Properties

Label 585.2.c.b.469.3
Level $585$
Weight $2$
Character 585.469
Analytic conductor $4.671$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [585,2,Mod(469,585)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(585, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("585.469");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 585 = 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 585.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.67124851824\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 65)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.3
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 585.469
Dual form 585.2.c.b.469.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.21432i q^{2} +0.525428 q^{4} +(2.21432 + 0.311108i) q^{5} -2.90321i q^{7} -3.06668i q^{8} +(0.377784 - 2.68889i) q^{10} -0.214320 q^{11} -1.00000i q^{13} -3.52543 q^{14} -2.67307 q^{16} +6.42864i q^{17} -2.21432 q^{19} +(1.16346 + 0.163465i) q^{20} +0.260253i q^{22} -4.68889i q^{23} +(4.80642 + 1.37778i) q^{25} -1.21432 q^{26} -1.52543i q^{28} +8.70964 q^{29} -5.59210 q^{31} -2.88739i q^{32} +7.80642 q^{34} +(0.903212 - 6.42864i) q^{35} -2.28100i q^{37} +2.68889i q^{38} +(0.954067 - 6.79060i) q^{40} -3.05086 q^{41} +6.36196i q^{43} -0.112610 q^{44} -5.69381 q^{46} +1.09679i q^{47} -1.42864 q^{49} +(1.67307 - 5.83654i) q^{50} -0.525428i q^{52} +6.23506i q^{53} +(-0.474572 - 0.0666765i) q^{55} -8.90321 q^{56} -10.5763i q^{58} -9.26517 q^{59} -0.280996 q^{61} +6.79060i q^{62} -8.85236 q^{64} +(0.311108 - 2.21432i) q^{65} +7.76049i q^{67} +3.37778i q^{68} +(-7.80642 - 1.09679i) q^{70} +6.08097 q^{71} -10.2810i q^{73} -2.76986 q^{74} -1.16346 q^{76} +0.622216i q^{77} +14.2351 q^{79} +(-5.91903 - 0.831613i) q^{80} +3.70471i q^{82} -9.52543i q^{83} +(-2.00000 + 14.2351i) q^{85} +7.72546 q^{86} +0.657249i q^{88} -5.61285 q^{89} -2.90321 q^{91} -2.46367i q^{92} +1.33185 q^{94} +(-4.90321 - 0.688892i) q^{95} +18.0415i q^{97} +1.73483i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 10 q^{4} + 2 q^{10} + 12 q^{11} - 8 q^{14} + 10 q^{16} + 20 q^{20} + 2 q^{25} + 6 q^{26} + 12 q^{29} - 20 q^{31} + 20 q^{34} - 8 q^{35} - 34 q^{40} + 8 q^{41} - 40 q^{44} + 32 q^{46} + 18 q^{49} - 16 q^{50}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/585\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\) \(496\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.21432i 0.858654i −0.903149 0.429327i \(-0.858751\pi\)
0.903149 0.429327i \(-0.141249\pi\)
\(3\) 0 0
\(4\) 0.525428 0.262714
\(5\) 2.21432 + 0.311108i 0.990274 + 0.139132i
\(6\) 0 0
\(7\) 2.90321i 1.09731i −0.836049 0.548655i \(-0.815140\pi\)
0.836049 0.548655i \(-0.184860\pi\)
\(8\) 3.06668i 1.08423i
\(9\) 0 0
\(10\) 0.377784 2.68889i 0.119466 0.850302i
\(11\) −0.214320 −0.0646198 −0.0323099 0.999478i \(-0.510286\pi\)
−0.0323099 + 0.999478i \(0.510286\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −3.52543 −0.942210
\(15\) 0 0
\(16\) −2.67307 −0.668268
\(17\) 6.42864i 1.55917i 0.626294 + 0.779587i \(0.284571\pi\)
−0.626294 + 0.779587i \(0.715429\pi\)
\(18\) 0 0
\(19\) −2.21432 −0.508000 −0.254000 0.967204i \(-0.581746\pi\)
−0.254000 + 0.967204i \(0.581746\pi\)
\(20\) 1.16346 + 0.163465i 0.260159 + 0.0365518i
\(21\) 0 0
\(22\) 0.260253i 0.0554861i
\(23\) 4.68889i 0.977702i −0.872367 0.488851i \(-0.837416\pi\)
0.872367 0.488851i \(-0.162584\pi\)
\(24\) 0 0
\(25\) 4.80642 + 1.37778i 0.961285 + 0.275557i
\(26\) −1.21432 −0.238148
\(27\) 0 0
\(28\) 1.52543i 0.288279i
\(29\) 8.70964 1.61734 0.808669 0.588263i \(-0.200188\pi\)
0.808669 + 0.588263i \(0.200188\pi\)
\(30\) 0 0
\(31\) −5.59210 −1.00437 −0.502186 0.864760i \(-0.667471\pi\)
−0.502186 + 0.864760i \(0.667471\pi\)
\(32\) 2.88739i 0.510423i
\(33\) 0 0
\(34\) 7.80642 1.33879
\(35\) 0.903212 6.42864i 0.152671 1.08664i
\(36\) 0 0
\(37\) 2.28100i 0.374993i −0.982265 0.187497i \(-0.939963\pi\)
0.982265 0.187497i \(-0.0600374\pi\)
\(38\) 2.68889i 0.436196i
\(39\) 0 0
\(40\) 0.954067 6.79060i 0.150851 1.07369i
\(41\) −3.05086 −0.476464 −0.238232 0.971208i \(-0.576568\pi\)
−0.238232 + 0.971208i \(0.576568\pi\)
\(42\) 0 0
\(43\) 6.36196i 0.970190i 0.874461 + 0.485095i \(0.161215\pi\)
−0.874461 + 0.485095i \(0.838785\pi\)
\(44\) −0.112610 −0.0169765
\(45\) 0 0
\(46\) −5.69381 −0.839507
\(47\) 1.09679i 0.159983i 0.996796 + 0.0799915i \(0.0254893\pi\)
−0.996796 + 0.0799915i \(0.974511\pi\)
\(48\) 0 0
\(49\) −1.42864 −0.204091
\(50\) 1.67307 5.83654i 0.236608 0.825411i
\(51\) 0 0
\(52\) 0.525428i 0.0728637i
\(53\) 6.23506i 0.856452i 0.903672 + 0.428226i \(0.140861\pi\)
−0.903672 + 0.428226i \(0.859139\pi\)
\(54\) 0 0
\(55\) −0.474572 0.0666765i −0.0639913 0.00899066i
\(56\) −8.90321 −1.18974
\(57\) 0 0
\(58\) 10.5763i 1.38873i
\(59\) −9.26517 −1.20622 −0.603112 0.797657i \(-0.706073\pi\)
−0.603112 + 0.797657i \(0.706073\pi\)
\(60\) 0 0
\(61\) −0.280996 −0.0359779 −0.0179889 0.999838i \(-0.505726\pi\)
−0.0179889 + 0.999838i \(0.505726\pi\)
\(62\) 6.79060i 0.862407i
\(63\) 0 0
\(64\) −8.85236 −1.10654
\(65\) 0.311108 2.21432i 0.0385882 0.274653i
\(66\) 0 0
\(67\) 7.76049i 0.948095i 0.880499 + 0.474047i \(0.157207\pi\)
−0.880499 + 0.474047i \(0.842793\pi\)
\(68\) 3.37778i 0.409617i
