Properties

Label 5292.2.l.f.3313.3
Level $5292$
Weight $2$
Character 5292.3313
Analytic conductor $42.257$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(361,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 3313.3
Root \(0.500000 - 2.05195i\) of defining polynomial
Character \(\chi\) \(=\) 5292.3313
Dual form 5292.2.l.f.361.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.46050 q^{5} +O(q^{10})\) \(q+2.46050 q^{5} -4.64766 q^{11} +(3.55408 + 6.15585i) q^{13} +(2.25729 + 3.90975i) q^{17} +(2.16372 - 3.74766i) q^{19} -5.86693 q^{23} +1.05408 q^{25} +(-3.48755 + 6.04061i) q^{29} +(-3.69076 + 6.39258i) q^{31} +(0.363327 - 0.629301i) q^{37} +(-0.136673 - 0.236725i) q^{41} +(2.41741 - 4.18708i) q^{43} +(-1.83628 - 3.18054i) q^{47} +(2.52704 + 4.37697i) q^{53} -11.4356 q^{55} +(-4.56654 + 7.90947i) q^{59} +(-6.90856 - 11.9660i) q^{61} +(8.74484 + 15.1465i) q^{65} +(0.663715 - 1.14959i) q^{67} -13.5218 q^{71} +(-2.16372 - 3.74766i) q^{73} +(-3.21780 - 5.57339i) q^{79} +(-0.742705 + 1.28640i) q^{83} +(5.55408 + 9.61996i) q^{85} +(-4.91741 + 8.51721i) q^{89} +(5.32383 - 9.22115i) q^{95} +(-0.246304 + 0.426611i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{5}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 2 q^{5} - 4 q^{11} + 3 q^{13} - 2 q^{17} + 3 q^{19} - 28 q^{23} - 12 q^{25} + q^{29} - 3 q^{31} + 3 q^{37} - 3 q^{43} - 21 q^{47} + 6 q^{53} - 12 q^{55} - 31 q^{59} + 6 q^{61} + 15 q^{65} - 6 q^{67} - 34 q^{71} - 3 q^{73} + 9 q^{79} - 20 q^{83} + 15 q^{85} - 12 q^{89} + 20 q^{95} - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.46050 1.10037 0.550186 0.835042i \(-0.314557\pi\)
0.550186 + 0.835042i \(0.314557\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −4.64766 −1.40132 −0.700662 0.713494i \(-0.747112\pi\)
−0.700662 + 0.713494i \(0.747112\pi\)
\(12\) 0 0
\(13\) 3.55408 + 6.15585i 0.985726 + 1.70733i 0.638667 + 0.769484i \(0.279486\pi\)
0.347059 + 0.937843i \(0.387180\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.25729 + 3.90975i 0.547474 + 0.948253i 0.998447 + 0.0557155i \(0.0177440\pi\)
−0.450972 + 0.892538i \(0.648923\pi\)
\(18\) 0 0
\(19\) 2.16372 3.74766i 0.496390 0.859773i −0.503601 0.863936i \(-0.667992\pi\)
0.999991 + 0.00416311i \(0.00132516\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.86693 −1.22334 −0.611669 0.791114i \(-0.709502\pi\)
−0.611669 + 0.791114i \(0.709502\pi\)
\(24\) 0 0
\(25\) 1.05408 0.210817
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.48755 + 6.04061i −0.647621 + 1.12171i 0.336068 + 0.941838i \(0.390903\pi\)
−0.983689 + 0.179875i \(0.942431\pi\)
\(30\) 0 0
\(31\) −3.69076 + 6.39258i −0.662880 + 1.14814i 0.316976 + 0.948434i \(0.397333\pi\)
−0.979856 + 0.199708i \(0.936001\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.363327 0.629301i 0.0597306 0.103456i −0.834614 0.550835i \(-0.814309\pi\)
0.894344 + 0.447379i \(0.147643\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.136673 0.236725i −0.0213448 0.0369702i 0.855156 0.518371i \(-0.173461\pi\)
−0.876500 + 0.481401i \(0.840128\pi\)
\(42\) 0 0
\(43\) 2.41741 4.18708i 0.368652 0.638524i −0.620703 0.784046i \(-0.713153\pi\)
0.989355 + 0.145522i \(0.0464862\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.83628 3.18054i −0.267850 0.463929i 0.700457 0.713695i \(-0.252980\pi\)
−0.968306 + 0.249766i \(0.919646\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2.52704 + 4.37697i 0.347116 + 0.601222i 0.985736 0.168300i \(-0.0538277\pi\)
−0.638620 + 0.769522i \(0.720494\pi\)
\(54\) 0 0
\(55\) −11.4356 −1.54198
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.56654 + 7.90947i −0.594513 + 1.02973i 0.399103 + 0.916906i \(0.369322\pi\)
−0.993615 + 0.112820i \(0.964012\pi\)
\(60\) 0 0
\(61\) −6.90856 11.9660i −0.884550 1.53209i −0.846228 0.532820i \(-0.821132\pi\)
−0.0383215 0.999265i \(-0.512201\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.74484 + 15.1465i 1.08466 + 1.87869i
\(66\) 0 0
\(67\) 0.663715 1.14959i 0.0810857 0.140445i −0.822631 0.568576i \(-0.807495\pi\)
0.903717 + 0.428131i \(0.140828\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −13.5218 −1.60474 −0.802370 0.596826i \(-0.796428\pi\)
−0.802370 + 0.596826i \(0.796428\pi\)
\(72\) 0 0
\(73\) −2.16372 3.74766i −0.253244 0.438631i 0.711173 0.703017i \(-0.248164\pi\)
−0.964417 + 0.264386i \(0.914831\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −3.21780 5.57339i −0.362031 0.627056i 0.626264 0.779611i \(-0.284583\pi\)
