Properties

Label 252.2.j.a.169.2
Level $252$
Weight $2$
Character 252.169
Analytic conductor $2.012$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,2,Mod(85,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.85");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 169.2
Root \(0.500000 + 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 252.169
Dual form 252.2.j.a.85.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.933463 - 1.45899i) q^{3} +(-1.23025 - 2.13086i) q^{5} +(0.500000 - 0.866025i) q^{7} +(-1.25729 + 2.72382i) q^{9} +(-2.32383 + 4.02499i) q^{11} +(-3.55408 - 6.15585i) q^{13} +(-1.96050 + 3.78400i) q^{15} -4.51459 q^{17} +4.32743 q^{19} +(-1.73025 + 0.0789082i) q^{21} +(-2.93346 - 5.08091i) q^{23} +(-0.527042 + 0.912864i) q^{25} +(5.14766 - 0.708209i) q^{27} +(3.48755 - 6.04061i) q^{29} +(3.69076 + 6.39258i) q^{31} +(8.04163 - 0.366739i) q^{33} -2.46050 q^{35} -0.726654 q^{37} +(-5.66372 + 10.9316i) q^{39} +(-0.136673 - 0.236725i) q^{41} +(2.41741 - 4.18708i) q^{43} +(7.35087 - 0.671871i) q^{45} +(-1.83628 + 3.18054i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(4.21420 + 6.58673i) q^{51} +5.05408 q^{53} +11.4356 q^{55} +(-4.03950 - 6.31367i) q^{57} +(-4.56654 - 7.90947i) q^{59} +(6.90856 - 11.9660i) q^{61} +(1.73025 + 2.45076i) q^{63} +(-8.74484 + 15.1465i) q^{65} +(0.663715 + 1.14959i) q^{67} +(-4.67471 + 9.02273i) q^{69} +13.5218 q^{71} -4.32743 q^{73} +(1.82383 - 0.0831759i) q^{75} +(2.32383 + 4.02499i) q^{77} +(-3.21780 + 5.57339i) q^{79} +(-5.83842 - 6.84929i) q^{81} +(-0.742705 + 1.28640i) q^{83} +(5.55408 + 9.61996i) q^{85} +(-12.0687 + 0.550392i) q^{87} +9.83482 q^{89} -7.10817 q^{91} +(5.88151 - 11.3520i) q^{93} +(-5.32383 - 9.22115i) q^{95} +(0.246304 - 0.426611i) q^{97} +(-8.04163 - 11.3903i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - q^{5} + 3 q^{7} + 8 q^{9} - 2 q^{11} - 3 q^{13} + q^{15} + 4 q^{17} + 6 q^{19} - 4 q^{21} - 14 q^{23} + 6 q^{25} + 7 q^{27} - q^{29} + 3 q^{31} + 8 q^{33} - 2 q^{35} - 6 q^{37} - 24 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.933463 1.45899i −0.538935 0.842347i
\(4\) 0 0
\(5\) −1.23025 2.13086i −0.550186 0.952949i −0.998261 0.0589535i \(-0.981224\pi\)
0.448075 0.893996i \(-0.352110\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 0 0
\(9\) −1.25729 + 2.72382i −0.419098 + 0.907941i
\(10\) 0 0
\(11\) −2.32383 + 4.02499i −0.700662 + 1.21358i 0.267573 + 0.963538i \(0.413778\pi\)
−0.968234 + 0.250044i \(0.919555\pi\)
\(12\) 0 0
\(13\) −3.55408 6.15585i −0.985726 1.70733i −0.638667 0.769484i \(-0.720514\pi\)
−0.347059 0.937843i \(-0.612820\pi\)
\(14\) 0 0
\(15\) −1.96050 + 3.78400i −0.506200 + 0.977025i
\(16\) 0 0
\(17\) −4.51459 −1.09495 −0.547474 0.836822i \(-0.684411\pi\)
−0.547474 + 0.836822i \(0.684411\pi\)
\(18\) 0 0
\(19\) 4.32743 0.992781 0.496390 0.868099i \(-0.334658\pi\)
0.496390 + 0.868099i \(0.334658\pi\)
\(20\) 0 0
\(21\) −1.73025 + 0.0789082i −0.377572 + 0.0172192i
\(22\) 0 0
\(23\) −2.93346 5.08091i −0.611669 1.05944i −0.990959 0.134164i \(-0.957165\pi\)
0.379290 0.925278i \(-0.376168\pi\)
\(24\) 0 0
\(25\) −0.527042 + 0.912864i −0.105408 + 0.182573i
\(26\) 0 0
\(27\) 5.14766 0.708209i 0.990668 0.136295i
\(28\) 0 0
\(29\) 3.48755 6.04061i 0.647621 1.12171i −0.336068 0.941838i \(-0.609097\pi\)
0.983689 0.179875i \(-0.0575694\pi\)
\(30\) 0 0
\(31\) 3.69076 + 6.39258i 0.662880 + 1.14814i 0.979856 + 0.199708i \(0.0639992\pi\)
−0.316976 + 0.948434i \(0.602667\pi\)
\(32\) 0 0
\(33\) 8.04163 0.366739i 1.39987 0.0638411i
\(34\) 0 0
\(35\) −2.46050 −0.415901
\(36\) 0 0
\(37\) −0.726654 −0.119461 −0.0597306 0.998215i \(-0.519024\pi\)
−0.0597306 + 0.998215i \(0.519024\pi\)
\(38\) 0 0
\(39\) −5.66372 + 10.9316i −0.906920 + 1.75046i
\(40\) 0 0
\(41\) −0.136673 0.236725i −0.0213448 0.0369702i 0.855156 0.518371i \(-0.173461\pi\)
−0.876500 + 0.481401i \(0.840128\pi\)
\(42\) 0 0
\(43\) 2.41741 4.18708i 0.368652 0.638524i −0.620703 0.784046i \(-0.713153\pi\)
0.989355 + 0.145522i \(0.0464862\pi\)
\(44\) 0 0
\(45\) 7.35087 0.671871i 1.09580 0.100157i
\(46\) 0 0
\(47\) −1.83628 + 3.18054i −0.267850 + 0.463929i −0.968306 0.249766i \(-0.919646\pi\)
0.700457 + 0.713695i \(0.252980\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) 0 0
\(51\) 4.21420 + 6.58673i 0.590106 + 0.922327i
\(52\) 0 0
\(53\) 5.05408 0.694232 0.347116 0.937822i \(-0.387161\pi\)
0.347116 + 0.937822i \(0.387161\pi\)
\(54\) 0 0
\(55\) 11.4356 1.54198
\(56\) 0 0
\(57\) −4.03950 6.31367i −0.535044 0.836266i
\(58\) 0 0
\(59\) −4.56654 7.90947i −0.594513 1.02973i −0.993615 0.112820i \(-0.964012\pi\)
0.399103 0.916906i \(-0.369322\pi\)
\(60\) 0 0
\(61\) 6.90856 11.9660i 0.884550 1.53209i 0.0383215 0.999265i \(-0.487799\pi\)
0.846228 0.532820i \(-0.178868\pi\)
\(62\) 0 0
\(63\) 1.73025 + 2.45076i 0.217991 + 0.308767i
\(64\) 0 0
\(65\) −8.74484 + 15.1465i −1.08466 + 1.87869i
\(66\) 0 0
\(67\) 0.663715 + 1.14959i 0.0810857 + 0.140445i 0.903717 0.428131i \(-0.140828\pi\)
−0.822631 + 0.568576i \(0.807495\pi\)
\(68\) 0 0
\(69\) −4.67471 + 9.02273i −0.562768 + 1.08621i
\(70\) 0 0
\(71\) 13.5218 1.60474 0.802370 0.596826i \(-0.203572\pi\)
0.802370 + 0.596826i \(0.203572\pi\)
\(72\) 0 0
\(73\) −4.32743 −0.506487 −0.253244 0.967403i \(-0.581497\pi\)
−0.253244 + 0.967403i \(0.581497\pi\)
\(74\) 0 0
\(75\) 1.82383 0.0831759i 0.210598 0.00960433i
\(76\) 0 0
\(77\) 2.32383 + 4.02499i 0.264825 + 0.458691i
\(78\) 0 0
\(79\) −3.21780 + 5.57339i −0.362031 + 0.627056i −0.988295 0.152555i \(-0.951250\pi\)
