Properties

Label 847.2.f.v.148.3
Level $847$
Weight $2$
Character 847.148
Analytic conductor $6.763$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [847,2,Mod(148,847)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(847, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("847.148");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 847 = 7 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 847.f (of order \(5\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.76332905120\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 3 x^{15} + 14 x^{14} - 32 x^{13} + 86 x^{12} - 145 x^{11} + 245 x^{10} - 245 x^{9} + 640 x^{8} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 77)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 148.3
Root \(0.183009 - 0.132964i\) of defining polynomial
Character \(\chi\) \(=\) 847.148
Dual form 847.2.f.v.372.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0699031 - 0.215140i) q^{2} +(0.177280 + 0.128801i) q^{3} +(1.57664 - 1.14549i) q^{4} +(-0.771159 + 2.37338i) q^{5} +(0.0153178 - 0.0471435i) q^{6} +(0.809017 - 0.587785i) q^{7} +(-0.722670 - 0.525051i) q^{8} +(-0.912213 - 2.80750i) q^{9} +0.564516 q^{10} +0.427046 q^{12} +(-1.58680 - 4.88366i) q^{13} +(-0.183009 - 0.132964i) q^{14} +(-0.442405 + 0.321426i) q^{15} +(1.14200 - 3.51471i) q^{16} +(0.444220 - 1.36717i) q^{17} +(-0.540239 + 0.392506i) q^{18} +(-4.90950 - 3.56696i) q^{19} +(1.50286 + 4.62532i) q^{20} +0.219130 q^{21} +7.08292 q^{23} +(-0.0604875 - 0.186161i) q^{24} +(-0.993180 - 0.721588i) q^{25} +(-0.939748 + 0.682767i) q^{26} +(0.403037 - 1.24042i) q^{27} +(0.602221 - 1.85345i) q^{28} +(5.27292 - 3.83100i) q^{29} +(0.100077 + 0.0727103i) q^{30} +(2.37602 + 7.31263i) q^{31} -2.62252 q^{32} -0.325184 q^{34} +(0.771159 + 2.37338i) q^{35} +(-4.65420 - 3.38147i) q^{36} +(3.22339 - 2.34193i) q^{37} +(-0.424206 + 1.30557i) q^{38} +(0.347714 - 1.07015i) q^{39} +(1.80344 - 1.31028i) q^{40} +(5.46006 + 3.96696i) q^{41} +(-0.0153178 - 0.0471435i) q^{42} +0.802299 q^{43} +7.36674 q^{45} +(-0.495119 - 1.52382i) q^{46} +(-5.46266 - 3.96885i) q^{47} +(0.655152 - 0.475996i) q^{48} +(0.309017 - 0.951057i) q^{49} +(-0.0858158 + 0.264114i) q^{50} +(0.254844 - 0.185155i) q^{51} +(-8.09600 - 5.88209i) q^{52} +(2.03385 + 6.25954i) q^{53} -0.295037 q^{54} -0.893270 q^{56} +(-0.410925 - 1.26470i) q^{57} +(-1.19279 - 0.866616i) q^{58} +(-2.32694 + 1.69062i) q^{59} +(-0.329320 + 1.01354i) q^{60} +(0.264315 - 0.813478i) q^{61} +(1.40715 - 