\(69\) 0 0
\(70\) −7.80642 1.09679i −0.933046 0.131091i
\(71\) 6.08097 0.721678 0.360839 0.932628i \(-0.382490\pi\)
0.360839 + 0.932628i \(0.382490\pi\)
\(72\) 0 0
\(73\) 10.2810i 1.20330i −0.798760 0.601650i \(-0.794510\pi\)
0.798760 0.601650i \(-0.205490\pi\)
\(74\) −2.76986 −0.321990
\(75\) 0 0
\(76\) −1.16346 −0.133459
\(77\) 0.622216i 0.0709081i
\(78\) 0 0
\(79\) 14.2351 1.60157 0.800785 0.598952i \(-0.204416\pi\)
0.800785 + 0.598952i \(0.204416\pi\)
\(80\) −5.91903 0.831613i −0.661768 0.0929772i
\(81\) 0 0
\(82\) 3.70471i 0.409117i
\(83\) 9.52543i 1.04555i −0.852470 0.522776i \(-0.824897\pi\)
0.852470 0.522776i \(-0.175103\pi\)
\(84\) 0 0
\(85\) −2.00000 + 14.2351i −0.216930 + 1.54401i
\(86\) 7.72546 0.833057
\(87\) 0 0
\(88\) 0.657249i 0.0700630i
\(89\) −5.61285 −0.594961 −0.297480 0.954728i \(-0.596146\pi\)
−0.297480 + 0.954728i \(0.596146\pi\)
\(90\) 0 0
\(91\) −2.90321 −0.304339
\(92\) 2.46367i 0.256856i
\(93\) 0 0
\(94\) 1.33185 0.137370
\(95\) −4.90321 0.688892i −0.503059 0.0706788i
\(96\) 0 0
\(97\) 18.0415i 1.83184i 0.401366 + 0.915918i \(0.368536\pi\)
−0.401366 + 0.915918i \(0.631464\pi\)
\(98\) 1.73483i 0.175244i
\(99\) 0 0
\(100\) 2.52543 + 0.723926i 0.252543 + 0.0723926i
\(101\) −3.93978 −0.392022 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(102\) 0 0
\(103\) 2.82225i 0.278084i 0.990286 + 0.139042i \(0.0444023\pi\)
−0.990286 + 0.139042i \(0.955598\pi\)
\(104\) −3.06668 −0.300712
\(105\) 0 0
\(106\) 7.57136 0.735396
\(107\) 17.1175i 1.65481i 0.561603 + 0.827407i \(0.310185\pi\)
−0.561603 + 0.827407i \(0.689815\pi\)
\(108\) 0 0
\(109\) 16.7239 1.60186 0.800931 0.598757i \(-0.204338\pi\)
0.800931 + 0.598757i \(0.204338\pi\)
\(110\) −0.0809666 + 0.576283i −0.00771987 + 0.0549464i
\(111\) 0 0
\(112\) 7.76049i 0.733297i
\(113\) 1.18421i 0.111401i −0.998448 0.0557005i \(-0.982261\pi\)
0.998448 0.0557005i \(-0.0177392\pi\)
\(114\) 0 0
\(115\) 1.45875 10.3827i 0.136029 0.968192i
\(116\) 4.57628 0.424897
\(117\) 0 0
\(118\) 11.2509i 1.03573i
\(119\) 18.6637 1.71090
\(120\) 0 0
\(121\) −10.9541 −0.995824
\(122\) 0.341219i 0.0308925i
\(123\) 0 0
\(124\) −2.93825 −0.263862
\(125\) 10.2143 + 4.54617i 0.913597 + 0.406622i
\(126\) 0 0
\(127\) 2.30174i 0.204246i −0.994772 0.102123i \(-0.967436\pi\)
0.994772 0.102123i \(-0.0325636\pi\)
\(128\) 4.97481i 0.439715i
\(129\) 0 0
\(130\) −2.68889 0.377784i −0.235831 0.0331339i
\(131\) 13.4193 1.17245 0.586224 0.810149i \(-0.300614\pi\)
0.586224 + 0.810149i \(0.300614\pi\)
\(132\) 0 0
\(133\) 6.42864i 0.557434i
\(134\) 9.42372 0.814085
\(135\) 0 0
\(136\) 19.7146 1.69051
\(137\) 19.1526i 1.63631i 0.574995 + 0.818157i \(0.305004\pi\)
−0.574995 + 0.818157i \(0.694996\pi\)
\(138\) 0 0
\(139\) −19.0923 −1.61939 −0.809696 0.586850i \(-0.800368\pi\)
−0.809696 + 0.586850i \(0.800368\pi\)
\(140\) 0.474572 3.37778i 0.0401087 0.285475i
\(141\) 0 0
\(142\) 7.38424i 0.619671i
\(143\) 0.214320i 0.0179223i
\(144\) 0 0
\(145\) 19.2859 + 2.70964i 1.60161 + 0.225023i
\(146\) −12.4844 −1.03322
\(147\) 0 0
\(148\) 1.19850i 0.0985160i
\(149\) −3.57136 −0.292577 −0.146289 0.989242i \(-0.546733\pi\)
−0.146289 + 0.989242i \(0.546733\pi\)
\(150\) 0 0
\(151\) −1.26517 −0.102958 −0.0514792 0.998674i \(-0.516394\pi\)
−0.0514792 + 0.998674i \(0.516394\pi\)
\(152\) 6.79060i 0.550791i
\(153\) 0 0
\(154\) 0.755569 0.0608855
\(155\) −12.3827 1.73975i −0.994603 0.139740i
\(156\) 0 0
\(157\) 5.61285i 0.447954i 0.974594 + 0.223977i \(0.0719041\pi\)
−0.974594 + 0.223977i \(0.928096\pi\)
\(158\) 17.2859i 1.37519i
\(159\) 0 0
\(160\) 0.898290 6.39361i 0.0710160 0.505459i
\(161\) −13.6128 −1.07284
\(162\) 0 0
\(163\) 3.71900i 0.291295i 0.989337 + 0.145647i \(0.0465265\pi\)
−0.989337 + 0.145647i \(0.953473\pi\)
\(164\) −1.60300 −0.125174
\(165\) 0 0
\(166\) −11.5669 −0.897767
\(167\) 7.03657i 0.544506i −0.962226 0.272253i \(-0.912231\pi\)
0.962226 0.272253i \(-0.0877687\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 17.2859 + 2.42864i 1.32577 + 0.186268i
\(171\) 0 0
\(172\) 3.34275i 0.254882i
\(173\) 0.723926i 0.0550391i −0.999621 0.0275195i \(-0.991239\pi\)
0.999621 0.0275195i \(-0.00876085\pi\)
\(174\) 0 0
\(175\) 4.00000 13.9541i 0.302372 1.05483i
\(176\) 0.572892 0.0431833
\(177\) 0 0
\(178\) 6.81579i 0.510865i
\(179\) −4.04149 −0.302075 −0.151037 0.988528i \(-0.548261\pi\)
−0.151037 + 0.988528i \(0.548261\pi\)
\(180\) 0 0
\(181\) 2.34122 0.174021 0.0870107 0.996207i \(-0.472269\pi\)
0.0870107 + 0.996207i \(0.472269\pi\)
\(182\) 3.52543i 0.261322i
\(183\) 0 0
\(184\) −14.3793 −1.06006
\(185\) 0.709636 5.05086i 0.0521735 0.371346i
\(186\) 0 0
\(187\) 1.37778i 0.100754i
\(188\) 0.576283i 0.0420297i
\(189\) 0 0
\(190\) −0.836535 + 5.95407i −0.0606887 + 0.431953i
\(191\) 2.10171 0.152074 0.0760372 0.997105i \(-0.475773\pi\)
0.0760372 + 0.997105i \(0.475773\pi\)
\(192\) 0 0
\(193\) 13.5210i 0.973262i 0.873608 + 0.486631i \(0.161774\pi\)
−0.873608 + 0.486631i \(0.838226\pi\)
\(194\) 21.9081 1.57291
\(195\) 0 0
\(196\) −0.750647 −0.0536176
\(197\) 2.00000i 0.142494i 0.997459 + 0.0712470i \(0.0226979\pi\)
−0.997459 + 0.0712470i \(0.977302\pi\)
\(198\) 0 0
\(199\) −22.1432 −1.56969 −0.784845 0.619692i \(-0.787257\pi\)
−0.784845 + 0.619692i \(0.787257\pi\)