0.626264 + 0.779611i \(0.284583\pi\)
\(80\) 0 0
\(81\) −5.83842 6.84929i −0.648713 0.761033i
\(82\) 0 0
\(83\) −0.742705 + 1.28640i −0.0815225 + 0.141201i −0.903904 0.427735i \(-0.859312\pi\)
0.822382 + 0.568936i \(0.192645\pi\)
\(84\) 0 0
\(85\) 5.55408 + 9.61996i 0.602425 + 1.04343i
\(86\) 0 0
\(87\) −12.0687 + 0.550392i −1.29390 + 0.0590083i
\(88\) 0 0
\(89\) 9.83482 1.04249 0.521245 0.853407i \(-0.325468\pi\)
0.521245 + 0.853407i \(0.325468\pi\)
\(90\) 0 0
\(91\) −7.10817 −0.745139
\(92\) 0 0
\(93\) 5.88151 11.3520i 0.609885 1.17715i
\(94\) 0 0
\(95\) −5.32383 9.22115i −0.546214 0.946070i
\(96\) 0 0
\(97\) 0.246304 0.426611i 0.0250084 0.0433158i −0.853250 0.521502i \(-0.825372\pi\)
0.878259 + 0.478186i \(0.158705\pi\)
\(98\) 0 0
\(99\) −8.04163 11.3903i −0.808214 1.14477i
\(100\) 0 0
\(101\) −1.70321 + 2.95005i −0.169476 + 0.293541i −0.938236 0.345997i \(-0.887541\pi\)
0.768760 + 0.639537i \(0.220874\pi\)
\(102\) 0 0
\(103\) −2.58113 4.47064i −0.254326 0.440505i 0.710386 0.703812i \(-0.248520\pi\)
−0.964712 + 0.263307i \(0.915187\pi\)
\(104\) 0 0
\(105\) 2.29679 + 3.58985i 0.224144 + 0.350333i
\(106\) 0 0
\(107\) −5.76303 −0.557133 −0.278567 0.960417i \(-0.589859\pi\)
−0.278567 + 0.960417i \(0.589859\pi\)
\(108\) 0 0
\(109\) −8.98229 −0.860347 −0.430174 0.902746i \(-0.641548\pi\)
−0.430174 + 0.902746i \(0.641548\pi\)
\(110\) 0 0
\(111\) 0.678304 + 1.06018i 0.0643818 + 0.100628i
\(112\) 0 0
\(113\) 0.679767 + 1.17739i 0.0639471 + 0.110760i 0.896226 0.443597i \(-0.146298\pi\)
−0.832279 + 0.554356i \(0.812964\pi\)
\(114\) 0 0
\(115\) −7.21780 + 12.5016i −0.673063 + 1.16578i
\(116\) 0 0
\(117\) 21.2360 1.94097i 1.96327 0.179443i
\(118\) 0 0
\(119\) −2.25729 + 3.90975i −0.206926 + 0.358406i
\(120\) 0 0
\(121\) −5.30039 9.18054i −0.481853 0.834595i
\(122\) 0 0
\(123\) −0.217799 + 0.420378i −0.0196383 + 0.0379042i
\(124\) 0 0
\(125\) −9.70895 −0.868394
\(126\) 0 0
\(127\) −0.820039 −0.0727667 −0.0363833 0.999338i \(-0.511584\pi\)
−0.0363833 + 0.999338i \(0.511584\pi\)
\(128\) 0 0
\(129\) −8.36546 + 0.381507i −0.736538 + 0.0335898i
\(130\) 0 0
\(131\) −3.89397 6.74455i −0.340218 0.589274i 0.644255 0.764810i \(-0.277167\pi\)
−0.984473 + 0.175536i \(0.943834\pi\)
\(132\) 0 0
\(133\) 2.16372 3.74766i 0.187618 0.324964i
\(134\) 0 0
\(135\) −7.84202 10.0977i −0.674934 0.869069i
\(136\) 0 0
\(137\) 1.49640 2.59184i 0.127846 0.221436i −0.794996 0.606615i \(-0.792527\pi\)
0.922842 + 0.385179i \(0.125860\pi\)
\(138\) 0 0
\(139\) −3.16372 5.47972i −0.268343 0.464783i 0.700091 0.714053i \(-0.253143\pi\)
−0.968434 + 0.249270i \(0.919809\pi\)
\(140\) 0 0
\(141\) 6.35447 0.289796i 0.535143 0.0244052i
\(142\) 0 0
\(143\) 33.0364 2.76264
\(144\) 0 0
\(145\) −17.1623 −1.42525
\(146\) 0 0
\(147\) −0.796790 + 1.53790i −0.0657181 + 0.126844i
\(148\) 0 0
\(149\) 2.19076 + 3.79450i 0.179474 + 0.310858i 0.941700 0.336452i \(-0.109227\pi\)
−0.762227 + 0.647310i \(0.775894\pi\)
\(150\) 0 0
\(151\) −3.30039 + 5.71644i −0.268582 + 0.465197i −0.968496 0.249030i \(-0.919888\pi\)
0.699914 + 0.714227i \(0.253222\pi\)
\(152\) 0 0
\(153\) 5.67617 12.2969i 0.458891 0.994149i
\(154\) 0 0
\(155\) 9.08113 15.7290i 0.729414 1.26338i
\(156\) 0 0
\(157\) 2.89037 + 5.00627i 0.230677 + 0.399544i 0.958007 0.286743i \(-0.0925727\pi\)
−0.727331 + 0.686287i \(0.759239\pi\)
\(158\) 0 0
\(159\) −4.71780 7.37385i −0.374146 0.584784i
\(160\) 0 0
\(161\) −5.86693 −0.462379
\(162\) 0 0
\(163\) 7.32743 0.573929 0.286964 0.957941i \(-0.407354\pi\)
0.286964 + 0.957941i \(0.407354\pi\)
\(164\) 0 0
\(165\) −10.6747 16.6844i −0.831025 1.29888i
\(166\) 0 0
\(167\) 6.01459 + 10.4176i 0.465423 + 0.806136i 0.999221 0.0394762i \(-0.0125689\pi\)
−0.533798 + 0.845612i \(0.679236\pi\)
\(168\) 0 0
\(169\) −18.7630 + 32.4985i −1.44331 + 2.49989i
\(170\) 0 0
\(171\) −5.44085 + 11.7872i −0.416073 + 0.901386i
\(172\) 0 0
\(173\) −2.44951 + 4.24268i −0.186233 + 0.322565i −0.943991 0.329970i \(-0.892961\pi\)
0.757758 + 0.652535i \(0.226295\pi\)
\(174\) 0 0
\(175\) 0.527042 + 0.912864i 0.0398406 + 0.0690060i
\(176\) 0 0
\(177\) −7.27714 + 14.0457i −0.546983 + 1.05574i
\(178\) 0 0
\(179\) −1.78074 −0.133099 −0.0665493 0.997783i \(-0.521199\pi\)
−0.0665493 + 0.997783i \(0.521199\pi\)
\(180\) 0 0
\(181\) −16.9430 −1.25936 −0.629681 0.776854i \(-0.716815\pi\)
−0.629681 + 0.776854i \(0.716815\pi\)
\(182\) 0 0
\(183\) −23.9071 + 1.09028i −1.76726 + 0.0805961i
\(184\) 0 0
\(185\) 0.893968 + 1.54840i 0.0657258 + 0.113840i
\(186\) 0 0
\(187\) 10.4911 18.1712i 0.767189 1.32881i
\(188\) 0 0
\(189\) 1.96050 4.81211i 0.142606 0.350030i
\(190\) 0 0
\(191\) 2.74484 4.75420i 0.198610 0.344002i −0.749468 0.662040i \(-0.769691\pi\)
0.948078 + 0.318038i \(0.103024\pi\)
\(192\) 0 0
\(193\) 2.75370 + 4.76954i 0.198215 + 0.343319i 0.947950 0.318420i \(-0.103152\pi\)
−0.749734 + 0.661739i \(0.769819\pi\)
\(194\) 0 0
\(195\) 30.2616 1.38008i 2.16708 0.0988296i
\(196\) 0 0
\(197\) 11.6300 0.828600 0.414300 0.910140i \(-0.364026\pi\)
0.414300 + 0.910140i \(0.364026\pi\)
\(198\) 0 0
\(199\) −4.14747 −0.294006 −0.147003 0.989136i \(-0.546963\pi\)
−0.147003 + 0.989136i \(0.546963\pi\)
\(200\) 0 0
\(201\) 1.05768 2.04145i 0.0746032 0.143993i
\(202\) 0 0
\(203\) −3.48755 6.04061i −0.244778 0.423968i
\(204\) 0 0
\(205\) −0.336285 + 0.582462i −0.0234871 + 0.0406809i
\(206\) 0 0
\(207\) 17.5277 1.60204i 1.21826 0.111349i
\(208\) 0 0
\(209\) −10.0562 + 17.4179i −0.695603 + 1.20482i
\(210\) 0 0