−0.988295 + 0.152555i \(0.951250\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −0.742705 + 1.28640i −0.0815225 + 0.141201i −0.903904 0.427735i \(-0.859312\pi\)
0.822382 + 0.568936i \(0.192645\pi\)
\(84\) 0 0
\(85\) 5.55408 + 9.61996i 0.602425 + 1.04343i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.91741 + 8.51721i −0.521245 + 0.902822i 0.478450 + 0.878115i \(0.341199\pi\)
−0.999695 + 0.0247073i \(0.992135\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 5.32383 9.22115i 0.546214 0.946070i
\(96\) 0 0
\(97\) −0.246304 + 0.426611i −0.0250084 + 0.0433158i −0.878259 0.478186i \(-0.841295\pi\)
0.853250 + 0.521502i \(0.174628\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.40642 0.338952 0.169476 0.985534i \(-0.445793\pi\)
0.169476 + 0.985534i \(0.445793\pi\)
\(102\) 0 0
\(103\) −5.16225 −0.508652 −0.254326 0.967119i \(-0.581854\pi\)
−0.254326 + 0.967119i \(0.581854\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −2.88151 + 4.99093i −0.278567 + 0.482491i −0.971029 0.238963i \(-0.923193\pi\)
0.692462 + 0.721454i \(0.256526\pi\)
\(108\) 0 0
\(109\) 4.49115 + 7.77889i 0.430174 + 0.745083i 0.996888 0.0788317i \(-0.0251190\pi\)
−0.566714 + 0.823914i \(0.691786\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −0.679767 1.17739i −0.0639471 0.110760i 0.832279 0.554356i \(-0.187036\pi\)
−0.896226 + 0.443597i \(0.853702\pi\)
\(114\) 0 0
\(115\) −14.4356 −1.34613
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 10.6008 0.963707
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.70895 −0.868394
\(126\) 0 0
\(127\) −0.820039 −0.0727667 −0.0363833 0.999338i \(-0.511584\pi\)
−0.0363833 + 0.999338i \(0.511584\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.78794 0.680435 0.340218 0.940347i \(-0.389499\pi\)
0.340218 + 0.940347i \(0.389499\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.99280 0.255692 0.127846 0.991794i \(-0.459194\pi\)
0.127846 + 0.991794i \(0.459194\pi\)
\(138\) 0 0
\(139\) 3.16372 + 5.47972i 0.268343 + 0.464783i 0.968434 0.249270i \(-0.0801907\pi\)
−0.700091 + 0.714053i \(0.746857\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −16.5182 28.6103i −1.38132 2.39252i
\(144\) 0 0
\(145\) −8.58113 + 14.8629i −0.712624 + 1.23430i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.38151 0.358948 0.179474 0.983763i \(-0.442560\pi\)
0.179474 + 0.983763i \(0.442560\pi\)
\(150\) 0 0
\(151\) 6.60078 0.537164 0.268582 0.963257i \(-0.413445\pi\)
0.268582 + 0.963257i \(0.413445\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −9.08113 + 15.7290i −0.729414 + 1.26338i
\(156\) 0 0
\(157\) −2.89037 + 5.00627i −0.230677 + 0.399544i −0.958007 0.286743i \(-0.907427\pi\)
0.727331 + 0.686287i \(0.240761\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.66372 + 6.34574i −0.286964 + 0.497037i −0.973084 0.230452i \(-0.925979\pi\)
0.686119 + 0.727489i \(0.259313\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.01459 + 10.4176i 0.465423 + 0.806136i 0.999221 0.0394762i \(-0.0125689\pi\)
−0.533798 + 0.845612i \(0.679236\pi\)
\(168\) 0 0
\(169\) −18.7630 + 32.4985i −1.44331 + 2.49989i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.44951 4.24268i −0.186233 0.322565i 0.757758 0.652535i \(-0.226295\pi\)
−0.943991 + 0.329970i \(0.892961\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −0.890369 1.54216i −0.0665493 0.115267i 0.830831 0.556525i \(-0.187866\pi\)
−0.897380 + 0.441258i \(0.854532\pi\)
\(180\) 0 0
\(181\) 16.9430 1.25936 0.629681 0.776854i \(-0.283185\pi\)
0.629681 + 0.776854i \(0.283185\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.893968 1.54840i 0.0657258 0.113840i
\(186\) 0 0
\(187\) −10.4911 18.1712i −0.767189 1.32881i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.74484 4.75420i −0.198610 0.344002i 0.749468 0.662040i \(-0.230309\pi\)
−0.948078 + 0.318038i \(0.896976\pi\)
\(192\) 0 0
\(193\) 2.75370 4.76954i 0.198215 0.343319i −0.749734 0.661739i \(-0.769819\pi\)
0.947950 + 0.318420i \(0.103152\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.6300 −0.828600 −0.414300 0.910140i \(-0.635974\pi\)
−0.414300 + 0.910140i \(0.635974\pi\)
\(198\) 0 0
\(199\) −2.07373 3.59181i −0.147003 0.254617i 0.783115 0.621876i \(-0.213629\pi\)
−0.930118 + 0.367260i \(0.880296\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.336285 0.582462i −0.0234871 0.0406809i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −10.0562 + 17.4179i −0.695603 + 1.20482i
\(210\) 0 0