\(200\) 4.22522 14.7397i 0.298768 1.04226i
\(201\) 0 0
\(202\) 4.78415i 0.336612i
\(203\) 25.2859i 1.77472i
\(204\) 0 0
\(205\) −6.75557 0.949145i −0.471829 0.0662912i
\(206\) 3.42711 0.238778
\(207\) 0 0
\(208\) 2.67307i 0.185344i
\(209\) 0.474572 0.0328269
\(210\) 0 0
\(211\) 19.6543 1.35306 0.676530 0.736415i \(-0.263483\pi\)
0.676530 + 0.736415i \(0.263483\pi\)
\(212\) 3.27607i 0.225002i
\(213\) 0 0
\(214\) 20.7862 1.42091
\(215\) −1.97926 + 14.0874i −0.134984 + 0.960754i
\(216\) 0 0
\(217\) 16.2351i 1.10211i
\(218\) 20.3082i 1.37544i
\(219\) 0 0
\(220\) −0.249353 0.0350337i −0.0168114 0.00236197i
\(221\) 6.42864 0.432437
\(222\) 0 0
\(223\) 19.6686i 1.31711i −0.752533 0.658554i \(-0.771168\pi\)
0.752533 0.658554i \(-0.228832\pi\)
\(224\) −8.38271 −0.560093
\(225\) 0 0
\(226\) −1.43801 −0.0956548
\(227\) 13.2716i 0.880869i 0.897785 + 0.440434i \(0.145176\pi\)
−0.897785 + 0.440434i \(0.854824\pi\)
\(228\) 0 0
\(229\) 2.42864 0.160489 0.0802445 0.996775i \(-0.474430\pi\)
0.0802445 + 0.996775i \(0.474430\pi\)
\(230\) −12.6079 1.77139i −0.831342 0.116802i
\(231\) 0 0
\(232\) 26.7096i 1.75357i
\(233\) 16.1748i 1.05965i 0.848107 + 0.529825i \(0.177742\pi\)
−0.848107 + 0.529825i \(0.822258\pi\)
\(234\) 0 0
\(235\) −0.341219 + 2.42864i −0.0222587 + 0.158427i
\(236\) −4.86818 −0.316891
\(237\) 0 0
\(238\) 22.6637i 1.46907i
\(239\) −12.7763 −0.826431 −0.413215 0.910633i \(-0.635594\pi\)
−0.413215 + 0.910633i \(0.635594\pi\)
\(240\) 0 0
\(241\) −5.89829 −0.379942 −0.189971 0.981790i \(-0.560839\pi\)
−0.189971 + 0.981790i \(0.560839\pi\)
\(242\) 13.3017i 0.855068i
\(243\) 0 0
\(244\) −0.147643 −0.00945189
\(245\) −3.16346 0.444461i −0.202106 0.0283956i
\(246\) 0 0
\(247\) 2.21432i 0.140894i
\(248\) 17.1492i 1.08897i
\(249\) 0 0
\(250\) 5.52051 12.4035i 0.349147 0.784463i
\(251\) 2.07313 0.130855 0.0654274 0.997857i \(-0.479159\pi\)
0.0654274 + 0.997857i \(0.479159\pi\)
\(252\) 0 0
\(253\) 1.00492i 0.0631789i
\(254\) −2.79505 −0.175377
\(255\) 0 0
\(256\) −11.6637 −0.728981
\(257\) 18.3970i 1.14757i −0.819005 0.573787i \(-0.805474\pi\)
0.819005 0.573787i \(-0.194526\pi\)
\(258\) 0 0
\(259\) −6.62222 −0.411484
\(260\) 0.163465 1.16346i 0.0101376 0.0721550i
\(261\) 0 0
\(262\) 16.2953i 1.00673i
\(263\) 11.0257i 0.679872i 0.940449 + 0.339936i \(0.110405\pi\)
−0.940449 + 0.339936i \(0.889595\pi\)
\(264\) 0 0
\(265\) −1.93978 + 13.8064i −0.119160 + 0.848122i
\(266\) 7.80642 0.478643
\(267\) 0 0
\(268\) 4.07758i 0.249078i
\(269\) −16.1432 −0.984268 −0.492134 0.870519i \(-0.663783\pi\)
−0.492134 + 0.870519i \(0.663783\pi\)
\(270\) 0 0
\(271\) 13.0114 0.790385 0.395192 0.918598i \(-0.370678\pi\)
0.395192 + 0.918598i \(0.370678\pi\)
\(272\) 17.1842i 1.04195i
\(273\) 0 0
\(274\) 23.2573 1.40503
\(275\) −1.03011 0.295286i −0.0621181 0.0178064i
\(276\) 0 0
\(277\) 7.57136i 0.454919i 0.973788 + 0.227459i \(0.0730419\pi\)
−0.973788 + 0.227459i \(0.926958\pi\)
\(278\) 23.1842i 1.39050i
\(279\) 0 0
\(280\) −19.7146 2.76986i −1.17817 0.165531i
\(281\) −6.75557 −0.403003 −0.201502 0.979488i \(-0.564582\pi\)
−0.201502 + 0.979488i \(0.564582\pi\)
\(282\) 0 0
\(283\) 19.0859i 1.13454i −0.823532 0.567269i \(-0.808000\pi\)
0.823532 0.567269i \(-0.192000\pi\)
\(284\) 3.19511 0.189595
\(285\) 0 0
\(286\) 0.260253 0.0153891
\(287\) 8.85728i 0.522829i
\(288\) 0 0
\(289\) −24.3274 −1.43102
\(290\) 3.29036 23.4193i 0.193217 1.37523i
\(291\) 0 0
\(292\) 5.40192i 0.316123i
\(293\) 8.08742i 0.472472i −0.971696 0.236236i \(-0.924086\pi\)
0.971696 0.236236i \(-0.0759139\pi\)
\(294\) 0 0
\(295\) −20.5161 2.88247i −1.19449 0.167824i
\(296\) −6.99508 −0.406581
\(297\) 0 0
\(298\) 4.33677i 0.251223i
\(299\) −4.68889 −0.271166
\(300\) 0 0
\(301\) 18.4701 1.06460
\(302\) 1.53633i 0.0884057i
\(303\) 0 0
\(304\) 5.91903 0.339480
\(305\) −0.622216 0.0874201i −0.0356280 0.00500566i
\(306\) 0 0
\(307\) 13.4336i 0.766694i −0.923604 0.383347i \(-0.874771\pi\)
0.923604 0.383347i \(-0.125229\pi\)
\(308\) 0.326929i 0.0186285i
\(309\) 0 0
\(310\) −2.11261 + 15.0366i −0.119988 + 0.854020i
\(311\) −20.2034 −1.14563 −0.572815 0.819684i \(-0.694149\pi\)
−0.572815 + 0.819684i \(0.694149\pi\)
\(312\) 0 0
\(313\) 15.1111i 0.854129i −0.904221 0.427064i \(-0.859548\pi\)
0.904221 0.427064i \(-0.140452\pi\)
\(314\) 6.81579 0.384637
\(315\) 0 0
\(316\) 7.47949 0.420754
\(317\) 22.2810i 1.25143i −0.780054 0.625713i \(-0.784808\pi\)
0.780054 0.625713i \(-0.215192\pi\)
\(318\) 0 0
\(319\) −1.86665 −0.104512
\(320\) −19.6019 2.75404i −1.09578 0.153955i
\(321\) 0 0
\(322\) 16.5303i 0.921200i
\(323\) 14.2351i 0.792060i
\(324\) 0 0
\(325\) 1.37778 4.80642i 0.0764257 0.266612i
\(326\) 4.51606 0.250121
\(327\) 0 0
\(328\) 9.35599i 0.516598i
\(329\) 3.18421 0.175551
\(330\) 0 0
\(331\) 8.25581 0.453780 0.226890 0.973920i \(-0.427144\pi\)
0.226890 + 0.973920i \(0.427144\pi\)
\(332\) 5.00492i 0.274681i
\(333\) 0 0
\(334\) −8.54464 −0.467542
\(335\) −2.41435 + 17.1842i −0.131910 + 0.938874i
\(336\) 0 0
\(337\) 13.7462i 0.748803i −0.927267 0.374402i \(-0.877848\pi\)
0.927267 0.374402i \(-0.122152\pi\)
\(338\) 1.21432i 0.0660503i
\(339\) 0 0
\(340\) −1.05086 + 7.47949i −0.0569906 + 0.405633i
\(341\) 1.19850 0.0649023
\(342\) 0 0
\(343\) 16.1748i 0.873359i