\(211\) 13.6082 + 23.5700i 0.936825 + 1.62263i 0.771347 + 0.636415i \(0.219583\pi\)
0.165478 + 0.986213i \(0.447083\pi\)
\(212\) 0 0
\(213\) −12.6221 19.7281i −0.864851 1.35175i
\(214\) 0 0
\(215\) −11.8961 −0.811308
\(216\) 0 0
\(217\) 7.38151 0.501090
\(218\) 0 0
\(219\) 4.03950 + 6.31367i 0.272964 + 0.426638i
\(220\) 0 0
\(221\) 16.0452 + 27.7912i 1.07932 + 1.86944i
\(222\) 0 0
\(223\) 1.60817 2.78543i 0.107691 0.186526i −0.807144 0.590355i \(-0.798988\pi\)
0.914834 + 0.403829i \(0.132321\pi\)
\(224\) 0 0
\(225\) −1.82383 2.58331i −0.121589 0.172221i
\(226\) 0 0
\(227\) −7.97296 + 13.8096i −0.529184 + 0.916573i 0.470237 + 0.882540i \(0.344168\pi\)
−0.999421 + 0.0340330i \(0.989165\pi\)
\(228\) 0 0
\(229\) 0.608168 + 1.05338i 0.0401889 + 0.0696092i 0.885420 0.464791i \(-0.153871\pi\)
−0.845231 + 0.534401i \(0.820537\pi\)
\(230\) 0 0
\(231\) 3.70321 7.14763i 0.243653 0.470279i
\(232\) 0 0
\(233\) 19.9722 1.30842 0.654210 0.756313i \(-0.273001\pi\)
0.654210 + 0.756313i \(0.273001\pi\)
\(234\) 0 0
\(235\) 9.03638 0.589468
\(236\) 0 0
\(237\) 11.1352 0.507822i 0.723310 0.0329866i
\(238\) 0 0
\(239\) −3.00739 5.20896i −0.194532 0.336939i 0.752215 0.658918i \(-0.228985\pi\)
−0.946747 + 0.321978i \(0.895652\pi\)
\(240\) 0 0
\(241\) 9.30778 16.1215i 0.599567 1.03848i −0.393318 0.919402i \(-0.628673\pi\)
0.992885 0.119078i \(-0.0379938\pi\)
\(242\) 0 0
\(243\) −4.54309 + 14.9118i −0.291440 + 0.956589i
\(244\) 0 0
\(245\) −1.23025 + 2.13086i −0.0785979 + 0.136136i
\(246\) 0 0
\(247\) −15.3801 26.6390i −0.978609 1.69500i
\(248\) 0 0
\(249\) 2.57014 0.117211i 0.162876 0.00742796i
\(250\) 0 0
\(251\) 6.99707 0.441651 0.220826 0.975313i \(-0.429125\pi\)
0.220826 + 0.975313i \(0.429125\pi\)
\(252\) 0 0
\(253\) 27.2675 1.71429
\(254\) 0 0
\(255\) 8.85087 17.0832i 0.554263 1.06979i
\(256\) 0 0
\(257\) 8.88891 + 15.3960i 0.554475 + 0.960378i 0.997944 + 0.0640889i \(0.0204141\pi\)
−0.443469 + 0.896289i \(0.646253\pi\)
\(258\) 0 0
\(259\) −0.363327 + 0.629301i −0.0225760 + 0.0391028i
\(260\) 0 0
\(261\) 12.0687 + 17.0943i 0.747032 + 1.05811i
\(262\) 0 0
\(263\) 13.5993 23.5547i 0.838570 1.45245i −0.0525210 0.998620i \(-0.516726\pi\)
0.891091 0.453825i \(-0.149941\pi\)
\(264\) 0 0
\(265\) −6.21780 10.7695i −0.381956 0.661568i
\(266\) 0 0
\(267\) −9.18044 14.3489i −0.561834 0.878138i
\(268\) 0 0
\(269\) 23.8961 1.45697 0.728486 0.685061i \(-0.240225\pi\)
0.728486 + 0.685061i \(0.240225\pi\)
\(270\) 0 0
\(271\) 12.2733 0.745553 0.372776 0.927921i \(-0.378406\pi\)
0.372776 + 0.927921i \(0.378406\pi\)
\(272\) 0 0
\(273\) 6.63521 + 10.3707i 0.401581 + 0.627665i
\(274\) 0 0
\(275\) −2.44951 4.24268i −0.147711 0.255843i
\(276\) 0 0
\(277\) −6.39037 + 11.0684i −0.383960 + 0.665038i −0.991624 0.129156i \(-0.958773\pi\)
0.607664 + 0.794194i \(0.292107\pi\)
\(278\) 0 0
\(279\) −22.0526 + 2.01561i −1.32026 + 0.120672i
\(280\) 0 0
\(281\) 14.2573 24.6944i 0.850519 1.47314i −0.0302219 0.999543i \(-0.509621\pi\)
0.880741 0.473599i \(-0.157045\pi\)
\(282\) 0 0
\(283\) −0.363327 0.629301i −0.0215975 0.0374080i 0.855025 0.518587i \(-0.173542\pi\)
−0.876622 + 0.481179i \(0.840209\pi\)
\(284\) 0 0
\(285\) −8.48395 + 16.3750i −0.502546 + 0.969972i
\(286\) 0 0
\(287\) −0.273346 −0.0161351
\(288\) 0 0
\(289\) 3.38151 0.198913
\(290\) 0 0
\(291\) −0.852336 + 0.0388708i −0.0499648 + 0.00227865i
\(292\) 0 0
\(293\) −12.7901 22.1531i −0.747204 1.29420i −0.949158 0.314800i \(-0.898062\pi\)
0.201954 0.979395i \(-0.435271\pi\)
\(294\) 0 0
\(295\) −11.2360 + 19.4613i −0.654184 + 1.13308i
\(296\) 0 0
\(297\) −9.11177 + 22.3651i −0.528718 + 1.29775i
\(298\) 0 0
\(299\) −20.8515 + 36.1159i −1.20588 + 2.08864i
\(300\) 0 0
\(301\) −2.41741 4.18708i −0.139337 0.241339i
\(302\) 0 0
\(303\) 5.89397 0.268795i 0.338600 0.0154419i
\(304\) 0 0
\(305\) −33.9971 −1.94667
\(306\) 0 0
\(307\) −6.23405 −0.355796 −0.177898 0.984049i \(-0.556930\pi\)
−0.177898 + 0.984049i \(0.556930\pi\)
\(308\) 0 0
\(309\) −4.11323 + 7.93901i −0.233993 + 0.451635i
\(310\) 0 0
\(311\) −14.6192 25.3211i −0.828976 1.43583i −0.898842 0.438273i \(-0.855590\pi\)
0.0698655 0.997556i \(-0.477743\pi\)
\(312\) 0 0
\(313\) −14.2434 + 24.6703i −0.805083 + 1.39445i 0.111151 + 0.993803i \(0.464546\pi\)
−0.916235 + 0.400642i \(0.868787\pi\)
\(314\) 0 0
\(315\) 3.09358 6.70198i 0.174303 0.377614i
\(316\) 0 0
\(317\) −0.809243 + 1.40165i −0.0454516 + 0.0787245i −0.887856 0.460121i \(-0.847806\pi\)
0.842405 + 0.538846i \(0.181139\pi\)
\(318\) 0 0
\(319\) 16.2089 + 28.0747i 0.907527 + 1.57188i
\(320\) 0 0
\(321\) 5.37957 + 8.40819i 0.300258 + 0.469300i
\(322\) 0 0
\(323\) −19.5366 −1.08704
\(324\) 0 0
\(325\) 7.49261 0.415615
\(326\) 0 0
\(327\) 8.38463 + 13.1051i 0.463671 + 0.724711i
\(328\) 0 0
\(329\) 1.83628 + 3.18054i 0.101238 + 0.175349i
\(330\) 0 0
\(331\) 6.99115 12.1090i 0.384268 0.665572i −0.607399 0.794397i \(-0.707787\pi\)
0.991667 + 0.128825i \(0.0411205\pi\)
\(332\) 0 0
\(333\) 0.913618 1.97928i 0.0500660 0.108464i
\(334\) 0 0
\(335\) 1.63307 2.82857i 0.0892244 0.154541i
\(336\) 0 0
\(337\) −13.8619 24.0095i −0.755104 1.30788i −0.945323 0.326137i \(-0.894253\pi\)
0.190219 0.981742i \(-0.439080\pi\)
\(338\) 0 0
\(339\) 1.08326 2.09082i 0.0588347 0.113558i
\(340\) 0 0
\(341\) −34.3068 −1.85782
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 24.9772 1.13909i 1.34473 0.0613264i
\(346\) 0 0
\(347\) −3.76449 6.52029i −0.202089 0.350028i 0.747113 0.664697i \(-0.231440\pi\)
−0.949201 + 0.314670i \(0.898106\pi\)
\(348\) 0 0
