Properties

Label 5292.2.i.e.2125.1
Level $5292$
Weight $2$
Character 5292.2125
Analytic conductor $42.257$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1549,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2125.1
Root \(0.500000 + 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 5292.2125
Dual form 5292.2.i.e.1549.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.23025 + 2.13086i) q^{5} +O(q^{10})\) \(q+(-1.23025 + 2.13086i) q^{5} +(2.32383 + 4.02499i) q^{11} +(3.55408 + 6.15585i) q^{13} +(2.25729 - 3.90975i) q^{17} +(2.16372 + 3.74766i) q^{19} +(2.93346 - 5.08091i) q^{23} +(-0.527042 - 0.912864i) q^{25} +(-3.48755 + 6.04061i) q^{29} +7.38151 q^{31} +(0.363327 + 0.629301i) q^{37} +(-0.136673 - 0.236725i) q^{41} +(2.41741 - 4.18708i) q^{43} +3.67257 q^{47} +(2.52704 - 4.37697i) q^{53} -11.4356 q^{55} +9.13307 q^{59} +13.8171 q^{61} -17.4897 q^{65} -1.32743 q^{67} -13.5218 q^{71} +(-2.16372 + 3.74766i) q^{73} +6.43560 q^{79} +(-0.742705 + 1.28640i) q^{83} +(5.55408 + 9.61996i) q^{85} +(-4.91741 - 8.51721i) q^{89} -10.6477 q^{95} +(-0.246304 + 0.426611i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - q^{5} + 2 q^{11} + 3 q^{13} - 2 q^{17} + 3 q^{19} + 14 q^{23} + 6 q^{25} + q^{29} + 6 q^{31} + 3 q^{37} - 3 q^{43} + 42 q^{47} + 6 q^{53} - 12 q^{55} + 62 q^{59} - 12 q^{61} - 30 q^{65} + 12 q^{67} - 34 q^{71} - 3 q^{73} - 18 q^{79} - 20 q^{83} + 15 q^{85} - 12 q^{89} - 40 q^{95} - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.23025 + 2.13086i −0.550186 + 0.952949i 0.448075 + 0.893996i \(0.352110\pi\)
−0.998261 + 0.0589535i \(0.981224\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.32383 + 4.02499i 0.700662 + 1.21358i 0.968234 + 0.250044i \(0.0804451\pi\)
−0.267573 + 0.963538i \(0.586222\pi\)
\(12\) 0 0
\(13\) 3.55408 + 6.15585i 0.985726 + 1.70733i 0.638667 + 0.769484i \(0.279486\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.25729 3.90975i 0.547474 0.948253i −0.450972 0.892538i \(-0.648923\pi\)
0.998447 0.0557155i \(-0.0177440\pi\)
\(18\) 0 0
\(19\) 2.16372 + 3.74766i 0.496390 + 0.859773i 0.999991 0.00416311i \(-0.00132516\pi\)
−0.503601 + 0.863936i \(0.667992\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.93346 5.08091i 0.611669 1.05944i −0.379290 0.925278i \(-0.623832\pi\)
0.990959 0.134164i \(-0.0428350\pi\)
\(24\) 0 0
\(25\) −0.527042 0.912864i −0.105408 0.182573i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.48755 + 6.04061i −0.647621 + 1.12171i 0.336068 + 0.941838i \(0.390903\pi\)
−0.983689 + 0.179875i \(0.942431\pi\)
\(30\) 0 0
\(31\) 7.38151 1.32576 0.662880 0.748726i \(-0.269334\pi\)
0.662880 + 0.748726i \(0.269334\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.363327 + 0.629301i 0.0597306 + 0.103456i 0.894344 0.447379i \(-0.147643\pi\)
−0.834614 + 0.550835i \(0.814309\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.136673 0.236725i −0.0213448 0.0369702i 0.855156 0.518371i \(-0.173461\pi\)
−0.876500 + 0.481401i \(0.840128\pi\)
\(42\) 0 0
\(43\) 2.41741 4.18708i 0.368652 0.638524i −0.620703 0.784046i \(-0.713153\pi\)
0.989355 + 0.145522i \(0.0464862\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.67257 0.535699 0.267850 0.963461i \(-0.413687\pi\)
0.267850 + 0.963461i \(0.413687\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.52704 4.37697i 0.347116 0.601222i −0.638620 0.769522i \(-0.720494\pi\)
0.985736 + 0.168300i \(0.0538277\pi\)
\(54\) 0 0
\(55\) −11.4356 −1.54198
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 9.13307 1.18903 0.594513 0.804086i \(-0.297345\pi\)
0.594513 + 0.804086i \(0.297345\pi\)
\(60\) 0 0
\(61\) 13.8171 1.76910 0.884550 0.466445i \(-0.154466\pi\)
0.884550 + 0.466445i \(0.154466\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −17.4897 −2.16933
\(66\) 0 0
\(67\) −1.32743 −0.162171 −0.0810857 0.996707i \(-0.525839\pi\)
−0.0810857 + 0.996707i \(0.525839\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.5218 −1.60474 −0.802370 0.596826i \(-0.796428\pi\)
−0.802370 + 0.596826i \(0.796428\pi\)
\(72\) 0 0
\(73\) −2.16372 + 3.74766i −0.253244 + 0.438631i −0.964417 0.264386i \(-0.914831\pi\)
0.711173 + 0.703017i \(0.248164\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 6.43560 0.724061 0.362031 0.932166i \(-0.382084\pi\)
0.362031 + 0.932166i \(0.382084\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.742705 + 1.28640i −0.0815225 + 0.141201i −0.903904 0.427735i \(-0.859312\pi\)