\(211\) 13.6082 + 23.5700i 0.936825 + 1.62263i 0.771347 + 0.636415i \(0.219583\pi\)
0.165478 + 0.986213i \(0.447083\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.94805 10.3023i 0.405654 0.702613i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −16.0452 + 27.7912i −1.07932 + 1.86944i
\(222\) 0 0
\(223\) −1.60817 + 2.78543i −0.107691 + 0.186526i −0.914834 0.403829i \(-0.867679\pi\)
0.807144 + 0.590355i \(0.201012\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 15.9459 1.05837 0.529184 0.848507i \(-0.322498\pi\)
0.529184 + 0.848507i \(0.322498\pi\)
\(228\) 0 0
\(229\) 1.21634 0.0803778 0.0401889 0.999192i \(-0.487204\pi\)
0.0401889 + 0.999192i \(0.487204\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 9.98608 17.2964i 0.654210 1.13313i −0.327881 0.944719i \(-0.606335\pi\)
0.982091 0.188406i \(-0.0603321\pi\)
\(234\) 0 0
\(235\) −4.51819 7.82573i −0.294734 0.510494i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 3.00739 + 5.20896i 0.194532 + 0.336939i 0.946747 0.321978i \(-0.104348\pi\)
−0.752215 + 0.658918i \(0.771015\pi\)
\(240\) 0 0
\(241\) 18.6156 1.19913 0.599567 0.800325i \(-0.295340\pi\)
0.599567 + 0.800325i \(0.295340\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 30.7601 1.95722
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6.99707 0.441651 0.220826 0.975313i \(-0.429125\pi\)
0.220826 + 0.975313i \(0.429125\pi\)
\(252\) 0 0
\(253\) 27.2675 1.71429
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.7778 −1.10895 −0.554475 0.832201i \(-0.687081\pi\)
−0.554475 + 0.832201i \(0.687081\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 27.1986 1.67714 0.838570 0.544794i \(-0.183392\pi\)
0.838570 + 0.544794i \(0.183392\pi\)
\(264\) 0 0
\(265\) 6.21780 + 10.7695i 0.381956 + 0.661568i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −11.9481 20.6946i −0.728486 1.26177i −0.957523 0.288356i \(-0.906891\pi\)
0.229038 0.973418i \(-0.426442\pi\)
\(270\) 0 0
\(271\) 6.13667 10.6290i 0.372776 0.645668i −0.617215 0.786794i \(-0.711739\pi\)
0.989992 + 0.141127i \(0.0450725\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.89903 −0.295423
\(276\) 0 0
\(277\) 12.7807 0.767920 0.383960 0.923350i \(-0.374560\pi\)
0.383960 + 0.923350i \(0.374560\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −14.2573 + 24.6944i −0.850519 + 1.47314i 0.0302219 + 0.999543i \(0.490379\pi\)
−0.880741 + 0.473599i \(0.842955\pi\)
\(282\) 0 0
\(283\) 0.363327 0.629301i 0.0215975 0.0374080i −0.855025 0.518587i \(-0.826458\pi\)
0.876622 + 0.481179i \(0.159791\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.69076 + 2.92848i −0.0994563 + 0.172263i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −12.7901 22.1531i −0.747204 1.29420i −0.949158 0.314800i \(-0.898062\pi\)
0.201954 0.979395i \(-0.435271\pi\)
\(294\) 0 0
\(295\) −11.2360 + 19.4613i −0.654184 + 1.13308i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −20.8515 36.1159i −1.20588 2.08864i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −16.9985 29.4423i −0.973333 1.68586i
\(306\) 0 0
\(307\) 6.23405 0.355796 0.177898 0.984049i \(-0.443070\pi\)
0.177898 + 0.984049i \(0.443070\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −14.6192 + 25.3211i −0.828976 + 1.43583i 0.0698655 + 0.997556i \(0.477743\pi\)
−0.898842 + 0.438273i \(0.855590\pi\)
\(312\) 0 0
\(313\) 14.2434 + 24.6703i 0.805083 + 1.39445i 0.916235 + 0.400642i \(0.131213\pi\)
−0.111151 + 0.993803i \(0.535454\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0.809243 + 1.40165i 0.0454516 + 0.0787245i 0.887856 0.460121i \(-0.152194\pi\)
−0.842405 + 0.538846i \(0.818861\pi\)
\(318\) 0 0
\(319\) 16.2089 28.0747i 0.907527 1.57188i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 19.5366 1.08704
\(324\) 0 0
\(325\) 3.74630 + 6.48879i 0.207808 + 0.359933i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 6.99115 + 12.1090i 0.384268 + 0.665572i 0.991667 0.128825i \(-0.0411205\pi\)
−0.607399 + 0.794397i \(0.707787\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.63307 2.82857i 0.0892244 0.154541i
\(336\) 0 0
\(337\) −13.8619 24.0095i −0.755104 1.30788i −0.945323 0.326137i \(-0.894253\pi\)
0.190219 0.981742i \(-0.439080\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 17.1534 29.7106i 0.928909 1.60892i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 3.76449 6.52029i 0.202089 0.350028i −0.747113 0.664697i \(-0.768560\pi\)
0.949201 + 0.314670i \(0.101894\pi\)
\(348\) 0 0
\(349\) −15.0541 + 26.0744i −0.805827 + 1.39573i 0.109905 + 0.993942i \(0.464945\pi\)