\(349\) 15.0541 26.0744i 0.805827 1.39573i −0.109905 0.993942i \(-0.535055\pi\)
0.915732 0.401791i \(-0.131612\pi\)
\(350\) 0 0
\(351\) −22.6549 29.1712i −1.20923 1.55705i
\(352\) 0 0
\(353\) 10.1819 17.6356i 0.541928 0.938647i −0.456865 0.889536i \(-0.651028\pi\)
0.998793 0.0491110i \(-0.0156388\pi\)
\(354\) 0 0
\(355\) −16.6352 28.8130i −0.882905 1.52924i
\(356\) 0 0
\(357\) 7.81138 0.356238i 0.413422 0.0188541i
\(358\) 0 0
\(359\) −16.0263 −0.845833 −0.422917 0.906169i \(-0.638994\pi\)
−0.422917 + 0.906169i \(0.638994\pi\)
\(360\) 0 0
\(361\) −0.273346 −0.0143866
\(362\) 0 0
\(363\) −8.44659 + 16.3029i −0.443331 + 0.855680i
\(364\) 0 0
\(365\) 5.32383 + 9.22115i 0.278662 + 0.482657i
\(366\) 0 0
\(367\) 6.79893 11.7761i 0.354901 0.614707i −0.632200 0.774805i \(-0.717848\pi\)
0.987101 + 0.160099i \(0.0511812\pi\)
\(368\) 0 0
\(369\) 0.816635 0.0746406i 0.0425123 0.00388563i
\(370\) 0 0
\(371\) 2.52704 4.37697i 0.131197 0.227241i
\(372\) 0 0
\(373\) 10.9641 + 18.9904i 0.567700 + 0.983285i 0.996793 + 0.0800246i \(0.0254999\pi\)
−0.429093 + 0.903260i \(0.641167\pi\)
\(374\) 0 0
\(375\) 9.06294 + 14.1652i 0.468008 + 0.731490i
\(376\) 0 0
\(377\) −49.5801 −2.55351
\(378\) 0 0
\(379\) −29.7965 −1.53054 −0.765271 0.643708i \(-0.777395\pi\)
−0.765271 + 0.643708i \(0.777395\pi\)
\(380\) 0 0
\(381\) 0.765475 + 1.19643i 0.0392165 + 0.0612948i
\(382\) 0 0
\(383\) 0.0109905 + 0.0190361i 0.000561587 + 0.000972697i 0.866306 0.499514i \(-0.166488\pi\)
−0.865744 + 0.500486i \(0.833155\pi\)
\(384\) 0 0
\(385\) 5.71780 9.90352i 0.291406 0.504730i
\(386\) 0 0
\(387\) 8.36546 + 11.8490i 0.425240 + 0.602318i
\(388\) 0 0
\(389\) 17.6783 30.6197i 0.896326 1.55248i 0.0641702 0.997939i \(-0.479560\pi\)
0.832155 0.554543i \(-0.187107\pi\)
\(390\) 0 0
\(391\) 13.2434 + 22.9382i 0.669746 + 1.16003i
\(392\) 0 0
\(393\) −6.20535 + 11.9770i −0.313018 + 0.604162i
\(394\) 0 0
\(395\) 15.8348 0.796736
\(396\) 0 0
\(397\) −16.9430 −0.850344 −0.425172 0.905112i \(-0.639786\pi\)
−0.425172 + 0.905112i \(0.639786\pi\)
\(398\) 0 0
\(399\) −7.48755 + 0.341470i −0.374846 + 0.0170949i
\(400\) 0 0
\(401\) 1.48181 + 2.56657i 0.0739982 + 0.128169i 0.900650 0.434545i \(-0.143091\pi\)
−0.826652 + 0.562713i \(0.809757\pi\)
\(402\) 0 0
\(403\) 26.2345 45.4395i 1.30683 2.26350i
\(404\) 0 0
\(405\) −7.41216 + 20.8672i −0.368313 + 1.03690i
\(406\) 0 0
\(407\) 1.68862 2.92478i 0.0837018 0.144976i
\(408\) 0 0
\(409\) 7.32743 + 12.6915i 0.362318 + 0.627553i 0.988342 0.152251i \(-0.0486521\pi\)
−0.626024 + 0.779804i \(0.715319\pi\)
\(410\) 0 0
\(411\) −5.17830 + 0.236157i −0.255427 + 0.0116488i
\(412\) 0 0
\(413\) −9.13307 −0.449409
\(414\) 0 0
\(415\) 3.65486 0.179410
\(416\) 0 0
\(417\) −5.04163 + 9.73093i −0.246890 + 0.476526i
\(418\) 0 0
\(419\) 12.6352 + 21.8848i 0.617270 + 1.06914i 0.989982 + 0.141196i \(0.0450949\pi\)
−0.372711 + 0.927947i \(0.621572\pi\)
\(420\) 0 0
\(421\) 7.99854 13.8539i 0.389825 0.675196i −0.602601 0.798043i \(-0.705869\pi\)
0.992426 + 0.122846i \(0.0392022\pi\)
\(422\) 0 0
\(423\) −6.35447 9.00059i −0.308965 0.437624i
\(424\) 0 0
\(425\) 2.37938 4.12120i 0.115417 0.199908i
\(426\) 0 0
\(427\) −6.90856 11.9660i −0.334328 0.579074i
\(428\) 0 0
\(429\) −30.8382 48.1997i −1.48888 2.32710i
\(430\) 0 0
\(431\) 13.0335 0.627799 0.313900 0.949456i \(-0.398364\pi\)
0.313900 + 0.949456i \(0.398364\pi\)
\(432\) 0 0
\(433\) 23.5467 1.13158 0.565791 0.824549i \(-0.308571\pi\)
0.565791 + 0.824549i \(0.308571\pi\)
\(434\) 0 0
\(435\) 16.0203 + 25.0395i 0.768116 + 1.20055i
\(436\) 0 0
\(437\) −12.6944 21.9873i −0.607253 1.05179i
\(438\) 0 0
\(439\) −3.35447 + 5.81012i −0.160100 + 0.277302i −0.934904 0.354900i \(-0.884515\pi\)
0.774804 + 0.632201i \(0.217848\pi\)
\(440\) 0 0
\(441\) 2.98755 0.273062i 0.142264 0.0130030i
\(442\) 0 0
\(443\) −17.6228 + 30.5235i −0.837282 + 1.45022i 0.0548760 + 0.998493i \(0.482524\pi\)
−0.892158 + 0.451723i \(0.850810\pi\)
\(444\) 0 0
\(445\) −12.0993 20.9566i −0.573562 0.993439i
\(446\) 0 0
\(447\) 3.49115 6.73832i 0.165126 0.318711i
\(448\) 0 0
\(449\) −12.9387 −0.610616 −0.305308 0.952254i \(-0.598759\pi\)
−0.305308 + 0.952254i \(0.598759\pi\)
\(450\) 0 0
\(451\) 1.27042 0.0598218
\(452\) 0 0
\(453\) 11.4210 0.520856i 0.536606 0.0244719i
\(454\) 0 0
\(455\) 8.74484 + 15.1465i 0.409964 + 0.710079i
\(456\) 0 0
\(457\) 14.5993 25.2868i 0.682927 1.18286i −0.291156 0.956675i \(-0.594040\pi\)
0.974083 0.226189i \(-0.0726267\pi\)
\(458\) 0 0
\(459\) −23.2396 + 3.19727i −1.08473 + 0.149236i
\(460\) 0 0
\(461\) 9.34348 16.1834i 0.435169 0.753735i −0.562140 0.827042i \(-0.690022\pi\)
0.997309 + 0.0733066i \(0.0233552\pi\)
\(462\) 0 0
\(463\) 19.1249 + 33.1253i 0.888809 + 1.53946i 0.841285 + 0.540593i \(0.181800\pi\)
0.0475247 + 0.998870i \(0.484867\pi\)
\(464\) 0 0
\(465\) −31.4253 + 1.43315i −1.45731 + 0.0664608i
\(466\) 0 0
\(467\) −15.2877 −0.707432 −0.353716 0.935353i \(-0.615082\pi\)
−0.353716 + 0.935353i \(0.615082\pi\)
\(468\) 0 0
\(469\) 1.32743 0.0612950
\(470\) 0 0
\(471\) 4.60603 8.89018i 0.212235 0.409638i
\(472\) 0 0
\(473\) 11.2353 + 19.4601i 0.516600 + 0.894778i
\(474\) 0 0
\(475\) −2.28074 + 3.95035i −0.104647 + 0.181255i
\(476\) 0 0
\(477\) −6.35447 + 13.7664i −0.290951 + 0.630322i
\(478\) 0 0
\(479\) −5.51605 + 9.55408i −0.252035 + 0.436537i −0.964086 0.265591i \(-0.914433\pi\)
0.712051 + 0.702128i \(0.247766\pi\)
\(480\) 0 0
\(481\) 2.58259 + 4.47318i 0.117756 + 0.203959i
\(482\) 0 0
\(483\) 5.47656 + 8.55978i 0.249192 + 0.389483i
\(484\) 0 0
\(485\) −1.21206 −0.0550370