0.822382 + 0.568936i \(0.192645\pi\)
\(84\) 0 0
\(85\) 5.55408 + 9.61996i 0.602425 + 1.04343i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.91741 8.51721i −0.521245 0.902822i −0.999695 0.0247073i \(-0.992135\pi\)
0.478450 0.878115i \(-0.341199\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −10.6477 −1.09243
\(96\) 0 0
\(97\) −0.246304 + 0.426611i −0.0250084 + 0.0433158i −0.878259 0.478186i \(-0.841295\pi\)
0.853250 + 0.521502i \(0.174628\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.70321 2.95005i −0.169476 0.293541i 0.768760 0.639537i \(-0.220874\pi\)
−0.938236 + 0.345997i \(0.887541\pi\)
\(102\) 0 0
\(103\) 2.58113 4.47064i 0.254326 0.440505i −0.710386 0.703812i \(-0.751480\pi\)
0.964712 + 0.263307i \(0.0848131\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.88151 4.99093i −0.278567 0.482491i 0.692462 0.721454i \(-0.256526\pi\)
−0.971029 + 0.238963i \(0.923193\pi\)
\(108\) 0 0
\(109\) 4.49115 7.77889i 0.430174 0.745083i −0.566714 0.823914i \(-0.691786\pi\)
0.996888 + 0.0788317i \(0.0251190\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.679767 1.17739i −0.0639471 0.110760i 0.832279 0.554356i \(-0.187036\pi\)
−0.896226 + 0.443597i \(0.853702\pi\)
\(114\) 0 0
\(115\) 7.21780 + 12.5016i 0.673063 + 1.16578i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.30039 + 9.18054i −0.481853 + 0.834595i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.70895 −0.868394
\(126\) 0 0
\(127\) −0.820039 −0.0727667 −0.0363833 0.999338i \(-0.511584\pi\)
−0.0363833 + 0.999338i \(0.511584\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −3.89397 + 6.74455i −0.340218 + 0.589274i −0.984473 0.175536i \(-0.943834\pi\)
0.644255 + 0.764810i \(0.277167\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.49640 2.59184i −0.127846 0.221436i 0.794996 0.606615i \(-0.207473\pi\)
−0.922842 + 0.385179i \(0.874140\pi\)
\(138\) 0 0
\(139\) 3.16372 + 5.47972i 0.268343 + 0.464783i 0.968434 0.249270i \(-0.0801907\pi\)
−0.700091 + 0.714053i \(0.746857\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.5182 + 28.6103i −1.38132 + 2.39252i
\(144\) 0 0
\(145\) −8.58113 14.8629i −0.712624 1.23430i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −2.19076 + 3.79450i −0.179474 + 0.310858i −0.941700 0.336452i \(-0.890773\pi\)
0.762227 + 0.647310i \(0.224106\pi\)
\(150\) 0 0
\(151\) −3.30039 5.71644i −0.268582 0.465197i 0.699914 0.714227i \(-0.253222\pi\)
−0.968496 + 0.249030i \(0.919888\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.08113 + 15.7290i −0.729414 + 1.26338i
\(156\) 0 0
\(157\) 5.78074 0.461353 0.230677 0.973030i \(-0.425906\pi\)
0.230677 + 0.973030i \(0.425906\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.66372 6.34574i −0.286964 0.497037i 0.686119 0.727489i \(-0.259313\pi\)
−0.973084 + 0.230452i \(0.925979\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.01459 + 10.4176i 0.465423 + 0.806136i 0.999221 0.0394762i \(-0.0125689\pi\)
−0.533798 + 0.845612i \(0.679236\pi\)
\(168\) 0 0
\(169\) −18.7630 + 32.4985i −1.44331 + 2.49989i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 4.89903 0.372466 0.186233 0.982506i \(-0.440372\pi\)
0.186233 + 0.982506i \(0.440372\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.890369 + 1.54216i −0.0665493 + 0.115267i −0.897380 0.441258i \(-0.854532\pi\)
0.830831 + 0.556525i \(0.187866\pi\)
\(180\) 0 0
\(181\) 16.9430 1.25936 0.629681 0.776854i \(-0.283185\pi\)
0.629681 + 0.776854i \(0.283185\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1.78794 −0.131452
\(186\) 0 0
\(187\) 20.9823 1.53438
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 5.48968 0.397220 0.198610 0.980079i \(-0.436357\pi\)
0.198610 + 0.980079i \(0.436357\pi\)
\(192\) 0 0
\(193\) −5.50739 −0.396431 −0.198215 0.980158i \(-0.563515\pi\)
−0.198215 + 0.980158i \(0.563515\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.6300 −0.828600 −0.414300 0.910140i \(-0.635974\pi\)
−0.414300 + 0.910140i \(0.635974\pi\)
\(198\) 0 0
\(199\) −2.07373 + 3.59181i −0.147003 + 0.254617i −0.930118 0.367260i \(-0.880296\pi\)
0.783115 + 0.621876i \(0.213629\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0.672570 0.0469743
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.0562 + 17.4179i −0.695603 + 1.20482i
\(210\) 0 0
\(211\) 13.6082 + 23.5700i 0.936825 + 1.62263i 0.771347 + 0.636415i \(0.219583\pi\)
