549464 0.00771987i
\(111\) 2.99063i 0.283858i
\(112\) −7.76049 −0.733297
\(113\) 1.18421i 0.111401i 0.998448 + 0.0557005i \(0.0177392\pi\)
−0.998448 + 0.0557005i \(0.982261\pi\)
\(114\) −3.52543 −0.330187
\(115\) 10.3827 + 1.45875i 0.968192 + 0.136029i
\(116\) 4.57628 0.424897
\(117\) 0 0
\(118\) 11.2509i 1.03573i
\(119\) 18.6637i 1.71090i
\(120\) 8.90321 + 1.25088i 0.812748 + 0.114190i
\(121\) 10.9541 0.995824
\(122\) −0.341219 −0.0308925
\(123\) 4.00000 0.360668
\(124\) 2.93825i 0.263862i
\(125\) 4.54617 10.2143i 0.406622 0.913597i
\(126\) 4.51606 0.402323
\(127\) 2.30174i 0.204246i 0.994772 + 0.102123i \(0.0325636\pi\)
−0.994772 + 0.102123i \(0.967436\pi\)
\(128\) 4.97481 0.439715
\(129\) 8.34122 0.734403
\(130\) 0 0
\(131\) −13.4193 −1.17245 −0.586224 0.810149i \(-0.699386\pi\)
−0.586224 + 0.810149i \(0.699386\pi\)
\(132\) 0.147643 0.0128507
\(133\) 6.42864i 0.557434i
\(134\) 9.42372 0.814085
\(135\) −12.4286 1.74620i −1.06969 0.150289i
\(136\) 19.7146i 1.69051i
\(137\) 19.1526 1.63631 0.818157 0.574995i \(-0.194996\pi\)
0.818157 + 0.574995i \(0.194996\pi\)
\(138\) 7.46520 0.635480
\(139\) −19.0923 −1.61939 −0.809696 0.586850i \(-0.800368\pi\)
−0.809696 + 0.586850i \(0.800368\pi\)
\(140\) 0.474572 3.37778i 0.0401087 0.285475i
\(141\) 1.43801i 0.121102i
\(142\) 7.38424i 0.619671i
\(143\) 0 0
\(144\) −3.42419 −0.285349
\(145\) 2.70964 19.2859i 0.225023 1.60161i
\(146\) 12.4844 1.03322
\(147\) 1.87310i 0.154491i
\(148\) −1.19850 −0.0985160
\(149\) 3.57136i 0.292577i −0.989242 0.146289i \(-0.953267\pi\)
0.989242 0.146289i \(-0.0467328\pi\)
\(150\) 2.19358 7.65233i 0.179105 0.624810i
\(151\) 1.26517i 0.102958i −0.998674 0.0514792i \(-0.983606\pi\)
0.998674 0.0514792i \(-0.0163936\pi\)
\(152\) 6.79060i 0.550791i
\(153\) 8.23506i 0.665765i
\(154\) 0.755569i 0.0608855i
\(155\) −12.3827 1.73975i −0.994603 0.139740i
\(156\) 0 0
\(157\) 5.61285i 0.447954i 0.974594 + 0.223977i \(0.0719041\pi\)
−0.974594 + 0.223977i \(0.928096\pi\)
\(158\) 17.2859 1.37519
\(159\) 8.17484 0.648307
\(160\) −0.898290 + 6.39361i −0.0710160 + 0.505459i
\(161\) 13.6128i 1.07284i
\(162\) −4.26962 −0.335453
\(163\) −3.71900 −0.291295 −0.145647 0.989337i \(-0.546527\pi\)
−0.145647 + 0.989337i \(0.546527\pi\)
\(164\) 1.60300i 0.125174i
\(165\) 0.0874201 0.622216i 0.00680565 0.0484394i
\(166\) 11.5669 0.897767
\(167\) −7.03657 −0.544506 −0.272253 0.962226i \(-0.587769\pi\)
−0.272253 + 0.962226i \(0.587769\pi\)
\(168\) 11.6731i 0.900597i
\(169\) 0 0
\(170\) −17.2859 2.42864i −1.32577 0.186268i
\(171\) 2.83654i 0.216915i
\(172\) 3.34275i 0.254882i
\(173\) 0.723926i 0.0550391i −0.999621 0.0275195i \(-0.991239\pi\)
0.999621 0.0275195i \(-0.00876085\pi\)
\(174\) 13.8666i 1.05123i
\(175\) −13.9541 4.00000i −1.05483 0.302372i
\(176\) 0.572892i 0.0431833i
\(177\) −12.1476 −0.913073
\(178\) 6.81579i 0.510865i
\(179\) −4.04149 −0.302075 −0.151037 0.988528i \(-0.548261\pi\)
−0.151037 + 0.988528i \(0.548261\pi\)
\(180\) 0.209398 1.49039i 0.0156076 0.111087i
\(181\) −2.34122 −0.174021 −0.0870107 0.996207i \(-0.527731\pi\)
−0.0870107 + 0.996207i \(0.527731\pi\)
\(182\) 0 0
\(183\) 0.368416i 0.0272341i
\(184\) 14.3793i 1.06006i
\(185\) −0.709636 + 5.05086i −0.0521735 + 0.371346i
\(186\) −8.90321 −0.652815
\(187\) −1.37778 −0.100754
\(188\) −0.576283 −0.0420297
\(189\) 16.2953i 1.18531i
\(190\) −5.95407 0.836535i −0.431953 0.0606887i
\(191\) −2.10171 −0.152074 −0.0760372 0.997105i \(-0.524227\pi\)
−0.0760372 + 0.997105i \(0.524227\pi\)
\(192\) 11.6064i 0.837619i
\(193\) −13.5210 −0.973262 −0.486631 0.873608i \(-0.661774\pi\)
−0.486631 + 0.873608i \(0.661774\pi\)
\(194\) 21.9081 1.57291
\(195\) 0 0
\(196\) −0.750647 −0.0536176
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0.333383i 0.0236925i
\(199\) 22.1432 1.56969 0.784845 0.619692i \(-0.212743\pi\)
0.784845 + 0.619692i \(0.212743\pi\)
\(200\) 14.7397 + 4.22522i 1.04226 + 0.298768i
\(201\) 10.1748i 0.717678i
\(202\) −4.78415 −0.336612
\(203\) −25.2859 −1.77472
\(204\) 4.42864 0.310067
\(205\) 6.75557 + 0.949145i 0.471829 + 0.0662912i
\(206\) 3.42711i 0.238778i
\(207\) 6.00645i 0.417477i
\(208\) 0 0
\(209\) −0.474572 −0.0328269
\(210\) −10.2351 1.43801i −0.706286 0.0992319i
\(211\) 19.6543 1.35306 0.676530 0.736415i \(-0.263483\pi\)
0.676530 + 0.736415i \(0.263483\pi\)
\(212\) 3.27607i 0.225002i
\(213\) −7.97280 −0.546287
\(214\) 20.7862i 1.42091i
\(215\) 14.0874 + 1.97926i 0.960754 + 0.134984i
\(216\) 17.2128i 1.17118i
\(217\) 16.2351i 1.10211i
\(218\) 20.3082i 1.37544i
\(219\) 13.4795i 0.910860i
\(220\) 0.249353 + 0.0350337i 0.0168114 + 0.00236197i
\(221\) 0 0
\(222\) 3.63158i 0.243736i
\(223\) −19.6686 −1.31711 −0.658554 0.752533i \(-0.728832\pi\)
−0.658554 + 0.752533i \(0.728832\pi\)
\(224\) 8.38271 0.560093
\(225\) −6.15701 1.76494i −0.410467 0.117662i
\(226\) 1.43801i 0.0956548i
\(227\) −13.2716 −0.880869 −0.440434 0.897785i \(-0.645176\pi\)