\(486\) 0 0
\(487\) 16.6008 0.752253 0.376126 0.926568i \(-0.377256\pi\)
0.376126 + 0.926568i \(0.377256\pi\)
\(488\) 0 0
\(489\) −6.83988 10.6906i −0.309310 0.483447i
\(490\) 0 0
\(491\) 13.3633 + 23.1460i 0.603079 + 1.04456i 0.992352 + 0.123440i \(0.0393928\pi\)
−0.389273 + 0.921122i \(0.627274\pi\)
\(492\) 0 0
\(493\) −15.7448 + 27.2709i −0.709112 + 1.22822i
\(494\) 0 0
\(495\) −14.3779 + 31.1485i −0.646239 + 1.40002i
\(496\) 0 0
\(497\) 6.76089 11.7102i 0.303268 0.525275i
\(498\) 0 0
\(499\) −0.618485 1.07125i −0.0276872 0.0479557i 0.851850 0.523786i \(-0.175481\pi\)
−0.879537 + 0.475830i \(0.842148\pi\)
\(500\) 0 0
\(501\) 9.58472 18.4996i 0.428214 0.826503i
\(502\) 0 0
\(503\) −1.07179 −0.0477889 −0.0238944 0.999714i \(-0.507607\pi\)
−0.0238944 + 0.999714i \(0.507607\pi\)
\(504\) 0 0
\(505\) 8.38151 0.372973
\(506\) 0 0
\(507\) 64.9296 2.96112i 2.88362 0.131508i
\(508\) 0 0
\(509\) −10.0344 17.3801i −0.444768 0.770362i 0.553268 0.833004i \(-0.313381\pi\)
−0.998036 + 0.0626420i \(0.980047\pi\)
\(510\) 0 0
\(511\) −2.16372 + 3.74766i −0.0957171 + 0.165787i
\(512\) 0 0
\(513\) 22.2762 3.06472i 0.983516 0.135311i
\(514\) 0 0
\(515\) −6.35087 + 11.0000i −0.279853 + 0.484720i
\(516\) 0 0
\(517\) −8.53443 14.7821i −0.375344 0.650115i
\(518\) 0 0
\(519\) 8.47656 0.386574i 0.372080 0.0169687i
\(520\) 0 0
\(521\) −30.8860 −1.35314 −0.676570 0.736379i \(-0.736534\pi\)
−0.676570 + 0.736379i \(0.736534\pi\)
\(522\) 0 0
\(523\) −7.39922 −0.323545 −0.161773 0.986828i \(-0.551721\pi\)
−0.161773 + 0.986828i \(0.551721\pi\)
\(524\) 0 0
\(525\) 0.839883 1.62107i 0.0366555 0.0707494i
\(526\) 0 0
\(527\) −16.6623 28.8599i −0.725819 1.25716i
\(528\) 0 0
\(529\) −5.71041 + 9.89072i −0.248279 + 0.430031i
\(530\) 0 0
\(531\) 27.2855 2.49390i 1.18409 0.108226i
\(532\) 0 0
\(533\) −0.971495 + 1.68268i −0.0420801 + 0.0728849i
\(534\) 0 0
\(535\) 7.08998 + 12.2802i 0.306527 + 0.530920i
\(536\) 0 0
\(537\) 1.66225 + 2.59808i 0.0717315 + 0.112115i
\(538\) 0 0
\(539\) 4.64766 0.200189
\(540\) 0 0
\(541\) 22.6696 0.974644 0.487322 0.873222i \(-0.337974\pi\)
0.487322 + 0.873222i \(0.337974\pi\)
\(542\) 0 0
\(543\) 15.8157 + 24.7196i 0.678715 + 1.06082i
\(544\) 0 0
\(545\) 11.0505 + 19.1400i 0.473351 + 0.819868i
\(546\) 0 0
\(547\) 3.07373 5.32386i 0.131423 0.227632i −0.792802 0.609479i \(-0.791379\pi\)
0.924225 + 0.381847i \(0.124712\pi\)
\(548\) 0 0
\(549\) 23.9071 + 33.8624i 1.02033 + 1.44521i
\(550\) 0 0
\(551\) 15.0921 26.1403i 0.642946 1.11361i
\(552\) 0 0
\(553\) 3.21780 + 5.57339i 0.136835 + 0.237005i
\(554\) 0 0
\(555\) 1.42461 2.74966i 0.0604713 0.116717i
\(556\) 0 0
\(557\) 29.6739 1.25732 0.628662 0.777679i \(-0.283603\pi\)
0.628662 + 0.777679i \(0.283603\pi\)
\(558\) 0 0
\(559\) −34.3667 −1.45356
\(560\) 0 0
\(561\) −36.3047 + 1.65568i −1.53278 + 0.0699027i
\(562\) 0 0
\(563\) 14.6555 + 25.3841i 0.617657 + 1.06981i 0.989912 + 0.141683i \(0.0452514\pi\)
−0.372255 + 0.928131i \(0.621415\pi\)
\(564\) 0 0
\(565\) 1.67257 2.89698i 0.0703655 0.121877i
\(566\) 0 0
\(567\) −8.85087 + 1.63157i −0.371702 + 0.0685196i
\(568\) 0 0
\(569\) 18.4430 31.9442i 0.773170 1.33917i −0.162647 0.986684i \(-0.552003\pi\)
0.935817 0.352486i \(-0.114664\pi\)
\(570\) 0 0
\(571\) −16.1893 28.0407i −0.677501 1.17347i −0.975731 0.218972i \(-0.929730\pi\)
0.298230 0.954494i \(-0.403604\pi\)
\(572\) 0 0
\(573\) −9.49854 + 0.433181i −0.396807 + 0.0180964i
\(574\) 0 0
\(575\) 6.18423 0.257900
\(576\) 0 0
\(577\) 23.0187 0.958280 0.479140 0.877739i \(-0.340949\pi\)
0.479140 + 0.877739i \(0.340949\pi\)
\(578\) 0 0
\(579\) 4.38823 8.46980i 0.182369 0.351993i
\(580\) 0 0
\(581\) 0.742705 + 1.28640i 0.0308126 + 0.0533690i
\(582\) 0 0
\(583\) −11.7448 + 20.3427i −0.486422 + 0.842507i
\(584\) 0 0
\(585\) −30.2616 42.8630i −1.25116 1.77217i
\(586\) 0 0
\(587\) −2.87052 + 4.97189i −0.118479 + 0.205212i −0.919165 0.393872i \(-0.871135\pi\)
0.800686 + 0.599084i \(0.204469\pi\)
\(588\) 0 0
\(589\) 15.9715 + 27.6634i 0.658094 + 1.13985i
\(590\) 0 0
\(591\) −10.8561 16.9680i −0.446562 0.697969i
\(592\) 0 0
\(593\) 27.7453 1.13936 0.569682 0.821865i \(-0.307066\pi\)
0.569682 + 0.821865i \(0.307066\pi\)
\(594\) 0 0
\(595\) 11.1082 0.455391
\(596\) 0 0
\(597\) 3.87151 + 6.05111i 0.158450 + 0.247655i
\(598\) 0 0
\(599\) −2.05408 3.55778i −0.0839276 0.145367i 0.821006 0.570919i \(-0.193413\pi\)
−0.904934 + 0.425552i \(0.860080\pi\)
\(600\) 0 0
\(601\) −7.80924 + 13.5260i −0.318546 + 0.551737i −0.980185 0.198085i \(-0.936528\pi\)
0.661639 + 0.749822i \(0.269861\pi\)
\(602\) 0 0
\(603\) −3.96576 + 0.362471i −0.161498 + 0.0147610i
\(604\) 0 0
\(605\) −13.0416 + 22.5888i −0.530218 + 0.918364i
\(606\) 0 0
\(607\) 0.280738 + 0.486253i 0.0113948 + 0.0197364i 0.871667 0.490099i \(-0.163040\pi\)
−0.860272 + 0.509836i \(0.829706\pi\)
\(608\) 0 0
\(609\) −5.55768 + 10.7270i −0.225209 + 0.434679i
\(610\) 0 0
\(611\) 26.1052 1.05611
\(612\) 0 0
\(613\) −20.2016 −0.815933 −0.407967 0.912997i \(-0.633762\pi\)
−0.407967 + 0.912997i \(0.633762\pi\)
\(614\) 0 0
\(615\) 1.16372 0.0530713i 0.0469255 0.00214004i
\(616\) 0 0
\(617\) 11.4569 + 19.8439i 0.461238 + 0.798887i 0.999023 0.0441948i \(-0.0140722\pi\)
−0.537785 + 0.843082i \(0.680739\pi\)
\(618\) 0 0
\(619\) −19.8515 + 34.3839i −0.797901 + 1.38201i 0.123080 + 0.992397i \(0.460723\pi\)
−0.920981 + 0.389608i \(0.872610\pi\)
\(620\) 0 0
\(621\) −18.6988 24.0773i −0.750358 0.966188i
\(622\) 0 0
\(623\) 4.91741 8.51721i 0.197012 0.341235i
\(624\) 0 0