1.02235i) q^{62} +(-2.38820 - 1.73513i) q^{63} +(-2.10068 - 6.46522i) q^{64} +12.8145 q^{65} -1.64668 q^{67} +(-0.865708 - 2.66437i) q^{68} +(1.25566 + 0.912288i) q^{69} +(0.456703 - 0.331814i) q^{70} +(1.39700 - 4.29951i) q^{71} +(-0.814852 + 2.50786i) q^{72} +(-12.0122 + 8.72740i) q^{73} +(-0.729166 - 0.529770i) q^{74} +(-0.0831292 - 0.255845i) q^{75} -11.8264 q^{76} -0.254539 q^{78} +(-0.757990 - 2.33285i) q^{79} +(7.46110 + 5.42081i) q^{80} +(-6.93339 + 5.03741i) q^{81} +(0.471776 - 1.45198i) q^{82} +(-0.694608 + 2.13778i) q^{83} +(0.345487 - 0.251011i) q^{84} +(2.90225 + 2.10861i) q^{85} +(-0.0560832 - 0.172606i) q^{86} +1.42822 q^{87} +1.73566 q^{89} +(-0.514958 - 1.58488i) q^{90} +(-4.15429 - 3.01827i) q^{91} +(11.1672 - 8.11343i) q^{92} +(-0.520655 + 1.60241i) q^{93} +(-0.472001 + 1.45267i) q^{94} +(12.2518 - 8.90144i) q^{95} +(-0.464920 - 0.337784i) q^{96} +(-3.73217 - 11.4864i) q^{97} -0.226211 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 2 q^{2} - 2 q^{3} + 4 q^{4} - 5 q^{5} + 2 q^{6} + 4 q^{7} - 5 q^{8} - 2 q^{9} - 12 q^{10} + 18 q^{12} - 13 q^{13} - 3 q^{14} + 7 q^{15} - 18 q^{16} - 10 q^{17} + 19 q^{18} + 6 q^{19} - 24 q^{20}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/847\mathbb{Z}\right)^\times\).

\(n\) \(122\) \(365\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0699031 0.215140i −0.0494290 0.152127i 0.923295 0.384090i \(-0.125485\pi\)
−0.972724 + 0.231964i \(0.925485\pi\)
\(3\) 0.177280 + 0.128801i 0.102352 + 0.0743634i 0.637784 0.770215i \(-0.279851\pi\)
−0.535432 + 0.844578i \(0.679851\pi\)
\(4\) 1.57664 1.14549i 0.788318 0.572746i
\(5\) −0.771159 + 2.37338i −0.344873 + 1.06141i 0.616779 + 0.787136i \(0.288437\pi\)
−0.961652 + 0.274273i \(0.911563\pi\)
\(6\) 0.0153178 0.0471435i 0.00625348 0.0192462i
\(7\) 0.809017 0.587785i 0.305780 0.222162i
\(8\) −0.722670 0.525051i −0.255503 0.185633i
\(9\) −0.912213 2.80750i −0.304071 0.935834i
\(10\) 0.564516 0.178516
\(11\) 0 0
\(12\) 0.427046 0.123278
\(13\) −1.58680 4.88366i −0.440099 1.35448i −0.887771 0.460286i \(-0.847747\pi\)
0.447672 0.894198i \(-0.352253\pi\)
\(14\) −0.183009 0.132964i −0.0489112 0.0355360i
\(15\) −0.442405 + 0.321426i −0.114229 + 0.0829919i
\(16\) 1.14200 3.51471i 0.285500 0.878679i
\(17\) 0.444220 1.36717i 0.107739 0.331587i −0.882624 0.470079i \(-0.844226\pi\)
0.990364 + 0.138492i \(0.0442255\pi\)
\(18\) −0.540239 + 0.392506i −0.127336 + 0.0925147i
\(19\) −4.90950 3.56696i −1.12632 0.818317i −0.141162 0.989986i \(-0.545084\pi\)
−0.985155 + 0.171669i \(0.945084\pi\)