−0.915732 + 0.401791i \(0.868388\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −20.3638 −1.08386 −0.541928 0.840425i \(-0.682305\pi\)
−0.541928 + 0.840425i \(0.682305\pi\)
\(354\) 0 0
\(355\) −33.2704 −1.76581
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.01313 + 13.8791i −0.422917 + 0.732513i −0.996223 0.0868277i \(-0.972327\pi\)
0.573307 + 0.819341i \(0.305660\pi\)
\(360\) 0 0
\(361\) 0.136673 + 0.236725i 0.00719332 + 0.0124592i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −5.32383 9.22115i −0.278662 0.482657i
\(366\) 0 0
\(367\) 13.5979 0.709802 0.354901 0.934904i \(-0.384515\pi\)
0.354901 + 0.934904i \(0.384515\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −21.9282 −1.13540 −0.567700 0.823236i \(-0.692167\pi\)
−0.567700 + 0.823236i \(0.692167\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −49.5801 −2.55351
\(378\) 0 0
\(379\) −29.7965 −1.53054 −0.765271 0.643708i \(-0.777395\pi\)
−0.765271 + 0.643708i \(0.777395\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −0.0219809 −0.00112317 −0.000561587 1.00000i \(-0.500179\pi\)
−0.000561587 1.00000i \(0.500179\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 35.3566 1.79265 0.896326 0.443396i \(-0.146227\pi\)
0.896326 + 0.443396i \(0.146227\pi\)
\(390\) 0 0
\(391\) −13.2434 22.9382i −0.669746 1.16003i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.91741 13.7134i −0.398368 0.689994i
\(396\) 0 0
\(397\) −8.47150 + 14.6731i −0.425172 + 0.736420i −0.996436 0.0843464i \(-0.973120\pi\)
0.571264 + 0.820766i \(0.306453\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.96362 0.147996 0.0739982 0.997258i \(-0.476424\pi\)
0.0739982 + 0.997258i \(0.476424\pi\)
\(402\) 0 0
\(403\) −52.4690 −2.61367
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.68862 + 2.92478i −0.0837018 + 0.144976i
\(408\) 0 0
\(409\) −7.32743 + 12.6915i −0.362318 + 0.627553i −0.988342 0.152251i \(-0.951348\pi\)
0.626024 + 0.779804i \(0.284681\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.82743 + 3.16520i −0.0897050 + 0.155374i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.6352 + 21.8848i 0.617270 + 1.06914i 0.989982 + 0.141196i \(0.0450949\pi\)
−0.372711 + 0.927947i \(0.621572\pi\)
\(420\) 0 0
\(421\) 7.99854 13.8539i 0.389825 0.675196i −0.602601 0.798043i \(-0.705869\pi\)
0.992426 + 0.122846i \(0.0392022\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 2.37938 + 4.12120i 0.115417 + 0.199908i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 6.51673 + 11.2873i 0.313900 + 0.543690i 0.979203 0.202883i \(-0.0650311\pi\)
−0.665303 + 0.746573i \(0.731698\pi\)
\(432\) 0 0
\(433\) −23.5467 −1.13158 −0.565791 0.824549i \(-0.691429\pi\)
−0.565791 + 0.824549i \(0.691429\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.6944 + 21.9873i −0.607253 + 1.05179i
\(438\) 0 0
\(439\) 3.35447 + 5.81012i 0.160100 + 0.277302i 0.934904 0.354900i \(-0.115485\pi\)
−0.774804 + 0.632201i \(0.782152\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 17.6228 + 30.5235i 0.837282 + 1.45022i 0.892158 + 0.451723i \(0.149190\pi\)
−0.0548760 + 0.998493i \(0.517476\pi\)
\(444\) 0 0
\(445\) −12.0993 + 20.9566i −0.573562 + 0.993439i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 12.9387 0.610616 0.305308 0.952254i \(-0.401241\pi\)
0.305308 + 0.952254i \(0.401241\pi\)
\(450\) 0 0
\(451\) 0.635211 + 1.10022i 0.0299109 + 0.0518072i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 14.5993 + 25.2868i 0.682927 + 1.18286i 0.974083 + 0.226189i \(0.0726267\pi\)
−0.291156 + 0.956675i \(0.594040\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 9.34348 16.1834i 0.435169 0.753735i −0.562140 0.827042i \(-0.690022\pi\)
0.997309 + 0.0733066i \(0.0233552\pi\)
\(462\) 0 0
\(463\) 19.1249 + 33.1253i 0.888809 + 1.53946i 0.841285 + 0.540593i \(0.181800\pi\)
0.0475247 + 0.998870i \(0.484867\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.64387 13.2396i 0.353716 0.612654i −0.633181 0.774004i \(-0.718251\pi\)
0.986897 + 0.161349i \(0.0515846\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −11.2353 + 19.4601i −0.516600 + 0.894778i
\(474\) 0 0
\(475\) 2.28074 3.95035i 0.104647 0.181255i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.0321 0.504070 0.252035 0.967718i \(-0.418900\pi\)
0.252035 + 0.967718i \(0.418900\pi\)
\(480\) 0 0
\(481\) 5.16518 0.235512
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.606032 + 1.04968i −0.0275185 + 0.0476635i