\(625\) 14.5797 + 25.2527i 0.583187 + 1.01011i
\(626\) 0 0
\(627\) 34.7996 1.58704i 1.38976 0.0633802i
\(628\) 0 0
\(629\) 3.28054 0.130804
\(630\) 0 0
\(631\) −31.0364 −1.23554 −0.617769 0.786359i \(-0.711963\pi\)
−0.617769 + 0.786359i \(0.711963\pi\)
\(632\) 0 0
\(633\) 21.6857 41.8559i 0.861929 1.66362i
\(634\) 0 0
\(635\) 1.00885 + 1.74739i 0.0400352 + 0.0693429i
\(636\) 0 0
\(637\) −3.55408 + 6.15585i −0.140818 + 0.243904i
\(638\) 0 0
\(639\) −17.0009 + 36.8309i −0.672544 + 1.45701i
\(640\) 0 0
\(641\) 14.7932 25.6226i 0.584296 1.01203i −0.410667 0.911785i \(-0.634704\pi\)
0.994963 0.100245i \(-0.0319626\pi\)
\(642\) 0 0
\(643\) −12.8442 22.2467i −0.506524 0.877325i −0.999972 0.00754978i \(-0.997597\pi\)
0.493447 0.869776i \(-0.335737\pi\)
\(644\) 0 0
\(645\) 11.1046 + 17.3563i 0.437242 + 0.683403i
\(646\) 0 0
\(647\) 17.0177 0.669035 0.334518 0.942390i \(-0.391427\pi\)
0.334518 + 0.942390i \(0.391427\pi\)
\(648\) 0 0
\(649\) 42.4475 1.66621
\(650\) 0 0
\(651\) −6.89037 10.7695i −0.270055 0.422092i
\(652\) 0 0
\(653\) −0.735508 1.27394i −0.0287827 0.0498530i 0.851275 0.524719i \(-0.175830\pi\)
−0.880058 + 0.474866i \(0.842496\pi\)
\(654\) 0 0
\(655\) −9.58113 + 16.5950i −0.374366 + 0.648420i
\(656\) 0 0
\(657\) 5.44085 11.7872i 0.212268 0.459861i
\(658\) 0 0
\(659\) 20.7003 35.8539i 0.806369 1.39667i −0.108995 0.994042i \(-0.534763\pi\)
0.915363 0.402629i \(-0.131904\pi\)
\(660\) 0 0
\(661\) −19.1352 33.1432i −0.744273 1.28912i −0.950533 0.310622i \(-0.899463\pi\)
0.206260 0.978497i \(-0.433871\pi\)
\(662\) 0 0
\(663\) 25.5693 49.3518i 0.993031 1.91667i
\(664\) 0 0
\(665\) −10.6477 −0.412899
\(666\) 0 0
\(667\) −40.9224 −1.58452
\(668\) 0 0
\(669\) −5.56507 + 0.253795i −0.215158 + 0.00981230i
\(670\) 0 0
\(671\) 32.1086 + 55.6138i 1.23954 + 2.14695i
\(672\) 0 0
\(673\) 15.2448 26.4048i 0.587645 1.01783i −0.406894 0.913475i \(-0.633388\pi\)
0.994540 0.104357i \(-0.0332783\pi\)
\(674\) 0 0
\(675\) −2.06654 + 5.07237i −0.0795411 + 0.195236i
\(676\) 0 0
\(677\) −22.4626 + 38.9064i −0.863309 + 1.49530i 0.00540665 + 0.999985i \(0.498279\pi\)
−0.868716 + 0.495310i \(0.835054\pi\)
\(678\) 0 0
\(679\) −0.246304 0.426611i −0.00945228 0.0163718i
\(680\) 0 0
\(681\) 27.5905 1.25826i 1.05727 0.0482168i
\(682\) 0 0
\(683\) −48.3973 −1.85187 −0.925935 0.377683i \(-0.876721\pi\)
−0.925935 + 0.377683i \(0.876721\pi\)
\(684\) 0 0
\(685\) −7.36381 −0.281357
\(686\) 0 0
\(687\) 0.969165 1.87060i 0.0369759 0.0713679i
\(688\) 0 0
\(689\) −17.9626 31.1122i −0.684322 1.18528i
\(690\) 0 0
\(691\) −9.19076 + 15.9189i −0.349633 + 0.605582i −0.986184 0.165652i \(-0.947027\pi\)
0.636551 + 0.771234i \(0.280360\pi\)
\(692\) 0 0
\(693\) −13.8851 + 1.26910i −0.527452 + 0.0482092i
\(694\) 0 0
\(695\) −7.78434 + 13.4829i −0.295277 + 0.511434i
\(696\) 0 0
\(697\) 0.617023 + 1.06871i 0.0233714 + 0.0404805i
\(698\) 0 0
\(699\) −18.6433 29.1392i −0.705153 1.10214i
\(700\) 0 0
\(701\) −27.0292 −1.02088 −0.510439 0.859914i \(-0.670517\pi\)
−0.510439 + 0.859914i \(0.670517\pi\)
\(702\) 0 0
\(703\) −3.14454 −0.118599
\(704\) 0 0
\(705\) −8.43512 13.1840i −0.317685 0.496537i
\(706\) 0 0
\(707\) 1.70321 + 2.95005i 0.0640558 + 0.110948i
\(708\) 0 0
\(709\) −2.49261 + 4.31732i −0.0936119 + 0.162141i −0.909028 0.416734i \(-0.863175\pi\)
0.815417 + 0.578875i \(0.196508\pi\)
\(710\) 0 0
\(711\) −11.1352 15.7721i −0.417603 0.591500i
\(712\) 0 0
\(713\) 21.6534 37.5048i 0.810926 1.40457i
\(714\) 0 0
\(715\) −40.6431 70.3959i −1.51997 2.63266i
\(716\) 0 0
\(717\) −4.79252 + 9.25012i −0.178980 + 0.345452i
\(718\) 0 0
\(719\) 15.6942 0.585293 0.292647 0.956221i \(-0.405464\pi\)
0.292647 + 0.956221i \(0.405464\pi\)
\(720\) 0 0
\(721\) −5.16225 −0.192252
\(722\) 0 0
\(723\) −32.2096 + 1.46892i −1.19789 + 0.0546298i
\(724\) 0 0
\(725\) 3.67617 + 6.36731i 0.136529 + 0.236476i
\(726\) 0 0
\(727\) −10.9071 + 18.8916i −0.404522 + 0.700652i −0.994266 0.106938i \(-0.965895\pi\)
0.589744 + 0.807590i \(0.299229\pi\)
\(728\) 0 0
\(729\) 25.9969 7.29124i 0.962847 0.270046i
\(730\) 0 0
\(731\) −10.9136 + 18.9029i −0.403655 + 0.699151i
\(732\) 0 0
\(733\) 12.0074 + 20.7974i 0.443503 + 0.768170i 0.997947 0.0640514i \(-0.0204022\pi\)
−0.554443 + 0.832221i \(0.687069\pi\)
\(734\) 0 0
\(735\) 4.25729 0.194154i 0.157033 0.00716148i
\(736\) 0 0
\(737\) −6.16945 −0.227255
\(738\) 0 0
\(739\) 18.7089 0.688220 0.344110 0.938929i \(-0.388181\pi\)
0.344110 + 0.938929i \(0.388181\pi\)
\(740\) 0 0
\(741\) −24.5093 + 47.3059i −0.900373 + 1.73782i
\(742\) 0 0
\(743\) 20.1534 + 34.9067i 0.739356 + 1.28060i 0.952785 + 0.303644i \(0.0982035\pi\)
−0.213429 + 0.976959i \(0.568463\pi\)
\(744\) 0 0
\(745\) 5.39037 9.33639i 0.197488 0.342059i
\(746\) 0 0
\(747\) −2.57014 3.64039i −0.0940364 0.133195i
\(748\) 0 0
\(749\) −2.88151 + 4.99093i −0.105288 + 0.182365i
\(750\) 0 0
\(751\) 10.5629 + 18.2955i 0.385447 + 0.667614i 0.991831 0.127558i \(-0.0407139\pi\)
−0.606384 + 0.795172i \(0.707381\pi\)
\(752\) 0 0
\(753\) −6.53151 10.2087i −0.238021 0.372024i
\(754\) 0 0
\(755\) 16.2412 0.591079
\(756\) 0 0
\(757\) 8.85934 0.321998 0.160999 0.986955i \(-0.448528\pi\)
0.160999 + 0.986955i \(0.448528\pi\)
\(758\) 0 0
\(759\) −25.4532 39.7830i −0.923892 1.44403i
\(760\) 0 0
\(761\) −0.694551 1.20300i −0.0251774 0.0436086i 0.853162 0.521646i \(-0.174682\pi\)
−0.878340 + 0.478037i \(0.841348\pi\)
\(762\) 0 0
\(763\) −4.49115 + 7.77889i −0.162590 + 0.281615i
\(764\) 0 0
\(765\) −33.1862 + 3.03322i −1.19985 + 0.109666i
\(766\) 0 0