\(20\) 1.50286 + 4.62532i 0.336049 + 1.03425i
\(21\) 0.219130 0.0478180
\(22\) 0 0
\(23\) 7.08292 1.47689 0.738446 0.674313i \(-0.235560\pi\)
0.738446 + 0.674313i \(0.235560\pi\)
\(24\) −0.0604875 0.186161i −0.0123470 0.0380001i
\(25\) −0.993180 0.721588i −0.198636 0.144318i
\(26\) −0.939748 + 0.682767i −0.184300 + 0.133902i
\(27\) 0.403037 1.24042i 0.0775645 0.238719i
\(28\) 0.602221 1.85345i 0.113809 0.350268i
\(29\) 5.27292 3.83100i 0.979156 0.711399i 0.0216365 0.999766i \(-0.493112\pi\)
0.957520 + 0.288367i \(0.0931123\pi\)
\(30\) 0.100077 + 0.0727103i 0.0182715 + 0.0132750i
\(31\) 2.37602 + 7.31263i 0.426745 + 1.31339i 0.901313 + 0.433168i \(0.142604\pi\)
−0.474568 + 0.880219i \(0.657396\pi\)
\(32\) −2.62252 −0.463601
\(33\) 0 0
\(34\) −0.325184 −0.0557687
\(35\) 0.771159 + 2.37338i 0.130350 + 0.401175i
\(36\) −4.65420 3.38147i −0.775700 0.563579i
\(37\) 3.22339 2.34193i 0.529921 0.385010i −0.290407 0.956903i \(-0.593791\pi\)
0.820328 + 0.571893i \(0.193791\pi\)
\(38\) −0.424206 + 1.30557i −0.0688153 + 0.211792i
\(39\) 0.347714 1.07015i 0.0556788 0.171362i
\(40\) 1.80344 1.31028i 0.285149 0.207173i
\(41\) 5.46006 + 3.96696i 0.852718 + 0.619536i 0.925894 0.377783i \(-0.123314\pi\)
−0.0731765 + 0.997319i \(0.523314\pi\)
\(42\) −0.0153178 0.0471435i −0.00236359 0.00727440i
\(43\) 0.802299 0.122349 0.0611747 0.998127i \(-0.480515\pi\)
0.0611747 + 0.998127i \(0.480515\pi\)
\(44\) 0 0
\(45\) 7.36674 1.09817
\(46\) −0.495119 1.52382i −0.0730012 0.224675i
\(47\) −5.46266 3.96885i −0.796811 0.578917i 0.113166 0.993576i \(-0.463901\pi\)
−0.909977 + 0.414659i \(0.863901\pi\)
\(48\) 0.655152 0.475996i 0.0945631 0.0687041i
\(49\) 0.309017 0.951057i 0.0441453 0.135865i
\(50\) −0.0858158 + 0.264114i −0.0121362 + 0.0373513i
\(51\) 0.254844 0.185155i 0.0356853 0.0259269i
\(52\) −8.09600 5.88209i −1.12271 0.815699i
\(53\) 2.03385 + 6.25954i 0.279371 + 0.859814i 0.988030 + 0.154263i \(0.0493004\pi\)
−0.708659 + 0.705551i \(0.750700\pi\)
\(54\) −0.295037 −0.0401495
\(55\) 0 0
\(56\) −0.893270 −0.119368
\(57\) −0.410925 1.26470i −0.0544284 0.167513i
\(58\) −1.19279 0.866616i −0.156622 0.113792i
\(59\) −2.32694 + 1.69062i −0.302941 + 0.220100i −0.728862 0.684661i \(-0.759950\pi\)
0.425921 + 0.904761i \(0.359950\pi\)
\(60\) −0.329320 + 1.01354i −0.0425151 + 0.130848i
\(61\) 0.264315 0.813478i 0.0338421 0.104155i −0.932709 0.360631i \(-0.882561\pi\)
0.966551 + 0.256476i \(0.0825614\pi\)
\(62\) 1.40715 1.02235i 0.178708 0.129839i