−0.440434 + 0.897785i \(0.645176\pi\)
\(228\) 1.52543 0.101024
\(229\) 2.42864i 0.160489i 0.996775 + 0.0802445i \(0.0255701\pi\)
−0.996775 + 0.0802445i \(0.974430\pi\)
\(230\) 12.6079 + 1.77139i 0.831342 + 0.116802i
\(231\) −0.815792 −0.0536752
\(232\) 26.7096 1.75357
\(233\) 16.1748i 1.05965i 0.848107 + 0.529825i \(0.177742\pi\)
−0.848107 + 0.529825i \(0.822258\pi\)
\(234\) 0 0
\(235\) −0.341219 + 2.42864i −0.0222587 + 0.158427i
\(236\) 4.86818i 0.316891i
\(237\) 18.6637i 1.21234i
\(238\) 22.6637i 1.46907i
\(239\) 12.7763i 0.826431i −0.910633 0.413215i \(-0.864406\pi\)
0.910633 0.413215i \(-0.135594\pi\)
\(240\) 7.76049 + 1.09033i 0.500938 + 0.0703808i
\(241\) 5.89829i 0.379942i −0.981790 0.189971i \(-0.939161\pi\)
0.981790 0.189971i \(-0.0608394\pi\)
\(242\) 13.3017 0.855068
\(243\) 12.2286i 0.784466i
\(244\) 0.147643 0.00945189
\(245\) −0.444461 + 3.16346i −0.0283956 + 0.202106i
\(246\) 4.85728 0.309689
\(247\) 0 0
\(248\) 17.1492i 1.08897i
\(249\) 12.4889i 0.791450i
\(250\) 5.52051 12.4035i 0.349147 0.784463i
\(251\) 2.07313 0.130855 0.0654274 0.997857i \(-0.479159\pi\)
0.0654274 + 0.997857i \(0.479159\pi\)
\(252\) −1.95407 −0.123095
\(253\) 1.00492 0.0631789
\(254\) 2.79505i 0.175377i
\(255\) 2.62222 18.6637i 0.164210 1.16877i
\(256\) −11.6637 −0.728981
\(257\) 18.3970i 1.14757i −0.819005 0.573787i \(-0.805474\pi\)
0.819005 0.573787i \(-0.194526\pi\)
\(258\) 10.1289 0.630598
\(259\) 6.62222 0.411484
\(260\) 0 0
\(261\) −11.1570 −0.690602
\(262\) −16.2953 −1.00673
\(263\) 11.0257i 0.679872i −0.940449 0.339936i \(-0.889595\pi\)
0.940449 0.339936i \(-0.110405\pi\)
\(264\) 0.861725 0.0530355
\(265\) 13.8064 + 1.93978i 0.848122 + 0.119160i
\(266\) 7.80642i 0.478643i
\(267\) −7.35905 −0.450366
\(268\) −4.07758 −0.249078
\(269\) 16.1432 0.984268 0.492134 0.870519i \(-0.336217\pi\)
0.492134 + 0.870519i \(0.336217\pi\)
\(270\) −15.0923 2.12045i −0.918491 0.129046i
\(271\) 13.0114i 0.790385i 0.918598 + 0.395192i \(0.129322\pi\)
−0.918598 + 0.395192i \(0.870678\pi\)
\(272\) 17.1842i 1.04195i
\(273\) 0 0
\(274\) 23.2573 1.40503
\(275\) 0.295286 1.03011i 0.0178064 0.0621181i
\(276\) −3.23014 −0.194432
\(277\) 7.57136i 0.454919i −0.973788 0.227459i \(-0.926958\pi\)
0.973788 0.227459i \(-0.0730419\pi\)
\(278\) −23.1842 −1.39050
\(279\) 7.16346i 0.428865i
\(280\) 2.76986 19.7146i 0.165531 1.17817i
\(281\) 6.75557i 0.403003i 0.979488 + 0.201502i \(0.0645822\pi\)
−0.979488 + 0.201502i \(0.935418\pi\)
\(282\) 1.74620i 0.103985i
\(283\) 19.0859i 1.13454i 0.823532 + 0.567269i \(0.192000\pi\)
−0.823532 + 0.567269i \(0.808000\pi\)
\(284\) 3.19511i 0.189595i
\(285\) 0.903212 6.42864i 0.0535017 0.380800i
\(286\) 0 0
\(287\) 8.85728i 0.522829i
\(288\) 3.69874 0.217950
\(289\) −24.3274 −1.43102
\(290\) 3.29036 23.4193i 0.193217 1.37523i
\(291\) 23.6543i 1.38664i
\(292\) −5.40192 −0.316123
\(293\) −8.08742 −0.472472 −0.236236 0.971696i \(-0.575914\pi\)
−0.236236 + 0.971696i \(0.575914\pi\)
\(294\) 2.27454i 0.132654i
\(295\) −20.5161 2.88247i −1.19449 0.167824i
\(296\) −6.99508 −0.406581
\(297\) −1.20294 −0.0698019
\(298\) 4.33677i 0.251223i
\(299\) 0 0
\(300\) −0.949145 + 3.31111i −0.0547989 + 0.191167i
\(301\) 18.4701i 1.06460i
\(302\) 1.53633i 0.0884057i
\(303\) 5.16547i 0.296749i
\(304\) 5.91903i 0.339480i
\(305\) 0.0874201 0.622216i 0.00500566 0.0356280i
\(306\) 10.0000i 0.571662i
\(307\) 13.4336 0.766694 0.383347 0.923604i \(-0.374771\pi\)
0.383347 + 0.923604i \(0.374771\pi\)
\(308\) 0.326929i 0.0186285i
\(309\) 3.70027 0.210501
\(310\) −15.0366 2.11261i −0.854020 0.119988i
\(311\) −20.2034 −1.14563 −0.572815 0.819684i \(-0.694149\pi\)
−0.572815 + 0.819684i \(0.694149\pi\)
\(312\) 0 0
\(313\) 15.1111i 0.854129i −0.904221 0.427064i \(-0.859548\pi\)
0.904221 0.427064i \(-0.140452\pi\)
\(314\) 6.81579i 0.384637i
\(315\) −1.15701 + 8.23506i −0.0651902 + 0.463993i
\(316\) −7.47949 −0.420754
\(317\) 22.2810 1.25143 0.625713 0.780054i \(-0.284808\pi\)
0.625713 + 0.780054i \(0.284808\pi\)
\(318\) 9.92687 0.556671
\(319\) 1.86665i 0.104512i
\(320\) −2.75404 + 19.6019i −0.153955 + 1.09578i
\(321\) 22.4429 1.25264
\(322\) 16.5303i 0.921200i
\(323\) −14.2351 −0.792060
\(324\) 1.84743 0.102635
\(325\) 0 0
\(326\) −4.51606 −0.250121
\(327\) 21.9269 1.21256
\(328\) 9.35599i 0.516598i
\(329\) 3.18421 0.175551
\(330\) 0.106156 0.755569i 0.00584370 0.0415927i
\(331\) 8.25581i 0.453780i −0.973920 0.226890i \(-0.927144\pi\)
0.973920 0.226890i \(-0.0728558\pi\)
\(332\) −5.00492 −0.274681
\(333\) 2.92195 0.160122
\(334\) −8.54464 −0.467542
\(335\) −2.41435 + 17.1842i −0.131910 + 0.938874i
\(336\) 10.1748i 0.555083i
\(337\) 13.7462i 0.748803i 0.927267 + 0.374402i \(0.122152\pi\)
−0.927267 + 0.374402i \(0.877848\pi\)
\(338\) 0 0
\(339\) −1.55262 −0.0843270
\(340\) 7.47949 + 1.05086i 0.405633 + 0.0569906i
\(341\) −1.19850 −0.0649023
\(342\) 3.44446i 0.186255i
