Properties

Label 539.2.f.e.344.3
Level $539$
Weight $2$
Character 539.344
Analytic conductor $4.304$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [539,2,Mod(148,539)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(539, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("539.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 539 = 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 539.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.30393666895\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 86 x^{12} - 145 x^{11} + 245 x^{10} - 245 x^{9} + 640 x^{8} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 344.3
Root \(0.183009 - 0.132964i\) of defining polynomial
Character \(\chi\) \(=\) 539.344
Dual form 539.2.f.e.246.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.183009 + 0.132964i) q^{2} +(0.0677147 + 0.208405i) q^{3} +(-0.602221 + 1.85345i) q^{4} +(-2.01892 - 1.46683i) q^{5} +(-0.0401026 - 0.0291363i) q^{6} +(-0.276036 - 0.849550i) q^{8} +(2.38820 - 1.73513i) q^{9} +0.564516 q^{10} +(-2.66598 - 1.97296i) q^{11} -0.427046 q^{12} +(4.15429 - 3.01827i) q^{13} +(0.168984 - 0.520079i) q^{15} +(-2.98979 - 2.17221i) q^{16} +(-1.16298 - 0.844956i) q^{17} +(-0.206353 + 0.635089i) q^{18} +(1.87526 + 5.77147i) q^{19} +(3.93453 - 2.85860i) q^{20} +(0.750229 + 0.00659095i) q^{22} +7.08292 q^{23} +(0.158358 - 0.115054i) q^{24} +(0.379361 + 1.16755i) q^{25} +(-0.358952 + 1.10474i) q^{26} +(1.05516 + 0.766622i) q^{27} +(2.01408 - 6.19869i) q^{29} +(0.0382260 + 0.117648i) q^{30} +(6.22049 - 4.51945i) q^{31} +2.62252 q^{32} +(0.230648 - 0.689200i) q^{33} +0.325184 q^{34} +(1.77775 + 5.47134i) q^{36} +(-1.23122 + 3.78932i) q^{37} +(-1.11058 - 0.806887i) q^{38} +(0.910328 + 0.661392i) q^{39} +(-0.688853 + 2.12007i) q^{40} +(-2.08556 - 6.41868i) q^{41} -0.802299 q^{43} +(5.26228 - 3.75309i) q^{44} -7.36674 q^{45} +(-1.29624 + 0.941771i) q^{46} +(-2.08655 - 6.42174i) q^{47} +(0.250246 - 0.770178i) q^{48} +(-0.224669 - 0.163231i) q^{50} +(0.0973416 - 0.299587i) q^{51} +(3.09240 + 9.51742i) q^{52} +(-5.32469 + 3.86861i) q^{53} -0.295037 q^{54} +(2.48840 + 7.89379i) q^{55} +(-1.07582 + 0.781627i) q^{57} +(0.455607 + 1.40221i) q^{58} +(-0.888810 + 2.73548i) q^{59} +(0.862172 + 0.626405i) q^{60} +(-0.691986 - 0.502757i) q^{61} +(-0.537482 + 1.65420i) q^{62} +(5.49964 - 3.99573i) q^{64} -12.8145 q^{65} +(0.0494280 + 0.156797i) q^{66} -1.64668 q^{67} +(2.26645 - 1.64667i) q^{68} +(0.479618 + 1.47611i) q^{69} +(-3.65738 - 2.65724i) q^{71} +(-2.13331 - 1.54994i) q^{72} +(4.58827 - 14.1212i) q^{73} +(-0.278517 - 0.857187i) q^{74} +(-0.217635 + 0.158121i) q^{75} -11.8264 q^{76} -0.254539 q^{78} +(-1.98444 + 1.44178i) q^{79} +(2.84989 + 8.77105i) q^{80} +(2.64832 - 8.15069i) q^{81} +(1.23513 + 0.897372i) q^{82} +(1.81851 + 1.32122i) q^{83} +(1.10856 + 3.41180i) q^{85} +(0.146828 - 0.106677i) q^{86} +1.42822 q^{87} +(-0.940224 + 2.80949i) q^{88} -1.73566 q^{89} +(1.34818 - 0.979509i) q^{90} +(-4.26549 + 13.1278i) q^{92} +(1.36309 + 0.990346i) q^{93} +(1.23572 + 0.897800i) q^{94} +(4.67976 - 14.4028i) q^{95} +(0.177584 + 0.546546i) q^{96} +(-9.77095 + 7.09901i) q^{97} +(-9.79024 - 0.0860098i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 3 q^{2} + 2 q^{3} - 11 q^{4} + 5 q^{5} - 3 q^{6} - 5 q^{8} - 12 q^{9} - 12 q^{10} - 3 q^{11} - 18 q^{12} + 7 q^{13} - 18 q^{15} + 17 q^{16} + 5 q^{17} + 11 q^{18} - 19 q^{19} - q^{20} - 33 q^{22}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/539\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(442\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.183009 + 0.132964i −0.129407 + 0.0940195i −0.650606 0.759416i \(-0.725485\pi\)
0.521199 + 0.853435i \(0.325485\pi\)
\(3\) 0.0677147 + 0.208405i 0.0390951 + 0.120322i 0.968699 0.248237i \(-0.0798511\pi\)
−0.929604 + 0.368559i \(0.879851\pi\)
\(4\) −0.602221 + 1.85345i −0.301111 + 0.926723i
\(5\) −2.01892 1.46683i −0.902889 0.655987i 0.0363174 0.999340i \(-0.488437\pi\)
−0.939206 + 0.343353i \(0.888437\pi\)
\(6\) −0.0401026 0.0291363i −0.0163718 0.0118948i
\(7\) 0 0
\(8\) −0.276036 0.849550i −0.0975933 0.300361i
\(9\) 2.38820 1.73513i 0.796068 0.578377i
\(10\) 0.564516 0.178516
\(11\) −2.66598 1.97296i −0.803822 0.594870i
\(12\) −0.427046 −0.123278
\(13\) 4.15429 3.01827i 1.15219 0.837117i 0.163422 0.986556i \(-0.447747\pi\)
0.988771 + 0.149439i \(0.0477468\pi\)
\(14\) 0 0
\(15\) 0.168984 0.520079i 0.0436314 0.134284i
\(16\) −2.98979 2.17221i −0.747449 0.543053i
\(17\) −1.16298 0.844956i −0.282065 0.204932i 0.437753 0.899095i \(-0.355774\pi\)
−0.719817 + 0.694163i \(0.755774\pi\)
\(18\) −0.206353 + 0.635089i −0.0486378 + 0.149692i
\(19\) 1.87526 + 5.77147i 0.430215 + 1.32406i 0.897912 + 0.440176i \(0.145084\pi\)
−0.467697 + 0.883889i \(0.654916\pi\)
\(20\) 3.93453 2.85860i 0.879788 0.639203i
\(21\) 0 0
\(22\) 0.750229 + 0.00659095i 0.159949 + 0.00140520i
\(23\) 7.08292 1.47689 0.738446 0.674313i \(-0.235560\pi\)
0.738446 + 0.674313i \(0.235560\pi\)
\(24\) 0.158358 0.115054i 0.0323248 0.0234853i
\(25\) 0.379361 + 1.16755i 0.0758722 + 0.233511i
\(26\) −0.358952 + 1.10474i −0.0703962 + 0.216657i
\(27\) 1.05516 + 0.766622i 0.203067 + 0.147536i
\(28\) 0 0
\(29\) 2.01408 6.19869i 0.374004 1.15107i −0.570143 0.821545i \(-0.693112\pi\)
0.944148 0.329522i \(-0.106888\pi\)
\(30\) 0.0382260 + 0.117648i 0.00697909 + 0.0214794i
\(31\) 6.22049 4.51945i 1.11723 0.811718i 0.133446 0.991056i \(-0.457396\pi\)
0.983787 + 0.179338i \(0.0573957\pi\)
\(32\) 2.62252 0.463601
\(33\) 0.230648 0.689200i 0.0401506 0.119974i
\(34\) 0.325184 0.0557687
\(35\) 0 0
\(36\) 1.77775 + 5.47134i 0.296291 + 0.911890i
\(37\) −1.23122 + 3.78932i −0.202412 + 0.622960i 0.797398 + 0.603454i \(0.206209\pi\)
−0.999810 + 0.0195059i \(0.993791\pi\)
\(38\) −1.11058 0.806887i −0.180161 0.130894i
\(39\) 0.910328 + 0.661392i 0.145769 + 0.105907i
\(40\) −0.688853 + 2.12007i −0.108917 + 0.335213i
\(41\) −2.08556 6.41868i −0.325709 1.00243i −0.971120 0.238594i \(-0.923314\pi\)
0.645410 0.763836i \(-0.276686\pi\)
\(42\) 0 0
\(43\) −0.802299 −0.122349 −0.0611747 0.998127i \(-0.519485\pi\)
−0.0611747 + 0.998127i \(0.519485\pi\)
\(44\) 5.26228 3.75309i 0.793319 0.565799i
\(45\) −7.36674 −1.09817
\(46\) −1.29624 + 0.941771i −0.191120 + 0.138857i
\(47\) −2.08655 6.42174i −0.304355 0.936707i −0.979917 0.199405i \(-0.936099\pi\)
0.675563 0.737303i \(-0.263901\pi\)
\(48\) 0.250246 0.770178i 0.0361199 0.111166i
\(49\) 0 0
\(50\) −0.224669 0.163231i −0.0317729 0.0230844i
\(51\) 0.0973416 0.299587i 0.0136306 0.0419505i
\(52\) 3.09240 + 9.51742i 0.428838 + 1.31983i
\(53\) −5.32469 + 3.86861i −0.731402 + 0.531394i −0.890007 0.455948i \(-0.849300\pi\)
0.158605 + 0.987342i \(0.449300\pi\)
\(54\) −0.295037 −0.0401495
\(55\) 2.48840 + 7.89379i 0.335535 + 1.06440i
\(56\) 0 0
\(57\) −1.07582 + 0.781627i −0.142495 + 0.103529i
\(58\) 0.455607 + 1.40221i 0.0598241 + 0.184120i
\(59\) −0.888810 + 2.73548i −0.115713 + 0.356129i −0.992095 0.125488i \(-0.959950\pi\)
0.876382 + 0.481617i \(0.159950\pi\)
\(60\) 0.862172 + 0.626405i 0.111306 + 0.0808685i
\(61\) −0.691986 0.502757i −0.0885997 0.0643715i 0.542604 0.839989i \(-0.317439\pi\)
−0.631203 + 0.775617i \(0.717439\pi\)
\(62\) −0.537482 + 1.65420i −0.0682603 + 0.210084i