\(767\) −32.4597 + 56.2219i −1.17205 + 2.03005i
\(768\) 0 0
\(769\) 18.9626 + 32.8443i 0.683810 + 1.18439i 0.973809 + 0.227367i \(0.0730118\pi\)
−0.289999 + 0.957027i \(0.593655\pi\)
\(770\) 0 0
\(771\) 14.1652 27.3404i 0.510146 0.984642i
\(772\) 0 0
\(773\) 1.31596 0.0473318 0.0236659 0.999720i \(-0.492466\pi\)
0.0236659 + 0.999720i \(0.492466\pi\)
\(774\) 0 0
\(775\) −7.78074 −0.279492
\(776\) 0 0
\(777\) 1.25729 0.0573390i 0.0451052 0.00205702i
\(778\) 0 0
\(779\) −0.591443 1.02441i −0.0211907 0.0367033i
\(780\) 0 0
\(781\) −31.4224 + 54.4251i −1.12438 + 1.94748i
\(782\) 0 0
\(783\) 13.6747 33.5649i 0.488694 1.19951i
\(784\) 0 0
\(785\) 7.11177 12.3179i 0.253830 0.439646i
\(786\) 0 0
\(787\) −6.12928 10.6162i −0.218485 0.378428i 0.735860 0.677134i \(-0.236778\pi\)
−0.954345 + 0.298706i \(0.903445\pi\)
\(788\) 0 0
\(789\) −47.0605 + 2.14620i −1.67540 + 0.0764066i
\(790\) 0 0
\(791\) 1.35953 0.0483395
\(792\) 0 0
\(793\) −98.2144 −3.48769
\(794\) 0 0
\(795\) −9.90856 + 19.1247i −0.351420 + 0.678282i
\(796\) 0 0
\(797\) −10.7178 18.5638i −0.379644 0.657563i 0.611366 0.791348i \(-0.290620\pi\)
−0.991010 + 0.133785i \(0.957287\pi\)
\(798\) 0 0
\(799\) 8.29007 14.3588i 0.293282 0.507979i
\(800\) 0 0
\(801\) −12.3653 + 26.7883i −0.436905 + 0.946518i
\(802\) 0 0
\(803\) 10.0562 17.4179i 0.354876 0.614664i
\(804\) 0 0
\(805\) 7.21780 + 12.5016i 0.254394 + 0.440623i
\(806\) 0 0
\(807\) −22.3061 34.8641i −0.785213 1.22728i
\(808\) 0 0
\(809\) 26.6955 0.938564 0.469282 0.883048i \(-0.344513\pi\)
0.469282 + 0.883048i \(0.344513\pi\)
\(810\) 0 0
\(811\) 38.2852 1.34438 0.672188 0.740381i \(-0.265355\pi\)
0.672188 + 0.740381i \(0.265355\pi\)
\(812\) 0 0
\(813\) −11.4567 17.9067i −0.401804 0.628014i
\(814\) 0 0
\(815\) −9.01459 15.6137i −0.315767 0.546925i
\(816\) 0 0
\(817\) 10.4612 18.1193i 0.365990 0.633914i
\(818\) 0 0
\(819\) 8.93706 19.3614i 0.312286 0.676542i
\(820\) 0 0
\(821\) 5.24990 9.09310i 0.183223 0.317351i −0.759753 0.650211i \(-0.774680\pi\)
0.942976 + 0.332860i \(0.108014\pi\)
\(822\) 0 0
\(823\) −8.00000 13.8564i −0.278862 0.483004i 0.692240 0.721668i \(-0.256624\pi\)
−0.971102 + 0.238664i \(0.923291\pi\)
\(824\) 0 0
\(825\) −3.90350 + 7.53420i −0.135902 + 0.262307i
\(826\) 0 0
\(827\) −48.7817 −1.69631 −0.848153 0.529752i \(-0.822285\pi\)
−0.848153 + 0.529752i \(0.822285\pi\)
\(828\) 0 0
\(829\) −6.21926 −0.216004 −0.108002 0.994151i \(-0.534445\pi\)
−0.108002 + 0.994151i \(0.534445\pi\)
\(830\) 0 0
\(831\) 22.1139 1.00851i 0.767123 0.0349847i
\(832\) 0 0
\(833\) 2.25729 + 3.90975i 0.0782106 + 0.135465i
\(834\) 0 0
\(835\) 14.7989 25.6325i 0.512138 0.887049i
\(836\) 0 0
\(837\) 23.5261 + 30.2930i 0.813180 + 1.04708i
\(838\) 0 0
\(839\) 21.0366 36.4364i 0.726263 1.25792i −0.232189 0.972671i \(-0.574589\pi\)
0.958452 0.285254i \(-0.0920779\pi\)
\(840\) 0 0
\(841\) −9.82597 17.0191i −0.338826 0.586865i
\(842\) 0 0
\(843\) −49.3374 + 2.25004i −1.69927 + 0.0774954i
\(844\) 0 0
\(845\) 92.3330 3.17635
\(846\) 0 0
\(847\) −10.6008 −0.364247
\(848\) 0 0
\(849\) −0.578990 + 1.11752i −0.0198709 + 0.0383531i
\(850\) 0 0
\(851\) 2.13161 + 3.69206i 0.0730707 + 0.126562i
\(852\) 0 0
\(853\) 6.72519 11.6484i 0.230266 0.398833i −0.727620 0.685980i \(-0.759374\pi\)
0.957886 + 0.287147i \(0.0927070\pi\)
\(854\) 0 0
\(855\) 31.8104 2.90748i 1.08789 0.0994336i
\(856\) 0 0
\(857\) −20.6893 + 35.8349i −0.706733 + 1.22410i 0.259330 + 0.965789i \(0.416498\pi\)
−0.966063 + 0.258308i \(0.916835\pi\)
\(858\) 0 0
\(859\) 19.8815 + 34.4358i 0.678349 + 1.17493i 0.975478 + 0.220097i \(0.0706374\pi\)
−0.297129 + 0.954837i \(0.596029\pi\)
\(860\) 0 0
\(861\) 0.255158 + 0.398809i 0.00869578 + 0.0135914i
\(862\) 0 0
\(863\) 53.3858 1.81727 0.908637 0.417588i \(-0.137124\pi\)
0.908637 + 0.417588i \(0.137124\pi\)
\(864\) 0 0
\(865\) 12.0541 0.409851
\(866\) 0 0
\(867\) −3.15652 4.93359i −0.107201 0.167554i
\(868\) 0 0
\(869\) −14.9552 25.9033i −0.507322 0.878708i
\(870\) 0 0
\(871\) 4.71780 8.17147i 0.159857 0.276880i
\(872\) 0 0
\(873\) 0.852336 + 1.20726i 0.0288472 + 0.0408597i
\(874\) 0 0
\(875\) −4.85447 + 8.40819i −0.164111 + 0.284249i
\(876\) 0 0
\(877\) 3.42674 + 5.93530i 0.115713 + 0.200421i 0.918065 0.396431i \(-0.129751\pi\)
−0.802352 + 0.596852i \(0.796418\pi\)
\(878\) 0 0
\(879\) −20.3820 + 39.3396i −0.687468 + 1.32689i
\(880\) 0 0
\(881\) −12.5103 −0.421483 −0.210742 0.977542i \(-0.567588\pi\)
−0.210742 + 0.977542i \(0.567588\pi\)
\(882\) 0 0
\(883\) 6.69124 0.225178 0.112589 0.993642i \(-0.464086\pi\)
0.112589 + 0.993642i \(0.464086\pi\)
\(884\) 0 0
\(885\) 38.8822 1.77322i 1.30701 0.0596063i
\(886\) 0 0
\(887\) −16.0708 27.8355i −0.539605 0.934623i −0.998925 0.0463524i \(-0.985240\pi\)
0.459320 0.888271i \(-0.348093\pi\)
\(888\) 0 0
\(889\) −0.410019 + 0.710174i −0.0137516 + 0.0238185i
\(890\) 0 0
\(891\) 41.1359 7.58300i 1.37810 0.254040i
\(892\) 0 0
\(893\) −7.94639 + 13.7636i −0.265916 + 0.460580i
\(894\) 0 0
\(895\) 2.19076 + 3.79450i 0.0732289 + 0.126836i
\(896\) 0 0
\(897\) 72.1569 3.29072i 2.40925 0.109874i
\(898\) 0 0
\(899\) 51.4868 1.71718
\(900\) 0 0
\(901\) −22.8171 −0.760148
\(902\) 0 0
\(903\) −3.85234 + 7.43546i −0.128198 + 0.247437i
\(904\) 0 0
\(905\) 20.8442 + 36.1031i 0.692883 + 1.20011i
\(906\) 0 0
\(907\) 15.7016 27.1959i 0.521362 0.903025i −0.478330 0.878180i \(-0.658758\pi\)
0.999691 0.0248444i \(-0.00790902\pi\)
\(908\) 0 0
\(909\) −5.89397 8.34832i −0.195491 0.276896i
\(910\) 0 0
\(911\) −22.8982 + 39.6609i −0.758653 + 1.31402i 0.184885 + 0.982760i \(0.440809\pi\)