\(343\) −16.1748 −0.873359
\(344\) 19.5101i 1.05191i
\(345\) −1.91258 + 13.6128i −0.102970 + 0.732891i
\(346\) 0.879077i 0.0472595i
\(347\) 1.21924i 0.0654523i 0.999464 + 0.0327262i \(0.0104189\pi\)
−0.999464 + 0.0327262i \(0.989581\pi\)
\(348\) 6.00000i 0.321634i
\(349\) 22.5116i 1.20502i −0.798112 0.602510i \(-0.794168\pi\)
0.798112 0.602510i \(-0.205832\pi\)
\(350\) −16.9447 4.85728i −0.905732 0.259632i
\(351\) 0 0
\(352\) 0.618825i 0.0329835i
\(353\) 14.2810 0.760101 0.380050 0.924966i \(-0.375907\pi\)
0.380050 + 0.924966i \(0.375907\pi\)
\(354\) −14.7511 −0.784013
\(355\) −13.4652 1.89184i −0.714659 0.100408i
\(356\) 2.94914i 0.156304i
\(357\) −24.4701 −1.29510
\(358\) −4.90766 −0.259378
\(359\) 12.1541i 0.641469i 0.947169 + 0.320734i \(0.103930\pi\)
−0.947169 + 0.320734i \(0.896070\pi\)
\(360\) 1.22216 8.69874i 0.0644133 0.458464i
\(361\) 14.0968 0.741936
\(362\) −2.84299 −0.149424
\(363\) 14.3620i 0.753808i
\(364\) 0 0
\(365\) −3.19850 + 22.7654i −0.167417 + 1.19160i
\(366\) 0.447375i 0.0233847i
\(367\) 4.65725i 0.243106i −0.992585 0.121553i \(-0.961212\pi\)
0.992585 0.121553i \(-0.0387875\pi\)
\(368\) 12.5337i 0.653366i
\(369\) 3.90813i 0.203449i
\(370\) −0.861725 + 6.13335i −0.0447989 + 0.318858i
\(371\) 18.1017i 0.939794i
\(372\) 3.85236 0.199735
\(373\) 34.9403i 1.80914i −0.426328 0.904569i \(-0.640193\pi\)
0.426328 0.904569i \(-0.359807\pi\)
\(374\) −1.67307 −0.0865124
\(375\) 13.3921 + 5.96052i 0.691564 + 0.307800i
\(376\) −3.36349 −0.173459
\(377\) 0 0
\(378\) 19.7877i 1.01777i
\(379\) 17.4717i 0.897459i −0.893668 0.448729i \(-0.851877\pi\)
0.893668 0.448729i \(-0.148123\pi\)
\(380\) 2.57628 + 0.361963i 0.132161 + 0.0185683i
\(381\) −3.01783 −0.154608
\(382\) −2.55215 −0.130579
\(383\) 18.6780 0.954401 0.477200 0.878794i \(-0.341652\pi\)
0.477200 + 0.878794i \(0.341652\pi\)
\(384\) 6.52251i 0.332851i
\(385\) −1.37778 0.193576i −0.0702184 0.00986555i
\(386\) −16.4188 −0.835695
\(387\) 8.14965i 0.414270i
\(388\) −9.47949 −0.481248
\(389\) 1.61285 0.0817746 0.0408873 0.999164i \(-0.486982\pi\)
0.0408873 + 0.999164i \(0.486982\pi\)
\(390\) 0 0
\(391\) 30.1432 1.52441
\(392\) −4.38118 −0.221283
\(393\) 17.5941i 0.887506i
\(394\) −2.42864 −0.122353
\(395\) −4.42864 + 31.5210i −0.222829 + 1.58599i
\(396\) 0.144252i 0.00724895i
\(397\) −6.57628 −0.330054 −0.165027 0.986289i \(-0.552771\pi\)
−0.165027 + 0.986289i \(0.552771\pi\)
\(398\) 26.8889 1.34782
\(399\) −8.42864 −0.421960
\(400\) 12.8479 + 3.68292i 0.642396 + 0.184146i
\(401\) 21.9081i 1.09404i −0.837120 0.547020i \(-0.815762\pi\)
0.837120 0.547020i \(-0.184238\pi\)
\(402\) 12.3555i 0.616237i
\(403\) 0 0
\(404\) 2.07007 0.102990
\(405\) 1.09387 7.78568i 0.0543550 0.386874i
\(406\) −30.7052 −1.52387
\(407\) 0.488863i 0.0242320i
\(408\) 25.8479 1.27966
\(409\) 10.1936i 0.504040i −0.967722 0.252020i \(-0.918905\pi\)
0.967722 0.252020i \(-0.0810949\pi\)
\(410\) 8.20342 + 1.15257i 0.405138 + 0.0569211i
\(411\) 25.1111i 1.23864i
\(412\) 1.48289i 0.0730565i
\(413\) 26.8988i 1.32360i
\(414\) 7.29376i 0.358469i
\(415\) −2.96343 + 21.0923i −0.145469 + 1.03538i
\(416\) 0 0
\(417\) 25.0321i 1.22583i
\(418\) −0.576283 −0.0281869
\(419\) −7.31756 −0.357486 −0.178743 0.983896i \(-0.557203\pi\)
−0.178743 + 0.983896i \(0.557203\pi\)
\(420\) 4.42864 + 0.622216i 0.216095 + 0.0303610i
\(421\) 7.86665i 0.383397i 0.981454 + 0.191698i \(0.0613996\pi\)
−0.981454 + 0.191698i \(0.938600\pi\)
\(422\) 23.8666 1.16181
\(423\) 1.40498 0.0683125
\(424\) 19.1209i 0.928594i
\(425\) 8.85728 30.8988i 0.429641 1.49881i
\(426\) −9.68153 −0.469072
\(427\) −0.815792 −0.0394789
\(428\) 8.99402i 0.434743i
\(429\) 0 0
\(430\) 17.1066 + 2.40345i 0.824955 + 0.115905i
\(431\) 38.9195i 1.87469i 0.348407 + 0.937343i \(0.386723\pi\)
−0.348407 + 0.937343i \(0.613277\pi\)
\(432\) 15.0035i 0.721858i
\(433\) 20.2034i 0.970914i −0.874260 0.485457i \(-0.838653\pi\)
0.874260 0.485457i \(-0.161347\pi\)
\(434\) 19.7146i 0.946329i
\(435\) 25.2859 + 3.55262i 1.21237 + 0.170335i
\(436\) 8.78721i 0.420831i
\(437\) 10.3827 0.496672
\(438\) 16.3684i 0.782113i
\(439\) 10.8889 0.519700 0.259850 0.965649i \(-0.416327\pi\)
0.259850 + 0.965649i \(0.416327\pi\)
\(440\) 1.45536 + 0.204475i 0.0693816 + 0.00974798i
\(441\) 1.83008 0.0871468
\(442\) 0 0
\(443\) 28.6287i 1.36019i 0.733124 + 0.680095i \(0.238061\pi\)
−0.733124 + 0.680095i \(0.761939\pi\)
\(444\) 1.57136i 0.0745735i
\(445\) −12.4286 1.74620i −0.589174 0.0827779i
\(446\) −23.8840 −1.13094
\(447\) 4.68244 0.221472
\(448\) 25.7003 1.21422
\(449\) 10.9304i 0.515838i 0.966167 + 0.257919i \(0.0830368\pi\)
−0.966167 + 0.257919i \(0.916963\pi\)
\(450\) −7.47658 2.14320i −0.352449 0.101031i
\(451\) 0.653858 0.0307890
\(452\) 0.622216i 0.0292666i
\(453\) 1.65878 0.0779363
\(454\) −16.1160 −0.756361
\(455\) 0 0
\(456\) 8.90321 0.416931
\(457\) −11.4064 −0.533567 −0.266784 0.963756i \(-0.585961\pi\)