\(344\) 19.5101 1.05191
\(345\) 0 0
\(346\) −0.879077 −0.0472595
\(347\) 1.21924i 0.0654523i −0.999464 0.0327262i \(-0.989581\pi\)
0.999464 0.0327262i \(-0.0104189\pi\)
\(348\) 0 0
\(349\) −22.5116 −1.20502 −0.602510 0.798112i \(-0.705832\pi\)
−0.602510 + 0.798112i \(0.705832\pi\)
\(350\) −16.9447 4.85728i −0.905732 0.259632i
\(351\) 0 0
\(352\) 0.618825i 0.0329835i
\(353\) 14.2810i 0.760101i −0.924966 0.380050i \(-0.875907\pi\)
0.924966 0.380050i \(-0.124093\pi\)
\(354\) 0 0
\(355\) 13.4652 + 1.89184i 0.714659 + 0.100408i
\(356\) −2.94914 −0.156304
\(357\) 0 0
\(358\) 4.90766i 0.259378i
\(359\) −12.1541 −0.641469 −0.320734 0.947169i \(-0.603930\pi\)
−0.320734 + 0.947169i \(0.603930\pi\)
\(360\) 0 0
\(361\) −14.0968 −0.741936
\(362\) 2.84299i 0.149424i
\(363\) 0 0
\(364\) −1.52543 −0.0799541
\(365\) 3.19850 22.7654i 0.167417 1.19160i
\(366\) 0 0
\(367\) 4.65725i 0.243106i −0.992585 0.121553i \(-0.961212\pi\)
0.992585 0.121553i \(-0.0387875\pi\)
\(368\) 12.5337i 0.653366i
\(369\) 0 0
\(370\) −6.13335 0.861725i −0.318858 0.0447989i
\(371\) 18.1017 0.939794
\(372\) 0 0
\(373\) 34.9403i 1.80914i −0.426328 0.904569i \(-0.640193\pi\)
0.426328 0.904569i \(-0.359807\pi\)
\(374\) −1.67307 −0.0865124
\(375\) 0 0
\(376\) 3.36349 0.173459
\(377\) 8.70964i 0.448569i
\(378\) 0 0
\(379\) 17.4717 0.897459 0.448729 0.893668i \(-0.351877\pi\)
0.448729 + 0.893668i \(0.351877\pi\)
\(380\) −2.57628 0.361963i −0.132161 0.0185683i
\(381\) 0 0
\(382\) 2.55215i 0.130579i
\(383\) 18.6780i 0.954401i −0.878794 0.477200i \(-0.841652\pi\)
0.878794 0.477200i \(-0.158348\pi\)
\(384\) 0 0
\(385\) −0.193576 + 1.37778i −0.00986555 + 0.0702184i
\(386\) 16.4188 0.835695
\(387\) 0 0
\(388\) 9.47949i 0.481248i
\(389\) 1.61285 0.0817746 0.0408873 0.999164i \(-0.486982\pi\)
0.0408873 + 0.999164i \(0.486982\pi\)
\(390\) 0 0
\(391\) 30.1432 1.52441
\(392\) 4.38118i 0.221283i
\(393\) 0 0
\(394\) 2.42864 0.122353
\(395\) 31.5210 + 4.42864i 1.58599 + 0.222829i
\(396\) 0 0
\(397\) 6.57628i 0.330054i 0.986289 + 0.165027i \(0.0527712\pi\)
−0.986289 + 0.165027i \(0.947229\pi\)
\(398\) 26.8889i 1.34782i
\(399\) 0 0
\(400\) −12.8479 3.68292i −0.642396 0.184146i
\(401\) 21.9081 1.09404 0.547020 0.837120i \(-0.315762\pi\)
0.547020 + 0.837120i \(0.315762\pi\)
\(402\) 0 0
\(403\) 5.59210i 0.278563i
\(404\) −2.07007 −0.102990
\(405\) 0 0
\(406\) −30.7052 −1.52387
\(407\) 0.488863i 0.0242320i
\(408\) 0 0
\(409\) 10.1936 0.504040 0.252020 0.967722i \(-0.418905\pi\)
0.252020 + 0.967722i \(0.418905\pi\)
\(410\) −1.15257 + 8.20342i −0.0569211 + 0.405138i
\(411\) 0 0
\(412\) 1.48289i 0.0730565i
\(413\) 26.8988i 1.32360i
\(414\) 0 0
\(415\) 2.96343 21.0923i 0.145469 1.03538i
\(416\) −2.88739 −0.141566
\(417\) 0 0
\(418\) 0.576283i 0.0281869i
\(419\) 7.31756 0.357486 0.178743 0.983896i \(-0.442797\pi\)
0.178743 + 0.983896i \(0.442797\pi\)
\(420\) 0 0
\(421\) −7.86665 −0.383397 −0.191698 0.981454i \(-0.561400\pi\)
−0.191698 + 0.981454i \(0.561400\pi\)
\(422\) 23.8666i 1.16181i
\(423\) 0 0
\(424\) 19.1209 0.928594
\(425\) −8.85728 + 30.8988i −0.429641 + 1.49881i
\(426\) 0 0
\(427\) 0.815792i 0.0394789i
\(428\) 8.99402i 0.434743i
\(429\) 0 0
\(430\) 17.1066 + 2.40345i 0.824955 + 0.115905i
\(431\) 38.9195 1.87469 0.937343 0.348407i \(-0.113277\pi\)
0.937343 + 0.348407i \(0.113277\pi\)
\(432\) 0 0
\(433\) 20.2034i 0.970914i 0.874260 + 0.485457i \(0.161347\pi\)
−0.874260 + 0.485457i \(0.838653\pi\)
\(434\) 19.7146 0.946329
\(435\) 0 0
\(436\) 8.78721 0.420831
\(437\) 10.3827i 0.496672i
\(438\) 0 0
\(439\) −10.8889 −0.519700 −0.259850 0.965649i \(-0.583673\pi\)
−0.259850 + 0.965649i \(0.583673\pi\)
\(440\) −0.204475 + 1.45536i −0.00974798 + 0.0693816i
\(441\) 0 0
\(442\) 7.80642i 0.371314i
\(443\) 28.6287i 1.36019i −0.733124 0.680095i \(-0.761939\pi\)
0.733124 0.680095i \(-0.238061\pi\)
\(444\) 0 0
\(445\) −12.4286 1.74620i −0.589174 0.0827779i
\(446\) −23.8840 −1.13094
\(447\) 0 0
\(448\) 25.7003i 1.21422i
\(449\) −10.9304 −0.515838 −0.257919 0.966167i \(-0.583037\pi\)
−0.257919 + 0.966167i \(0.583037\pi\)
\(450\) 0 0
\(451\) 0.653858 0.0307890
\(452\) 0.622216i 0.0292666i
\(453\) 0 0
\(454\) 16.1160 0.756361
\(455\) −6.42864 0.903212i −0.301379 0.0423432i
\(456\) 0 0
\(457\) 11.4064i 0.533567i −0.963756 0.266784i \(-0.914039\pi\)
0.963756 0.266784i \(-0.0859609\pi\)
\(458\) 2.94914i 0.137804i
\(459\) 0 0
\(460\) 0.766468 5.45536i 0.0357368 0.254357i
\(461\) 26.1334 1.21715 0.608576 0.793496i \(-0.291741\pi\)
0.608576 + 0.793496i \(0.291741\pi\)
\(462\) 0 0
\(463\) 7.92242i 0.368186i 0.982909 + 0.184093i \(0.0589348\pi\)
−0.982909 + 0.184093i \(0.941065\pi\)
\(464\) −23.2815 −1.08082
\(465\) 0 0
\(466\) 19.6414 0.909872
\(467\) 10.8923i 0.504036i −0.967723 0.252018i \(-0.918906\pi\)
0.967723 0.252018i \(-0.0810942\pi\)
\(468\) 0 0
\(469\) 22.5303 1.04035
\(470\) 2.94914 + 0.414349i 0.136034 + 0.0191125i
\(471\) 0 0
\(472\) 28.4133i 1.30783i
\(473\) 1.36349i 0.0626935i
\(474\) 0 0
\(475\) −10.6430 3.05086i −0.488332 0.139983i
\(476\) 9.80642 0.449477
\(477\) 0 0
\(478\) 15.5145i 0.709618i
\(479\) −9.13182 −0.417244 −0.208622 0.977996i \(-0.566898\pi\)
−0.208622 + 0.977996i \(0.566898\pi\)
\(480\) 0 0
\(481\) −2.28100 −0.104004
\(482\) 7.16241i 0.326239i