0.165478 + 0.986213i \(0.447083\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.94805 + 10.3023i 0.405654 + 0.702613i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 32.0905 2.15864
\(222\) 0 0
\(223\) −1.60817 + 2.78543i −0.107691 + 0.186526i −0.914834 0.403829i \(-0.867679\pi\)
0.807144 + 0.590355i \(0.201012\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −7.97296 13.8096i −0.529184 0.916573i −0.999421 0.0340330i \(-0.989165\pi\)
0.470237 0.882540i \(-0.344168\pi\)
\(228\) 0 0
\(229\) −0.608168 + 1.05338i −0.0401889 + 0.0696092i −0.885420 0.464791i \(-0.846129\pi\)
0.845231 + 0.534401i \(0.179463\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.98608 + 17.2964i 0.654210 + 1.13313i 0.982091 + 0.188406i \(0.0603321\pi\)
−0.327881 + 0.944719i \(0.606335\pi\)
\(234\) 0 0
\(235\) −4.51819 + 7.82573i −0.294734 + 0.510494i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.00739 + 5.20896i 0.194532 + 0.336939i 0.946747 0.321978i \(-0.104348\pi\)
−0.752215 + 0.658918i \(0.771015\pi\)
\(240\) 0 0
\(241\) −9.30778 16.1215i −0.599567 1.03848i −0.992885 0.119078i \(-0.962006\pi\)
0.393318 0.919402i \(-0.371327\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −15.3801 + 26.6390i −0.978609 + 1.69500i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.99707 0.441651 0.220826 0.975313i \(-0.429125\pi\)
0.220826 + 0.975313i \(0.429125\pi\)
\(252\) 0 0
\(253\) 27.2675 1.71429
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 8.88891 15.3960i 0.554475 0.960378i −0.443469 0.896289i \(-0.646253\pi\)
0.997944 0.0640889i \(-0.0204141\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.5993 23.5547i −0.838570 1.45245i −0.891091 0.453825i \(-0.850059\pi\)
0.0525210 0.998620i \(-0.483274\pi\)
\(264\) 0 0
\(265\) 6.21780 + 10.7695i 0.381956 + 0.661568i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.9481 + 20.6946i −0.728486 + 1.26177i 0.229038 + 0.973418i \(0.426442\pi\)
−0.957523 + 0.288356i \(0.906891\pi\)
\(270\) 0 0
\(271\) 6.13667 + 10.6290i 0.372776 + 0.645668i 0.989992 0.141127i \(-0.0450725\pi\)
−0.617215 + 0.786794i \(0.711739\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.44951 4.24268i 0.147711 0.255843i
\(276\) 0 0
\(277\) −6.39037 11.0684i −0.383960 0.665038i 0.607664 0.794194i \(-0.292107\pi\)
−0.991624 + 0.129156i \(0.958773\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.2573 + 24.6944i −0.850519 + 1.47314i 0.0302219 + 0.999543i \(0.490379\pi\)
−0.880741 + 0.473599i \(0.842955\pi\)
\(282\) 0 0
\(283\) −0.726654 −0.0431951 −0.0215975 0.999767i \(-0.506875\pi\)
−0.0215975 + 0.999767i \(0.506875\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.69076 2.92848i −0.0994563 0.172263i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.7901 22.1531i −0.747204 1.29420i −0.949158 0.314800i \(-0.898062\pi\)
0.201954 0.979395i \(-0.435271\pi\)
\(294\) 0 0
\(295\) −11.2360 + 19.4613i −0.654184 + 1.13308i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 41.7031 2.41175
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.9985 + 29.4423i −0.973333 + 1.68586i
\(306\) 0 0
\(307\) 6.23405 0.355796 0.177898 0.984049i \(-0.443070\pi\)
0.177898 + 0.984049i \(0.443070\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 29.2383 1.65795 0.828976 0.559284i \(-0.188924\pi\)
0.828976 + 0.559284i \(0.188924\pi\)
\(312\) 0 0
\(313\) −28.4868 −1.61017 −0.805083 0.593162i \(-0.797879\pi\)
−0.805083 + 0.593162i \(0.797879\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.61849 −0.0909032 −0.0454516 0.998967i \(-0.514473\pi\)
−0.0454516 + 0.998967i \(0.514473\pi\)
\(318\) 0 0
\(319\) −32.4179 −1.81505
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.5366 1.08704
\(324\) 0 0
\(325\) 3.74630 6.48879i 0.207808 0.359933i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −13.9823 −0.768536 −0.384268 0.923222i \(-0.625546\pi\)
−0.384268 + 0.923222i \(0.625546\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.63307 2.82857i 0.0892244 0.154541i
\(336\) 0 0
\(337\) −13.8619 24.0095i −0.755104 1.30788i −0.945323 0.326137i \(-0.894253\pi\)
0.190219 0.981742i \(-0.439080\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.1534 + 29.7106i 0.928909 + 1.60892i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.52898 −0.404177 −0.202089 0.979367i \(-0.564773\pi\)
−0.202089 + 0.979367i \(0.564773\pi\)
\(348\) 0 0
\(349\) −15.0541 + 26.0744i −0.805827 + 1.39573i 0.109905 + 0.993942i \(0.464945\pi\)
−0.915732 + 0.401791i \(0.868388\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.1819 + 17.6356i 0.541928 + 0.938647i 0.998793 + 0.0491110i \(0.0156388\pi\)