−0.266784 + 0.963756i \(0.585961\pi\)
\(458\) 2.94914i 0.137804i
\(459\) −36.0830 −1.68421
\(460\) −5.45536 0.766468i −0.254357 0.0357368i
\(461\) 26.1334i 1.21715i 0.793496 + 0.608576i \(0.208259\pi\)
−0.793496 + 0.608576i \(0.791741\pi\)
\(462\) −0.990632 −0.0460884
\(463\) −7.92242 −0.368186 −0.184093 0.982909i \(-0.558935\pi\)
−0.184093 + 0.982909i \(0.558935\pi\)
\(464\) 23.2815 1.08082
\(465\) 2.28100 16.2351i 0.105779 0.752883i
\(466\) 19.6414i 0.909872i
\(467\) 10.8923i 0.504036i −0.967723 0.252018i \(-0.918906\pi\)
0.967723 0.252018i \(-0.0810942\pi\)
\(468\) 0 0
\(469\) 22.5303 1.04035
\(470\) −0.414349 + 2.94914i −0.0191125 + 0.136034i
\(471\) −7.35905 −0.339087
\(472\) 28.4133i 1.30783i
\(473\) 1.36349 0.0626935
\(474\) 22.6637i 1.04098i
\(475\) 3.05086 10.6430i 0.139983 0.488332i
\(476\) 9.80642i 0.449477i
\(477\) 7.98709i 0.365704i
\(478\) 15.5145i 0.709618i
\(479\) 9.13182i 0.417244i 0.977996 + 0.208622i \(0.0668978\pi\)
−0.977996 + 0.208622i \(0.933102\pi\)
\(480\) −8.38271 1.17775i −0.382616 0.0537569i
\(481\) 0 0
\(482\) 7.16241i 0.326239i
\(483\) 17.8479 0.812108
\(484\) −5.75557 −0.261617
\(485\) −5.61285 + 39.9496i −0.254866 + 1.81402i
\(486\) 14.8494i 0.673584i
\(487\) −16.1891 −0.733600 −0.366800 0.930300i \(-0.619547\pi\)
−0.366800 + 0.930300i \(0.619547\pi\)
\(488\) 0.861725 0.0390084
\(489\) 4.87601i 0.220501i
\(490\) −0.539718 + 3.84146i −0.0243820 + 0.173539i
\(491\) −26.2636 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(492\) −2.10171 −0.0947524
\(493\) 55.9911i 2.52171i
\(494\) 0 0
\(495\) −0.607926 0.0854124i −0.0273242 0.00383900i
\(496\) 14.9481i 0.671189i
\(497\) 17.6543i 0.791905i
\(498\) 15.1655i 0.679581i
\(499\) 30.0306i 1.34435i 0.740391 + 0.672177i \(0.234641\pi\)
−0.740391 + 0.672177i \(0.765359\pi\)
\(500\) −2.38868 + 5.36689i −0.106825 + 0.240014i
\(501\) 9.22570i 0.412174i
\(502\) 2.51744 0.112359
\(503\) 16.7304i 0.745971i 0.927837 + 0.372985i \(0.121666\pi\)
−0.927837 + 0.372985i \(0.878334\pi\)
\(504\) −11.4050 −0.508018
\(505\) 1.22570 8.72393i 0.0545427 0.388210i
\(506\) 1.22030 0.0542488
\(507\) 0 0
\(508\) 1.20940i 0.0536583i
\(509\) 11.9684i 0.530488i −0.964181 0.265244i \(-0.914547\pi\)
0.964181 0.265244i \(-0.0854525\pi\)
\(510\) 3.18421 22.6637i 0.140999 1.00357i
\(511\) 29.8479 1.32039
\(512\) −24.1131 −1.06566
\(513\) −12.4286 −0.548738
\(514\) 22.3398i 0.985368i
\(515\) 6.24935 + 0.878023i 0.275379 + 0.0386903i
\(516\) −4.38271 −0.192938
\(517\) 0.235063i 0.0103381i
\(518\) 8.04149 0.353323
\(519\) 0.949145 0.0416628
\(520\) 0 0
\(521\) 5.75065 0.251940 0.125970 0.992034i \(-0.459796\pi\)
0.125970 + 0.992034i \(0.459796\pi\)
\(522\) −13.5482 −0.592988
\(523\) 20.8035i 0.909674i 0.890575 + 0.454837i \(0.150302\pi\)
−0.890575 + 0.454837i \(0.849698\pi\)
\(524\) 7.05086 0.308018
\(525\) 5.24443 18.2953i 0.228886 0.798472i
\(526\) 13.3887i 0.583774i
\(527\) −35.9496 −1.56599
\(528\) 0.751123 0.0326884
\(529\) 1.01429 0.0440996
\(530\) 16.7654 + 2.35551i 0.728243 + 0.102317i
\(531\) 11.8687i 0.515056i
\(532\) 3.37778i 0.146446i
\(533\) 0 0
\(534\) −8.93624 −0.386709
\(535\) 37.9037 + 5.32540i 1.63872 + 0.230237i
\(536\) −23.7989 −1.02796
\(537\) 5.29883i 0.228661i
\(538\) 19.6030 0.845145
\(539\) 0.306186i 0.0131883i
\(540\) 6.53035 + 0.917502i 0.281022 + 0.0394830i
\(541\) 16.6222i 0.714645i 0.933981 + 0.357322i \(0.116310\pi\)
−0.933981 + 0.357322i \(0.883690\pi\)
\(542\) 15.8000i 0.678667i
\(543\) 3.06959i 0.131729i
\(544\) 18.5620i 0.795839i
\(545\) 37.0321 + 5.20294i 1.58628 + 0.222870i
\(546\) 0 0
\(547\) 29.9748i 1.28163i −0.767695 0.640815i \(-0.778596\pi\)
0.767695 0.640815i \(-0.221404\pi\)
\(548\) −10.0633 −0.429882
\(549\) −0.359955 −0.0153625
\(550\) 0.358572 1.25088i 0.0152896 0.0533379i
\(551\) 19.2859i 0.821608i
\(552\) −18.8528 −0.802430
\(553\) 41.3274 1.75742
\(554\) 9.19405i 0.390618i
\(555\) −6.62222 0.930409i −0.281097 0.0394937i
\(556\) 10.0316 0.425436
\(557\) 5.03657 0.213406 0.106703 0.994291i \(-0.465971\pi\)
0.106703 + 0.994291i \(0.465971\pi\)
\(558\) 8.69874i 0.368247i
\(559\) 0 0
\(560\) 2.41435 17.1842i 0.102025 0.726165i
\(561\) 1.80642i 0.0762673i
\(562\) 8.20342i 0.346040i
\(563\) 2.88247i 0.121482i 0.998154 + 0.0607408i \(0.0193463\pi\)
−0.998154 + 0.0607408i \(0.980654\pi\)
\(564\) 0.755569i 0.0318152i
\(565\) −2.62222 0.368416i −0.110317 0.0154994i
\(566\) 23.1764i 0.974176i
\(567\) −10.2079 −0.428690
\(568\) 18.6484i 0.782468i
\(569\) −4.37286 −0.183320 −0.0916600 0.995790i \(-0.529217\pi\)
−0.0916600 + 0.995790i \(0.529217\pi\)
\(570\) 1.09679 7.80642i 0.0459394 0.326975i
\(571\) 1.58120 0.0661714 0.0330857 0.999453i \(-0.489467\pi\)
0.0330857 + 0.999453i \(0.489467\pi\)
\(572\) 0 0
\(573\) 2.75557i 0.115116i
\(574\) 10.7556i 0.448929i
\(575\) −6.46028 + 22.5368i −0.269412 + 0.939850i
\(576\) 11.3398 0.472493
\(577\) −7.61729 −0.317112 −0.158556 0.987350i \(-0.550684\pi\)