\(483\) 0 0
\(484\) −5.75557 −0.261617
\(485\) −5.61285 + 39.9496i −0.254866 + 1.81402i
\(486\) 0 0
\(487\) 16.1891i 0.733600i −0.930300 0.366800i \(-0.880453\pi\)
0.930300 0.366800i \(-0.119547\pi\)
\(488\) 0.861725i 0.0390084i
\(489\) 0 0
\(490\) −0.539718 + 3.84146i −0.0243820 + 0.173539i
\(491\) −26.2636 −1.18526 −0.592631 0.805474i \(-0.701911\pi\)
−0.592631 + 0.805474i \(0.701911\pi\)
\(492\) 0 0
\(493\) 55.9911i 2.52171i
\(494\) 2.68889 0.120979
\(495\) 0 0
\(496\) 14.9481 0.671189
\(497\) 17.6543i 0.791905i
\(498\) 0 0
\(499\) −30.0306 −1.34435 −0.672177 0.740391i \(-0.734641\pi\)
−0.672177 + 0.740391i \(0.734641\pi\)
\(500\) 5.36689 + 2.38868i 0.240014 + 0.106825i
\(501\) 0 0
\(502\) 2.51744i 0.112359i
\(503\) 16.7304i 0.745971i −0.927837 0.372985i \(-0.878334\pi\)
0.927837 0.372985i \(-0.121666\pi\)
\(504\) 0 0
\(505\) −8.72393 1.22570i −0.388210 0.0545427i
\(506\) 1.22030 0.0542488
\(507\) 0 0
\(508\) 1.20940i 0.0536583i
\(509\) −11.9684 −0.530488 −0.265244 0.964181i \(-0.585453\pi\)
−0.265244 + 0.964181i \(0.585453\pi\)
\(510\) 0 0
\(511\) −29.8479 −1.32039
\(512\) 24.1131i 1.06566i
\(513\) 0 0
\(514\) −22.3398 −0.985368
\(515\) −0.878023 + 6.24935i −0.0386903 + 0.275379i
\(516\) 0 0
\(517\) 0.235063i 0.0103381i
\(518\) 8.04149i 0.353323i
\(519\) 0 0
\(520\) −6.79060 0.954067i −0.297788 0.0418386i
\(521\) −5.75065 −0.251940 −0.125970 0.992034i \(-0.540204\pi\)
−0.125970 + 0.992034i \(0.540204\pi\)
\(522\) 0 0
\(523\) 20.8035i 0.909674i 0.890575 + 0.454837i \(0.150302\pi\)
−0.890575 + 0.454837i \(0.849698\pi\)
\(524\) 7.05086 0.308018
\(525\) 0 0
\(526\) 13.3887 0.583774
\(527\) 35.9496i 1.56599i
\(528\) 0 0
\(529\) 1.01429 0.0440996
\(530\) 16.7654 + 2.35551i 0.728243 + 0.102317i
\(531\) 0 0
\(532\) 3.37778i 0.146446i
\(533\) 3.05086i 0.132147i
\(534\) 0 0
\(535\) −5.32540 + 37.9037i −0.230237 + 1.63872i
\(536\) 23.7989 1.02796
\(537\) 0 0
\(538\) 19.6030i 0.845145i
\(539\) 0.306186 0.0131883
\(540\) 0 0
\(541\) 16.6222 0.714645 0.357322 0.933981i \(-0.383690\pi\)
0.357322 + 0.933981i \(0.383690\pi\)
\(542\) 15.8000i 0.678667i
\(543\) 0 0
\(544\) 18.5620 0.795839
\(545\) 37.0321 + 5.20294i 1.58628 + 0.222870i
\(546\) 0 0
\(547\) 29.9748i 1.28163i −0.767695 0.640815i \(-0.778596\pi\)
0.767695 0.640815i \(-0.221404\pi\)
\(548\) 10.0633i 0.429882i
\(549\) 0 0
\(550\) −0.358572 + 1.25088i −0.0152896 + 0.0533379i
\(551\) −19.2859 −0.821608
\(552\) 0 0
\(553\) 41.3274i 1.75742i
\(554\) 9.19405 0.390618
\(555\) 0 0
\(556\) −10.0316 −0.425436
\(557\) 5.03657i 0.213406i 0.994291 + 0.106703i \(0.0340294\pi\)
−0.994291 + 0.106703i \(0.965971\pi\)
\(558\) 0 0
\(559\) 6.36196 0.269082
\(560\) −2.41435 + 17.1842i −0.102025 + 0.726165i
\(561\) 0 0
\(562\) 8.20342i 0.346040i
\(563\) 2.88247i 0.121482i 0.998154 + 0.0607408i \(0.0193463\pi\)
−0.998154 + 0.0607408i \(0.980654\pi\)
\(564\) 0 0
\(565\) 0.368416 2.62222i 0.0154994 0.110317i
\(566\) −23.1764 −0.974176
\(567\) 0 0
\(568\) 18.6484i 0.782468i
\(569\) −4.37286 −0.183320 −0.0916600 0.995790i \(-0.529217\pi\)
−0.0916600 + 0.995790i \(0.529217\pi\)
\(570\) 0 0
\(571\) −1.58120 −0.0661714 −0.0330857 0.999453i \(-0.510533\pi\)
−0.0330857 + 0.999453i \(0.510533\pi\)
\(572\) 0.112610i 0.00470844i
\(573\) 0 0
\(574\) 10.7556 0.448929
\(575\) 6.46028 22.5368i 0.269412 0.939850i
\(576\) 0 0
\(577\) 7.61729i 0.317112i −0.987350 0.158556i \(-0.949316\pi\)
0.987350 0.158556i \(-0.0506839\pi\)
\(578\) 29.5412i 1.22875i
\(579\) 0 0
\(580\) 10.1334 + 1.42372i 0.420765 + 0.0591166i
\(581\) −27.6543 −1.14730
\(582\) 0 0
\(583\) 1.33630i 0.0553438i
\(584\) −31.5285 −1.30466
\(585\) 0 0
\(586\) −9.82071 −0.405690
\(587\) 46.8243i 1.93264i 0.257336 + 0.966322i \(0.417155\pi\)
−0.257336 + 0.966322i \(0.582845\pi\)
\(588\) 0 0
\(589\) 12.3827 0.510221
\(590\) −3.50024 + 24.9131i −0.144103 + 1.02565i
\(591\) 0 0
\(592\) 6.09726i 0.250596i
\(593\) 15.9398i 0.654568i −0.944926 0.327284i \(-0.893867\pi\)
0.944926 0.327284i \(-0.106133\pi\)
\(594\) 0 0
\(595\) 41.3274 + 5.80642i 1.69426 + 0.238040i
\(596\) −1.87649 −0.0768641
\(597\) 0 0
\(598\) 5.69381i 0.232837i
\(599\) 18.4889 0.755434 0.377717 0.925921i \(-0.376709\pi\)
0.377717 + 0.925921i \(0.376709\pi\)
\(600\) 0 0
\(601\) 20.7556 0.846637 0.423319 0.905981i \(-0.360865\pi\)
0.423319 + 0.905981i \(0.360865\pi\)
\(602\) 22.4286i 0.914123i
\(603\) 0 0
\(604\) −0.664758 −0.0270486
\(605\) −24.2558 3.40790i −0.986139 0.138551i
\(606\) 0 0
\(607\) 36.0765i 1.46430i 0.681143 + 0.732150i \(0.261483\pi\)
−0.681143 + 0.732150i \(0.738517\pi\)
\(608\) 6.39361i 0.259295i
\(609\) 0 0
\(610\) −0.106156 + 0.755569i −0.00429813 + 0.0305921i
\(611\) 1.09679 0.0443713
\(612\) 0 0
\(613\) 9.94962i 0.401861i −0.979605 0.200931i \(-0.935603\pi\)
0.979605 0.200931i \(-0.0643966\pi\)
\(614\) −16.3126 −0.658325
\(615\) 0 0
\(616\) 1.90813 0.0768809
\(617\) 2.09187i 0.0842154i −0.999113 0.0421077i \(-0.986593\pi\)
0.999113 0.0421077i \(-0.0134073\pi\)
\(618\) 0 0
\(619\) −18.4681 −0.742296 −0.371148 0.928574i \(-0.621036\pi\)
−0.371148 + 0.928574i \(0.621036\pi\)
\(620\) −6.50622 0.914111i −0.261296 0.0367116i
\(621\) 0 0
\(622\) 24.5334i 0.983700i
\(623\) 16.2953i 0.652857i
\(624\) 0 0
\(625\) 21.2034 + 13.2444i 0.848137 + 0.529777i