\(63\) 0 0
\(64\) 5.49964 3.99573i 0.687455 0.499466i
\(65\) −12.8145 −1.58944
\(66\) 0.0494280 + 0.156797i 0.00608417 + 0.0193004i
\(67\) −1.64668 −0.201174 −0.100587 0.994928i \(-0.532072\pi\)
−0.100587 + 0.994928i \(0.532072\pi\)
\(68\) 2.26645 1.64667i 0.274848 0.199689i
\(69\) 0.479618 + 1.47611i 0.0577393 + 0.177703i
\(70\) 0 0
\(71\) −3.65738 2.65724i −0.434051 0.315357i 0.349216 0.937042i \(-0.386448\pi\)
−0.783267 + 0.621686i \(0.786448\pi\)
\(72\) −2.13331 1.54994i −0.251413 0.182662i
\(73\) 4.58827 14.1212i 0.537016 1.65277i −0.202236 0.979337i \(-0.564821\pi\)
0.739252 0.673429i \(-0.235179\pi\)
\(74\) −0.278517 0.857187i −0.0323769 0.0996459i
\(75\) −0.217635 + 0.158121i −0.0251303 + 0.0182583i
\(76\) −11.8264 −1.35658
\(77\) 0 0
\(78\) −0.254539 −0.0288209
\(79\) −1.98444 + 1.44178i −0.223267 + 0.162213i −0.693796 0.720171i \(-0.744063\pi\)
0.470529 + 0.882385i \(0.344063\pi\)
\(80\) 2.84989 + 8.77105i 0.318627 + 0.980633i
\(81\) 2.64832 8.15069i 0.294258 0.905633i
\(82\) 1.23513 + 0.897372i 0.136397 + 0.0990982i
\(83\) 1.81851 + 1.32122i 0.199607 + 0.145023i 0.683099 0.730326i \(-0.260632\pi\)
−0.483492 + 0.875349i \(0.660632\pi\)
\(84\) 0 0
\(85\) 1.10856 + 3.41180i 0.120240 + 0.370061i
\(86\) 0.146828 0.106677i 0.0158328 0.0115032i
\(87\) 1.42822 0.153121
\(88\) −0.940224 + 2.80949i −0.100228 + 0.299492i
\(89\) −1.73566 −0.183980 −0.0919898 0.995760i \(-0.529323\pi\)
−0.0919898 + 0.995760i \(0.529323\pi\)
\(90\) 1.34818 0.979509i 0.142111 0.103249i
\(91\) 0 0
\(92\) −4.26549 + 13.1278i −0.444708 + 1.36867i
\(93\) 1.36309 + 0.990346i 0.141346 + 0.102694i
\(94\) 1.23572 + 0.897800i 0.127454 + 0.0926010i
\(95\) 4.67976 14.4028i 0.480134 1.47770i
\(96\) 0.177584 + 0.546546i 0.0181245 + 0.0557816i
\(97\) −9.77095 + 7.09901i −0.992089 + 0.720795i −0.960378 0.278702i \(-0.910096\pi\)
−0.0317117 + 0.999497i \(0.510096\pi\)
\(98\) 0 0
\(99\) −9.79024 0.0860098i −0.983956 0.00864431i
\(100\) −2.39246 −0.239246
\(101\) −2.98801 + 2.17091i −0.297318 + 0.216014i −0.726436 0.687234i \(-0.758825\pi\)
0.429118 + 0.903249i \(0.358825\pi\)
\(102\) 0.0220198 + 0.0677699i 0.00218028 + 0.00671022i
\(103\) 0.355853 1.09520i 0.0350632 0.107913i −0.931993 0.362476i \(-0.881931\pi\)
0.967056 + 0.254563i \(0.0819315\pi\)
\(104\) −3.71090 2.69613i −0.363884 0.264377i
\(105\) 0 0
\(106\) 0.460080 1.41598i 0.0446869 0.137532i
\(107\) 0.360665 + 1.11001i 0.0348668 + 0.107309i 0.966975 0.254870i \(-0.0820328\pi\)
−0.932108 + 0.362179i \(0.882033\pi\)
\(108\) −2.05633 + 1.49401i −0.197871 + 0.143762i
\(109\) 9.30234 0.891003 0.445501 0.895281i \(-0.353025\pi\)
0.445501 + 0.895281i \(0.353025\pi\)
\(110\) −1.50499 1.11377i −0.143495 0.106194i
\(111\) −0.873083 −0.0828694
\(112\) 0 0
\(113\) 1.01893 + 3.13595i 0.0958529 + 0.295005i 0.987475 0.157775i \(-0.0504322\pi\)
−0.891622 + 0.452780i \(0.850432\pi\)
\(114\) 0.0929560 0.286089i 0.00870613 0.0267947i
\(115\) −14.2999 10.3895i −1.33347 0.968822i
\(116\) 10.2760 + 7.46596i 0.954104 + 0.693197i
\(117\) 4.68420 14.4165i 0.433054 1.33280i
\(118\) −0.201059 0.618796i −0.0185090 0.0569648i
\(119\) 0 0
\(120\) −0.488478 −0.0445918
\(121\) 3.21486 + 10.5197i 0.292260 + 0.956339i
\(122\) 0.193488 0.0175176
\(123\) 1.19646 0.869279i 0.107881 0.0783802i
\(124\) 4.63045 + 14.2511i 0.415827 + 1.27978i
\(125\) −2.90909 + 8.95326i −0.260197 + 0.800804i
\(126\) 0 0
\(127\) 0.233972 + 0.169990i 0.0207616 + 0.0150842i 0.598118 0.801408i \(-0.295916\pi\)
−0.577356 + 0.816492i \(0.695916\pi\)
\(128\) −2.09601 + 6.45084i −0.185262 + 0.570179i
\(129\) −0.0543275 0.167203i −0.00478327 0.0147214i
\(130\) 2.34516 1.70386i 0.205684 0.149438i
\(131\) 16.5059 1.44212 0.721062 0.692871i \(-0.243654\pi\)
0.721062 + 0.692871i \(0.243654\pi\)
\(132\) 1.13849 + 0.842544i 0.0990932 + 0.0733341i
\(133\) 0 0
\(134\) 0.301357 0.218949i 0.0260333 0.0189143i
\(135\) −1.00579 3.09550i −0.0865645 0.266418i
\(136\) −0.396808 + 1.22125i −0.0340260 + 0.104721i
\(137\) −7.54479 5.48161i −0.644595 0.468326i 0.216831 0.976209i \(-0.430428\pi\)
−0.861426 + 0.507883i \(0.830428\pi\)
\(138\) −0.284044 0.206370i −0.0241794 0.0175674i
\(139\) −1.49147 + 4.59026i −0.126505 + 0.389341i −0.994172 0.107804i \(-0.965618\pi\)
0.867668 + 0.497145i \(0.165618\pi\)
\(140\) 0 0
\(141\) 1.19703 0.869693i 0.100808 0.0732414i
\(142\) 1.02265 0.0858189
\(143\) −17.0302 0.149614i −1.42413 0.0125114i
\(144\) −10.9093 −0.909109
\(145\) −13.1587 + 9.56035i −1.09277 + 0.793944i
\(146\) 1.03792 + 3.19438i 0.0858987 + 0.264369i
\(147\) 0 0
\(148\) −6.28183 4.56401i −0.516363 0.375160i
\(149\) −0.745845 0.541888i −0.0611020 0.0443932i 0.556815 0.830637i \(-0.312023\pi\)
−0.617917 + 0.786243i \(0.712023\pi\)
\(150\) 0.0188048 0.0578751i 0.00153540 0.00472549i
\(151\) 5.59210 + 17.2107i 0.455079 + 1.40059i 0.871043 + 0.491207i \(0.163444\pi\)
−0.415964 + 0.909381i \(0.636556\pi\)
\(152\) 4.38551 3.18626i 0.355712 0.258440i
\(153\) −4.24355 −0.343070
\(154\) 0 0
\(155\) −19.1880 −1.54121
\(156\) −1.77407 + 1.28894i −0.142039 + 0.103198i
\(157\) 3.79267 + 11.6726i 0.302688 + 0.931577i 0.980530 + 0.196369i \(0.0629152\pi\)
−0.677842 + 0.735207i \(0.737085\pi\)
\(158\) 0.171466 0.527718i 0.0136411 0.0419830i
\(159\) −1.16680 0.847727i −0.0925329 0.0672291i
\(160\) −5.29467 3.84680i −0.418580 0.304116i
\(161\) 0 0
\(162\) 0.599080 + 1.84378i 0.0470682 + 0.144861i
\(163\) −6.55233 + 4.76055i −0.513218 + 0.372875i −0.814043 0.580804i \(-0.802738\pi\)
0.300825 + 0.953679i \(0.402738\pi\)
\(164\) 13.1526 1.02705
\(165\) −1.47660 + 1.05312i −0.114953 + 0.0819852i
\(166\) −0.508478 −0.0394655
\(167\) −10.5590 + 7.67154i −0.817077 + 0.593641i −0.915874 0.401466i \(-0.868501\pi\)
0.0987965 + 0.995108i \(0.468501\pi\)
\(168\) 0 0
\(169\) 4.13096 12.7138i 0.317766 0.977985i
\(170\) −0.656522 0.476991i −0.0503529 0.0365835i
\(171\) 14.4928 + 10.5296i 1.10829 + 0.805219i
\(172\) 0.483161 1.48702i 0.0368407 0.113384i
\(173\) −1.82697 5.62283i −0.138902 0.427496i 0.857275 0.514859i \(-0.172156\pi\)
−0.996176 + 0.0873636i \(0.972156\pi\)
\(174\) −0.261376 + 0.189901i −0.0198149 + 0.0143964i
\(175\) 0 0
\(176\) 3.68503 + 11.6898i 0.277770 + 0.881153i
\(177\) −0.630271 −0.0473741
\(178\) 0.317641 0.230780i 0.0238082 0.0172977i
\(179\) 1.33961 + 4.12290i 0.100127 + 0.308160i 0.988556 0.150854i \(-0.0482025\pi\)
−0.888429 + 0.459015i \(0.848202\pi\)
\(180\) 4.43641 13.6539i 0.330670 1.01770i
\(181\) 8.76223 + 6.36613i 0.651291 + 0.473191i 0.863711 0.503988i \(-0.168134\pi\)
−0.212420 + 0.977179i \(0.568134\pi\)
\(182\) 0 0
\(183\) 0.0579192 0.178257i 0.00428151 0.0131771i
\(184\) −1.95514 6.01730i −0.144135 0.443601i
\(185\) 8.04404 5.84433i 0.591409 0.429684i
\(186\) −0.381138 −0.0279464
\(187\) 1.43342 + 4.54715i 0.104822 + 0.332520i
\(188\) 13.1589 0.959713
\(189\) 0 0
\(190\) 1.05862 + 3.25808i 0.0768000 + 0.236366i
\(191\) 3.60178 11.0851i 0.260616 0.802093i −0.732055 0.681245i \(-0.761439\pi\)
0.992671 0.120848i \(-0.0385613\pi\)
\(192\) 1.20513 + 0.875581i 0.0869731 + 0.0631896i
\(193\) −18.1587 13.1931i −1.30709 0.949659i −0.307096 0.951679i \(-0.599357\pi\)
−0.999998 + 0.00201912i \(0.999357\pi\)
\(194\) 0.844259 2.59836i 0.0606143 0.186552i