−0.158556 + 0.987350i \(0.550684\pi\)
\(578\) −29.5412 −1.22875
\(579\) 17.7275i 0.736728i
\(580\) −1.42372 + 10.1334i −0.0591166 + 0.420765i
\(581\) 27.6543 1.14730
\(582\) 28.7239i 1.19065i
\(583\) 1.33630 0.0553438
\(584\) −31.5285 −1.30466
\(585\) 0 0
\(586\) −9.82071 −0.405690
\(587\) −46.8243 −1.93264 −0.966322 0.257336i \(-0.917155\pi\)
−0.966322 + 0.257336i \(0.917155\pi\)
\(588\) 0.984179i 0.0405868i
\(589\) −12.3827 −0.510221
\(590\) −24.9131 3.50024i −1.02565 0.144103i
\(591\) 2.62222i 0.107864i
\(592\) −6.09726 −0.250596
\(593\) −15.9398 −0.654568 −0.327284 0.944926i \(-0.606133\pi\)
−0.327284 + 0.944926i \(0.606133\pi\)
\(594\) −1.46076 −0.0599357
\(595\) −41.3274 5.80642i −1.69426 0.238040i
\(596\) 1.87649i 0.0768641i
\(597\) 29.0321i 1.18821i
\(598\) 0 0
\(599\) −18.4889 −0.755434 −0.377717 0.925921i \(-0.623291\pi\)
−0.377717 + 0.925921i \(0.623291\pi\)
\(600\) −5.53972 + 19.3254i −0.226158 + 0.788956i
\(601\) 20.7556 0.846637 0.423319 0.905981i \(-0.360865\pi\)
0.423319 + 0.905981i \(0.360865\pi\)
\(602\) 22.4286i 0.914123i
\(603\) 9.94116 0.404835
\(604\) 0.664758i 0.0270486i
\(605\) −3.40790 + 24.2558i −0.138551 + 0.986139i
\(606\) 6.27254i 0.254804i
\(607\) 36.0765i 1.46430i 0.681143 + 0.732150i \(0.261483\pi\)
−0.681143 + 0.732150i \(0.738517\pi\)
\(608\) 6.39361i 0.259295i
\(609\) 33.1526i 1.34341i
\(610\) 0.106156 0.755569i 0.00429813 0.0305921i
\(611\) 0 0
\(612\) 4.32693i 0.174906i
\(613\) −9.94962 −0.401861 −0.200931 0.979605i \(-0.564397\pi\)
−0.200931 + 0.979605i \(0.564397\pi\)
\(614\) 16.3126 0.658325
\(615\) −1.24443 + 8.85728i −0.0501803 + 0.357160i
\(616\) 1.90813i 0.0768809i
\(617\) 2.09187 0.0842154 0.0421077 0.999113i \(-0.486593\pi\)
0.0421077 + 0.999113i \(0.486593\pi\)
\(618\) 4.49331 0.180747
\(619\) 18.4681i 0.742296i −0.928574 0.371148i \(-0.878964\pi\)
0.928574 0.371148i \(-0.121036\pi\)
\(620\) 6.50622 + 0.914111i 0.261296 + 0.0367116i
\(621\) 26.3180 1.05611
\(622\) −24.5334 −0.983700
\(623\) 16.2953i 0.652857i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) 18.3497i 0.733401i
\(627\) 0.622216i 0.0248489i
\(628\) 2.94914i 0.117684i
\(629\) 14.6637i 0.584680i
\(630\) −1.40498 + 10.0000i −0.0559758 + 0.398410i
\(631\) 38.6657i 1.53926i −0.638492 0.769629i \(-0.720441\pi\)
0.638492 0.769629i \(-0.279559\pi\)
\(632\) −43.6543 −1.73648
\(633\) 25.7690i 1.02422i
\(634\) 27.0563 1.07454
\(635\) −5.09679 0.716089i −0.202260 0.0284171i
\(636\) −4.29529 −0.170319
\(637\) 0 0
\(638\) 2.26671i 0.0897398i
\(639\) 7.78970i 0.308156i
\(640\) −1.54770 + 11.0158i −0.0611783 + 0.435439i
\(641\) −24.5718 −0.970529 −0.485265 0.874367i \(-0.661277\pi\)
−0.485265 + 0.874367i \(0.661277\pi\)
\(642\) 27.2529 1.07559
\(643\) −27.4938 −1.08425 −0.542125 0.840298i \(-0.682380\pi\)
−0.542125 + 0.840298i \(0.682380\pi\)
\(644\) 7.15257i 0.281851i
\(645\) −2.59502 + 18.4701i −0.102179 + 0.727261i
\(646\) −17.2859 −0.680105
\(647\) 13.7812i 0.541796i −0.962608 0.270898i \(-0.912679\pi\)
0.962608 0.270898i \(-0.0873207\pi\)
\(648\) 10.7826 0.423581
\(649\) −1.98571 −0.0779459
\(650\) 0 0
\(651\) −21.2859 −0.834261
\(652\) 1.95407 0.0765272
\(653\) 2.12045i 0.0829795i 0.999139 + 0.0414897i \(0.0132104\pi\)
−0.999139 + 0.0414897i \(0.986790\pi\)
\(654\) 26.6262 1.04117
\(655\) 4.17484 29.7146i 0.163125 1.16104i
\(656\) 8.15515i 0.318405i
\(657\) 13.1699 0.513807
\(658\) 3.86665 0.150738
\(659\) −33.8894 −1.32014 −0.660072 0.751203i \(-0.729474\pi\)
−0.660072 + 0.751203i \(0.729474\pi\)
\(660\) −0.0459330 + 0.326929i −0.00178794 + 0.0127257i
\(661\) 37.3689i 1.45348i −0.686912 0.726741i \(-0.741034\pi\)
0.686912 0.726741i \(-0.258966\pi\)
\(662\) 10.0252i 0.389640i
\(663\) 0 0
\(664\) −29.2114 −1.13362
\(665\) −14.2351 2.00000i −0.552012 0.0775567i
\(666\) 3.54818 0.137489
\(667\) 40.8385i 1.58127i
\(668\) 3.69721 0.143049
\(669\) 25.7877i 0.997010i
\(670\) −2.93179 + 20.8671i −0.113265 + 0.806167i
\(671\) 0.0602231i 0.00232489i
\(672\) 10.9906i 0.423973i
\(673\) 35.4608i 1.36691i −0.729992 0.683456i \(-0.760476\pi\)
0.729992 0.683456i \(-0.239524\pi\)
\(674\) 16.6923i 0.642963i
\(675\) 7.73329 26.9777i 0.297655 1.03837i
\(676\) 0 0
\(677\) 15.3047i 0.588206i 0.955774 + 0.294103i \(0.0950208\pi\)
−0.955774 + 0.294103i \(0.904979\pi\)
\(678\) −1.88538 −0.0724077
\(679\) 52.3783 2.01009
\(680\) 43.6543 + 6.13335i 1.67407 + 0.235203i
\(681\) 17.4005i 0.666790i
\(682\) −1.45536 −0.0557286
\(683\) −13.0968 −0.501135 −0.250567 0.968099i \(-0.580617\pi\)
−0.250567 + 0.968099i \(0.580617\pi\)
\(684\) 1.49039i 0.0569866i
\(685\) −5.95851 + 42.4099i −0.227663 + 1.62040i
\(686\) −19.6414 −0.749913
\(687\) −3.18421 −0.121485
\(688\) 17.0060i 0.648347i
\(689\) 0 0
\(690\) −2.32248 + 16.5303i −0.0884154 + 0.629300i
\(691\) 18.4079i 0.700269i 0.936699 + 0.350135i \(0.113864\pi\)
−0.936699 + 0.350135i \(0.886136\pi\)