\(486\) 0 0
\(487\) −8.30039 14.3767i −0.376126 0.651470i 0.614368 0.789019i \(-0.289411\pi\)
−0.990495 + 0.137549i \(0.956078\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.3633 23.1460i −0.603079 1.04456i −0.992352 0.123440i \(-0.960607\pi\)
0.389273 0.921122i \(-0.372726\pi\)
\(492\) 0 0
\(493\) −31.4897 −1.41822
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 1.23697 0.0553744 0.0276872 0.999617i \(-0.491186\pi\)
0.0276872 + 0.999617i \(0.491186\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.07179 −0.0477889 −0.0238944 0.999714i \(-0.507607\pi\)
−0.0238944 + 0.999714i \(0.507607\pi\)
\(504\) 0 0
\(505\) 8.38151 0.372973
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.0689 0.889537 0.444768 0.895646i \(-0.353286\pi\)
0.444768 + 0.895646i \(0.353286\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.7017 −0.559706
\(516\) 0 0
\(517\) 8.53443 + 14.7821i 0.375344 + 0.650115i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 15.4430 + 26.7480i 0.676570 + 1.17185i 0.976007 + 0.217737i \(0.0698676\pi\)
−0.299438 + 0.954116i \(0.596799\pi\)
\(522\) 0 0
\(523\) −3.69961 + 6.40792i −0.161773 + 0.280199i −0.935505 0.353315i \(-0.885054\pi\)
0.773732 + 0.633513i \(0.218388\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −33.3245 −1.45164
\(528\) 0 0
\(529\) 11.4208 0.496557
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0.971495 1.68268i 0.0420801 0.0728849i
\(534\) 0 0
\(535\) −7.08998 + 12.2802i −0.306527 + 0.530920i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.3348 + 19.6325i −0.487322 + 0.844067i −0.999894 0.0145779i \(-0.995360\pi\)
0.512572 + 0.858644i \(0.328693\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 11.0505 + 19.1400i 0.473351 + 0.819868i
\(546\) 0 0
\(547\) 3.07373 5.32386i 0.131423 0.227632i −0.792802 0.609479i \(-0.791379\pi\)
0.924225 + 0.381847i \(0.124712\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 15.0921 + 26.1403i 0.642946 + 1.11361i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 14.8370 + 25.6984i 0.628662 + 1.08887i 0.987820 + 0.155598i \(0.0497305\pi\)
−0.359158 + 0.933277i \(0.616936\pi\)
\(558\) 0 0
\(559\) 34.3667 1.45356
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 14.6555 25.3841i 0.617657 1.06981i −0.372255 0.928131i \(-0.621415\pi\)
0.989912 0.141683i \(-0.0452514\pi\)
\(564\) 0 0
\(565\) −1.67257 2.89698i −0.0703655 0.121877i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.4430 31.9442i −0.773170 1.33917i −0.935817 0.352486i \(-0.885336\pi\)
0.162647 0.986684i \(-0.447997\pi\)
\(570\) 0 0
\(571\) −16.1893 + 28.0407i −0.677501 + 1.17347i 0.298230 + 0.954494i \(0.403604\pi\)
−0.975731 + 0.218972i \(0.929730\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −6.18423 −0.257900
\(576\) 0 0
\(577\) 11.5093 + 19.9348i 0.479140 + 0.829895i 0.999714 0.0239220i \(-0.00761535\pi\)
−0.520574 + 0.853817i \(0.674282\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −11.7448 20.3427i −0.486422 0.842507i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −2.87052 + 4.97189i −0.118479 + 0.205212i −0.919165 0.393872i \(-0.871135\pi\)
0.800686 + 0.599084i \(0.204469\pi\)
\(588\) 0 0
\(589\) 15.9715 + 27.6634i 0.658094 + 1.13985i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.8727 + 24.0282i −0.569682 + 0.986718i 0.426915 + 0.904292i \(0.359600\pi\)
−0.996597 + 0.0824263i \(0.973733\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.05408 3.55778i 0.0839276 0.145367i −0.821006 0.570919i \(-0.806587\pi\)
0.904934 + 0.425552i \(0.139920\pi\)
\(600\) 0 0
\(601\) 7.80924 13.5260i 0.318546 0.551737i −0.661639 0.749822i \(-0.730139\pi\)
0.980185 + 0.198085i \(0.0634723\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 26.0833 1.06044
\(606\) 0 0
\(607\) 0.561476 0.0227896 0.0113948 0.999935i \(-0.496373\pi\)
0.0113948 + 0.999935i \(0.496373\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 13.0526 22.6078i 0.528053 0.914614i
\(612\) 0 0
\(613\) 10.1008 + 17.4951i 0.407967 + 0.706619i 0.994662 0.103189i \(-0.0329047\pi\)
−0.586695 + 0.809808i \(0.699571\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −11.4569 19.8439i −0.461238 0.798887i 0.537785 0.843082i \(-0.319261\pi\)
−0.999023 + 0.0441948i \(0.985928\pi\)
\(618\) 0 0
\(619\) −39.7031 −1.59580 −0.797901 0.602788i \(-0.794056\pi\)
−0.797901 + 0.602788i \(0.794056\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −29.1593 −1.16637
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.28054 0.130804