−0.456865 + 0.889536i \(0.651028\pi\)
\(354\) 0 0
\(355\) 16.6352 28.8130i 0.882905 1.52924i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.01313 13.8791i −0.422917 0.732513i 0.573307 0.819341i \(-0.305660\pi\)
−0.996223 + 0.0868277i \(0.972327\pi\)
\(360\) 0 0
\(361\) 0.136673 0.236725i 0.00719332 0.0124592i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.32383 9.22115i −0.278662 0.482657i
\(366\) 0 0
\(367\) −6.79893 11.7761i −0.354901 0.614707i 0.632200 0.774805i \(-0.282152\pi\)
−0.987101 + 0.160099i \(0.948819\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 10.9641 18.9904i 0.567700 0.983285i −0.429093 0.903260i \(-0.641167\pi\)
0.996793 0.0800246i \(-0.0254999\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −49.5801 −2.55351
\(378\) 0 0
\(379\) −29.7965 −1.53054 −0.765271 0.643708i \(-0.777395\pi\)
−0.765271 + 0.643708i \(0.777395\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.0109905 0.0190361i 0.000561587 0.000972697i −0.865744 0.500486i \(-0.833155\pi\)
0.866306 + 0.499514i \(0.166488\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −17.6783 30.6197i −0.896326 1.55248i −0.832155 0.554543i \(-0.812893\pi\)
−0.0641702 0.997939i \(-0.520440\pi\)
\(390\) 0 0
\(391\) −13.2434 22.9382i −0.669746 1.16003i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.91741 + 13.7134i −0.398368 + 0.689994i
\(396\) 0 0
\(397\) −8.47150 14.6731i −0.425172 0.736420i 0.571264 0.820766i \(-0.306453\pi\)
−0.996436 + 0.0843464i \(0.973120\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.48181 + 2.56657i −0.0739982 + 0.128169i −0.900650 0.434545i \(-0.856909\pi\)
0.826652 + 0.562713i \(0.190243\pi\)
\(402\) 0 0
\(403\) 26.2345 + 45.4395i 1.30683 + 2.26350i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.68862 + 2.92478i −0.0837018 + 0.144976i
\(408\) 0 0
\(409\) 14.6549 0.724636 0.362318 0.932054i \(-0.381985\pi\)
0.362318 + 0.932054i \(0.381985\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.82743 3.16520i −0.0897050 0.155374i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.6352 + 21.8848i 0.617270 + 1.06914i 0.989982 + 0.141196i \(0.0450949\pi\)
−0.372711 + 0.927947i \(0.621572\pi\)
\(420\) 0 0
\(421\) 7.99854 13.8539i 0.389825 0.675196i −0.602601 0.798043i \(-0.705869\pi\)
0.992426 + 0.122846i \(0.0392022\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.75876 −0.230834
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.51673 11.2873i 0.313900 0.543690i −0.665303 0.746573i \(-0.731698\pi\)
0.979203 + 0.202883i \(0.0650311\pi\)
\(432\) 0 0
\(433\) −23.5467 −1.13158 −0.565791 0.824549i \(-0.691429\pi\)
−0.565791 + 0.824549i \(0.691429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 25.3887 1.21451
\(438\) 0 0
\(439\) −6.70895 −0.320200 −0.160100 0.987101i \(-0.551182\pi\)
−0.160100 + 0.987101i \(0.551182\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −35.2455 −1.67456 −0.837282 0.546771i \(-0.815857\pi\)
−0.837282 + 0.546771i \(0.815857\pi\)
\(444\) 0 0
\(445\) 24.1986 1.14712
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.9387 0.610616 0.305308 0.952254i \(-0.401241\pi\)
0.305308 + 0.952254i \(0.401241\pi\)
\(450\) 0 0
\(451\) 0.635211 1.10022i 0.0299109 0.0518072i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −29.1986 −1.36585 −0.682927 0.730487i \(-0.739293\pi\)
−0.682927 + 0.730487i \(0.739293\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.34348 16.1834i 0.435169 0.753735i −0.562140 0.827042i \(-0.690022\pi\)
0.997309 + 0.0733066i \(0.0233552\pi\)
\(462\) 0 0
\(463\) 19.1249 + 33.1253i 0.888809 + 1.53946i 0.841285 + 0.540593i \(0.181800\pi\)
0.0475247 + 0.998870i \(0.484867\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.64387 + 13.2396i 0.353716 + 0.612654i 0.986897 0.161349i \(-0.0515846\pi\)
−0.633181 + 0.774004i \(0.718251\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 22.4706 1.03320
\(474\) 0 0
\(475\) 2.28074 3.95035i 0.104647 0.181255i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −5.51605 9.55408i −0.252035 0.436537i 0.712051 0.702128i \(-0.247766\pi\)
−0.964086 + 0.265591i \(0.914433\pi\)
\(480\) 0 0
\(481\) −2.58259 + 4.47318i −0.117756 + 0.203959i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.606032 1.04968i −0.0275185 0.0476635i
\(486\) 0 0
\(487\) −8.30039 + 14.3767i −0.376126 + 0.651470i −0.990495 0.137549i \(-0.956078\pi\)