\(692\) 0.380371i 0.0144595i
\(693\) 0.797056i 0.0302777i
\(694\) 1.48055i 0.0562009i
\(695\) 5.93978 42.2766i 0.225309 1.60364i
\(696\) 35.0192i 1.32740i
\(697\) 19.6128 0.742890
\(698\) 27.3363i 1.03469i
\(699\) −21.2070 −0.802121
\(700\) 7.33185 + 2.10171i 0.277118 + 0.0794372i
\(701\) 31.3689 1.18479 0.592393 0.805649i \(-0.298183\pi\)
0.592393 + 0.805649i \(0.298183\pi\)
\(702\) 0 0
\(703\) 5.05086i 0.190497i
\(704\) 1.89723i 0.0715047i
\(705\) −3.18421 0.447375i −0.119924 0.0168491i
\(706\) 17.3417 0.652663
\(707\) −11.4380 −0.430171
\(708\) 6.38271 0.239877
\(709\) 9.47949i 0.356010i −0.984030 0.178005i \(-0.943036\pi\)
0.984030 0.178005i \(-0.0569643\pi\)
\(710\) −16.3511 2.29729i −0.613644 0.0862159i
\(711\) 18.2351 0.683868
\(712\) 17.2128i 0.645077i
\(713\) 26.2208 0.981976
\(714\) −29.7146 −1.11204
\(715\) 0 0
\(716\) 2.12351 0.0793592
\(717\) 16.7511 0.625582
\(718\) 14.7590i 0.550799i
\(719\) −29.6227 −1.10474 −0.552370 0.833599i \(-0.686276\pi\)
−0.552370 + 0.833599i \(0.686276\pi\)
\(720\) 1.06529 7.58226i 0.0397011 0.282574i
\(721\) 8.19358i 0.305145i
\(722\) 17.1180 0.637066
\(723\) 7.73329 0.287604
\(724\) 1.23014 0.0457178
\(725\) 41.8622 + 12.0000i 1.55472 + 0.445669i
\(726\) 17.4400i 0.647260i
\(727\) 42.6702i 1.58255i −0.611461 0.791274i \(-0.709418\pi\)
0.611461 0.791274i \(-0.290582\pi\)
\(728\) 0 0
\(729\) −26.5812 −0.984489
\(730\) −3.88400 + 27.6445i −0.143753 + 1.02317i
\(731\) 40.8988 1.51270
\(732\) 0.193576i 0.00715478i
\(733\) −26.0830 −0.963397 −0.481698 0.876337i \(-0.659980\pi\)
−0.481698 + 0.876337i \(0.659980\pi\)
\(734\) 5.65539i 0.208744i
\(735\) −4.14764 0.582736i −0.152988 0.0214945i
\(736\) 13.5387i 0.499042i
\(737\) 1.66323i 0.0612657i
\(738\) 4.74572i 0.174693i
\(739\) 28.2687i 1.03988i 0.854202 + 0.519941i \(0.174046\pi\)
−0.854202 + 0.519941i \(0.825954\pi\)
\(740\) 0.372862 2.65386i 0.0137067 0.0975578i
\(741\) 0 0
\(742\) 21.9813i 0.806958i
\(743\) −20.6681 −0.758241 −0.379120 0.925347i \(-0.623773\pi\)
−0.379120 + 0.925347i \(0.623773\pi\)
\(744\) 22.4844 0.824319
\(745\) 7.90813 + 1.11108i 0.289732 + 0.0407068i
\(746\) 42.4286i 1.55342i
\(747\) 12.2020 0.446449
\(748\) 0.723926 0.0264694
\(749\) 49.6958i 1.81585i
\(750\) 16.2623 + 7.23798i 0.593814 + 0.264294i
\(751\) −2.46028 −0.0897770 −0.0448885 0.998992i \(-0.514293\pi\)
−0.0448885 + 0.998992i \(0.514293\pi\)
\(752\) −2.93179 −0.106911
\(753\) 2.71810i 0.0990530i
\(754\) 0 0
\(755\) 2.80150 + 0.393606i 0.101957 + 0.0143248i
\(756\) 8.56199i 0.311397i
\(757\) 48.6035i 1.76652i −0.468880 0.883262i \(-0.655342\pi\)
0.468880 0.883262i \(-0.344658\pi\)
\(758\) 21.2162i 0.770606i
\(759\) 1.31756i 0.0478244i
\(760\) 15.0366 + 2.11261i 0.545434 + 0.0766324i
\(761\) 13.8252i 0.501162i −0.968096 0.250581i \(-0.919378\pi\)
0.968096 0.250581i \(-0.0806216\pi\)
\(762\) −3.66461 −0.132755
\(763\) 48.5531i 1.75774i
\(764\) 1.10430 0.0399520
\(765\) −18.2351 2.56199i −0.659290 0.0926290i
\(766\) 22.6811 0.819500
\(767\) 0 0
\(768\) 15.2924i 0.551816i
\(769\) 38.9688i 1.40525i −0.711559 0.702626i \(-0.752011\pi\)
0.711559 0.702626i \(-0.247989\pi\)
\(770\) −1.67307 0.235063i −0.0602933 0.00847109i
\(771\) 24.1204 0.868677
\(772\) 7.10430 0.255689
\(773\) 0.445992 0.0160412 0.00802061 0.999968i \(-0.497447\pi\)
0.00802061 + 0.999968i \(0.497447\pi\)
\(774\) 9.89628i 0.355715i
\(775\) 7.70471 26.8780i 0.276761 0.965487i
\(776\) −55.3274 −1.98614
\(777\) 8.68244i 0.311481i
\(778\) 1.95851 0.0702161
\(779\) 6.75557 0.242043
\(780\) 0 0
\(781\) −1.30327 −0.0466347
\(782\) 36.6035 1.30894
\(783\) 48.8859i 1.74704i
\(784\) −3.81885 −0.136388
\(785\) −12.4286 1.74620i −0.443597 0.0623246i
\(786\) 21.3649i 0.762060i
\(787\) 33.9037 1.20854 0.604268 0.796781i \(-0.293466\pi\)
0.604268 + 0.796781i \(0.293466\pi\)
\(788\) 1.05086 0.0374352
\(789\) 14.4558 0.514641
\(790\) −5.37778 + 38.2766i −0.191333 + 1.36182i
\(791\) 3.43801i 0.122241i
\(792\) 0.841934i 0.0299168i
\(793\) 0 0
\(794\) −7.98571 −0.283402
\(795\) −2.54326 + 18.1017i −0.0902000 + 0.642002i
\(796\) −11.6346 −0.412379
\(797\) 10.2953i 0.364678i −0.983236 0.182339i \(-0.941633\pi\)
0.983236 0.182339i \(-0.0583668\pi\)
\(798\) −10.2351 −0.362317
\(799\) 7.05086i 0.249441i
\(800\) −13.8780 3.97820i −0.490662 0.140651i
\(801\) 7.19004i 0.254047i
\(802\) 26.6035i 0.939402i
\(803\) 2.20342i 0.0777570i
\(804\) 5.34614i 0.188544i
\(805\) 30.1432 + 4.23506i 1.06241 + 0.149266i
\(806\) 0 0
\(807\) 21.1655i 0.745060i
\(808\) 12.0820 0.425044
\(809\) −7.94422 −0.279304 −0.139652 0.990201i \(-0.544598\pi\)
−0.139652 + 0.990201i \(0.544598\pi\)
\(810\) 1.32831 9.45431i 0.0466721 0.332190i
\(811\) 8.12245i 0.285218i 0.989779 + 0.142609i \(0.0455491\pi\)
−0.989779 + 0.142609i \(0.954451\pi\)
\(812\) 13.2859 0.466244
\(813\) −17.0593 −0.598296
\(814\) 0.593635i 0.0208069i
\(815\) 1.15701 8.23506i 0.0405283 0.288462i