\(630\) 0 0
\(631\) −31.0364 −1.23554 −0.617769 0.786359i \(-0.711963\pi\)
−0.617769 + 0.786359i \(0.711963\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −2.01771 −0.0800703
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 29.5864 1.16859 0.584296 0.811541i \(-0.301371\pi\)
0.584296 + 0.811541i \(0.301371\pi\)
\(642\) 0 0
\(643\) 12.8442 + 22.2467i 0.506524 + 0.877325i 0.999972 + 0.00754978i \(0.00240319\pi\)
−0.493447 + 0.869776i \(0.664263\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.50885 14.7378i −0.334518 0.579401i 0.648874 0.760895i \(-0.275240\pi\)
−0.983392 + 0.181494i \(0.941907\pi\)
\(648\) 0 0
\(649\) 21.2237 36.7606i 0.833104 1.44298i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.47102 −0.0575653 −0.0287827 0.999586i \(-0.509163\pi\)
−0.0287827 + 0.999586i \(0.509163\pi\)
\(654\) 0 0
\(655\) 19.1623 0.748731
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.7003 + 35.8539i −0.806369 + 1.39667i 0.108995 + 0.994042i \(0.465237\pi\)
−0.915363 + 0.402629i \(0.868096\pi\)
\(660\) 0 0
\(661\) 19.1352 33.1432i 0.744273 1.28912i −0.206260 0.978497i \(-0.566129\pi\)
0.950533 0.310622i \(-0.100537\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.4612 35.4398i 0.792260 1.37223i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 32.1086 + 55.6138i 1.23954 + 2.14695i
\(672\) 0 0
\(673\) 15.2448 26.4048i 0.587645 1.01783i −0.406894 0.913475i \(-0.633388\pi\)
0.994540 0.104357i \(-0.0332783\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −22.4626 38.9064i −0.863309 1.49530i −0.868716 0.495310i \(-0.835054\pi\)
0.00540665 0.999985i \(-0.498279\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.1986 41.9133i −0.925935 1.60377i −0.790051 0.613041i \(-0.789946\pi\)
−0.135884 0.990725i \(-0.543387\pi\)
\(684\) 0 0
\(685\) 7.36381 0.281357
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −17.9626 + 31.1122i −0.684322 + 1.18528i
\(690\) 0 0
\(691\) 9.19076 + 15.9189i 0.349633 + 0.605582i 0.986184 0.165652i \(-0.0529730\pi\)
−0.636551 + 0.771234i \(0.719640\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.78434 + 13.4829i 0.295277 + 0.511434i
\(696\) 0 0
\(697\) 0.617023 1.06871i 0.0233714 0.0404805i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 27.0292 1.02088 0.510439 0.859914i \(-0.329483\pi\)
0.510439 + 0.859914i \(0.329483\pi\)
\(702\) 0 0
\(703\) −1.57227 2.72325i −0.0592994 0.102710i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −2.49261 4.31732i −0.0936119 0.162141i 0.815417 0.578875i \(-0.196508\pi\)
−0.909028 + 0.416734i \(0.863175\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 21.6534 37.5048i 0.810926 1.40457i
\(714\) 0 0
\(715\) −40.6431 70.3959i −1.51997 2.63266i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −7.84708 + 13.5915i −0.292647 + 0.506879i −0.974435 0.224671i \(-0.927869\pi\)
0.681788 + 0.731550i \(0.261203\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −3.67617 + 6.36731i −0.136529 + 0.236476i
\(726\) 0 0
\(727\) 10.9071 18.8916i 0.404522 0.700652i −0.589744 0.807590i \(-0.700771\pi\)
0.994266 + 0.106938i \(0.0341047\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 21.8272 0.807309
\(732\) 0 0
\(733\) 24.0148 0.887006 0.443503 0.896273i \(-0.353736\pi\)
0.443503 + 0.896273i \(0.353736\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.08472 + 5.34290i −0.113627 + 0.196808i
\(738\) 0 0
\(739\) −9.35447 16.2024i −0.344110 0.596016i 0.641082 0.767473i \(-0.278486\pi\)
−0.985192 + 0.171457i \(0.945153\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −20.1534 34.9067i −0.739356 1.28060i −0.952785 0.303644i \(-0.901797\pi\)
0.213429 0.976959i \(-0.431537\pi\)
\(744\) 0 0
\(745\) 10.7807 0.394976
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −21.1259 −0.770894 −0.385447 0.922730i \(-0.625953\pi\)
−0.385447 + 0.922730i \(0.625953\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 16.2412 0.591079
\(756\) 0 0
\(757\) 8.85934 0.321998 0.160999 0.986955i \(-0.448528\pi\)
0.160999 + 0.986955i \(0.448528\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1.38910 0.0503549 0.0251774 0.999683i \(-0.491985\pi\)
0.0251774 + 0.999683i \(0.491985\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −64.9194 −2.34410
\(768\) 0 0
\(769\) −18.9626 32.8443i −0.683810 1.18439i −0.973809 0.227367i \(-0.926988\pi\)
0.289999 0.957027i \(-0.406345\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −0.657981 1.13966i −0.0236659 0.0409906i 0.853950 0.520355i \(-0.174200\pi\)