0.614368 + 0.789019i \(0.289411\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.3633 23.1460i −0.603079 1.04456i −0.992352 0.123440i \(-0.960607\pi\)
0.389273 0.921122i \(-0.372726\pi\)
\(492\) 0 0
\(493\) 15.7448 + 27.2709i 0.709112 + 1.22822i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −0.618485 + 1.07125i −0.0276872 + 0.0479557i −0.879537 0.475830i \(-0.842148\pi\)
0.851850 + 0.523786i \(0.175481\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.07179 −0.0477889 −0.0238944 0.999714i \(-0.507607\pi\)
−0.0238944 + 0.999714i \(0.507607\pi\)
\(504\) 0 0
\(505\) 8.38151 0.372973
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −10.0344 + 17.3801i −0.444768 + 0.770362i −0.998036 0.0626420i \(-0.980047\pi\)
0.553268 + 0.833004i \(0.313381\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.35087 + 11.0000i 0.279853 + 0.484720i
\(516\) 0 0
\(517\) 8.53443 + 14.7821i 0.375344 + 0.650115i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.4430 26.7480i 0.676570 1.17185i −0.299438 0.954116i \(-0.596799\pi\)
0.976007 0.217737i \(-0.0698676\pi\)
\(522\) 0 0
\(523\) −3.69961 6.40792i −0.161773 0.280199i 0.773732 0.633513i \(-0.218388\pi\)
−0.935505 + 0.353315i \(0.885054\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.6623 28.8599i 0.725819 1.25716i
\(528\) 0 0
\(529\) −5.71041 9.89072i −0.248279 0.430031i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.971495 1.68268i 0.0420801 0.0728849i
\(534\) 0 0
\(535\) 14.1800 0.613053
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.3348 19.6325i −0.487322 0.844067i 0.512572 0.858644i \(-0.328693\pi\)
−0.999894 + 0.0145779i \(0.995360\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0505 + 19.1400i 0.473351 + 0.819868i
\(546\) 0 0
\(547\) 3.07373 5.32386i 0.131423 0.227632i −0.792802 0.609479i \(-0.791379\pi\)
0.924225 + 0.381847i \(0.124712\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −30.1842 −1.28589
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.8370 25.6984i 0.628662 1.08887i −0.359158 0.933277i \(-0.616936\pi\)
0.987820 0.155598i \(-0.0497305\pi\)
\(558\) 0 0
\(559\) 34.3667 1.45356
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −29.3111 −1.23531 −0.617657 0.786447i \(-0.711918\pi\)
−0.617657 + 0.786447i \(0.711918\pi\)
\(564\) 0 0
\(565\) 3.34514 0.140731
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 36.8860 1.54634 0.773170 0.634198i \(-0.218670\pi\)
0.773170 + 0.634198i \(0.218670\pi\)
\(570\) 0 0
\(571\) 32.3786 1.35500 0.677501 0.735522i \(-0.263063\pi\)
0.677501 + 0.735522i \(0.263063\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.18423 −0.257900
\(576\) 0 0
\(577\) 11.5093 19.9348i 0.479140 0.829895i −0.520574 0.853817i \(-0.674282\pi\)
0.999714 + 0.0239220i \(0.00761535\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 23.4897 0.972843
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.87052 + 4.97189i −0.118479 + 0.205212i −0.919165 0.393872i \(-0.871135\pi\)
0.800686 + 0.599084i \(0.204469\pi\)
\(588\) 0 0
\(589\) 15.9715 + 27.6634i 0.658094 + 1.13985i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.8727 24.0282i −0.569682 0.986718i −0.996597 0.0824263i \(-0.973733\pi\)
0.426915 0.904292i \(-0.359600\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.10817 −0.167855 −0.0839276 0.996472i \(-0.526746\pi\)
−0.0839276 + 0.996472i \(0.526746\pi\)
\(600\) 0 0
\(601\) 7.80924 13.5260i 0.318546 0.551737i −0.661639 0.749822i \(-0.730139\pi\)
0.980185 + 0.198085i \(0.0634723\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.0416 22.5888i −0.530218 0.918364i
\(606\) 0 0
\(607\) −0.280738 + 0.486253i −0.0113948 + 0.0197364i −0.871667 0.490099i \(-0.836960\pi\)
0.860272 + 0.509836i \(0.170294\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.0526 + 22.6078i 0.528053 + 0.914614i
\(612\) 0 0
\(613\) 10.1008 17.4951i 0.407967 0.706619i −0.586695 0.809808i \(-0.699571\pi\)
0.994662 + 0.103189i \(0.0329047\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.4569 19.8439i −0.461238 0.798887i 0.537785 0.843082i \(-0.319261\pi\)
−0.999023 + 0.0441948i \(0.985928\pi\)
\(618\) 0 0
\(619\) 19.8515 + 34.3839i 0.797901 + 1.38201i 0.920981 + 0.389608i \(0.127390\pi\)
−0.123080 + 0.992397i \(0.539277\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14.5797 25.2527i 0.583187 1.01011i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.28054 0.130804
\(630\) 0 0
\(631\) −31.0364 −1.23554 −0.617769 0.786359i \(-0.711963\pi\)