\(63\) −2.38820 1.73513i −0.300885 0.218606i
\(64\) −2.10068 6.46522i −0.262585 0.808152i
\(65\) 12.8145 1.58944
\(66\) 0 0
\(67\) −1.64668 −0.201174 −0.100587 0.994928i \(-0.532072\pi\)
−0.100587 + 0.994928i \(0.532072\pi\)
\(68\) −0.865708 2.66437i −0.104982 0.323103i
\(69\) 1.25566 + 0.912288i 0.151163 + 0.109827i
\(70\) 0.456703 0.331814i 0.0545864 0.0396594i
\(71\) 1.39700 4.29951i 0.165793 0.510258i −0.833301 0.552819i \(-0.813552\pi\)
0.999094 + 0.0425617i \(0.0135519\pi\)
\(72\) −0.814852 + 2.50786i −0.0960312 + 0.295554i
\(73\) −12.0122 + 8.72740i −1.40593 + 1.02147i −0.412027 + 0.911171i \(0.635179\pi\)
−0.993899 + 0.110294i \(0.964821\pi\)
\(74\) −0.729166 0.529770i −0.0847639 0.0615846i
\(75\) −0.0831292 0.255845i −0.00959894 0.0295425i
\(76\) −11.8264 −1.35658
\(77\) 0 0
\(78\) −0.254539 −0.0288209
\(79\) −0.757990 2.33285i −0.0852805 0.262466i 0.899319 0.437294i \(-0.144063\pi\)
−0.984599 + 0.174828i \(0.944063\pi\)
\(80\) 7.46110 + 5.42081i 0.834177 + 0.606065i
\(81\) −6.93339 + 5.03741i −0.770377 + 0.559712i
\(82\) 0.471776 1.45198i 0.0520990 0.160344i
\(83\) −0.694608 + 2.13778i −0.0762431 + 0.234652i −0.981913 0.189330i \(-0.939368\pi\)
0.905670 + 0.423983i \(0.139368\pi\)
\(84\) 0.345487 0.251011i 0.0376958 0.0273876i
\(85\) 2.90225 + 2.10861i 0.314793 + 0.228711i
\(86\) −0.0560832 0.172606i −0.00604761 0.0186126i
\(87\) 1.42822 0.153121
\(88\) 0 0
\(89\) 1.73566 0.183980 0.0919898 0.995760i \(-0.470677\pi\)
0.0919898 + 0.995760i \(0.470677\pi\)
\(90\) −0.514958 1.58488i −0.0542814 0.167061i
\(91\) −4.15429 3.01827i −0.435488 0.316401i
\(92\) 11.1672 8.11343i 1.16426 0.845884i
\(93\) −0.520655 + 1.60241i −0.0539895 + 0.166162i
\(94\) −0.472001 + 1.45267i −0.0486832 + 0.149832i
\(95\) 12.2518 8.90144i 1.25701 0.913268i
\(96\) −0.464920 0.337784i −0.0474507 0.0344749i
\(97\) −3.73217 11.4864i −0.378944 1.16627i −0.940779 0.339021i \(-0.889904\pi\)
0.561834 0.827250i \(-0.310096\pi\)
\(98\) −0.226211 −0.0228508
\(99\) 0 0
\(100\) −2.39246 −0.239246
\(101\) 1.14132 + 3.51261i 0.113565 + 0.349518i 0.991645 0.128996i \(-0.0411755\pi\)
−0.878080 + 0.478514i \(0.841175\pi\)
\(102\) −0.0576485 0.0418841i −0.00570805 0.00414714i
\(103\) 0.931634 0.676872i 0.0917966 0.0666942i −0.540940 0.841061i \(-0.681931\pi\)
0.632737 + 0.774367i \(0.281931\pi\)
\(104\) −1.41744 + 4.36243i −0.138991 + 0.427771i
\(105\) −0.168984 + 0.520079i −0.0164911 + 0.0507545i
\(106\) 1.20450 0.875124i 0.116992 0.0849995i
\(107\) 0.944233 + 0.686025i 0.0912825 + 0.0663206i 0.632490 0.774568i \(-0.282033\pi\)