\(626\) −18.3497 −0.733401
\(627\) 0 0
\(628\) 2.94914i 0.117684i
\(629\) 14.6637 0.584680
\(630\) 0 0
\(631\) −38.6657 −1.53926 −0.769629 0.638492i \(-0.779559\pi\)
−0.769629 + 0.638492i \(0.779559\pi\)
\(632\) 43.6543i 1.73648i
\(633\) 0 0
\(634\) −27.0563 −1.07454
\(635\) 0.716089 5.09679i 0.0284171 0.202260i
\(636\) 0 0
\(637\) 1.42864i 0.0566048i
\(638\) 2.26671i 0.0897398i
\(639\) 0 0
\(640\) −1.54770 + 11.0158i −0.0611783 + 0.435439i
\(641\) −24.5718 −0.970529 −0.485265 0.874367i \(-0.661277\pi\)
−0.485265 + 0.874367i \(0.661277\pi\)
\(642\) 0 0
\(643\) 27.4938i 1.08425i −0.840298 0.542125i \(-0.817620\pi\)
0.840298 0.542125i \(-0.182380\pi\)
\(644\) −7.15257 −0.281851
\(645\) 0 0
\(646\) −17.2859 −0.680105
\(647\) 13.7812i 0.541796i −0.962608 0.270898i \(-0.912679\pi\)
0.962608 0.270898i \(-0.0873207\pi\)
\(648\) 0 0
\(649\) 1.98571 0.0779459
\(650\) −5.83654 1.67307i −0.228928 0.0656232i
\(651\) 0 0
\(652\) 1.95407i 0.0765272i
\(653\) 2.12045i 0.0829795i −0.999139 0.0414897i \(-0.986790\pi\)
0.999139 0.0414897i \(-0.0132104\pi\)
\(654\) 0 0
\(655\) 29.7146 + 4.17484i 1.16104 + 0.163125i
\(656\) 8.15515 0.318405
\(657\) 0 0
\(658\) 3.86665i 0.150738i
\(659\) 33.8894 1.32014 0.660072 0.751203i \(-0.270526\pi\)
0.660072 + 0.751203i \(0.270526\pi\)
\(660\) 0 0
\(661\) −37.3689 −1.45348 −0.726741 0.686912i \(-0.758966\pi\)
−0.726741 + 0.686912i \(0.758966\pi\)
\(662\) 10.0252i 0.389640i
\(663\) 0 0
\(664\) −29.2114 −1.13362
\(665\) −2.00000 + 14.2351i −0.0775567 + 0.552012i
\(666\) 0 0
\(667\) 40.8385i 1.58127i
\(668\) 3.69721i 0.143049i
\(669\) 0 0
\(670\) 20.8671 + 2.93179i 0.806167 + 0.113265i
\(671\) 0.0602231 0.00232489
\(672\) 0 0
\(673\) 35.4608i 1.36691i 0.729992 + 0.683456i \(0.239524\pi\)
−0.729992 + 0.683456i \(0.760476\pi\)
\(674\) −16.6923 −0.642963
\(675\) 0 0
\(676\) −0.525428 −0.0202088
\(677\) 15.3047i 0.588206i −0.955774 0.294103i \(-0.904979\pi\)
0.955774 0.294103i \(-0.0950208\pi\)
\(678\) 0 0
\(679\) 52.3783 2.01009
\(680\) 43.6543 + 6.13335i 1.67407 + 0.235203i
\(681\) 0 0
\(682\) 1.45536i 0.0557286i
\(683\) 13.0968i 0.501135i −0.968099 0.250567i \(-0.919383\pi\)
0.968099 0.250567i \(-0.0806171\pi\)
\(684\) 0 0
\(685\) −5.95851 + 42.4099i −0.227663 + 1.62040i
\(686\) −19.6414 −0.749913
\(687\) 0 0
\(688\) 17.0060i 0.648347i
\(689\) 6.23506 0.237537
\(690\) 0 0
\(691\) −18.4079 −0.700269 −0.350135 0.936699i \(-0.613864\pi\)
−0.350135 + 0.936699i \(0.613864\pi\)
\(692\) 0.380371i 0.0144595i
\(693\) 0 0
\(694\) −1.48055 −0.0562009
\(695\) −42.2766 5.93978i −1.60364 0.225309i
\(696\) 0 0
\(697\) 19.6128i 0.742890i
\(698\) 27.3363i 1.03469i
\(699\) 0 0
\(700\) 2.10171 7.33185i 0.0794372 0.277118i
\(701\) 31.3689 1.18479 0.592393 0.805649i \(-0.298183\pi\)
0.592393 + 0.805649i \(0.298183\pi\)
\(702\) 0 0
\(703\) 5.05086i 0.190497i
\(704\) 1.89723 0.0715047
\(705\) 0 0
\(706\) −17.3417 −0.652663
\(707\) 11.4380i 0.430171i
\(708\) 0 0
\(709\) −9.47949 −0.356010 −0.178005 0.984030i \(-0.556964\pi\)
−0.178005 + 0.984030i \(0.556964\pi\)
\(710\) 2.29729 16.3511i 0.0862159 0.613644i
\(711\) 0 0
\(712\) 17.2128i 0.645077i
\(713\) 26.2208i 0.981976i
\(714\) 0 0
\(715\) −0.0666765 + 0.474572i −0.00249356 + 0.0177480i
\(716\) −2.12351 −0.0793592
\(717\) 0 0
\(718\) 14.7590i 0.550799i
\(719\) −29.6227 −1.10474 −0.552370 0.833599i \(-0.686276\pi\)
−0.552370 + 0.833599i \(0.686276\pi\)
\(720\) 0 0
\(721\) 8.19358 0.305145
\(722\) 17.1180i 0.637066i
\(723\) 0 0
\(724\) 1.23014 0.0457178
\(725\) 41.8622 + 12.0000i 1.55472 + 0.445669i
\(726\) 0 0
\(727\) 42.6702i 1.58255i 0.611461 + 0.791274i \(0.290582\pi\)
−0.611461 + 0.791274i \(0.709418\pi\)
\(728\) 8.90321i 0.329975i
\(729\) 0 0
\(730\) −27.6445 3.88400i −1.02317 0.143753i
\(731\) −40.8988 −1.51270
\(732\) 0 0
\(733\) 26.0830i 0.963397i −0.876337 0.481698i \(-0.840020\pi\)
0.876337 0.481698i \(-0.159980\pi\)
\(734\) −5.65539 −0.208744
\(735\) 0 0
\(736\) −13.5387 −0.499042
\(737\) 1.66323i 0.0612657i
\(738\) 0 0
\(739\) 28.2687 1.03988 0.519941 0.854202i \(-0.325954\pi\)
0.519941 + 0.854202i \(0.325954\pi\)
\(740\) 0.372862 2.65386i 0.0137067 0.0975578i
\(741\) 0 0
\(742\) 21.9813i 0.806958i
\(743\) 20.6681i 0.758241i 0.925347 + 0.379120i \(0.123773\pi\)
−0.925347 + 0.379120i \(0.876227\pi\)
\(744\) 0 0
\(745\) −7.90813 1.11108i −0.289732 0.0407068i
\(746\) −42.4286 −1.55342
\(747\) 0 0
\(748\) 0.723926i 0.0264694i
\(749\) 49.6958 1.81585
\(750\) 0 0
\(751\) 2.46028 0.0897770 0.0448885 0.998992i \(-0.485707\pi\)
0.0448885 + 0.998992i \(0.485707\pi\)
\(752\) 2.93179i 0.106911i
\(753\) 0 0
\(754\) −10.5763 −0.385165
\(755\) −2.80150 0.393606i −0.101957 0.0143248i
\(756\) 0 0
\(757\) 48.6035i 1.76652i −0.468880 0.883262i \(-0.655342\pi\)
0.468880 0.883262i \(-0.344658\pi\)
\(758\) 21.2162i 0.770606i
\(759\) 0 0
\(760\) −2.11261 + 15.0366i −0.0766324 + 0.545434i
\(761\) 13.8252 0.501162 0.250581 0.968096i \(-0.419378\pi\)
0.250581 + 0.968096i \(0.419378\pi\)
\(762\) 0 0
\(763\) 48.5531i 1.75774i
\(764\) 1.10430 0.0399520
\(765\) 0 0
\(766\) −22.6811 −0.819500
\(767\) 9.26517i 0.334546i
\(768\) 0 0
\(769\) 38.9688 1.40525 0.702626 0.711559i \(-0.252011\pi\)
0.702626 + 0.711559i \(0.252011\pi\)