−0.617769 + 0.786359i \(0.711963\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.00885 1.74739i 0.0400352 0.0693429i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −14.7932 25.6226i −0.584296 1.01203i −0.994963 0.100245i \(-0.968037\pi\)
0.410667 0.911785i \(-0.365296\pi\)
\(642\) 0 0
\(643\) 12.8442 + 22.2467i 0.506524 + 0.877325i 0.999972 + 0.00754978i \(0.00240319\pi\)
−0.493447 + 0.869776i \(0.664263\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.50885 + 14.7378i −0.334518 + 0.579401i −0.983392 0.181494i \(-0.941907\pi\)
0.648874 + 0.760895i \(0.275240\pi\)
\(648\) 0 0
\(649\) 21.2237 + 36.7606i 0.833104 + 1.44298i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0.735508 1.27394i 0.0287827 0.0498530i −0.851275 0.524719i \(-0.824170\pi\)
0.880058 + 0.474866i \(0.157504\pi\)
\(654\) 0 0
\(655\) −9.58113 16.5950i −0.374366 0.648420i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.7003 + 35.8539i −0.806369 + 1.39667i 0.108995 + 0.994042i \(0.465237\pi\)
−0.915363 + 0.402629i \(0.868096\pi\)
\(660\) 0 0
\(661\) −38.2704 −1.48855 −0.744273 0.667875i \(-0.767204\pi\)
−0.744273 + 0.667875i \(0.767204\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.4612 + 35.4398i 0.792260 + 1.37223i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 32.1086 + 55.6138i 1.23954 + 2.14695i
\(672\) 0 0
\(673\) 15.2448 26.4048i 0.587645 1.01783i −0.406894 0.913475i \(-0.633388\pi\)
0.994540 0.104357i \(-0.0332783\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 44.9253 1.72662 0.863309 0.504675i \(-0.168388\pi\)
0.863309 + 0.504675i \(0.168388\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.1986 + 41.9133i −0.925935 + 1.60377i −0.135884 + 0.990725i \(0.543387\pi\)
−0.790051 + 0.613041i \(0.789946\pi\)
\(684\) 0 0
\(685\) 7.36381 0.281357
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 35.9253 1.36864
\(690\) 0 0
\(691\) −18.3815 −0.699266 −0.349633 0.936887i \(-0.613694\pi\)
−0.349633 + 0.936887i \(0.613694\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −15.5687 −0.590553
\(696\) 0 0
\(697\) −1.23405 −0.0467428
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.0292 1.02088 0.510439 0.859914i \(-0.329483\pi\)
0.510439 + 0.859914i \(0.329483\pi\)
\(702\) 0 0
\(703\) −1.57227 + 2.72325i −0.0592994 + 0.102710i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 4.98522 0.187224 0.0936119 0.995609i \(-0.470159\pi\)
0.0936119 + 0.995609i \(0.470159\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.6534 37.5048i 0.810926 1.40457i
\(714\) 0 0
\(715\) −40.6431 70.3959i −1.51997 2.63266i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.84708 13.5915i −0.292647 0.506879i 0.681788 0.731550i \(-0.261203\pi\)
−0.974435 + 0.224671i \(0.927869\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.35234 0.273059
\(726\) 0 0
\(727\) 10.9071 18.8916i 0.404522 0.700652i −0.589744 0.807590i \(-0.700771\pi\)
0.994266 + 0.106938i \(0.0341047\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −10.9136 18.9029i −0.403655 0.699151i
\(732\) 0 0
\(733\) −12.0074 + 20.7974i −0.443503 + 0.768170i −0.997947 0.0640514i \(-0.979598\pi\)
0.554443 + 0.832221i \(0.312931\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.08472 5.34290i −0.113627 0.196808i
\(738\) 0 0
\(739\) −9.35447 + 16.2024i −0.344110 + 0.596016i −0.985192 0.171457i \(-0.945153\pi\)
0.641082 + 0.767473i \(0.278486\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.1534 34.9067i −0.739356 1.28060i −0.952785 0.303644i \(-0.901797\pi\)
0.213429 0.976959i \(-0.431537\pi\)
\(744\) 0 0
\(745\) −5.39037 9.33639i −0.197488 0.342059i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 10.5629 18.2955i 0.385447 0.667614i −0.606384 0.795172i \(-0.707381\pi\)
0.991831 + 0.127558i \(0.0407139\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.2412 0.591079
\(756\) 0 0
\(757\) 8.85934 0.321998 0.160999 0.986955i \(-0.448528\pi\)
0.160999 + 0.986955i \(0.448528\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −0.694551 + 1.20300i −0.0251774 + 0.0436086i −0.878340 0.478037i \(-0.841348\pi\)
0.853162 + 0.521646i \(0.174682\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.4597 + 56.2219i 1.17205 + 2.03005i
\(768\) 0 0
\(769\) −18.9626 32.8443i −0.683810 1.18439i −0.973809 0.227367i \(-0.926988\pi\)
0.289999 0.957027i \(-0.406345\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.657981 + 1.13966i −0.0236659 + 0.0409906i −0.877616 0.479365i \(-0.840867\pi\)