\(816\) 22.5303 0.788720
\(817\) 14.0874 0.492856
\(818\) 12.3783i 0.432796i
\(819\) 0 0
\(820\) −3.54956 0.498707i −0.123956 0.0174156i
\(821\) 22.2065i 0.775012i 0.921867 + 0.387506i \(0.126663\pi\)
−0.921867 + 0.387506i \(0.873337\pi\)
\(822\) 30.4929i 1.06356i
\(823\) 11.1175i 0.387533i −0.981048 0.193766i \(-0.937930\pi\)
0.981048 0.193766i \(-0.0620704\pi\)
\(824\) 8.65491i 0.301508i
\(825\) 1.35059 + 0.387152i 0.0470214 + 0.0134789i
\(826\) 32.6637i 1.13652i
\(827\) 23.1570 0.805248 0.402624 0.915365i \(-0.368098\pi\)
0.402624 + 0.915365i \(0.368098\pi\)
\(828\) 3.15596i 0.109677i
\(829\) −27.1195 −0.941901 −0.470950 0.882160i \(-0.656089\pi\)
−0.470950 + 0.882160i \(0.656089\pi\)
\(830\) −3.59856 + 25.6128i −0.124908 + 0.889035i
\(831\) 9.92687 0.344359
\(832\) 0 0
\(833\) 9.18421i 0.318214i
\(834\) 30.3970i 1.05256i
\(835\) 2.18913 15.5812i 0.0757580 0.539210i
\(836\) 0.249353 0.00862407
\(837\) −31.3876 −1.08492
\(838\) −8.88586 −0.306957
\(839\) 25.3955i 0.876749i −0.898792 0.438374i \(-0.855554\pi\)
0.898792 0.438374i \(-0.144446\pi\)
\(840\) 25.8479 + 3.63158i 0.891838 + 0.125302i
\(841\) 46.8578 1.61578
\(842\) 9.55262i 0.329205i
\(843\) −8.85728 −0.305061
\(844\) −10.3269 −0.355468
\(845\) 0 0
\(846\) 1.70610 0.0586568
\(847\) 31.8020 1.09273
\(848\) 16.6668i 0.572339i
\(849\) −25.0237 −0.858810
\(850\) 10.7556 37.5210i 0.368913 1.28696i
\(851\) 10.6953i 0.366632i
\(852\) 4.18913 0.143517
\(853\) −25.0651 −0.858214 −0.429107 0.903254i \(-0.641172\pi\)
−0.429107 + 0.903254i \(0.641172\pi\)
\(854\) −0.990632 −0.0338987
\(855\) −6.28100 0.882468i −0.214806 0.0301798i
\(856\) 52.4939i 1.79421i
\(857\) 7.61285i 0.260050i 0.991511 + 0.130025i \(0.0415057\pi\)
−0.991511 + 0.130025i \(0.958494\pi\)
\(858\) 0 0
\(859\) −42.1432 −1.43791 −0.718954 0.695058i \(-0.755379\pi\)
−0.718954 + 0.695058i \(0.755379\pi\)
\(860\) −7.40192 1.03996i −0.252403 0.0354622i
\(861\) 11.6128 0.395765
\(862\) 47.2607i 1.60971i
\(863\) 51.5768 1.75569 0.877847 0.478942i \(-0.158980\pi\)
0.877847 + 0.478942i \(0.158980\pi\)
\(864\) 16.2065i 0.551356i
\(865\) 1.60300 + 0.225219i 0.0545037 + 0.00765768i
\(866\) 24.5334i 0.833679i
\(867\) 31.8959i 1.08324i
\(868\) 8.53035i 0.289539i
\(869\) 3.05086i 0.103493i
\(870\) 30.7052 + 4.31402i 1.04100 + 0.146259i
\(871\) 0 0
\(872\) 51.2869i 1.73679i
\(873\) 23.1111 0.782191
\(874\) 12.6079 0.426469
\(875\) 13.1985 29.6543i 0.446191 1.00250i
\(876\) 7.08250i 0.239295i
\(877\) 34.0701 1.15046 0.575232 0.817990i \(-0.304912\pi\)
0.575232 + 0.817990i \(0.304912\pi\)
\(878\) 13.2226 0.446242
\(879\) 10.6035i 0.357646i
\(880\) 1.26857 + 0.178231i 0.0427633 + 0.00600817i
\(881\) −3.71900 −0.125296 −0.0626482 0.998036i \(-0.519955\pi\)
−0.0626482 + 0.998036i \(0.519955\pi\)
\(882\) 2.22230 0.0748289
\(883\) 42.0163i 1.41396i 0.707233 + 0.706981i \(0.249943\pi\)
−0.707233 + 0.706981i \(0.750057\pi\)
\(884\) 0 0
\(885\) 3.77923 26.8988i 0.127037 0.904192i
\(886\) 34.7644i 1.16793i
\(887\) 40.3116i 1.35353i 0.736199 + 0.676765i \(0.236619\pi\)
−0.736199 + 0.676765i \(0.763381\pi\)
\(888\) 9.17130i 0.307769i
\(889\) 6.68244i 0.224122i
\(890\) −15.0923 2.12045i −0.505896 0.0710775i
\(891\) 0.753561i 0.0252452i
\(892\) 10.3344 0.346023
\(893\) 2.42864i 0.0812713i
\(894\) 5.68598 0.190168
\(895\) 1.25734 8.94914i 0.0420282 0.299137i
\(896\) 14.4429 0.482504
\(897\) 0 0
\(898\) 13.2730i 0.442926i
\(899\) 48.7052i 1.62441i
\(900\) 3.23506 + 0.927346i 0.107835 + 0.0309115i
\(901\) 40.0830 1.33536
\(902\) 0.793993 0.0264371
\(903\) 24.2163 0.805869
\(904\) 3.63158i 0.120785i
\(905\) 0.728372 5.18421i 0.0242119 0.172329i
\(906\) 2.01429 0.0669203
\(907\) 34.8419i 1.15691i 0.815715 + 0.578454i \(0.196344\pi\)
−0.815715 + 0.578454i \(0.803656\pi\)
\(908\) 6.97328 0.231416
\(909\) −5.04684 −0.167393
\(910\) 0 0
\(911\) 23.2672 0.770876 0.385438 0.922734i \(-0.374050\pi\)
0.385438 + 0.922734i \(0.374050\pi\)
\(912\) 7.76049 0.256976
\(913\) 2.04149i 0.0675634i
\(914\) −13.8510 −0.458149
\(915\) 0.815792 + 0.114617i 0.0269692 + 0.00378913i
\(916\) 1.27607i 0.0421627i
\(917\) −38.9590 −1.28654
\(918\) −43.8163 −1.44615
\(919\) 3.22570 0.106406 0.0532029 0.998584i \(-0.483057\pi\)
0.0532029 + 0.998584i \(0.483057\pi\)
\(920\) −31.8404 4.47352i −1.04975 0.147488i
\(921\) 17.6128i 0.580363i
\(922\) 31.7342i 1.04511i
\(923\) 0 0
\(924\) 0.428639 0.0141012
\(925\) −10.9634 3.14272i −0.360476 0.103332i
\(926\) −9.62036 −0.316145
\(927\) 3.61529i 0.118742i
\(928\) −25.1481 −0.825527
\(929\) 39.3461i 1.29091i −0.763800 0.645453i \(-0.776669\pi\)
0.763800 0.645453i \(-0.223331\pi\)
\(930\) 2.76986 19.7146i 0.0908272 0.646466i
\(931\) 3.16346i 0.103678i
\(932\) 8.49871i 0.278384i
\(933\) 26.4889i 0.867206i
\(934\) 13.2268i 0.432792i
\(935\) 0.428639 3.05086i 0.0140180 0.0997736i
\(936\) 0 0
\(937\) 51.6040i 1.68583i 0.538048 + 0.842914i \(0.319162\pi\)