−0.877616 + 0.479365i \(0.840867\pi\)
\(774\) 0 0
\(775\) −3.89037 + 6.73832i −0.139746 + 0.242047i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.18289 −0.0423813
\(780\) 0 0
\(781\) 62.8447 2.24876
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.11177 + 12.3179i −0.253830 + 0.439646i
\(786\) 0 0
\(787\) 6.12928 10.6162i 0.218485 0.378428i −0.735860 0.677134i \(-0.763222\pi\)
0.954345 + 0.298706i \(0.0965551\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 49.1072 85.0561i 1.74385 3.02043i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −10.7178 18.5638i −0.379644 0.657563i 0.611366 0.791348i \(-0.290620\pi\)
−0.991010 + 0.133785i \(0.957287\pi\)
\(798\) 0 0
\(799\) 8.29007 14.3588i 0.293282 0.507979i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 10.0562 + 17.4179i 0.354876 + 0.614664i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 13.3478 + 23.1190i 0.469282 + 0.812820i 0.999383 0.0351140i \(-0.0111794\pi\)
−0.530101 + 0.847934i \(0.677846\pi\)
\(810\) 0 0
\(811\) −38.2852 −1.34438 −0.672188 0.740381i \(-0.734645\pi\)
−0.672188 + 0.740381i \(0.734645\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −9.01459 + 15.6137i −0.315767 + 0.546925i
\(816\) 0 0
\(817\) −10.4612 18.1193i −0.365990 0.633914i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.24990 9.09310i −0.183223 0.317351i 0.759753 0.650211i \(-0.225320\pi\)
−0.942976 + 0.332860i \(0.891986\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.7817 1.69631 0.848153 0.529752i \(-0.177715\pi\)
0.848153 + 0.529752i \(0.177715\pi\)
\(828\) 0 0
\(829\) −3.10963 5.38604i −0.108002 0.187065i 0.806959 0.590608i \(-0.201112\pi\)
−0.914961 + 0.403543i \(0.867779\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 14.7989 + 25.6325i 0.512138 + 0.887049i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 21.0366 36.4364i 0.726263 1.25792i −0.232189 0.972671i \(-0.574589\pi\)
0.958452 0.285254i \(-0.0920779\pi\)
\(840\) 0 0
\(841\) −9.82597 17.0191i −0.338826 0.586865i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −46.1665 + 79.9628i −1.58818 + 2.75080i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.13161 + 3.69206i −0.0730707 + 0.126562i
\(852\) 0 0
\(853\) −6.72519 + 11.6484i −0.230266 + 0.398833i −0.957886 0.287147i \(-0.907293\pi\)
0.727620 + 0.685980i \(0.240626\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 41.3786 1.41347 0.706733 0.707481i \(-0.250168\pi\)
0.706733 + 0.707481i \(0.250168\pi\)
\(858\) 0 0
\(859\) 39.7630 1.35670 0.678349 0.734740i \(-0.262696\pi\)
0.678349 + 0.734740i \(0.262696\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 26.6929 46.2334i 0.908637 1.57380i 0.0926768 0.995696i \(-0.470458\pi\)
0.815960 0.578109i \(-0.196209\pi\)
\(864\) 0 0
\(865\) −6.02704 10.4391i −0.204926 0.354942i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 14.9552 + 25.9033i 0.507322 + 0.878708i
\(870\) 0 0
\(871\) 9.43560 0.319713
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6.85349 −0.231426 −0.115713 0.993283i \(-0.536915\pi\)
−0.115713 + 0.993283i \(0.536915\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.5103 −0.421483 −0.210742 0.977542i \(-0.567588\pi\)
−0.210742 + 0.977542i \(0.567588\pi\)
\(882\) 0 0
\(883\) 6.69124 0.225178 0.112589 0.993642i \(-0.464086\pi\)
0.112589 + 0.993642i \(0.464086\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 32.1416 1.07921 0.539605 0.841918i \(-0.318574\pi\)
0.539605 + 0.841918i \(0.318574\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.8928 −0.531832
\(894\) 0 0
\(895\) −2.19076 3.79450i −0.0732289 0.126836i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.7434 44.5888i −0.858590 1.48712i
\(900\) 0 0
\(901\) −11.4086 + 19.7602i −0.380074 + 0.658308i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 41.6883 1.38577
\(906\) 0 0
\(907\) −31.4031 −1.04272 −0.521362 0.853336i \(-0.674576\pi\)
−0.521362 + 0.853336i \(0.674576\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22.8982 39.6609i 0.758653 1.31402i −0.184885 0.982760i \(-0.559191\pi\)
0.943538 0.331265i \(-0.107475\pi\)
\(912\) 0 0
\(913\) 3.45185 5.97877i 0.114239 0.197868i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −13.5900 + 23.5385i −0.448292 + 0.776465i −0.998275 0.0587112i \(-0.981301\pi\)
0.549983 + 0.835176i \(0.314634\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −48.0576 83.2381i −1.58183 2.73982i
\(924\) 0 0