\(195\) −0.867729 2.67060i −0.0621394 0.191245i
\(196\) 0 0
\(197\) 24.1022 1.71721 0.858604 0.512639i \(-0.171332\pi\)
0.858604 + 0.512639i \(0.171332\pi\)
\(198\) 1.80314 1.28601i 0.128143 0.0913925i
\(199\) −18.7205 −1.32706 −0.663531 0.748148i \(-0.730943\pi\)
−0.663531 + 0.748148i \(0.730943\pi\)
\(200\) 0.887178 0.644573i 0.0627330 0.0455782i
\(201\) −0.111505 0.343176i −0.00786493 0.0242058i
\(202\) 0.258179 0.794593i 0.0181654 0.0559074i
\(203\) 0 0
\(204\) 0.496647 + 0.360835i 0.0347722 + 0.0252635i
\(205\) −5.20455 + 16.0180i −0.363502 + 1.11874i
\(206\) 0.0804979 + 0.247747i 0.00560855 + 0.0172614i
\(207\) 16.9155 12.2898i 1.17571 0.854200i
\(208\) −18.9768 −1.31580
\(209\) 6.38746 19.0864i 0.441830 1.32023i
\(210\) 0 0
\(211\) 6.12131 4.44739i 0.421408 0.306171i −0.356796 0.934182i \(-0.616131\pi\)
0.778204 + 0.628011i \(0.216131\pi\)
\(212\) −3.96362 12.1988i −0.272223 0.837815i
\(213\) 0.306123 0.942149i 0.0209752 0.0645550i
\(214\) −0.213596 0.155187i −0.0146011 0.0106083i
\(215\) 1.61978 + 1.17684i 0.110468 + 0.0802596i
\(216\) 0.360021 1.10803i 0.0244963 0.0753919i
\(217\) 0 0
\(218\) −1.70241 + 1.23687i −0.115302 + 0.0837717i
\(219\) 3.25362 0.219859
\(220\) −16.1293 0.141700i −1.08744 0.00955340i
\(221\) −7.38167 −0.496545
\(222\) 0.159782 0.116088i 0.0107239 0.00779134i
\(223\) −5.41533 16.6667i −0.362637 1.11608i −0.951447 0.307811i \(-0.900403\pi\)
0.588810 0.808271i \(-0.299597\pi\)
\(224\) 0 0
\(225\) 2.93185 + 2.13011i 0.195457 + 0.142008i
\(226\) −0.603440 0.438425i −0.0401403 0.0291636i
\(227\) 7.93471 24.4205i 0.526645 1.62085i −0.234394 0.972142i \(-0.575311\pi\)
0.761039 0.648706i \(-0.224689\pi\)
\(228\) −0.800823 2.46468i −0.0530358 0.163227i
\(229\) −16.0484 + 11.6598i −1.06051 + 0.770503i −0.974182 0.225764i \(-0.927512\pi\)
−0.0863246 + 0.996267i \(0.527512\pi\)
\(230\) 3.99842 0.263648
\(231\) 0 0
\(232\) −5.82205 −0.382236
\(233\) 16.3539 11.8818i 1.07138 0.778405i 0.0952219 0.995456i \(-0.469644\pi\)
0.976160 + 0.217051i \(0.0696439\pi\)
\(234\) 1.05962 + 3.26117i 0.0692695 + 0.213189i
\(235\) −5.20704 + 16.0256i −0.339670 + 1.04540i
\(236\) −4.53480 3.29472i −0.295190 0.214468i
\(237\) −0.434850 0.315937i −0.0282465 0.0205223i
\(238\) 0 0
\(239\) 5.28431 + 16.2634i 0.341814 + 1.05199i 0.963267 + 0.268544i \(0.0865424\pi\)
−0.621454 + 0.783451i \(0.713458\pi\)
\(240\) −1.63495 + 1.18786i −0.105535 + 0.0766760i
\(241\) 24.1529 1.55582 0.777912 0.628373i \(-0.216279\pi\)
0.777912 + 0.628373i \(0.216279\pi\)
\(242\) −1.98709 1.49774i −0.127735 0.0962786i
\(243\) 5.79074 0.371476
\(244\) 1.34856 0.979787i 0.0863328 0.0627245i
\(245\) 0 0
\(246\) −0.103380 + 0.318171i −0.00659128 + 0.0202859i
\(247\) 25.2102 + 18.3163i 1.60409 + 1.16544i
\(248\) −5.55658 4.03709i −0.352843 0.256356i
\(249\) −0.152209 + 0.468452i −0.00964586 + 0.0296869i
\(250\) −0.658069 2.02533i −0.0416200 0.128093i
\(251\) 9.62305 6.99156i 0.607402 0.441303i −0.241097 0.970501i \(-0.577507\pi\)
0.848498 + 0.529198i \(0.177507\pi\)
\(252\) 0 0
\(253\) −18.8829 13.9743i −1.18716 0.878558i
\(254\) −0.0654215 −0.00410491
\(255\) −0.635968 + 0.462058i −0.0398259 + 0.0289352i
\(256\) 3.72721 + 11.4712i 0.232951 + 0.716949i
\(257\) −7.09531 + 21.8371i −0.442593 + 1.36216i 0.442509 + 0.896764i \(0.354089\pi\)
−0.885102 + 0.465397i \(0.845911\pi\)
\(258\) 0.0321743 + 0.0233760i 0.00200308 + 0.00145533i
\(259\) 0 0
\(260\) 7.71715 23.7509i 0.478597 1.47297i
\(261\) −5.94552 18.2984i −0.368018 1.13264i
\(262\) −3.02072 + 2.19468i −0.186621 + 0.135588i
\(263\) 1.93774 0.119486 0.0597432 0.998214i \(-0.480972\pi\)
0.0597432 + 0.998214i \(0.480972\pi\)
\(264\) −0.649177 0.00570319i −0.0399541 0.000351007i
\(265\) 16.4247 1.00896
\(266\) 0 0
\(267\) −0.117530 0.361720i −0.00719271 0.0221369i
\(268\) 0.991666 3.05203i 0.0605756 0.186433i
\(269\) 5.81421 + 4.22427i 0.354499 + 0.257558i 0.750754 0.660582i \(-0.229690\pi\)
−0.396255 + 0.918140i \(0.629690\pi\)
\(270\) 0.595657 + 0.432770i 0.0362505 + 0.0263376i
\(271\) −0.368071 + 1.13281i −0.0223587 + 0.0688130i −0.961613 0.274408i \(-0.911518\pi\)
0.939255 + 0.343221i \(0.111518\pi\)
\(272\) 1.64165 + 5.05249i 0.0995398 + 0.306352i
\(273\) 0 0
\(274\) 2.10962 0.127447
\(275\) 1.29217 3.86113i 0.0779207 0.232835i
\(276\) −3.02473 −0.182067
\(277\) −8.36543 + 6.07784i −0.502630 + 0.365182i −0.810021 0.586401i \(-0.800544\pi\)
0.307391 + 0.951583i \(0.400544\pi\)
\(278\) −0.337387 1.03837i −0.0202351 0.0622773i
\(279\) 7.01396 21.5867i 0.419915 1.29236i
\(280\) 0 0
\(281\) 10.6396 + 7.73015i 0.634707 + 0.461142i 0.858028 0.513603i \(-0.171690\pi\)
−0.223321 + 0.974745i \(0.571690\pi\)
\(282\) −0.103429 + 0.318323i −0.00615913 + 0.0189559i
\(283\) −0.0927146 0.285346i −0.00551131 0.0169621i 0.948263 0.317486i \(-0.102839\pi\)
−0.953774 + 0.300524i \(0.902839\pi\)
\(284\) 7.12761 5.17851i 0.422946 0.307288i
\(285\) 3.31850 0.196571
\(286\) 3.13656 2.23701i 0.185469 0.132277i
\(287\) 0 0
\(288\) 6.26312 4.55042i 0.369058 0.268136i
\(289\) −4.61471 14.2026i −0.271454 0.835448i
\(290\) 1.13698 3.49926i 0.0667656 0.205483i
\(291\) −2.14110 1.55560i −0.125514 0.0911910i
\(292\) 23.4098 + 17.0082i 1.36995 + 0.995330i
\(293\) −4.98880 + 15.3539i −0.291449 + 0.896987i 0.692942 + 0.720993i \(0.256314\pi\)
−0.984391 + 0.175994i \(0.943686\pi\)
\(294\) 0 0
\(295\) 5.80692 4.21898i 0.338092 0.245638i
\(296\) 3.55908 0.206867
\(297\) −1.30053 4.12559i −0.0754644 0.239391i
\(298\) 0.208548 0.0120808
\(299\) 29.4245 21.3782i 1.70166 1.23633i
\(300\) −0.162005 0.498599i −0.00935334 0.0287866i
\(301\) 0 0
\(302\) −3.31180 2.40617i −0.190573 0.138459i
\(303\) −0.654761 0.475711i −0.0376150 0.0273289i
\(304\) 6.93020 21.3290i 0.397474 1.22330i
\(305\) 0.659605 + 2.03005i 0.0377688 + 0.116241i
\(306\) 0.776607 0.564238i 0.0443956 0.0322553i
\(307\) 28.6376 1.63443 0.817217 0.576330i \(-0.195516\pi\)
0.817217 + 0.576330i \(0.195516\pi\)
\(308\) 0 0
\(309\) 0.252341 0.0143552
\(310\) 3.51157 2.55130i 0.199444 0.144904i
\(311\) 9.83377 + 30.2652i 0.557622 + 1.71618i 0.688916 + 0.724841i \(0.258087\pi\)
−0.131294 + 0.991343i \(0.541913\pi\)
\(312\) 0.310603 0.955937i 0.0175844 0.0541193i
\(313\) 0.0276872 + 0.0201159i 0.00156497 + 0.00113702i 0.588567 0.808448i \(-0.299692\pi\)
−0.587002 + 0.809585i \(0.699692\pi\)
\(314\) −2.24613 1.63191i −0.126756 0.0920938i
\(315\) 0 0
\(316\) −1.47719 4.54633i −0.0830985 0.255751i
\(317\) −18.1134 + 13.1602i −1.01735 + 0.739149i −0.965738 0.259518i \(-0.916436\pi\)
−0.0516132 + 0.998667i \(0.516436\pi\)
\(318\) 0.326251 0.0182952
\(319\) −17.5992 + 12.5519i −0.985368 + 0.702770i
\(320\) −16.9644 −0.948339
\(321\) −0.206909 + 0.150328i −0.0115486 + 0.00839052i
\(322\) 0 0
\(323\) 2.69574 8.29662i 0.149995 0.461636i
\(324\) 13.5120 + 9.81704i 0.750666 + 0.545391i
\(325\) 5.09997 + 3.70534i 0.282895 + 0.205535i
\(326\) 0.566155 1.74244i 0.0313564 0.0965051i
\(327\) 0.629906 + 1.93865i 0.0348339 + 0.107208i
\(328\) −4.87730 + 3.54357i −0.269304 + 0.195661i
\(329\) 0 0
\(330\) 0.130204 0.389064i 0.00716751 0.0214173i
\(331\) 10.7577 0.591297 0.295648 0.955297i \(-0.404464\pi\)
0.295648 + 0.955297i \(0.404464\pi\)
\(332\) −3.54396 + 2.57484i −0.194500 + 0.141313i
\(333\) 3.63455 + 11.1860i 0.199172 + 0.612989i