0.853950 + 0.520355i \(0.174200\pi\)
\(774\) 0 0
\(775\) −3.89037 6.73832i −0.139746 0.242047i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.591443 1.02441i 0.0211907 0.0367033i
\(780\) 0 0
\(781\) −31.4224 54.4251i −1.12438 1.94748i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.11177 + 12.3179i −0.253830 + 0.439646i
\(786\) 0 0
\(787\) −12.2586 −0.436971 −0.218485 0.975840i \(-0.570112\pi\)
−0.218485 + 0.975840i \(0.570112\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 49.1072 + 85.0561i 1.74385 + 3.02043i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.7178 18.5638i −0.379644 0.657563i 0.611366 0.791348i \(-0.290620\pi\)
−0.991010 + 0.133785i \(0.957287\pi\)
\(798\) 0 0
\(799\) 8.29007 14.3588i 0.293282 0.507979i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.1124 −0.709753
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.3478 23.1190i 0.469282 0.812820i −0.530101 0.847934i \(-0.677846\pi\)
0.999383 + 0.0351140i \(0.0111794\pi\)
\(810\) 0 0
\(811\) −38.2852 −1.34438 −0.672188 0.740381i \(-0.734645\pi\)
−0.672188 + 0.740381i \(0.734645\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 18.0292 0.631535
\(816\) 0 0
\(817\) 20.9224 0.731981
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 10.4998 0.366446 0.183223 0.983071i \(-0.441347\pi\)
0.183223 + 0.983071i \(0.441347\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.7817 1.69631 0.848153 0.529752i \(-0.177715\pi\)
0.848153 + 0.529752i \(0.177715\pi\)
\(828\) 0 0
\(829\) −3.10963 + 5.38604i −0.108002 + 0.187065i −0.914961 0.403543i \(-0.867779\pi\)
0.806959 + 0.590608i \(0.201112\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −29.5979 −1.02428
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.0366 36.4364i 0.726263 1.25792i −0.232189 0.972671i \(-0.574589\pi\)
0.958452 0.285254i \(-0.0920779\pi\)
\(840\) 0 0
\(841\) −9.82597 17.0191i −0.338826 0.586865i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −46.1665 79.9628i −1.58818 2.75080i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.26322 0.146141
\(852\) 0 0
\(853\) −6.72519 + 11.6484i −0.230266 + 0.398833i −0.957886 0.287147i \(-0.907293\pi\)
0.727620 + 0.685980i \(0.240626\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −20.6893 35.8349i −0.706733 1.22410i −0.966063 0.258308i \(-0.916835\pi\)
0.259330 0.965789i \(-0.416498\pi\)
\(858\) 0 0
\(859\) −19.8815 + 34.4358i −0.678349 + 1.17493i 0.297129 + 0.954837i \(0.403971\pi\)
−0.975478 + 0.220097i \(0.929363\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.6929 + 46.2334i 0.908637 + 1.57380i 0.815960 + 0.578109i \(0.196209\pi\)
0.0926768 + 0.995696i \(0.470458\pi\)
\(864\) 0 0
\(865\) −6.02704 + 10.4391i −0.204926 + 0.354942i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14.9552 + 25.9033i 0.507322 + 0.878708i
\(870\) 0 0
\(871\) −4.71780 8.17147i −0.159857 0.276880i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 3.42674 5.93530i 0.115713 0.200421i −0.802352 0.596852i \(-0.796418\pi\)
0.918065 + 0.396431i \(0.129751\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.5103 −0.421483 −0.210742 0.977542i \(-0.567588\pi\)
−0.210742 + 0.977542i \(0.567588\pi\)
\(882\) 0 0
\(883\) 6.69124 0.225178 0.112589 0.993642i \(-0.464086\pi\)
0.112589 + 0.993642i \(0.464086\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.0708 + 27.8355i −0.539605 + 0.934623i 0.459320 + 0.888271i \(0.348093\pi\)
−0.998925 + 0.0463524i \(0.985240\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.94639 + 13.7636i 0.265916 + 0.460580i
\(894\) 0 0
\(895\) −2.19076 3.79450i −0.0732289 0.126836i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.7434 + 44.5888i −0.858590 + 1.48712i
\(900\) 0 0
\(901\) −11.4086 19.7602i −0.380074 0.658308i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.8442 + 36.1031i −0.692883 + 1.20011i
\(906\) 0 0
\(907\) 15.7016 + 27.1959i 0.521362 + 0.903025i 0.999691 + 0.0248444i \(0.00790902\pi\)
−0.478330 + 0.878180i \(0.658758\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.8982 39.6609i 0.758653 1.31402i −0.184885 0.982760i \(-0.559191\pi\)
0.943538 0.331265i \(-0.107475\pi\)
\(912\) 0 0
\(913\) −6.90369 −0.228479
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.5900 23.5385i −0.448292 0.776465i 0.549983 0.835176i \(-0.314634\pi\)
−0.998275 + 0.0587112i \(0.981301\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −48.0576 83.2381i −1.58183 2.73982i