\(925\) 0.382977 0.663336i 0.0125922 0.0218104i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 20.3338 + 35.2192i 0.667132 + 1.15551i 0.978703 + 0.205283i \(0.0658115\pi\)
−0.311571 + 0.950223i \(0.600855\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −25.8135 44.7103i −0.844192 1.46218i
\(936\) 0 0
\(937\) −16.4150 −0.536254 −0.268127 0.963384i \(-0.586405\pi\)
−0.268127 + 0.963384i \(0.586405\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −3.66878 + 6.35451i −0.119599 + 0.207151i −0.919609 0.392836i \(-0.871494\pi\)
0.800010 + 0.599987i \(0.204827\pi\)
\(942\) 0 0
\(943\) 0.801851 + 1.38885i 0.0261119 + 0.0452271i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 29.5562 + 51.1929i 0.960448 + 1.66354i 0.721377 + 0.692543i \(0.243510\pi\)
0.239071 + 0.971002i \(0.423157\pi\)
\(948\) 0 0
\(949\) 15.3801 26.6390i 0.499258 0.864740i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 16.9354 0.548592 0.274296 0.961645i \(-0.411555\pi\)
0.274296 + 0.961645i \(0.411555\pi\)
\(954\) 0 0
\(955\) −6.75370 11.6977i −0.218544 0.378530i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −11.7434 20.3401i −0.378819 0.656133i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 6.77548 11.7355i 0.218110 0.377778i
\(966\) 0 0
\(967\) 3.55555 + 6.15839i 0.114339 + 0.198040i 0.917515 0.397701i \(-0.130192\pi\)
−0.803177 + 0.595741i \(0.796858\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0.735508 1.27394i 0.0236036 0.0408826i −0.853982 0.520302i \(-0.825819\pi\)
0.877586 + 0.479419i \(0.159153\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −9.71634 + 16.8292i −0.310853 + 0.538413i −0.978547 0.206022i \(-0.933948\pi\)
0.667694 + 0.744436i \(0.267281\pi\)
\(978\) 0 0
\(979\) 22.8545 39.5851i 0.730432 1.26515i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 7.74436 0.247007 0.123503 0.992344i \(-0.460587\pi\)
0.123503 + 0.992344i \(0.460587\pi\)
\(984\) 0 0
\(985\) −28.6156 −0.911768
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −14.1828 + 24.5653i −0.450986 + 0.781130i
\(990\) 0 0
\(991\) 7.23551 + 12.5323i 0.229843 + 0.398101i 0.957762 0.287563i \(-0.0928452\pi\)
−0.727918 + 0.685664i \(0.759512\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −5.10243 8.83767i −0.161758 0.280173i
\(996\) 0 0
\(997\) 55.3097 1.75168 0.875838 0.482605i \(-0.160309\pi\)
0.875838 + 0.482605i \(0.160309\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.l.f.3313.3 6
3.2 odd 2 1764.2.l.f.961.2 6
7.2 even 3 5292.2.j.d.3529.1 6
7.3 odd 6 5292.2.i.f.2125.3 6
7.4 even 3 5292.2.i.e.2125.1 6
7.5 odd 6 756.2.j.b.505.3 6
7.6 odd 2 5292.2.l.e.3313.1 6
9.4 even 3 5292.2.i.e.1549.1 6
9.5 odd 6 1764.2.i.d.373.1 6
21.2 odd 6 1764.2.j.e.1177.2 6
21.5 even 6 252.2.j.a.169.2 yes 6
21.11 odd 6 1764.2.i.d.1537.1 6
21.17 even 6 1764.2.i.g.1537.3 6
21.20 even 2 1764.2.l.e.961.2 6
28.19 even 6 3024.2.r.j.2017.3 6
63.4 even 3 inner 5292.2.l.f.361.3 6
63.5 even 6 252.2.j.a.85.2 6
63.13 odd 6 5292.2.i.f.1549.3 6
63.23 odd 6 1764.2.j.e.589.2 6
63.31 odd 6 5292.2.l.e.361.1 6
63.32 odd 6 1764.2.l.f.949.2 6
63.40 odd 6 756.2.j.b.253.3 6
63.41 even 6 1764.2.i.g.373.3 6
63.47 even 6 2268.2.a.i.1.3 3
63.58 even 3 5292.2.j.d.1765.1 6
63.59 even 6 1764.2.l.e.949.2 6
63.61 odd 6 2268.2.a.h.1.1 3
84.47 odd 6 1008.2.r.j.673.2 6
252.47 odd 6 9072.2.a.by.1.3 3
252.103 even 6 3024.2.r.j.1009.3 6
252.131 odd 6 1008.2.r.j.337.2 6
252.187 even 6 9072.2.a.bv.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.2 6 63.5 even 6
252.2.j.a.169.2 yes 6 21.5 even 6
756.2.j.b.253.3 6 63.40 odd 6
756.2.j.b.505.3 6 7.5 odd 6
1008.2.r.j.337.2 6 252.131 odd 6
1008.2.r.j.673.2 6 84.47 odd 6
1764.2.i.d.373.1 6 9.5 odd 6
1764.2.i.d.1537.1 6 21.11 odd 6
1764.2.i.g.373.3 6 63.41 even 6
1764.2.i.g.1537.3 6 21.17 even 6
1764.2.j.e.589.2 6 63.23 odd 6
1764.2.j.e.1177.2 6 21.2 odd 6
1764.2.l.e.949.2 6 63.59 even 6
1764.2.l.e.961.2 6 21.20 even 2
1764.2.l.f.949.2 6 63.32 odd 6
1764.2.l.f.961.2 6 3.2 odd 2
2268.2.a.h.1.1 3 63.61 odd 6
2268.2.a.i.1.3 3 63.47 even 6
3024.2.r.j.1009.3 6 252.103 even 6
3024.2.r.j.2017.3 6 28.19 even 6
5292.2.i.e.1549.1 6 9.4 even 3
5292.2.i.e.2125.1 6 7.4 even 3
5292.2.i.f.1549.3 6 63.13 odd 6
5292.2.i.f.2125.3 6 7.3 odd 6
5292.2.j.d.1765.1 6 63.58 even 3
5292.2.j.d.3529.1 6 7.2 even 3
5292.2.l.e.361.1 6 63.31 odd 6
5292.2.l.e.3313.1 6 7.6 odd 2
5292.2.l.f.361.3 6 63.4 even 3 inner
5292.2.l.f.3313.3 6 1.1 even 1 trivial
9072.2.a.bv.1.1 3 252.187 even 6
9072.2.a.by.1.3 3 252.47 odd 6