\(334\) 0.912348 2.80792i 0.0499215 0.153642i
\(335\) 3.32452 + 2.41540i 0.181638 + 0.131968i
\(336\) 0 0
\(337\) 2.31915 7.13761i 0.126332 0.388810i −0.867809 0.496897i \(-0.834473\pi\)
0.994141 + 0.108087i \(0.0344726\pi\)
\(338\) 0.934471 + 2.87601i 0.0508285 + 0.156434i
\(339\) −0.584549 + 0.424700i −0.0317483 + 0.0230665i
\(340\) −6.99118 −0.379150
\(341\) −25.5004 0.224027i −1.38092 0.0121318i
\(342\) −4.05236 −0.219126
\(343\) 0 0
\(344\) 0.221463 + 0.681593i 0.0119405 + 0.0367490i
\(345\) 1.19690 3.68368i 0.0644389 0.198322i
\(346\) 1.08198 + 0.786107i 0.0581678 + 0.0422614i
\(347\) 22.3950 + 16.2710i 1.20223 + 0.873471i 0.994502 0.104716i \(-0.0333934\pi\)
0.207727 + 0.978187i \(0.433393\pi\)
\(348\) −0.860103 + 2.64712i −0.0461063 + 0.141901i
\(349\) 3.41788 + 10.5192i 0.182955 + 0.563078i 0.999907 0.0136278i \(-0.00433799\pi\)
−0.816952 + 0.576706i \(0.804338\pi\)
\(350\) 0 0
\(351\) 6.69733 0.357477
\(352\) −6.99159 5.17413i −0.372653 0.275782i
\(353\) −31.9202 −1.69894 −0.849469 0.527638i \(-0.823078\pi\)
−0.849469 + 0.527638i \(0.823078\pi\)
\(354\) 0.115345 0.0838032i 0.00613053 0.00445409i
\(355\) 3.48623 + 10.7295i 0.185030 + 0.569464i
\(356\) 1.04525 3.21695i 0.0553982 0.170498i
\(357\) 0 0
\(358\) −0.793358 0.576408i −0.0419303 0.0304641i
\(359\) 1.10574 3.40313i 0.0583590 0.179610i −0.917628 0.397441i \(-0.869898\pi\)
0.975986 + 0.217831i \(0.0698982\pi\)
\(360\) 2.03348 + 6.25842i 0.107174 + 0.329847i
\(361\) −14.4219 + 10.4781i −0.759046 + 0.551479i
\(362\) −2.45003 −0.128771
\(363\) −1.97467 + 1.38233i −0.103643 + 0.0725536i
\(364\) 0 0
\(365\) −29.9768 + 21.7794i −1.56906 + 1.13999i
\(366\) 0.0131020 + 0.0403238i 0.000684852 + 0.00210776i
\(367\) −0.708875 + 2.18169i −0.0370030 + 0.113883i −0.967852 0.251521i \(-0.919069\pi\)
0.930849 + 0.365404i \(0.119069\pi\)
\(368\) −21.1765 15.3856i −1.10390 0.802031i
\(369\) −16.1180 11.7104i −0.839069 0.609619i
\(370\) −0.695045 + 2.13913i −0.0361337 + 0.111208i
\(371\) 0 0
\(372\) −2.65644 + 1.93001i −0.137730 + 0.100067i
\(373\) 7.96856 0.412596 0.206298 0.978489i \(-0.433858\pi\)
0.206298 + 0.978489i \(0.433858\pi\)
\(374\) −0.866934 0.641576i −0.0448281 0.0331751i
\(375\) −2.06289 −0.106527
\(376\) −4.87963 + 3.54526i −0.251648 + 0.182833i
\(377\) −10.3423 31.8302i −0.532653 1.63934i
\(378\) 0 0
\(379\) 9.40174 + 6.83077i 0.482935 + 0.350873i 0.802461 0.596705i \(-0.203524\pi\)
−0.319526 + 0.947578i \(0.603524\pi\)
\(380\) 23.8766 + 17.3474i 1.22484 + 0.889902i
\(381\) −0.0195835 + 0.0602717i −0.00100329 + 0.00308781i
\(382\) 0.814764 + 2.50759i 0.0416869 + 0.128299i
\(383\) 10.1762 7.39343i 0.519979 0.377787i −0.296617 0.954996i \(-0.595859\pi\)
0.816596 + 0.577210i \(0.195859\pi\)
\(384\) −1.48632 −0.0758482
\(385\) 0 0
\(386\) 5.07741 0.258433
\(387\) −1.91605 + 1.39209i −0.0973984 + 0.0707641i
\(388\) −7.27336 22.3851i −0.369249 1.13643i
\(389\) −0.135440 + 0.416842i −0.00686709 + 0.0211347i −0.954431 0.298431i \(-0.903537\pi\)
0.947564 + 0.319565i \(0.103537\pi\)
\(390\) 0.513894 + 0.373366i 0.0260221 + 0.0189061i
\(391\) −8.23731 5.98476i −0.416579 0.302662i
\(392\) 0 0
\(393\) 1.11769 + 3.43990i 0.0563800 + 0.173520i
\(394\) −4.41091 + 3.20471i −0.222218 + 0.161451i
\(395\) 6.12128 0.307995
\(396\) 6.05530 18.0939i 0.304290 0.909252i
\(397\) −16.8147 −0.843905 −0.421952 0.906618i \(-0.638655\pi\)
−0.421952 + 0.906618i \(0.638655\pi\)
\(398\) 3.42602 2.48915i 0.171731 0.124770i
\(399\) 0 0
\(400\) 1.40196 4.31480i 0.0700981 0.215740i
\(401\) −29.8211 21.6663i −1.48919 1.08196i −0.974446 0.224621i \(-0.927886\pi\)
−0.514747 0.857342i \(-0.672114\pi\)
\(402\) 0.0660362 + 0.0479781i 0.00329359 + 0.00239293i
\(403\) 12.2008 37.5502i 0.607766 1.87051i
\(404\) −2.22423 6.84548i −0.110660 0.340575i
\(405\) −17.3024 + 12.5710i −0.859766 + 0.624656i
\(406\) 0 0
\(407\) 10.7586 7.67308i 0.533283 0.380340i
\(408\) −0.281384 −0.0139306
\(409\) 13.1659 9.56556i 0.651010 0.472986i −0.212605 0.977138i \(-0.568195\pi\)
0.863615 + 0.504152i \(0.168195\pi\)
\(410\) −1.17733 3.62345i −0.0581441 0.178949i
\(411\) 0.631499 1.94356i 0.0311496 0.0958685i
\(412\) 1.81559 + 1.31911i 0.0894479 + 0.0649877i
\(413\) 0 0
\(414\) −1.46158 + 4.49828i −0.0718328 + 0.221079i
\(415\) −1.73341 5.33489i −0.0850898 0.261879i
\(416\) 10.8947 7.91548i 0.534158 0.388088i
\(417\) −1.05763 −0.0517922
\(418\) 1.36884 + 4.34228i 0.0669520 + 0.212388i
\(419\) −5.56352 −0.271796 −0.135898 0.990723i \(-0.543392\pi\)
−0.135898 + 0.990723i \(0.543392\pi\)
\(420\) 0 0
\(421\) 6.64120 + 20.4395i 0.323672 + 0.996161i 0.972036 + 0.234831i \(0.0754536\pi\)
−0.648364 + 0.761331i \(0.724546\pi\)
\(422\) −0.528912 + 1.62782i −0.0257470 + 0.0792412i
\(423\) −16.1257 11.7160i −0.784057 0.569651i
\(424\) 4.75638 + 3.45571i 0.230990 + 0.167824i
\(425\) 0.545341 1.67839i 0.0264529 0.0814137i
\(426\) 0.0692485 + 0.213125i 0.00335510 + 0.0103259i
\(427\) 0 0
\(428\) −2.27455 −0.109944
\(429\) −1.12201 3.55930i −0.0541713 0.171844i
\(430\) −0.452910 −0.0218413
\(431\) 22.4249 16.2927i 1.08017 0.784791i 0.102459 0.994737i \(-0.467329\pi\)
0.977713 + 0.209947i \(0.0673290\pi\)
\(432\) −1.48946 4.58408i −0.0716616 0.220552i
\(433\) −2.87019 + 8.83352i −0.137932 + 0.424512i −0.996035 0.0889667i \(-0.971644\pi\)
0.858102 + 0.513479i \(0.171644\pi\)
\(434\) 0 0
\(435\) −2.88346 2.09496i −0.138251 0.100445i
\(436\) −5.60207 + 17.2414i −0.268290 + 0.825713i
\(437\) 13.2823 + 40.8788i 0.635380 + 1.95550i
\(438\) −0.595442 + 0.432614i −0.0284513 + 0.0206711i
\(439\) 14.7118 0.702156 0.351078 0.936346i \(-0.385815\pi\)
0.351078 + 0.936346i \(0.385815\pi\)
\(440\) 6.01928 4.29298i 0.286958 0.204660i
\(441\) 0 0
\(442\) 1.35091 0.981494i 0.0642563 0.0466849i
\(443\) 0.755067 + 2.32386i 0.0358743 + 0.110410i 0.967390 0.253291i \(-0.0815130\pi\)
−0.931516 + 0.363701i \(0.881513\pi\)
\(444\) 0.525789 1.61821i 0.0249528 0.0767970i
\(445\) 3.50416 + 2.54592i 0.166113 + 0.120688i
\(446\) 3.20712 + 2.33011i 0.151861 + 0.110334i
\(447\) 0.0624272 0.192131i 0.00295271 0.00908750i
\(448\) 0 0
\(449\) −3.85849 + 2.80335i −0.182093 + 0.132298i −0.675098 0.737728i \(-0.735899\pi\)
0.493005 + 0.870027i \(0.335899\pi\)
\(450\) −0.819782 −0.0386449
\(451\) −7.10376 + 21.2268i −0.334503 + 0.999530i
\(452\) −6.42593 −0.302250
\(453\) −3.20812 + 2.33084i −0.150731 + 0.109512i
\(454\) 1.79492 + 5.52420i 0.0842398 + 0.259264i
\(455\) 0 0
\(456\) 0.960995 + 0.698203i 0.0450027 + 0.0326964i
\(457\) −25.1503 18.2728i −1.17648 0.854764i −0.184712 0.982793i \(-0.559135\pi\)
−0.991770 + 0.128028i \(0.959135\pi\)
\(458\) 1.38666 4.26770i 0.0647944 0.199417i
\(459\) −0.579376 1.78313i −0.0270429 0.0832296i
\(460\) 27.8680 20.2473i 1.29935 0.944034i
\(461\) −29.7215 −1.38427 −0.692134 0.721769i \(-0.743329\pi\)
−0.692134 + 0.721769i \(0.743329\pi\)
\(462\) 0 0
\(463\) −25.4553 −1.18301 −0.591505 0.806302i \(-0.701466\pi\)
−0.591505 + 0.806302i \(0.701466\pi\)
\(464\) −19.4865 + 14.1578i −0.904640 + 0.657259i
\(465\) −1.29931 3.99886i −0.0602540 0.185443i
\(466\) −1.41306 + 4.34896i −0.0654589 + 0.201462i
\(467\) −2.57665 1.87204i −0.119233 0.0866279i 0.526571 0.850131i \(-0.323478\pi\)
−0.645804 + 0.763503i \(0.723478\pi\)