\(770\) 1.67307 + 0.235063i 0.0602933 + 0.00847109i
\(771\) 0 0
\(772\) 7.10430i 0.255689i
\(773\) 0.445992i 0.0160412i −0.999968 0.00802061i \(-0.997447\pi\)
0.999968 0.00802061i \(-0.00255307\pi\)
\(774\) 0 0
\(775\) −26.8780 7.70471i −0.965487 0.276761i
\(776\) 55.3274 1.98614
\(777\) 0 0
\(778\) 1.95851i 0.0702161i
\(779\) 6.75557 0.242043
\(780\) 0 0
\(781\) −1.30327 −0.0466347
\(782\) 36.6035i 1.30894i
\(783\) 0 0
\(784\) 3.81885 0.136388
\(785\) −1.74620 + 12.4286i −0.0623246 + 0.443597i
\(786\) 0 0
\(787\) 33.9037i 1.20854i −0.796781 0.604268i \(-0.793466\pi\)
0.796781 0.604268i \(-0.206534\pi\)
\(788\) 1.05086i 0.0374352i
\(789\) 0 0
\(790\) 5.37778 38.2766i 0.191333 1.36182i
\(791\) −3.43801 −0.122241
\(792\) 0 0
\(793\) 0.280996i 0.00997847i
\(794\) 7.98571 0.283402
\(795\) 0 0
\(796\) −11.6346 −0.412379
\(797\) 10.2953i 0.364678i −0.983236 0.182339i \(-0.941633\pi\)
0.983236 0.182339i \(-0.0583668\pi\)
\(798\) 0 0
\(799\) −7.05086 −0.249441
\(800\) 3.97820 13.8780i 0.140651 0.490662i
\(801\) 0 0
\(802\) 26.6035i 0.939402i
\(803\) 2.20342i 0.0777570i
\(804\) 0 0
\(805\) −30.1432 4.23506i −1.06241 0.149266i
\(806\) 6.79060 0.239189
\(807\) 0 0
\(808\) 12.0820i 0.425044i
\(809\) 7.94422 0.279304 0.139652 0.990201i \(-0.455402\pi\)
0.139652 + 0.990201i \(0.455402\pi\)
\(810\) 0 0
\(811\) −8.12245 −0.285218 −0.142609 0.989779i \(-0.545549\pi\)
−0.142609 + 0.989779i \(0.545549\pi\)
\(812\) 13.2859i 0.466244i
\(813\) 0 0
\(814\) 0.593635 0.0208069
\(815\) −1.15701 + 8.23506i −0.0405283 + 0.288462i
\(816\) 0 0
\(817\) 14.0874i 0.492856i
\(818\) 12.3783i 0.432796i
\(819\) 0 0
\(820\) −3.54956 0.498707i −0.123956 0.0174156i
\(821\) 22.2065 0.775012 0.387506 0.921867i \(-0.373337\pi\)
0.387506 + 0.921867i \(0.373337\pi\)
\(822\) 0 0
\(823\) 11.1175i 0.387533i 0.981048 + 0.193766i \(0.0620704\pi\)
−0.981048 + 0.193766i \(0.937930\pi\)
\(824\) 8.65491 0.301508
\(825\) 0 0
\(826\) 32.6637 1.13652
\(827\) 23.1570i 0.805248i 0.915365 + 0.402624i \(0.131902\pi\)
−0.915365 + 0.402624i \(0.868098\pi\)
\(828\) 0 0
\(829\) 27.1195 0.941901 0.470950 0.882160i \(-0.343911\pi\)
0.470950 + 0.882160i \(0.343911\pi\)
\(830\) −25.6128 3.59856i −0.889035 0.124908i
\(831\) 0 0
\(832\) 8.85236i 0.306900i
\(833\) 9.18421i 0.318214i
\(834\) 0 0
\(835\) 2.18913 15.5812i 0.0757580 0.539210i
\(836\) 0.249353 0.00862407
\(837\) 0 0
\(838\) 8.88586i 0.306957i
\(839\) 25.3955 0.876749 0.438374 0.898792i \(-0.355554\pi\)
0.438374 + 0.898792i \(0.355554\pi\)
\(840\) 0 0
\(841\) 46.8578 1.61578
\(842\) 9.55262i 0.329205i
\(843\) 0 0
\(844\) 10.3269 0.355468
\(845\) −2.21432 0.311108i −0.0761749 0.0107024i
\(846\) 0 0
\(847\) 31.8020i 1.09273i
\(848\) 16.6668i 0.572339i
\(849\) 0 0
\(850\) 37.5210 + 10.7556i 1.28696 + 0.368913i
\(851\) −10.6953 −0.366632
\(852\) 0 0
\(853\) 25.0651i 0.858214i 0.903254 + 0.429107i \(0.141172\pi\)
−0.903254 + 0.429107i \(0.858828\pi\)
\(854\) 0.990632 0.0338987
\(855\) 0 0
\(856\) 52.4939 1.79421
\(857\) 7.61285i 0.260050i 0.991511 + 0.130025i \(0.0415057\pi\)
−0.991511 + 0.130025i \(0.958494\pi\)
\(858\) 0 0
\(859\) −42.1432 −1.43791 −0.718954 0.695058i \(-0.755379\pi\)
−0.718954 + 0.695058i \(0.755379\pi\)
\(860\) −1.03996 + 7.40192i −0.0354622 + 0.252403i
\(861\) 0 0
\(862\) 47.2607i 1.60971i
\(863\) 51.5768i 1.75569i −0.478942 0.877847i \(-0.658980\pi\)
0.478942 0.877847i \(-0.341020\pi\)
\(864\) 0 0
\(865\) 0.225219 1.60300i 0.00765768 0.0545037i
\(866\) 24.5334 0.833679
\(867\) 0 0
\(868\) 8.53035i 0.289539i
\(869\) −3.05086 −0.103493
\(870\) 0 0
\(871\) 7.76049 0.262954
\(872\) 51.2869i 1.73679i
\(873\) 0 0
\(874\) 12.6079 0.426469
\(875\) 13.1985 29.6543i 0.446191 1.00250i
\(876\) 0 0
\(877\) 34.0701i 1.15046i 0.817990 + 0.575232i \(0.195088\pi\)
−0.817990 + 0.575232i \(0.804912\pi\)
\(878\) 13.2226i 0.446242i
\(879\) 0 0
\(880\) 1.26857 + 0.178231i 0.0427633 + 0.00600817i
\(881\) −3.71900 −0.125296 −0.0626482 0.998036i \(-0.519955\pi\)
−0.0626482 + 0.998036i \(0.519955\pi\)
\(882\) 0 0
\(883\) 42.0163i 1.41396i −0.707233 0.706981i \(-0.750057\pi\)
0.707233 0.706981i \(-0.249943\pi\)
\(884\) 3.37778 0.113607
\(885\) 0 0
\(886\) −34.7644 −1.16793
\(887\) 40.3116i 1.35353i −0.736199 0.676765i \(-0.763381\pi\)
0.736199 0.676765i \(-0.236619\pi\)
\(888\) 0 0
\(889\) −6.68244 −0.224122
\(890\) −2.12045 + 15.0923i −0.0710775 + 0.505896i
\(891\) 0 0
\(892\) 10.3344i 0.346023i
\(893\) 2.42864i 0.0812713i
\(894\) 0 0
\(895\) −8.94914 1.25734i −0.299137 0.0420282i
\(896\) 14.4429 0.482504
\(897\) 0 0
\(898\) 13.2730i 0.442926i
\(899\) −48.7052 −1.62441
\(900\) 0 0
\(901\) −40.0830 −1.33536
\(902\) 0.793993i 0.0264371i
\(903\) 0 0
\(904\) −3.63158 −0.120785
\(905\) 5.18421 + 0.728372i 0.172329 + 0.0242119i
\(906\) 0 0
\(907\) 34.8419i 1.15691i −0.815715 0.578454i \(-0.803656\pi\)
0.815715 0.578454i \(-0.196344\pi\)
\(908\) 6.97328i 0.231416i
\(909\) 0 0
\(910\) −1.09679 + 7.80642i −0.0363582 + 0.258780i
\(911\) −23.2672 −0.770876 −0.385438 0.922734i \(-0.625950\pi\)
−0.385438 + 0.922734i \(0.625950\pi\)
\(912\) 0 0
\(913\) 2.04149i 0.0675634i
\(914\) −13.8510 −0.458149
\(915\) 0 0
\(916\) 1.27607 0.0421627
\(917\) 38.9590i 1.28654i
\(918\) 0 0
\(919\) 3.22570 0.106406 0.0532029 0.998584i \(-0.483057\pi\)