\(924\) 0 0
\(925\) 0.382977 0.663336i 0.0125922 0.0218104i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −40.6677 −1.33426 −0.667132 0.744940i \(-0.732478\pi\)
−0.667132 + 0.744940i \(0.732478\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.8135 + 44.7103i −0.844192 + 1.46218i
\(936\) 0 0
\(937\) −16.4150 −0.536254 −0.268127 0.963384i \(-0.586405\pi\)
−0.268127 + 0.963384i \(0.586405\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 7.33755 0.239197 0.119599 0.992822i \(-0.461839\pi\)
0.119599 + 0.992822i \(0.461839\pi\)
\(942\) 0 0
\(943\) −1.60370 −0.0522237
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −59.1124 −1.92090 −0.960448 0.278459i \(-0.910176\pi\)
−0.960448 + 0.278459i \(0.910176\pi\)
\(948\) 0 0
\(949\) −30.7601 −0.998515
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.9354 0.548592 0.274296 0.961645i \(-0.411555\pi\)
0.274296 + 0.961645i \(0.411555\pi\)
\(954\) 0 0
\(955\) −6.75370 + 11.6977i −0.218544 + 0.378530i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 23.4868 0.757637
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.77548 11.7355i 0.218110 0.377778i
\(966\) 0 0
\(967\) 3.55555 + 6.15839i 0.114339 + 0.198040i 0.917515 0.397701i \(-0.130192\pi\)
−0.803177 + 0.595741i \(0.796858\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.735508 + 1.27394i 0.0236036 + 0.0408826i 0.877586 0.479419i \(-0.159153\pi\)
−0.853982 + 0.520302i \(0.825819\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 19.4327 0.621706 0.310853 0.950458i \(-0.399385\pi\)
0.310853 + 0.950458i \(0.399385\pi\)
\(978\) 0 0
\(979\) 22.8545 39.5851i 0.730432 1.26515i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.87218 6.70681i −0.123503 0.213914i 0.797644 0.603129i \(-0.206080\pi\)
−0.921147 + 0.389215i \(0.872746\pi\)
\(984\) 0 0
\(985\) 14.3078 24.7818i 0.455884 0.789614i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −14.1828 24.5653i −0.450986 0.781130i
\(990\) 0 0
\(991\) 7.23551 12.5323i 0.229843 0.398101i −0.727918 0.685664i \(-0.759512\pi\)
0.957762 + 0.287563i \(0.0928452\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.10243 8.83767i −0.161758 0.280173i
\(996\) 0 0
\(997\) −27.6549 47.8996i −0.875838 1.51700i −0.855867 0.517196i \(-0.826976\pi\)
−0.0199711 0.999801i \(-0.506357\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.e.2125.1 6
3.2 odd 2 1764.2.i.d.1537.1 6
7.2 even 3 5292.2.l.f.3313.3 6
7.3 odd 6 756.2.j.b.505.3 6
7.4 even 3 5292.2.j.d.3529.1 6
7.5 odd 6 5292.2.l.e.3313.1 6
7.6 odd 2 5292.2.i.f.2125.3 6
9.4 even 3 5292.2.l.f.361.3 6
9.5 odd 6 1764.2.l.f.949.2 6
21.2 odd 6 1764.2.l.f.961.2 6
21.5 even 6 1764.2.l.e.961.2 6
21.11 odd 6 1764.2.j.e.1177.2 6
21.17 even 6 252.2.j.a.169.2 yes 6
21.20 even 2 1764.2.i.g.1537.3 6
28.3 even 6 3024.2.r.j.2017.3 6
63.4 even 3 5292.2.j.d.1765.1 6
63.5 even 6 1764.2.i.g.373.3 6
63.13 odd 6 5292.2.l.e.361.1 6
63.23 odd 6 1764.2.i.d.373.1 6
63.31 odd 6 756.2.j.b.253.3 6
63.32 odd 6 1764.2.j.e.589.2 6
63.38 even 6 2268.2.a.i.1.3 3
63.40 odd 6 5292.2.i.f.1549.3 6
63.41 even 6 1764.2.l.e.949.2 6
63.52 odd 6 2268.2.a.h.1.1 3
63.58 even 3 inner 5292.2.i.e.1549.1 6
63.59 even 6 252.2.j.a.85.2 6
84.59 odd 6 1008.2.r.j.673.2 6
252.31 even 6 3024.2.r.j.1009.3 6
252.59 odd 6 1008.2.r.j.337.2 6
252.115 even 6 9072.2.a.bv.1.1 3
252.227 odd 6 9072.2.a.by.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.2 6 63.59 even 6
252.2.j.a.169.2 yes 6 21.17 even 6
756.2.j.b.253.3 6 63.31 odd 6
756.2.j.b.505.3 6 7.3 odd 6
1008.2.r.j.337.2 6 252.59 odd 6
1008.2.r.j.673.2 6 84.59 odd 6
1764.2.i.d.373.1 6 63.23 odd 6
1764.2.i.d.1537.1 6 3.2 odd 2
1764.2.i.g.373.3 6 63.5 even 6
1764.2.i.g.1537.3 6 21.20 even 2
1764.2.j.e.589.2 6 63.32 odd 6
1764.2.j.e.1177.2 6 21.11 odd 6
1764.2.l.e.949.2 6 63.41 even 6
1764.2.l.e.961.2 6 21.5 even 6
1764.2.l.f.949.2 6 9.5 odd 6
1764.2.l.f.961.2 6 21.2 odd 6
2268.2.a.h.1.1 3 63.52 odd 6
2268.2.a.i.1.3 3 63.38 even 6
3024.2.r.j.1009.3 6 252.31 even 6
3024.2.r.j.2017.3 6 28.3 even 6
5292.2.i.e.1549.1 6 63.58 even 3 inner
5292.2.i.e.2125.1 6 1.1 even 1 trivial
5292.2.i.f.1549.3 6 63.40 odd 6
5292.2.i.f.2125.3 6 7.6 odd 2
5292.2.j.d.1765.1 6 63.4 even 3
5292.2.j.d.3529.1 6 7.4 even 3
5292.2.l.e.361.1 6 63.13 odd 6
5292.2.l.e.3313.1 6 7.5 odd 6
5292.2.l.f.361.3 6 9.4 even 3
5292.2.l.f.3313.3 6 7.2 even 3
9072.2.a.bv.1.1 3 252.115 even 6
9072.2.a.by.1.3 3 252.227 odd 6