\(468\) 23.8992 + 17.3638i 1.10474 + 0.802643i
\(469\) 0 0
\(470\) −1.17789 3.62517i −0.0543320 0.167217i
\(471\) −2.17581 + 1.58082i −0.100256 + 0.0728402i
\(472\) 2.56927 0.118260
\(473\) 2.13891 + 1.58290i 0.0983472 + 0.0727820i
\(474\) 0.121590 0.00558479
\(475\) −6.02709 + 4.37894i −0.276542 + 0.200920i
\(476\) 0 0
\(477\) −6.00389 + 18.4781i −0.274899 + 0.846052i
\(478\) −3.12952 2.27373i −0.143141 0.103998i
\(479\) 2.61599 + 1.90062i 0.119527 + 0.0868418i 0.645943 0.763386i \(-0.276464\pi\)
−0.526416 + 0.850227i \(0.676464\pi\)
\(480\) 0.443164 1.36392i 0.0202276 0.0622541i
\(481\) 6.32232 + 19.4581i 0.288273 + 0.887213i
\(482\) −4.42019 + 3.21146i −0.201334 + 0.146278i
\(483\) 0 0
\(484\) −21.4338 0.376632i −0.974264 0.0171196i
\(485\) 30.1398 1.36858
\(486\) −1.05976 + 0.769958i −0.0480715 + 0.0349260i
\(487\) 3.05029 + 9.38784i 0.138222 + 0.425404i 0.996077 0.0884878i \(-0.0282034\pi\)
−0.857855 + 0.513891i \(0.828203\pi\)
\(488\) −0.236105 + 0.726655i −0.0106880 + 0.0328941i
\(489\) −1.43581 1.04318i −0.0649296 0.0471741i
\(490\) 0 0
\(491\) 1.30591 4.01917i 0.0589348 0.181383i −0.917255 0.398300i \(-0.869600\pi\)
0.976190 + 0.216918i \(0.0696003\pi\)
\(492\) 0.890628 + 2.74107i 0.0401526 + 0.123577i
\(493\) −7.57995 + 5.50716i −0.341384 + 0.248030i
\(494\) −7.04910 −0.317154
\(495\) 19.6396 + 14.5343i 0.882733 + 0.653267i
\(496\) −28.4152 −1.27588
\(497\) 0 0
\(498\) −0.0344314 0.105969i −0.00154291 0.00474859i
\(499\) −6.30249 + 19.3971i −0.282138 + 0.868332i 0.705104 + 0.709104i \(0.250900\pi\)
−0.987242 + 0.159228i \(0.949100\pi\)
\(500\) −14.8425 10.7837i −0.663776 0.482261i
\(501\) −2.31378 1.68106i −0.103372 0.0751042i
\(502\) −0.831480 + 2.55903i −0.0371108 + 0.114215i
\(503\) 7.40382 + 22.7866i 0.330120 + 1.01600i 0.969076 + 0.246762i \(0.0793665\pi\)
−0.638956 + 0.769243i \(0.720634\pi\)
\(504\) 0 0
\(505\) 9.21692 0.410147
\(506\) 5.31381 + 0.0466832i 0.236228 + 0.00207532i
\(507\) 2.92934 0.130097
\(508\) −0.455971 + 0.331282i −0.0202304 + 0.0146983i
\(509\) −1.14133 3.51264i −0.0505884 0.155695i 0.922571 0.385828i \(-0.126084\pi\)
−0.973159 + 0.230132i \(0.926084\pi\)
\(510\) 0.0549509 0.169121i 0.00243327 0.00748882i
\(511\) 0 0
\(512\) −13.1822 9.57742i −0.582576 0.423266i
\(513\) −2.44582 + 7.52746i −0.107986 + 0.332346i
\(514\) −1.60504 4.93980i −0.0707952 0.217885i
\(515\) −2.32491 + 1.68915i −0.102448 + 0.0744328i
\(516\) 0.342618 0.0150829
\(517\) −7.10714 + 21.2369i −0.312572 + 0.933997i
\(518\) 0 0
\(519\) 1.04811 0.761497i 0.0460069 0.0334260i
\(520\) 3.53725 + 10.8865i 0.155119 + 0.477406i
\(521\) 0.0736294 0.226608i 0.00322576 0.00992787i −0.949431 0.313977i \(-0.898339\pi\)
0.952656 + 0.304049i \(0.0983386\pi\)
\(522\) 3.52111 + 2.55823i 0.154115 + 0.111971i
\(523\) −17.7914 12.9262i −0.777966 0.565225i 0.126402 0.991979i \(-0.459657\pi\)
−0.904368 + 0.426754i \(0.859657\pi\)
\(524\) −9.94018 + 30.5927i −0.434239 + 1.33645i
\(525\) 0 0
\(526\) −0.354624 + 0.257649i −0.0154623 + 0.0112340i
\(527\) −11.0531 −0.481479
\(528\) −2.18668 + 1.55955i −0.0951630 + 0.0678707i
\(529\) 27.1678 1.18121
\(530\) −3.00587 + 2.18389i −0.130567 + 0.0948622i
\(531\) 2.62375 + 8.07508i 0.113861 + 0.350429i
\(532\) 0 0
\(533\) −28.0373 20.3703i −1.21443 0.882336i
\(534\) 0.0696046 + 0.0505707i 0.00301208 + 0.00218841i
\(535\) 0.900048 2.77006i 0.0389125 0.119760i
\(536\) 0.454542 + 1.39894i 0.0196332 + 0.0604249i
\(537\) −0.768521 + 0.558363i −0.0331641 + 0.0240951i
\(538\) −1.62573 −0.0700900
\(539\) 0 0
\(540\) 6.34305 0.272961
\(541\) −23.1629 + 16.8288i −0.995851 + 0.723528i −0.961195 0.275871i \(-0.911034\pi\)
−0.0346561 + 0.999399i \(0.511034\pi\)
\(542\) −0.0832618 0.256253i −0.00357640 0.0110070i
\(543\) −0.733399 + 2.25717i −0.0314731 + 0.0968644i
\(544\) −3.04995 2.21592i −0.130765 0.0950066i
\(545\) −18.7807 13.6450i −0.804477 0.584486i
\(546\) 0 0
\(547\) 1.98033 + 6.09482i 0.0846727 + 0.260596i 0.984425 0.175805i \(-0.0562529\pi\)
−0.899752 + 0.436401i \(0.856253\pi\)
\(548\) 14.7035 10.6827i 0.628103 0.456343i
\(549\) −2.52495 −0.107762
\(550\) 0.276913 + 0.878433i 0.0118076 + 0.0374565i
\(551\) 39.5524 1.68499
\(552\) 1.12164 0.814919i 0.0477402 0.0346853i
\(553\) 0 0
\(554\) 0.722815 2.22460i 0.0307095 0.0945141i
\(555\) 1.76269 + 1.28067i 0.0748218 + 0.0543612i
\(556\) −7.60961 5.52871i −0.322719 0.234469i
\(557\) −6.95884 + 21.4171i −0.294855 + 0.907471i 0.688415 + 0.725317i \(0.258307\pi\)
−0.983270 + 0.182154i \(0.941693\pi\)
\(558\) 1.58664 + 4.88317i 0.0671677 + 0.206721i
\(559\) −3.33298 + 2.42155i −0.140970 + 0.102421i
\(560\) 0 0
\(561\) −0.850583 + 0.606640i −0.0359116 + 0.0256124i
\(562\) −2.97498 −0.125492
\(563\) −24.1303 + 17.5317i −1.01697 + 0.738873i −0.965660 0.259810i \(-0.916340\pi\)
−0.0513116 + 0.998683i \(0.516340\pi\)
\(564\) 0.891053 + 2.74238i 0.0375201 + 0.115475i
\(565\) 2.54277 7.82583i 0.106975 0.329235i
\(566\) 0.0549082 + 0.0398932i 0.00230797 + 0.00167684i
\(567\) 0 0
\(568\) −1.24789 + 3.84062i −0.0523604 + 0.161149i
\(569\) 9.04690 + 27.8435i 0.379266 + 1.16726i 0.940555 + 0.339640i \(0.110305\pi\)
−0.561290 + 0.827619i \(0.689695\pi\)
\(570\) −0.607316 + 0.441241i −0.0254376 + 0.0184815i
\(571\) 37.9252 1.58712 0.793559 0.608493i \(-0.208226\pi\)
0.793559 + 0.608493i \(0.208226\pi\)
\(572\) 10.5332 31.4744i 0.440416 1.31601i
\(573\) 2.55409 0.106699
\(574\) 0 0
\(575\) 2.68699 + 8.26969i 0.112055 + 0.344870i
\(576\) 6.20116 19.0852i 0.258382 0.795217i
\(577\) 7.09721 + 5.15642i 0.295461 + 0.214665i 0.725633 0.688082i \(-0.241547\pi\)
−0.430172 + 0.902747i \(0.641547\pi\)
\(578\) 2.73297 + 1.98562i 0.113676 + 0.0825908i
\(579\) 1.51989 4.67773i 0.0631643 0.194400i
\(580\) −9.79515 30.1464i −0.406721 1.25176i
\(581\) 0 0
\(582\) 0.598679 0.0248161
\(583\) 21.8281 + 0.191765i 0.904027 + 0.00794211i
\(584\) −13.2632 −0.548836
\(585\) −30.6036 + 22.2348i −1.26530 + 0.919296i
\(586\) −1.12852 3.47324i −0.0466189 0.143478i
\(587\) −2.83372 + 8.72130i −0.116960 + 0.359966i −0.992351 0.123450i \(-0.960604\pi\)
0.875391 + 0.483416i \(0.160604\pi\)
\(588\) 0 0
\(589\) 37.7489 + 27.4262i 1.55542 + 1.13008i
\(590\) −0.501747 + 1.54422i −0.0206566 + 0.0635745i
\(591\) 1.63207 + 5.02300i 0.0671345 + 0.206619i
\(592\) 11.9123 8.65480i 0.489593 0.355710i
\(593\) −7.25596 −0.297967 −0.148983 0.988840i \(-0.547600\pi\)
−0.148983 + 0.988840i \(0.547600\pi\)
\(594\) 0.786562 + 0.582097i 0.0322730 + 0.0238837i
\(595\) 0 0
\(596\) 1.45352 1.05605i 0.0595386 0.0432573i
\(597\) −1.26766 3.90144i −0.0518817 0.159675i
\(598\) −2.54243 + 7.82479i −0.103968 + 0.319979i
\(599\) 16.1949 + 11.7663i 0.661708 + 0.480759i 0.867239 0.497892i \(-0.165892\pi\)
−0.205532 + 0.978650i \(0.565892\pi\)
\(600\) 0.194407 + 0.141245i 0.00793663 + 0.00576630i
\(601\) 3.48280 10.7189i 0.142066 0.437235i −0.854556 0.519360i \(-0.826171\pi\)
0.996622 + 0.0821246i \(0.0261705\pi\)
\(602\) 0 0
\(603\) −3.93261 + 2.85721i −0.160148 + 0.116354i
\(604\) −35.2668 −1.43499
\(605\) 8.94012 25.9542i 0.363468 1.05519i
\(606\) 0.183079 0.00743709
\(607\) −10.9428 + 7.95040i −0.444154 + 0.322697i −0.787283 0.616591i \(-0.788513\pi\)
0.343129 + 0.939288i \(0.388513\pi\)
\(608\) 4.91792 + 15.1358i 0.199448 + 0.613838i
\(609\) 0 0