−0.541208 + 0.840889i \(0.682033\pi\)
\(108\) −0.785450 2.41737i −0.0755800 0.232611i
\(109\) −9.30234 −0.891003 −0.445501 0.895281i \(-0.646975\pi\)
−0.445501 + 0.895281i \(0.646975\pi\)
\(110\) 0 0
\(111\) 0.873083 0.0828694
\(112\) −1.14200 3.51471i −0.107909 0.332109i
\(113\) −2.66760 1.93812i −0.250946 0.182323i 0.455200 0.890389i \(-0.349568\pi\)
−0.706146 + 0.708066i \(0.749568\pi\)
\(114\) −0.243362 + 0.176813i −0.0227929 + 0.0165600i
\(115\) −5.46206 + 16.8105i −0.509340 + 1.56759i
\(116\) 3.92509 12.0802i 0.364435 1.12162i
\(117\) −12.2634 + 8.90988i −1.13375 + 0.823718i
\(118\) 0.526379 + 0.382437i 0.0484571 + 0.0352062i
\(119\) −0.444220 1.36717i −0.0407215 0.125328i
\(120\) 0.488478 0.0445918
\(121\) 0 0
\(122\) −0.193488 −0.0175176
\(123\) 0.457007 + 1.40652i 0.0412069 + 0.126822i
\(124\) 12.1227 + 8.80764i 1.08865 + 0.790949i
\(125\) −7.61610 + 5.53342i −0.681205 + 0.494924i
\(126\) −0.206353 + 0.635089i −0.0183834 + 0.0565782i
\(127\) 0.0893693 0.275050i 0.00793024 0.0244068i −0.947013 0.321195i \(-0.895916\pi\)
0.954943 + 0.296788i \(0.0959155\pi\)
\(128\) −5.48741 + 3.98684i −0.485023 + 0.352390i
\(129\) 0.142231 + 0.103337i 0.0125228 + 0.00909831i
\(130\) −0.895772 2.75690i −0.0785644 0.241796i
\(131\) 16.5059 1.44212 0.721062 0.692871i \(-0.243654\pi\)
0.721062 + 0.692871i \(0.243654\pi\)
\(132\) 0 0
\(133\) −6.06848 −0.526204
\(134\) 0.115108 + 0.354266i 0.00994383 + 0.0306040i
\(135\) 2.63319 + 1.91312i 0.226629 + 0.164655i
\(136\) −1.03886 + 0.754773i −0.0890812 + 0.0647213i
\(137\) 2.88185 8.86944i 0.246213 0.757767i −0.749221 0.662320i \(-0.769572\pi\)
0.995435 0.0954470i \(-0.0304281\pi\)
\(138\) 0.108495 0.333914i 0.00923572 0.0284246i
\(139\) 3.90471 2.83694i 0.331193 0.240626i −0.409744 0.912201i \(-0.634382\pi\)
0.740937 + 0.671575i \(0.234382\pi\)
\(140\) 3.93453 + 2.85860i 0.332529 + 0.241596i
\(141\) −0.457225 1.40719i −0.0385053 0.118507i
\(142\) −1.02265 −0.0858189
\(143\) 0 0
\(144\) −10.9093 −0.909109
\(145\) 5.02617 + 15.4690i 0.417401 + 1.28463i
\(146\) 2.71731 + 1.97424i 0.224886 + 0.163389i
\(147\) 0.177280 0.128801i 0.0146218 0.0106233i
\(148\) 2.39944 7.38473i 0.197233 0.607021i
\(149\) −0.284887 + 0.876793i −0.0233389 + 0.0718297i −0.962048 0.272882i \(-0.912023\pi\)
0.938709 + 0.344711i \(0.112023\pi\)
\(150\) −0.0492315 + 0.0357688i −0.00401974 + 0.00292051i
\(151\) 14.6403 + 10.6368i 1.19141 + 0.865611i 0.993413 0.114591i \(-0.0365559\pi\)
0.197999 + 0.980202i \(0.436556\pi\)