−0.538048 + 0.842914i \(0.680838\pi\)
\(938\) 27.3590 0.893305
\(939\) 19.8123 0.646548
\(940\) 0.179286 1.27607i 0.00584767 0.0416209i
\(941\) 37.5081i 1.22273i −0.791349 0.611364i \(-0.790621\pi\)
0.791349 0.611364i \(-0.209379\pi\)
\(942\) −8.93624 −0.291158
\(943\) −14.3051 −0.465839
\(944\) 24.7665i 0.806080i
\(945\) −36.0830 5.06959i −1.17378 0.164914i
\(946\) 1.65572 0.0538320
\(947\) 38.1160 1.23860 0.619302 0.785153i \(-0.287416\pi\)
0.619302 + 0.785153i \(0.287416\pi\)
\(948\) 9.80642i 0.318498i
\(949\) 0 0
\(950\) 3.70471 12.9240i 0.120197 0.419308i
\(951\) 29.2128i 0.947290i
\(952\) 57.2355i 1.85501i
\(953\) 28.7368i 0.930877i −0.885080 0.465439i \(-0.845897\pi\)
0.885080 0.465439i \(-0.154103\pi\)
\(954\) 9.69888i 0.314013i
\(955\) 0.653858 4.65386i 0.0211584 0.150595i
\(956\) 6.71303i 0.217115i
\(957\) 2.44738 0.0791124
\(958\) 11.0890i 0.358268i
\(959\) 55.6040 1.79555
\(960\) −25.7003 3.61084i −0.829473 0.116539i
\(961\) −0.271628 −0.00876221
\(962\) 0 0
\(963\) 21.9275i 0.706604i
\(964\) 3.09912i 0.0998161i
\(965\) 4.20648 29.9398i 0.135411 0.963796i
\(966\) 21.6731 0.697320
\(967\) 29.0593 0.934485 0.467242 0.884129i \(-0.345248\pi\)
0.467242 + 0.884129i \(0.345248\pi\)
\(968\) −33.5926 −1.07971
\(969\) 18.6637i 0.599565i
\(970\) −6.81579 + 48.5116i −0.218842 + 1.55761i
\(971\) −39.8578 −1.27910 −0.639548 0.768751i \(-0.720879\pi\)
−0.639548 + 0.768751i \(0.720879\pi\)
\(972\) 6.42525i 0.206090i
\(973\) −55.4291 −1.77698
\(974\) −19.6588 −0.629908
\(975\) 0 0
\(976\) 0.751123 0.0240429
\(977\) −12.8617 −0.411483 −0.205742 0.978606i \(-0.565961\pi\)
−0.205742 + 0.978606i \(0.565961\pi\)
\(978\) 5.92104i 0.189334i
\(979\) −1.20294 −0.0384463
\(980\) 0.233532 1.66217i 0.00745991 0.0530961i
\(981\) 21.4233i 0.683993i
\(982\) −31.8925 −1.01773
\(983\) 45.4880 1.45084 0.725420 0.688306i \(-0.241645\pi\)
0.725420 + 0.688306i \(0.241645\pi\)
\(984\) −12.2667 −0.391048
\(985\) 0.622216 4.42864i 0.0198254 0.141108i
\(986\) 67.9911i 2.16528i
\(987\) 4.17484i 0.132887i
\(988\) 0 0
\(989\) −29.8306 −0.948557
\(990\) −0.738216 0.103718i −0.0234620 0.00329637i
\(991\) 8.07007 0.256354 0.128177 0.991751i \(-0.459087\pi\)
0.128177 + 0.991751i \(0.459087\pi\)
\(992\) 16.1466i 0.512655i
\(993\) 10.8243 0.343497
\(994\) 21.4380i 0.679972i
\(995\) −6.88892 + 49.0321i −0.218394 + 1.55442i
\(996\) 6.56199i 0.207925i
\(997\) 32.8158i 1.03929i −0.854383 0.519643i \(-0.826065\pi\)
0.854383 0.519643i \(-0.173935\pi\)
\(998\) 36.4667i 1.15433i
\(999\) 12.8029i 0.405065i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 845.2.d.a.844.6 6
5.4 even 2 845.2.d.b.844.1 6
13.2 odd 12 845.2.n.g.529.4 12
13.3 even 3 845.2.l.e.654.1 12
13.4 even 6 845.2.l.d.699.6 12
13.5 odd 4 845.2.b.c.339.3 6
13.6 odd 12 845.2.n.g.484.3 12
13.7 odd 12 845.2.n.f.484.4 12
13.8 odd 4 65.2.b.a.14.4 yes 6
13.9 even 3 845.2.l.e.699.2 12
13.10 even 6 845.2.l.d.654.5 12
13.11 odd 12 845.2.n.f.529.3 12
13.12 even 2 845.2.d.b.844.2 6
39.8 even 4 585.2.c.b.469.3 6
52.47 even 4 1040.2.d.c.209.2 6
65.4 even 6 845.2.l.e.699.1 12
65.8 even 4 325.2.a.j.1.3 3
65.9 even 6 845.2.l.d.699.5 12
65.18 even 4 4225.2.a.bh.1.1 3
65.19 odd 12 845.2.n.g.484.4 12
65.24 odd 12 845.2.n.f.529.4 12
65.29 even 6 845.2.l.d.654.6 12
65.34 odd 4 65.2.b.a.14.3 6
65.44 odd 4 845.2.b.c.339.4 6
65.47 even 4 325.2.a.k.1.1 3
65.49 even 6 845.2.l.e.654.2 12
65.54 odd 12 845.2.n.g.529.3 12
65.57 even 4 4225.2.a.ba.1.3 3
65.59 odd 12 845.2.n.f.484.3 12
65.64 even 2 inner 845.2.d.a.844.5 6
195.8 odd 4 2925.2.a.bj.1.1 3
195.47 odd 4 2925.2.a.bf.1.3 3
195.164 even 4 585.2.c.b.469.4 6
260.47 odd 4 5200.2.a.cb.1.2 3
260.99 even 4 1040.2.d.c.209.5 6
260.203 odd 4 5200.2.a.cj.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.3 6 65.34 odd 4
65.2.b.a.14.4 yes 6 13.8 odd 4
325.2.a.j.1.3 3 65.8 even 4
325.2.a.k.1.1 3 65.47 even 4
585.2.c.b.469.3 6 39.8 even 4
585.2.c.b.469.4 6 195.164 even 4
845.2.b.c.339.3 6 13.5 odd 4
845.2.b.c.339.4 6 65.44 odd 4
845.2.d.a.844.5 6 65.64 even 2 inner
845.2.d.a.844.6 6 1.1 even 1 trivial
845.2.d.b.844.1 6 5.4 even 2
845.2.d.b.844.2 6 13.12 even 2
845.2.l.d.654.5 12 13.10 even 6
845.2.l.d.654.6 12 65.29 even 6
845.2.l.d.699.5 12 65.9 even 6
845.2.l.d.699.6 12 13.4 even 6
845.2.l.e.654.1 12 13.3 even 3
845.2.l.e.654.2 12 65.49 even 6
845.2.l.e.699.1 12 65.4 even 6
845.2.l.e.699.2 12 13.9 even 3
845.2.n.f.484.3 12 65.59 odd 12
845.2.n.f.484.4 12 13.7 odd 12
845.2.n.f.529.3 12 13.11 odd 12
845.2.n.f.529.4 12 65.24 odd 12
845.2.n.g.484.3 12 13.6 odd 12
845.2.n.g.484.4 12 65.19 odd 12
845.2.n.g.529.3 12 65.54 odd 12
845.2.n.g.529.4 12 13.2 odd 12
1040.2.d.c.209.2 6 52.47 even 4
1040.2.d.c.209.5 6 260.99 even 4
2925.2.a.bf.1.3 3 195.47 odd 4
2925.2.a.bj.1.1 3 195.8 odd 4
4225.2.a.ba.1.3 3 65.57 even 4
4225.2.a.bh.1.1 3 65.18 even 4
5200.2.a.cb.1.2 3 260.47 odd 4
5200.2.a.cj.1.2 3 260.203 odd 4