\(610\) −0.390637 0.283814i −0.0158164 0.0114913i
\(611\) −28.0507 20.3800i −1.13481 0.824487i
\(612\) 2.55555 7.86519i 0.103302 0.317931i
\(613\) −9.51673 29.2895i −0.384377 1.18299i −0.936931 0.349514i \(-0.886347\pi\)
0.552554 0.833477i \(-0.313653\pi\)
\(614\) −5.24093 + 3.80776i −0.211507 + 0.153669i
\(615\) −3.69064 −0.148821
\(616\) 0 0
\(617\) 23.6896 0.953707 0.476853 0.878983i \(-0.341777\pi\)
0.476853 + 0.878983i \(0.341777\pi\)
\(618\) −0.0461807 + 0.0335522i −0.00185766 + 0.00134967i
\(619\) 10.0393 + 30.8977i 0.403513 + 1.24188i 0.922131 + 0.386878i \(0.126447\pi\)
−0.518618 + 0.855006i \(0.673553\pi\)
\(620\) 11.5554 35.5639i 0.464076 1.42828i
\(621\) 7.47365 + 5.42992i 0.299907 + 0.217895i
\(622\) −5.82385 4.23127i −0.233515 0.169659i
\(623\) 0 0
\(624\) −1.28501 3.95485i −0.0514415 0.158321i
\(625\) 23.9721 17.4167i 0.958882 0.696669i
\(626\) −0.00774169 −0.000309420
\(627\) 4.41022 + 0.0387449i 0.176127 + 0.00154732i
\(628\) −23.9186 −0.954456
\(629\) 4.63370 3.36658i 0.184758 0.134234i
\(630\) 0 0
\(631\) −4.67646 + 14.3927i −0.186167 + 0.572962i −0.999967 0.00818299i \(-0.997395\pi\)
0.813800 + 0.581145i \(0.197395\pi\)
\(632\) 1.77264 + 1.28790i 0.0705119 + 0.0512299i
\(633\) 1.34136 + 0.974555i 0.0533143 + 0.0387351i
\(634\) 1.56509 4.81686i 0.0621577 0.191302i
\(635\) −0.223023 0.686395i −0.00885041 0.0272387i
\(636\) 2.27388 1.65207i 0.0901654 0.0655090i
\(637\) 0 0
\(638\) 1.55187 4.63716i 0.0614393 0.183587i
\(639\) −13.3452 −0.527929
\(640\) 13.6940 9.94925i 0.541302 0.393279i
\(641\) −5.11431 15.7402i −0.202003 0.621701i −0.999823 0.0188056i \(-0.994014\pi\)
0.797820 0.602895i \(-0.205986\pi\)
\(642\) 0.0178780 0.0550229i 0.000705589 0.00217158i
\(643\) 1.61403 + 1.17266i 0.0636513 + 0.0462454i 0.619156 0.785268i \(-0.287475\pi\)
−0.555505 + 0.831513i \(0.687475\pi\)
\(644\) 0 0
\(645\) −0.135575 + 0.417258i −0.00533828 + 0.0164295i
\(646\) 0.609806 + 1.87679i 0.0239925 + 0.0738413i
\(647\) 32.7261 23.7769i 1.28660 0.934767i 0.286866 0.957971i \(-0.407387\pi\)
0.999731 + 0.0232039i \(0.00738670\pi\)
\(648\) −7.65545 −0.300735
\(649\) 7.76653 5.53913i 0.304863 0.217430i
\(650\) −1.42602 −0.0559329
\(651\) 0 0
\(652\) −4.87747 15.0113i −0.191016 0.587888i
\(653\) −12.8198 + 39.4552i −0.501676 + 1.54400i 0.304611 + 0.952477i \(0.401473\pi\)
−0.806288 + 0.591524i \(0.798527\pi\)
\(654\) −0.373048 0.271036i −0.0145873 0.0105983i
\(655\) −33.3240 24.2113i −1.30208 0.946015i
\(656\) −7.70736 + 23.7208i −0.300922 + 0.926142i
\(657\) −13.5445 41.6856i −0.528421 1.62631i
\(658\) 0 0
\(659\) −51.1359 −1.99197 −0.995985 0.0895158i \(-0.971468\pi\)
−0.995985 + 0.0895158i \(0.971468\pi\)
\(660\) −1.06266 3.37101i −0.0413639 0.131216i
\(661\) 42.8840 1.66800 0.833998 0.551768i \(-0.186046\pi\)
0.833998 + 0.551768i \(0.186046\pi\)
\(662\) −1.96875 + 1.43038i −0.0765178 + 0.0555934i
\(663\) −0.499848 1.53837i −0.0194125 0.0597455i
\(664\) 0.620472 1.90962i 0.0240790 0.0741075i
\(665\) 0 0
\(666\) −2.15249 1.56387i −0.0834072 0.0605988i
\(667\) 14.2655 43.9048i 0.552364 1.70000i
\(668\) −7.85995 24.1904i −0.304111 0.935956i
\(669\) 3.10671 2.25716i 0.120112 0.0872668i
\(670\) −0.929577 −0.0359127
\(671\) 0.852898 + 2.70560i 0.0329258 + 0.104448i
\(672\) 0 0
\(673\) 20.2313 14.6989i 0.779858 0.566600i −0.125078 0.992147i \(-0.539918\pi\)
0.904936 + 0.425547i \(0.139918\pi\)
\(674\) 0.524618 + 1.61461i 0.0202075 + 0.0621923i
\(675\) −0.494784 + 1.52279i −0.0190442 + 0.0586121i
\(676\) 21.0766 + 15.3130i 0.810638 + 0.588963i
\(677\) −8.02456 5.83018i −0.308409 0.224072i 0.422805 0.906221i \(-0.361046\pi\)
−0.731213 + 0.682149i \(0.761046\pi\)
\(678\) 0.0505080 0.155448i 0.00193975 0.00596993i
\(679\) 0 0
\(680\) 2.59249 1.88356i 0.0994175 0.0722310i
\(681\) 5.62665 0.215614
\(682\) 4.69658 3.34963i 0.179841 0.128264i
\(683\) −39.8980 −1.52666 −0.763328 0.646011i \(-0.776436\pi\)
−0.763328 + 0.646011i \(0.776436\pi\)
\(684\) −28.2439 + 20.5204i −1.07993 + 0.784617i
\(685\) 7.19174 + 22.1339i 0.274782 + 0.845692i
\(686\) 0 0
\(687\) −3.51667 2.55501i −0.134169 0.0974798i
\(688\) 2.39871 + 1.74276i 0.0914499 + 0.0664422i
\(689\) −10.4438 + 32.1427i −0.397877 + 1.22454i
\(690\) 0.270752 + 0.833289i 0.0103074 + 0.0317228i
\(691\) −5.35084 + 3.88762i −0.203556 + 0.147892i −0.684893 0.728643i \(-0.740151\pi\)
0.481338 + 0.876535i \(0.340151\pi\)
\(692\) 11.5218 0.437995
\(693\) 0 0
\(694\) −6.26194 −0.237700
\(695\) 9.74430 7.07965i 0.369622 0.268546i
\(696\) −0.394239 1.21334i −0.0149436 0.0459916i
\(697\) −2.99804 + 9.22701i −0.113559 + 0.349498i
\(698\) −2.02417 1.47065i −0.0766159 0.0556647i
\(699\) 3.58363 + 2.60366i 0.135545 + 0.0984795i
\(700\) 0 0
\(701\) 4.51215 + 13.8870i 0.170421 + 0.524503i 0.999395 0.0347848i \(-0.0110746\pi\)
−0.828973 + 0.559288i \(0.811075\pi\)
\(702\) −1.22567 + 0.890502i −0.0462600 + 0.0336098i
\(703\) −24.1788 −0.911920
\(704\) −22.5453 0.198066i −0.849709 0.00746491i
\(705\) −3.69240 −0.139064
\(706\) 5.84167 4.24422i 0.219854 0.159733i
\(707\) 0 0
\(708\) 0.379563 1.16817i 0.0142648 0.0439027i
\(709\) 3.35261 + 2.43582i 0.125910 + 0.0914790i 0.648958 0.760824i \(-0.275205\pi\)
−0.523048 + 0.852303i \(0.675205\pi\)
\(710\) −2.06465 1.50006i −0.0774849 0.0562961i
\(711\) −2.23757 + 6.88654i −0.0839155 + 0.258265i
\(712\) 0.479104 + 1.47453i 0.0179552 + 0.0552604i
\(713\) 44.0593 32.0109i 1.65003 1.19882i
\(714\) 0 0
\(715\) 34.1631 + 25.2824i 1.27763 + 0.945510i
\(716\) −8.44832 −0.315729
\(717\) −3.03155 + 2.20255i −0.113215 + 0.0822557i
\(718\) 0.250132 + 0.769827i 0.00933484 + 0.0287297i
\(719\) −5.26017 + 16.1891i −0.196171 + 0.603753i 0.803790 + 0.594914i \(0.202814\pi\)
−0.999961 + 0.00883941i \(0.997186\pi\)
\(720\) 22.0250 + 16.0021i 0.820825 + 0.596364i
\(721\) 0 0
\(722\) 1.24612 3.83517i 0.0463759 0.142730i
\(723\) 1.63551 + 5.03357i 0.0608252 + 0.187201i
\(724\) −17.0761 + 12.4065i −0.634627 + 0.461084i
\(725\) 8.00136 0.297163
\(726\) 0.177581 0.515538i 0.00659066 0.0191334i
\(727\) 21.6199 0.801837 0.400918 0.916114i \(-0.368691\pi\)
0.400918 + 0.916114i \(0.368691\pi\)
\(728\) 0 0
\(729\) −7.55284 23.2453i −0.279735 0.860936i
\(730\) 2.59015 7.97166i 0.0958657 0.295044i
\(731\) 0.933059 + 0.677907i 0.0345104 + 0.0250733i
\(732\) 0.295510 + 0.214700i 0.0109224 + 0.00793555i
\(733\) 14.9047 45.8719i 0.550517 1.69432i −0.156981 0.987602i \(-0.550176\pi\)
0.707498 0.706715i \(-0.249824\pi\)
\(734\) −0.160355 0.493523i −0.00591883 0.0182163i
\(735\) 0 0
\(736\) 18.5751 0.684688
\(737\) 4.39001 + 3.24883i 0.161708 + 0.119672i
\(738\) 4.50679 0.165897
\(739\) 6.60439 4.79837i 0.242946 0.176511i −0.459649 0.888101i \(-0.652025\pi\)
0.702595 + 0.711590i \(0.252025\pi\)
\(740\) 5.98787 + 18.4288i 0.220118 + 0.677455i
\(741\) −2.11010 + 6.49421i −0.0775163 + 0.238571i
\(742\) 0 0
\(743\) −15.8254 11.4978i −0.580577 0.421814i 0.258355 0.966050i \(-0.416820\pi\)
−0.838932 + 0.544236i \(0.816820\pi\)
\(744\) 0.465086 1.43139i 0.0170509 0.0524772i
\(745\) 0.710943 + 2.18806i 0.0260469 + 0.0801642i
\(746\) −1.45832 + 1.05953i −0.0533927 + 0.0387921i
\(747\) 6.63546 0.242779
\(748\) −9.29113 0.0816249i −0.339717 0.00298450i
\(749\) 0 0
\(750\) 0.377527 0.274289i 0.0137853 0.0100156i