0.0532029 + 0.998584i \(0.483057\pi\)
\(920\) −31.8404 4.47352i −1.04975 0.147488i
\(921\) 0 0
\(922\) 31.7342i 1.04511i
\(923\) 6.08097i 0.200157i
\(924\) 0 0
\(925\) 3.14272 10.9634i 0.103332 0.360476i
\(926\) 9.62036 0.316145
\(927\) 0 0
\(928\) 25.1481i 0.825527i
\(929\) −39.3461 −1.29091 −0.645453 0.763800i \(-0.723331\pi\)
−0.645453 + 0.763800i \(0.723331\pi\)
\(930\) 0 0
\(931\) 3.16346 0.103678
\(932\) 8.49871i 0.278384i
\(933\) 0 0
\(934\) −13.2268 −0.432792
\(935\) 0.428639 3.05086i 0.0140180 0.0997736i
\(936\) 0 0
\(937\) 51.6040i 1.68583i 0.538048 + 0.842914i \(0.319162\pi\)
−0.538048 + 0.842914i \(0.680838\pi\)
\(938\) 27.3590i 0.893305i
\(939\) 0 0
\(940\) −0.179286 + 1.27607i −0.00584767 + 0.0416209i
\(941\) −37.5081 −1.22273 −0.611364 0.791349i \(-0.709379\pi\)
−0.611364 + 0.791349i \(0.709379\pi\)
\(942\) 0 0
\(943\) 14.3051i 0.465839i
\(944\) 24.7665 0.806080
\(945\) 0 0
\(946\) −1.65572 −0.0538320
\(947\) 38.1160i 1.23860i 0.785153 + 0.619302i \(0.212584\pi\)
−0.785153 + 0.619302i \(0.787416\pi\)
\(948\) 0 0
\(949\) −10.2810 −0.333735
\(950\) −3.70471 + 12.9240i −0.120197 + 0.419308i
\(951\) 0 0
\(952\) 57.2355i 1.85501i
\(953\) 28.7368i 0.930877i −0.885080 0.465439i \(-0.845897\pi\)
0.885080 0.465439i \(-0.154103\pi\)
\(954\) 0 0
\(955\) 4.65386 + 0.653858i 0.150595 + 0.0211584i
\(956\) −6.71303 −0.217115
\(957\) 0 0
\(958\) 11.0890i 0.358268i
\(959\) 55.6040 1.79555
\(960\) 0 0
\(961\) 0.271628 0.00876221
\(962\) 2.76986i 0.0893038i
\(963\) 0 0
\(964\) −3.09912 −0.0998161
\(965\) −4.20648 + 29.9398i −0.135411 + 0.963796i
\(966\) 0 0
\(967\) 29.0593i 0.934485i 0.884129 + 0.467242i \(0.154752\pi\)
−0.884129 + 0.467242i \(0.845248\pi\)
\(968\) 33.5926i 1.07971i
\(969\) 0 0
\(970\) 48.5116 + 6.81579i 1.55761 + 0.218842i
\(971\) 39.8578 1.27910 0.639548 0.768751i \(-0.279121\pi\)
0.639548 + 0.768751i \(0.279121\pi\)
\(972\) 0 0
\(973\) 55.4291i 1.77698i
\(974\) −19.6588 −0.629908
\(975\) 0 0
\(976\) 0.751123 0.0240429
\(977\) 12.8617i 0.411483i 0.978606 + 0.205742i \(0.0659606\pi\)
−0.978606 + 0.205742i \(0.934039\pi\)
\(978\) 0 0
\(979\) 1.20294 0.0384463
\(980\) −1.66217 0.233532i −0.0530961 0.00745991i
\(981\) 0 0
\(982\) 31.8925i 1.01773i
\(983\) 45.4880i 1.45084i 0.688306 + 0.725420i \(0.258355\pi\)
−0.688306 + 0.725420i \(0.741645\pi\)
\(984\) 0 0
\(985\) −0.622216 + 4.42864i −0.0198254 + 0.141108i
\(986\) 67.9911 2.16528
\(987\) 0 0
\(988\) 1.16346i 0.0370147i
\(989\) 29.8306 0.948557
\(990\) 0 0
\(991\) 8.07007 0.256354 0.128177 0.991751i \(-0.459087\pi\)
0.128177 + 0.991751i \(0.459087\pi\)
\(992\) 16.1466i 0.512655i
\(993\) 0 0
\(994\) −21.4380 −0.679972
\(995\) −49.0321 6.88892i −1.55442 0.218394i
\(996\) 0 0
\(997\) 32.8158i 1.03929i −0.854383 0.519643i \(-0.826065\pi\)
0.854383 0.519643i \(-0.173935\pi\)
\(998\) 36.4667i 1.15433i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 585.2.c.b.469.3 6
3.2 odd 2 65.2.b.a.14.4 yes 6
5.2 odd 4 2925.2.a.bf.1.3 3
5.3 odd 4 2925.2.a.bj.1.1 3
5.4 even 2 inner 585.2.c.b.469.4 6
12.11 even 2 1040.2.d.c.209.2 6
15.2 even 4 325.2.a.k.1.1 3
15.8 even 4 325.2.a.j.1.3 3
15.14 odd 2 65.2.b.a.14.3 6
39.2 even 12 845.2.l.e.654.1 12
39.5 even 4 845.2.d.a.844.6 6
39.8 even 4 845.2.d.b.844.2 6
39.11 even 12 845.2.l.d.654.5 12
39.17 odd 6 845.2.n.g.484.3 12
39.20 even 12 845.2.l.d.699.6 12
39.23 odd 6 845.2.n.g.529.4 12
39.29 odd 6 845.2.n.f.529.3 12
39.32 even 12 845.2.l.e.699.2 12
39.35 odd 6 845.2.n.f.484.4 12
39.38 odd 2 845.2.b.c.339.3 6
60.23 odd 4 5200.2.a.cj.1.2 3
60.47 odd 4 5200.2.a.cb.1.2 3
60.59 even 2 1040.2.d.c.209.5 6
195.29 odd 6 845.2.n.f.529.4 12
195.38 even 4 4225.2.a.bh.1.1 3
195.44 even 4 845.2.d.b.844.1 6
195.59 even 12 845.2.l.e.699.1 12
195.74 odd 6 845.2.n.f.484.3 12
195.77 even 4 4225.2.a.ba.1.3 3
195.89 even 12 845.2.l.e.654.2 12
195.119 even 12 845.2.l.d.654.6 12
195.134 odd 6 845.2.n.g.484.4 12
195.149 even 12 845.2.l.d.699.5 12
195.164 even 4 845.2.d.a.844.5 6
195.179 odd 6 845.2.n.g.529.3 12
195.194 odd 2 845.2.b.c.339.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
65.2.b.a.14.3 6 15.14 odd 2
65.2.b.a.14.4 yes 6 3.2 odd 2
325.2.a.j.1.3 3 15.8 even 4
325.2.a.k.1.1 3 15.2 even 4
585.2.c.b.469.3 6 1.1 even 1 trivial
585.2.c.b.469.4 6 5.4 even 2 inner
845.2.b.c.339.3 6 39.38 odd 2
845.2.b.c.339.4 6 195.194 odd 2
845.2.d.a.844.5 6 195.164 even 4
845.2.d.a.844.6 6 39.5 even 4
845.2.d.b.844.1 6 195.44 even 4
845.2.d.b.844.2 6 39.8 even 4
845.2.l.d.654.5 12 39.11 even 12
845.2.l.d.654.6 12 195.119 even 12
845.2.l.d.699.5 12 195.149 even 12
845.2.l.d.699.6 12 39.20 even 12
845.2.l.e.654.1 12 39.2 even 12
845.2.l.e.654.2 12 195.89 even 12
845.2.l.e.699.1 12 195.59 even 12
845.2.l.e.699.2 12 39.32 even 12
845.2.n.f.484.3 12 195.74 odd 6
845.2.n.f.484.4 12 39.35 odd 6
845.2.n.f.529.3 12 39.29 odd 6
845.2.n.f.529.4 12 195.29 odd 6
845.2.n.g.484.3 12 39.17 odd 6
845.2.n.g.484.4 12 195.134 odd 6
845.2.n.g.529.3 12 195.179 odd 6
845.2.n.g.529.4 12 39.23 odd 6
1040.2.d.c.209.2 6 12.11 even 2
1040.2.d.c.209.5 6 60.59 even 2
2925.2.a.bf.1.3 3 5.2 odd 4
2925.2.a.bj.1.1 3 5.3 odd 4
4225.2.a.ba.1.3 3 195.77 even 4
4225.2.a.bh.1.1 3 195.38 even 4
5200.2.a.cb.1.2 3 60.47 odd 4
5200.2.a.cj.1.2 3 60.23 odd 4