\(152\) 1.67512 + 5.15548i 0.135870 + 0.418164i
\(153\) −4.24355 −0.343070
\(154\) 0 0
\(155\) −19.1880 −1.54121
\(156\) −0.677635 2.08555i −0.0542543 0.166977i
\(157\) 9.92933 + 7.21408i 0.792447 + 0.575746i 0.908689 0.417475i \(-0.137085\pi\)
−0.116242 + 0.993221i \(0.537085\pi\)
\(158\) −0.448903 + 0.326147i −0.0357128 + 0.0259469i
\(159\) −0.445676 + 1.37165i −0.0353444 + 0.108779i
\(160\) 2.02238 6.22426i 0.159883 0.492071i
\(161\) 5.73020 4.16324i 0.451603 0.328109i
\(162\) 1.56841 + 1.13952i 0.123226 + 0.0895290i
\(163\) 2.50277 + 7.70273i 0.196032 + 0.603324i 0.999963 + 0.00860182i \(0.00273808\pi\)
−0.803931 + 0.594723i \(0.797262\pi\)
\(164\) 13.1526 1.02705
\(165\) 0 0
\(166\) 0.508478 0.0394655
\(167\) 4.03317 + 12.4128i 0.312096 + 0.960532i 0.976933 + 0.213544i \(0.0685007\pi\)
−0.664838 + 0.746988i \(0.731499\pi\)
\(168\) −0.158358 0.115054i −0.0122176 0.00887662i
\(169\) −10.8150 + 7.85756i −0.831923 + 0.604428i
\(170\) 0.250769 0.771787i 0.0192331 0.0591934i
\(171\) −5.53574 + 17.0373i −0.423329 + 1.30287i
\(172\) 1.26493 0.919027i 0.0964502 0.0700752i
\(173\) 4.78306 + 3.47510i 0.363649 + 0.264207i 0.754573 0.656217i \(-0.227844\pi\)
−0.390923 + 0.920423i \(0.627844\pi\)
\(174\) −0.0998369 0.307266i −0.00756862 0.0232938i
\(175\) −1.22764 −0.0928007
\(176\) 0 0
\(177\) −0.630271 −0.0473741
\(178\) −0.121328 0.373410i −0.00909393 0.0279882i
\(179\) −3.50715 2.54810i −0.262137 0.190454i 0.448952 0.893556i \(-0.351798\pi\)
−0.711089 + 0.703102i \(0.751798\pi\)
\(180\) 11.6147 8.43855i 0.865706 0.628972i
\(181\) 3.34687 10.3006i 0.248771 0.765639i −0.746222 0.665697i \(-0.768134\pi\)
0.994993 0.0999417i \(-0.0318656\pi\)
\(182\) −0.358952 + 1.10474i −0.0266073 + 0.0818888i
\(183\) 0.151635 0.110169i 0.0112091 0.00814392i
\(184\) −5.11862 3.71889i −0.377350 0.274160i
\(185\) 3.07255 + 9.45633i 0.225898 + 0.695243i
\(186\) 0.381138 0.0279464
\(187\) 0 0
\(188\) −13.1589 −0.959713
\(189\) −0.403037 1.24042i −0.0293166 0.0902273i
\(190\) −2.77149 2.01361i −0.201065 0.146082i
\(191\) −9.42959 + 6.85100i −0.682301 + 0.495721i −0.874120 0.485710i \(-0.838561\pi\)
0.191819 + 0.981430i \(0.438561\pi\)
\(192\) 0.460320 1.41672i 0.0332208 0.102243i
\(193\) −6.93602 + 21.3469i −0.499265 + 1.53658i 0.310937 + 0.950431i \(0.399357\pi\)
−0.810202 + 0.586151i \(0.800643\pi\)
\(194\) −2.21030 + 1.60588i −0.158690 + 0.115295i
\(195\) 2.27174 + 1.65052i 0.162683 + 0.118196i
\(196\) −0.602221 1.85345i −0.0430158 0.132389i