\(751\) 0.344955 + 1.06166i 0.0125876 + 0.0387406i 0.957153 0.289583i \(-0.0935165\pi\)
−0.944565 + 0.328323i \(0.893516\pi\)
\(752\) −7.71103 + 23.7321i −0.281192 + 0.865421i
\(753\) 2.10869 + 1.53206i 0.0768451 + 0.0558312i
\(754\) 6.12498 + 4.45006i 0.223059 + 0.162062i
\(755\) 13.9552 42.9497i 0.507882 1.56310i
\(756\) 0 0
\(757\) 21.5015 15.6218i 0.781485 0.567782i −0.123939 0.992290i \(-0.539553\pi\)
0.905424 + 0.424508i \(0.139553\pi\)
\(758\) −2.62885 −0.0954840
\(759\) 1.63366 4.88155i 0.0592981 0.177189i
\(760\) −13.5277 −0.490701
\(761\) 5.09683 3.70306i 0.184760 0.134236i −0.491561 0.870843i \(-0.663573\pi\)
0.676321 + 0.736607i \(0.263573\pi\)
\(762\) −0.00443000 0.0136341i −0.000160482 0.000493913i
\(763\) 0 0
\(764\) 18.3766 + 13.3514i 0.664844 + 0.483037i
\(765\) 8.56739 + 6.22457i 0.309755 + 0.225050i
\(766\) −0.879273 + 2.70613i −0.0317694 + 0.0977763i
\(767\) 4.56403 + 14.0466i 0.164797 + 0.507195i
\(768\) −2.13826 + 1.55354i −0.0771578 + 0.0560584i
\(769\) −13.1916 −0.475700 −0.237850 0.971302i \(-0.576443\pi\)
−0.237850 + 0.971302i \(0.576443\pi\)
\(770\) 0 0
\(771\) −5.03141 −0.181202
\(772\) 35.3883 25.7111i 1.27365 0.925362i
\(773\) −14.1585 43.5753i −0.509245 1.56729i −0.793515 0.608550i \(-0.791751\pi\)
0.284270 0.958744i \(-0.408249\pi\)
\(774\) 0.165557 0.509531i 0.00595081 0.0183147i
\(775\) 7.63652 + 5.54825i 0.274312 + 0.199299i
\(776\) 8.72809 + 6.34133i 0.313320 + 0.227640i
\(777\) 0 0
\(778\) −0.0306381 0.0942944i −0.00109843 0.00338062i
\(779\) 33.1342 24.0734i 1.18716 0.862520i
\(780\) 5.47237 0.195942
\(781\) 4.50786 + 14.3000i 0.161304 + 0.511695i
\(782\) 2.30326 0.0823643
\(783\) 6.87723 4.99660i 0.245772 0.178564i
\(784\) 0 0
\(785\) 9.46469 29.1293i 0.337809 1.03967i
\(786\) −0.661929 0.480919i −0.0236102 0.0171538i
\(787\) −15.2483 11.0785i −0.543543 0.394907i 0.281856 0.959457i \(-0.409050\pi\)
−0.825399 + 0.564549i \(0.809050\pi\)
\(788\) −14.5148 + 44.6721i −0.517070 + 1.59138i
\(789\) 0.131214 + 0.403834i 0.00467133 + 0.0143769i
\(790\) −1.12025 + 0.813909i −0.0398567 + 0.0289576i
\(791\) 0 0
\(792\) 2.62938 + 8.34104i 0.0934311 + 0.296386i
\(793\) −4.39217 −0.155970
\(794\) 3.07724 2.23574i 0.109207 0.0793435i
\(795\) 1.11220 + 3.42299i 0.0394455 + 0.121401i
\(796\) 11.2739 34.6975i 0.399593 1.22982i
\(797\) −22.7830 16.5528i −0.807016 0.586331i 0.105948 0.994372i \(-0.466212\pi\)
−0.912964 + 0.408040i \(0.866212\pi\)
\(798\) 0 0
\(799\) −2.99947 + 9.23141i −0.106114 + 0.326584i
\(800\) 0.994884 + 3.06194i 0.0351744 + 0.108256i
\(801\) −4.14511 + 3.01160i −0.146460 + 0.106410i
\(802\) 8.33835 0.294437
\(803\) −40.0928 + 28.5944i −1.41485 + 1.00907i
\(804\) 0.703208 0.0248002
\(805\) 0 0
\(806\) 2.75996 + 8.49429i 0.0972155 + 0.299199i
\(807\) −0.486649 + 1.49775i −0.0171309 + 0.0527234i
\(808\) 2.66910 + 1.93921i 0.0938985 + 0.0682213i
\(809\) 5.29544 + 3.84736i 0.186178 + 0.135266i 0.676970 0.736011i \(-0.263293\pi\)
−0.490792 + 0.871277i \(0.663293\pi\)
\(810\) 1.49502 4.60119i 0.0525296 0.161670i
\(811\) −5.81096 17.8843i −0.204050 0.628002i −0.999751 0.0223122i \(-0.992897\pi\)
0.795701 0.605690i \(-0.207103\pi\)
\(812\) 0 0
\(813\) −0.261006 −0.00915387
\(814\) −0.948675 + 2.83474i −0.0332511 + 0.0993576i
\(815\) 20.2116 0.707980
\(816\) −0.941797 + 0.684256i −0.0329695 + 0.0239537i
\(817\) −1.50452 4.63044i −0.0526365 0.161999i
\(818\) −1.13760 + 3.50116i −0.0397751 + 0.122415i
\(819\) 0 0
\(820\) −26.5542 19.2927i −0.927311 0.673731i
\(821\) −3.58089 + 11.0208i −0.124974 + 0.384630i −0.993896 0.110318i \(-0.964813\pi\)
0.868922 + 0.494948i \(0.164813\pi\)
\(822\) 0.142852 + 0.439654i 0.00498255 + 0.0153347i
\(823\) −9.98844 + 7.25702i −0.348175 + 0.252964i −0.748103 0.663583i \(-0.769035\pi\)
0.399928 + 0.916547i \(0.369035\pi\)
\(824\) −1.02866 −0.0358349
\(825\) 0.892177 + 0.00783800i 0.0310616 + 0.000272884i
\(826\) 0 0
\(827\) 3.63717 2.64256i 0.126477 0.0918907i −0.522748 0.852487i \(-0.675093\pi\)
0.649225 + 0.760596i \(0.275093\pi\)
\(828\) 12.5916 + 38.7531i 0.437590 + 1.34676i
\(829\) 6.13796 18.8907i 0.213180 0.656101i −0.786098 0.618102i \(-0.787902\pi\)
0.999278 0.0379987i \(-0.0120983\pi\)
\(830\) 1.02658 + 0.745851i 0.0356330 + 0.0258889i
\(831\) −1.83311 1.33183i −0.0635900 0.0462008i
\(832\) 10.7869 33.1988i 0.373970 1.15096i
\(833\) 0 0
\(834\) 0.193555 0.140626i 0.00670226 0.00486947i
\(835\) 32.5706 1.12715
\(836\) 31.5290 + 23.3331i 1.09045 + 0.806991i
\(837\) 10.0284 0.346631
\(838\) 1.01817 0.739747i 0.0351722 0.0255541i
\(839\) 13.5513 + 41.7065i 0.467842 + 1.43987i 0.855373 + 0.518012i \(0.173328\pi\)
−0.387532 + 0.921856i \(0.626672\pi\)
\(840\) 0 0
\(841\) −10.9057 7.92348i −0.376060 0.273224i
\(842\) −3.93311 2.85757i −0.135544 0.0984785i
\(843\) −0.890538 + 2.74079i −0.0306717 + 0.0943979i
\(844\) 4.55662 + 14.0238i 0.156845 + 0.482720i
\(845\) −26.9891 + 19.6087i −0.928453 + 0.674561i
\(846\) 4.50894 0.155021
\(847\) 0 0
\(848\) 24.3232 0.835261
\(849\) 0.0531893 0.0386443i 0.00182545 0.00132627i
\(850\) 0.123362 + 0.379670i 0.00423129 + 0.0130226i
\(851\) −8.72066 + 26.8394i −0.298940 + 0.920044i
\(852\) 1.56187 + 1.13476i 0.0535088 + 0.0388764i
\(853\) 31.6655 + 23.0063i 1.08421 + 0.787721i 0.978411 0.206667i \(-0.0662616\pi\)
0.105794 + 0.994388i \(0.466262\pi\)
\(854\) 0 0
\(855\) −13.8146 42.5169i −0.472449 1.45405i
\(856\) 0.843455 0.612806i 0.0288287 0.0209453i
\(857\) −35.0524 −1.19737 −0.598684 0.800986i \(-0.704309\pi\)
−0.598684 + 0.800986i \(0.704309\pi\)
\(858\) 0.678595 + 0.502195i 0.0231669 + 0.0171447i
\(859\) 32.5206 1.10959 0.554794 0.831988i \(-0.312797\pi\)
0.554794 + 0.831988i \(0.312797\pi\)
\(860\) −3.15667 + 2.29345i −0.107642 + 0.0782061i
\(861\) 0 0
\(862\) −1.93763 + 5.96341i −0.0659959 + 0.203114i
\(863\) −10.2696 7.46132i −0.349582 0.253986i 0.399111 0.916902i \(-0.369319\pi\)
−0.748694 + 0.662916i \(0.769319\pi\)
\(864\) 2.76719 + 2.01048i 0.0941418 + 0.0683981i
\(865\) −4.55924 + 14.0319i −0.155019 + 0.477099i
\(866\) −0.649269 1.99824i −0.0220630 0.0679031i
\(867\) 2.64741 1.92345i 0.0899107 0.0653239i
\(868\) 0 0
\(869\) 8.13505 + 0.0714685i 0.275963 + 0.00242440i
\(870\) 0.806251 0.0273345
\(871\) −6.84079 + 4.97012i −0.231791 + 0.168406i
\(872\) −2.56778 7.90281i −0.0869559 0.267623i
\(873\) −11.0173 + 33.9078i −0.372879 + 1.14760i
\(874\) −7.86619 5.71512i −0.266078 0.193317i
\(875\) 0 0
\(876\) −1.95940 + 6.03041i −0.0662020 + 0.203749i
\(877\) −8.69388 26.7570i −0.293571 0.903520i −0.983698 0.179831i \(-0.942445\pi\)
0.690126 0.723689i \(-0.257555\pi\)
\(878\) −2.69239 + 1.95614i −0.0908638 + 0.0660164i
\(879\) −3.53765 −0.119322
\(880\) 9.70720 29.0061i 0.327230 0.977797i
\(881\) 36.7964 1.23970 0.619850 0.784720i \(-0.287193\pi\)
0.619850 + 0.784720i \(0.287193\pi\)
\(882\) 0 0
\(883\) −0.705855 2.17240i −0.0237539 0.0731070i 0.938477 0.345342i \(-0.112237\pi\)
−0.962231 + 0.272235i \(0.912237\pi\)
\(884\) 4.44540 13.6815i 0.149515 0.460159i
\(885\) 1.27247 + 0.924502i 0.0427735 + 0.0310768i
\(886\) −0.447173 0.324890i −0.0150231 0.0109149i
\(887\) −13.0614 + 40.1989i −0.438560 + 1.34975i 0.450835 + 0.892607i \(0.351126\pi\)
−0.889395 + 0.457140i \(0.848874\pi\)
\(888\) 0.241002 + 0.741728i 0.00808750 + 0.0248908i