−0.943538 + 0.331265i \(0.892525\pi\)
\(912\) 0 0
\(913\) −3.45185 5.97877i −0.114239 0.197868i
\(914\) 0 0
\(915\) 31.7350 + 49.6013i 1.04913 + 1.63977i
\(916\) 0 0
\(917\) −7.78794 −0.257180
\(918\) 0 0
\(919\) 27.1800 0.896584 0.448292 0.893887i \(-0.352032\pi\)
0.448292 + 0.893887i \(0.352032\pi\)
\(920\) 0 0
\(921\) 5.81925 + 9.09540i 0.191751 + 0.299704i
\(922\) 0 0
\(923\) −48.0576 83.2381i −1.58183 2.73982i
\(924\) 0 0
\(925\) 0.382977 0.663336i 0.0125922 0.0218104i
\(926\) 0 0
\(927\) 15.4225 1.40962i 0.506540 0.0462979i
\(928\) 0 0
\(929\) 20.3338 35.2192i 0.667132 1.15551i −0.311571 0.950223i \(-0.600855\pi\)
0.978703 0.205283i \(-0.0658115\pi\)
\(930\) 0 0
\(931\) −2.16372 3.74766i −0.0709129 0.122825i
\(932\) 0 0
\(933\) −23.2968 + 44.9655i −0.762703 + 1.47210i
\(934\) 0 0
\(935\) −51.6270 −1.68838
\(936\) 0 0
\(937\) 16.4150 0.536254 0.268127 0.963384i \(-0.413595\pi\)
0.268127 + 0.963384i \(0.413595\pi\)
\(938\) 0 0
\(939\) 49.2893 2.24784i 1.60849 0.0733555i
\(940\) 0 0
\(941\) −3.66878 6.35451i −0.119599 0.207151i 0.800010 0.599987i \(-0.204827\pi\)
−0.919609 + 0.392836i \(0.871494\pi\)
\(942\) 0 0
\(943\) −0.801851 + 1.38885i −0.0261119 + 0.0452271i
\(944\) 0 0
\(945\) −12.6659 + 1.74255i −0.412020 + 0.0566852i
\(946\) 0 0
\(947\) −29.5562 + 51.1929i −0.960448 + 1.66354i −0.239071 + 0.971002i \(0.576843\pi\)
−0.721377 + 0.692543i \(0.756490\pi\)
\(948\) 0 0
\(949\) 15.3801 + 26.6390i 0.499258 + 0.864740i
\(950\) 0 0
\(951\) 2.80039 0.127712i 0.0908088 0.00414134i
\(952\) 0 0
\(953\) −16.9354 −0.548592 −0.274296 0.961645i \(-0.588445\pi\)
−0.274296 + 0.961645i \(0.588445\pi\)
\(954\) 0 0
\(955\) −13.5074 −0.437089
\(956\) 0 0
\(957\) 25.8302 49.8554i 0.834973 1.61160i
\(958\) 0 0
\(959\) −1.49640 2.59184i −0.0483213 0.0836950i
\(960\) 0 0
\(961\) −11.7434 + 20.3401i −0.378819 + 0.656133i
\(962\) 0 0
\(963\) 7.24583 15.6975i 0.233493 0.505844i
\(964\) 0 0
\(965\) 6.77548 11.7355i 0.218110 0.377778i
\(966\) 0 0
\(967\) 3.55555 + 6.15839i 0.114339 + 0.198040i 0.917515 0.397701i \(-0.130192\pi\)
−0.803177 + 0.595741i \(0.796858\pi\)
\(968\) 0 0
\(969\) 18.2367 + 28.5036i 0.585846 + 0.915669i
\(970\) 0 0
\(971\) −1.47102 −0.0472072 −0.0236036 0.999721i \(-0.507514\pi\)
−0.0236036 + 0.999721i \(0.507514\pi\)
\(972\) 0 0
\(973\) −6.32743 −0.202848
\(974\) 0 0
\(975\) −6.99407 10.9316i −0.223990 0.350092i
\(976\) 0 0
\(977\) 9.71634 + 16.8292i 0.310853 + 0.538413i 0.978547 0.206022i \(-0.0660519\pi\)
−0.667694 + 0.744436i \(0.732719\pi\)
\(978\) 0 0
\(979\) −22.8545 + 39.5851i −0.730432 + 1.26515i
\(980\) 0 0
\(981\) 11.2934 24.4662i 0.360570 0.781145i
\(982\) 0 0
\(983\) −3.87218 + 6.70681i −0.123503 + 0.213914i −0.921147 0.389215i \(-0.872746\pi\)
0.797644 + 0.603129i \(0.206080\pi\)
\(984\) 0 0
\(985\) −14.3078 24.7818i −0.455884 0.789614i
\(986\) 0 0
\(987\) 2.92627 5.64803i 0.0931441 0.179779i
\(988\) 0 0
\(989\) −28.3655 −0.901972
\(990\) 0 0
\(991\) −14.4710 −0.459687 −0.229843 0.973228i \(-0.573821\pi\)
−0.229843 + 0.973228i \(0.573821\pi\)
\(992\) 0 0
\(993\) −24.1929 + 1.10332i −0.767738 + 0.0350127i
\(994\) 0 0
\(995\) 5.10243 + 8.83767i 0.161758 + 0.280173i
\(996\) 0 0
\(997\) 27.6549 47.8996i 0.875838 1.51700i 0.0199711 0.999801i \(-0.493643\pi\)
0.855867 0.517196i \(-0.173024\pi\)
\(998\) 0 0
\(999\) −3.74057 + 0.514623i −0.118346 + 0.0162819i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.j.a.169.2 yes 6
3.2 odd 2 756.2.j.b.505.3 6
4.3 odd 2 1008.2.r.j.673.2 6
7.2 even 3 1764.2.i.g.1537.3 6
7.3 odd 6 1764.2.l.f.961.2 6
7.4 even 3 1764.2.l.e.961.2 6
7.5 odd 6 1764.2.i.d.1537.1 6
7.6 odd 2 1764.2.j.e.1177.2 6
9.2 odd 6 2268.2.a.h.1.1 3
9.4 even 3 inner 252.2.j.a.85.2 6
9.5 odd 6 756.2.j.b.253.3 6
9.7 even 3 2268.2.a.i.1.3 3
12.11 even 2 3024.2.r.j.2017.3 6
21.2 odd 6 5292.2.i.f.2125.3 6
21.5 even 6 5292.2.i.e.2125.1 6
21.11 odd 6 5292.2.l.e.3313.1 6
21.17 even 6 5292.2.l.f.3313.3 6
21.20 even 2 5292.2.j.d.3529.1 6
36.7 odd 6 9072.2.a.by.1.3 3
36.11 even 6 9072.2.a.bv.1.1 3
36.23 even 6 3024.2.r.j.1009.3 6
36.31 odd 6 1008.2.r.j.337.2 6
63.4 even 3 1764.2.i.g.373.3 6
63.5 even 6 5292.2.l.f.361.3 6
63.13 odd 6 1764.2.j.e.589.2 6
63.23 odd 6 5292.2.l.e.361.1 6
63.31 odd 6 1764.2.i.d.373.1 6
63.32 odd 6 5292.2.i.f.1549.3 6
63.40 odd 6 1764.2.l.f.949.2 6
63.41 even 6 5292.2.j.d.1765.1 6
63.58 even 3 1764.2.l.e.949.2 6
63.59 even 6 5292.2.i.e.1549.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.2 6 9.4 even 3 inner
252.2.j.a.169.2 yes 6 1.1 even 1 trivial
756.2.j.b.253.3 6 9.5 odd 6
756.2.j.b.505.3 6 3.2 odd 2
1008.2.r.j.337.2 6 36.31 odd 6
1008.2.r.j.673.2 6 4.3 odd 2
1764.2.i.d.373.1 6 63.31 odd 6
1764.2.i.d.1537.1 6 7.5 odd 6
1764.2.i.g.373.3 6 63.4 even 3
1764.2.i.g.1537.3 6 7.2 even 3
1764.2.j.e.589.2 6 63.13 odd 6
1764.2.j.e.1177.2 6 7.6 odd 2
1764.2.l.e.949.2 6 63.58 even 3
1764.2.l.e.961.2 6 7.4 even 3
1764.2.l.f.949.2 6 63.40 odd 6
1764.2.l.f.961.2 6 7.3 odd 6
2268.2.a.h.1.1 3 9.2 odd 6
2268.2.a.i.1.3 3 9.7 even 3
3024.2.r.j.1009.3 6 36.23 even 6
3024.2.r.j.2017.3 6 12.11 even 2
5292.2.i.e.1549.1 6 63.59 even 6
5292.2.i.e.2125.1 6 21.5 even 6
5292.2.i.f.1549.3 6 63.32 odd 6
5292.2.i.f.2125.3 6 21.2 odd 6
5292.2.j.d.1765.1 6 63.41 even 6
5292.2.j.d.3529.1 6 21.20 even 2
5292.2.l.e.361.1 6 63.23 odd 6
5292.2.l.e.3313.1 6 21.11 odd 6
5292.2.l.f.361.3 6 63.5 even 6
5292.2.l.f.3313.3 6 21.17 even 6
9072.2.a.bv.1.1 3 36.11 even 6
9072.2.a.by.1.3 3 36.7 odd 6