\(197\) −24.1022 −1.71721 −0.858604 0.512639i \(-0.828668\pi\)
−0.858604 + 0.512639i \(0.828668\pi\)
\(198\) 0 0
\(199\) 18.7205 1.32706 0.663531 0.748148i \(-0.269057\pi\)
0.663531 + 0.748148i \(0.269057\pi\)
\(200\) 0.338872 + 1.04294i 0.0239619 + 0.0737470i
\(201\) −0.291923 0.212094i −0.0205906 0.0149600i
\(202\) 0.675921 0.491085i 0.0475576 0.0345527i
\(203\) 2.01408 6.19869i 0.141360 0.435063i
\(204\) 0.189702 0.583843i 0.0132818 0.0408772i
\(205\) −13.6257 + 9.89965i −0.951660 + 0.691422i
\(206\) −0.210746 0.153116i −0.0146834 0.0106681i
\(207\) −6.46113 19.8853i −0.449080 1.38213i
\(208\) −18.9768 −1.31580
\(209\) 0 0
\(210\) 0.123702 0.00853625
\(211\) 2.33813 + 7.19603i 0.160964 + 0.495395i 0.998716 0.0506548i \(-0.0161308\pi\)
−0.837753 + 0.546050i \(0.816131\pi\)
\(212\) 10.3769 + 7.53926i 0.712688 + 0.517798i
\(213\) 0.801440 0.582280i 0.0549138 0.0398972i
\(214\) 0.0815865 0.251097i 0.00557714 0.0171647i
\(215\) −0.618700 + 1.90416i −0.0421950 + 0.129863i
\(216\) −0.942547 + 0.684800i −0.0641322 + 0.0465947i
\(217\) 6.22049 + 4.51945i 0.422275 + 0.306800i
\(218\) 0.650263 + 2.00130i 0.0440414 + 0.135545i
\(219\) −3.25362 −0.219859
\(220\) 0 0
\(221\) −7.38167 −0.496545
\(222\) −0.0610313 0.187835i −0.00409615 0.0126067i
\(223\) −14.1775 10.3006i −0.949397 0.689777i 0.00126729 0.999999i \(-0.499597\pi\)
−0.950664 + 0.310222i \(0.899597\pi\)
\(224\) −2.12167 + 1.54148i −0.141760 + 0.102995i
\(225\) −1.11987 + 3.44660i −0.0746578 + 0.229773i
\(226\) −0.230494 + 0.709387i −0.0153322 + 0.0471877i
\(227\) −20.7733 + 15.0927i −1.37877 + 1.00174i −0.381782 + 0.924253i \(0.624689\pi\)
−0.996993 + 0.0774861i \(0.975311\pi\)
\(228\) −2.09658 1.52326i −0.138850 0.100880i
\(229\) −6.12993 18.8660i −0.405077 1.24670i −0.920831 0.389963i \(-0.872488\pi\)
0.515753 0.856737i \(-0.327512\pi\)
\(230\) 3.99842 0.263648
\(231\) 0 0
\(232\) −5.82205 −0.382236
\(233\) 6.24665 + 19.2252i 0.409232 + 1.25949i 0.917310 + 0.398174i \(0.130356\pi\)
−0.508078 + 0.861311i \(0.669644\pi\)
\(234\) 2.77412 + 2.01552i 0.181350 + 0.131758i
\(235\) 13.6322 9.90437i 0.889267 0.646090i
\(236\) −1.73214 + 5.33097i −0.112753 + 0.347017i
\(237\) 0.166098 0.511197i 0.0107892 0.0332058i
\(238\) −0.263080 + 0.191139i −0.0170529 + 0.0123897i
\(239\) 13.8345 + 10.0514i 0.894880 + 0.650168i 0.937146 0.348938i \(-0.113458\pi\)
−0.0422657 + 0.999106i \(0.513458\pi\)
\(240\) 0.624495 + 1.92200i 0.0403109 + 0.124064i
\(241\) 24.1529 1.55582 0.777912 0.628373i \(-0.216279\pi\)
0.777912 + 0.628373i \(0.216279\pi\)