\(889\) 0 0
\(890\) −0.979808 −0.0328432
\(891\) −23.1413 + 16.5045i −0.775264 + 0.552922i
\(892\) 34.1520 1.14349
\(893\) 33.1500 24.0849i 1.10932 0.805971i
\(894\) 0.0141217 + 0.0434623i 0.000472302 + 0.00145360i
\(895\) 3.34304 10.2888i 0.111745 0.343917i
\(896\) 0 0
\(897\) 6.44778 + 4.68459i 0.215285 + 0.156414i
\(898\) 0.333393 1.02608i 0.0111255 0.0342406i
\(899\) −15.4861 47.6614i −0.516491 1.58960i
\(900\) −5.71367 + 4.15123i −0.190456 + 0.138374i
\(901\) 9.46132 0.315202
\(902\) −1.52234 4.82923i −0.0506884 0.160796i
\(903\) 0 0
\(904\) 2.38288 1.73127i 0.0792535 0.0575810i
\(905\) −8.35220 25.7054i −0.277636 0.854477i
\(906\) 0.277198 0.853128i 0.00920929 0.0283433i
\(907\) −31.9793 23.2343i −1.06185 0.771483i −0.0874240 0.996171i \(-0.527864\pi\)
−0.974431 + 0.224689i \(0.927864\pi\)
\(908\) 40.4837 + 29.4131i 1.34350 + 0.976108i
\(909\) −3.36915 + 10.3692i −0.111748 + 0.343924i
\(910\) 0 0
\(911\) 28.5013 20.7074i 0.944291 0.686067i −0.00515893 0.999987i \(-0.501642\pi\)
0.949450 + 0.313919i \(0.101642\pi\)
\(912\) 4.91433 0.162730
\(913\) −2.24138 7.11019i −0.0741788 0.235313i
\(914\) 7.03234 0.232609
\(915\) −0.378408 + 0.274929i −0.0125098 + 0.00908888i
\(916\) −11.9462 36.7666i −0.394713 1.21480i
\(917\) 0 0
\(918\) 0.343123 + 0.249293i 0.0113247 + 0.00822791i
\(919\) 32.0455 + 23.2824i 1.05708 + 0.768017i 0.973547 0.228488i \(-0.0733780\pi\)
0.0835379 + 0.996505i \(0.473378\pi\)
\(920\) −4.87909 + 15.0163i −0.160859 + 0.495073i
\(921\) 1.93919 + 5.96821i 0.0638984 + 0.196659i
\(922\) 5.43930 3.95188i 0.179134 0.130148i
\(923\) −23.2141 −0.764101
\(924\) 0 0
\(925\) −4.89131 −0.160825
\(926\) 4.65855 3.38463i 0.153089 0.111226i
\(927\) −1.05047 3.23302i −0.0345020 0.106186i
\(928\) 5.28196 16.2562i 0.173389 0.533636i
\(929\) 2.11685 + 1.53798i 0.0694516 + 0.0504595i 0.621969 0.783042i \(-0.286333\pi\)
−0.552518 + 0.833501i \(0.686333\pi\)
\(930\) 0.769488 + 0.559066i 0.0252325 + 0.0183325i
\(931\) 0 0
\(932\) 12.1736 + 37.4666i 0.398761 + 1.22726i
\(933\) −5.64152 + 4.09881i −0.184695 + 0.134189i
\(934\) 0.720463 0.0235743
\(935\) 3.77594 11.2829i 0.123487 0.368991i
\(936\) −13.5405 −0.442586
\(937\) 43.5575 31.6464i 1.42296 1.03384i 0.431689 0.902022i \(-0.357918\pi\)
0.991274 0.131820i \(-0.0420822\pi\)
\(938\) 0 0
\(939\) −0.00231742 + 0.00713228i −7.56261e−5 + 0.000232753i
\(940\) −26.5668 19.3019i −0.866514 0.629559i
\(941\) 23.9854 + 17.4264i 0.781902 + 0.568085i 0.905549 0.424241i \(-0.139459\pi\)
−0.123647 + 0.992326i \(0.539459\pi\)
\(942\) 0.188001 0.578607i 0.00612540 0.0188520i
\(943\) −14.7718 45.4630i −0.481037 1.48048i
\(944\) 8.59940 6.24783i 0.279887 0.203349i
\(945\) 0 0
\(946\) −0.601908 0.00528791i −0.0195697 0.000171925i
\(947\) −15.7861 −0.512980 −0.256490 0.966547i \(-0.582566\pi\)
−0.256490 + 0.966547i \(0.582566\pi\)
\(948\) 0.847448 0.615707i 0.0275238 0.0199972i
\(949\) −23.5607 72.5123i −0.764812 2.35385i
\(950\) 0.520771 1.60277i 0.0168961 0.0520007i
\(951\) −3.96919 2.88378i −0.128710 0.0935131i
\(952\) 0 0
\(953\) −10.8502 + 33.3934i −0.351472 + 1.08172i 0.606555 + 0.795041i \(0.292551\pi\)
−0.958027 + 0.286678i \(0.907449\pi\)
\(954\) −1.35815 4.17995i −0.0439716 0.135331i
\(955\) −23.5318 + 17.0968i −0.761470 + 0.553240i
\(956\) −33.3257 −1.07783
\(957\) −3.80759 2.81782i −0.123082 0.0910870i
\(958\) −0.731463 −0.0236325
\(959\) 0 0
\(960\) −1.14874 3.53546i −0.0370754 0.114106i
\(961\) 8.68955 26.7437i 0.280308 0.862700i
\(962\) −3.74426 2.72036i −0.120720 0.0877080i
\(963\) 2.78736 + 2.02514i 0.0898214 + 0.0652591i
\(964\) −14.5454 + 44.7661i −0.468475 + 1.44182i
\(965\) 17.3090 + 53.2716i 0.557196 + 1.71487i
\(966\) 0 0
\(967\) −49.2820 −1.58480 −0.792401 0.610001i \(-0.791169\pi\)
−0.792401 + 0.610001i \(0.791169\pi\)
\(968\) 8.04962 5.63500i 0.258725 0.181116i
\(969\) 1.91160 0.0614093
\(970\) −5.51585 + 4.00750i −0.177103 + 0.128673i
\(971\) −11.5394 35.5148i −0.370318 1.13972i −0.946583 0.322460i \(-0.895490\pi\)
0.576265 0.817263i \(-0.304510\pi\)
\(972\) −3.48730 + 10.7328i −0.111855 + 0.344255i
\(973\) 0 0
\(974\) −1.80647 1.31248i −0.0578831 0.0420545i
\(975\) −0.426867 + 1.31376i −0.0136707 + 0.0420741i
\(976\) 0.976800 + 3.00628i 0.0312666 + 0.0962287i
\(977\) −32.3999 + 23.5399i −1.03656 + 0.753108i −0.969612 0.244648i \(-0.921328\pi\)
−0.0669524 + 0.997756i \(0.521328\pi\)
\(978\) 0.401470 0.0128376
\(979\) 4.62723 + 3.42439i 0.147887 + 0.109444i
\(980\) 0 0
\(981\) 22.2159 16.1408i 0.709299 0.515336i
\(982\) 0.295411 + 0.909181i 0.00942694 + 0.0290131i
\(983\) 16.0817 49.4944i 0.512926 1.57862i −0.274098 0.961702i \(-0.588379\pi\)
0.787024 0.616923i \(-0.211621\pi\)
\(984\) −1.06876 0.776500i −0.0340709 0.0247539i
\(985\) −48.6604 35.3538i −1.55045 1.12647i
\(986\) 0.654946 2.01572i 0.0208577 0.0641935i
\(987\) 0 0
\(988\) −49.1304 + 35.6953i −1.56305 + 1.13562i
\(989\) −5.68262 −0.180697
\(990\) −5.52674 0.0485539i −0.175651 0.00154314i
\(991\) 45.4828 1.44481 0.722404 0.691471i \(-0.243037\pi\)
0.722404 + 0.691471i \(0.243037\pi\)
\(992\) 16.3134 11.8524i 0.517951 0.376313i
\(993\) 0.728455 + 2.24195i 0.0231168 + 0.0711463i
\(994\) 0 0
\(995\) 37.7953 + 27.4599i 1.19819 + 0.870536i
\(996\) −0.776586 0.564223i −0.0246071 0.0178781i
\(997\) −8.63992 + 26.5909i −0.273629 + 0.842143i 0.715950 + 0.698152i \(0.245994\pi\)
−0.989579 + 0.143992i \(0.954006\pi\)
\(998\) −1.42569 4.38783i −0.0451296 0.138894i
\(999\) −4.20412 + 3.05447i −0.133012 + 0.0966392i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 539.2.f.e.344.3 16
7.2 even 3 539.2.q.f.410.2 32
7.3 odd 6 539.2.q.g.520.3 32
7.4 even 3 539.2.q.f.520.3 32
7.5 odd 6 539.2.q.g.410.2 32
7.6 odd 2 77.2.f.b.36.3 yes 16
11.2 odd 10 5929.2.a.bs.1.5 8
11.4 even 5 inner 539.2.f.e.246.3 16
11.9 even 5 5929.2.a.bt.1.4 8
21.20 even 2 693.2.m.i.190.2 16
77.4 even 15 539.2.q.f.422.2 32
77.6 even 10 847.2.f.v.372.3 16
77.13 even 10 847.2.a.o.1.5 8
77.20 odd 10 847.2.a.p.1.4 8
77.26 odd 30 539.2.q.g.312.3 32
77.27 odd 10 847.2.f.w.372.2 16
77.37 even 15 539.2.q.f.312.3 32
77.41 even 10 847.2.f.v.148.3 16
77.48 odd 10 77.2.f.b.15.3 16
77.59 odd 30 539.2.q.g.422.2 32
77.62 even 10 847.2.f.x.323.2 16
77.69 odd 10 847.2.f.w.148.2 16
77.76 even 2 847.2.f.x.729.2 16
231.20 even 10 7623.2.a.ct.1.5 8
231.125 even 10 693.2.m.i.631.2 16
231.167 odd 10 7623.2.a.cw.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.f.b.15.3 16 77.48 odd 10
77.2.f.b.36.3 yes 16 7.6 odd 2
539.2.f.e.246.3 16 11.4 even 5 inner
539.2.f.e.344.3 16 1.1 even 1 trivial
539.2.q.f.312.3 32 77.37 even 15
539.2.q.f.410.2 32 7.2 even 3
539.2.q.f.422.2 32 77.4 even 15
539.2.q.f.520.3 32 7.4 even 3
539.2.q.g.312.3 32 77.26 odd 30
539.2.q.g.410.2 32 7.5 odd 6
539.2.q.g.422.2 32 77.59 odd 30
539.2.q.g.520.3 32 7.3 odd 6
693.2.m.i.190.2 16 21.20 even 2
693.2.m.i.631.2 16 231.125 even 10
847.2.a.o.1.5 8 77.13 even 10
847.2.a.p.1.4 8 77.20 odd 10
847.2.f.v.148.3 16 77.41 even 10
847.2.f.v.372.3 16 77.6 even 10
847.2.f.w.148.2 16 77.69 odd 10
847.2.f.w.372.2 16 77.27 odd 10
847.2.f.x.323.2 16 77.62 even 10
847.2.f.x.729.2 16 77.76 even 2
5929.2.a.bs.1.5 8 11.2 odd 10
5929.2.a.bt.1.4 8 11.9 even 5
7623.2.a.ct.1.5 8 231.20 even 10
7623.2.a.cw.1.4 8 231.167 odd 10