\(242\) 0 0
\(243\) −5.79074 −0.371476
\(244\) −0.515105 1.58533i −0.0329762 0.101490i
\(245\) 2.01892 + 1.46683i 0.128984 + 0.0937125i
\(246\) 0.270653 0.196641i 0.0172562 0.0125374i
\(247\) −9.62945 + 29.6364i −0.612707 + 1.88572i
\(248\) 2.12242 6.53215i 0.134774 0.414792i
\(249\) −0.398489 + 0.289519i −0.0252532 + 0.0183475i
\(250\) 1.72285 + 1.25172i 0.108962 + 0.0791659i
\(251\) 3.67568 + 11.3126i 0.232007 + 0.714044i 0.997504 + 0.0706047i \(0.0224929\pi\)
−0.765498 + 0.643439i \(0.777507\pi\)
\(252\) −5.75291 −0.362399
\(253\) 0 0
\(254\) −0.0654215 −0.00410491
\(255\) 0.242918 + 0.747626i 0.0152121 + 0.0468181i
\(256\) −9.75797 7.08958i −0.609873 0.443099i
\(257\) −18.5758 + 13.4961i −1.15872 + 0.841862i −0.989616 0.143735i \(-0.954089\pi\)
−0.169108 + 0.985598i \(0.554089\pi\)
\(258\) 0.0122895 0.0378231i 0.000765110 0.00235477i
\(259\) 1.23122 3.78932i 0.0765045 0.235457i
\(260\) 20.2038 14.6789i 1.25298 0.910346i
\(261\) −15.5656 11.3090i −0.963484 0.700012i
\(262\) −1.15381 3.55107i −0.0712827 0.219386i
\(263\) −1.93774 −0.119486 −0.0597432 0.998214i \(-0.519028\pi\)
−0.0597432 + 0.998214i \(0.519028\pi\)
\(264\) 0 0
\(265\) −16.4247 −1.00896
\(266\) 0.424206 + 1.30557i 0.0260097 + 0.0800497i
\(267\) 0.307697 + 0.223555i 0.0188308 + 0.0136813i
\(268\) −2.59621 + 1.88626i −0.158589 + 0.115222i
\(269\) 2.22083 6.83501i 0.135406 0.416738i −0.860247 0.509878i \(-0.829690\pi\)
0.995653 + 0.0931402i \(0.0296905\pi\)
\(270\) 0.227521 0.700237i 0.0138465 0.0426151i
\(271\) 0.963622 0.700112i 0.0585359 0.0425288i −0.558133 0.829752i \(-0.688482\pi\)
0.616668 + 0.787223i \(0.288482\pi\)
\(272\) −4.29790 3.12261i −0.260599 0.189336i
\(273\) −0.347714 1.07015i −0.0210446 0.0647687i
\(274\) −2.10962 −0.127447
\(275\) 0 0
\(276\) 3.02473 0.182067
\(277\) −3.19531 9.83415i −0.191988 0.590877i −0.999999 0.00170957i \(-0.999456\pi\)
0.808011 0.589167i \(-0.200544\pi\)
\(278\) −0.883290 0.641748i −0.0529762 0.0384895i
\(279\) 18.3628 13.3413i 1.09935 0.798725i
\(280\) 0.688853 2.12007i 0.0411669 0.126699i
\(281\) 4.06398 12.5076i 0.242437 0.746143i −0.753611 0.657321i \(-0.771690\pi\)
0.996047 0.0888223i \(-0.0283103\pi\)
\(282\) −0.270782 + 0.196734i −0.0161248 + 0.0117154i
\(283\) 0.242730 + 0.176354i 0.0144288 + 0.0104831i 0.594976 0.803743i \(-0.297161\pi\)
−0.580547 + 0.814226i \(0.697161\pi\)
\(284\) −2.72250 8.37900i −0.161551 0.497202i
\(285\) 3.31850 0.196571
\(286\) 0 0
\(287\) 6.74900 0.398381
\(288\) 2.39230 + 7.36274i 0.140968 + 0.433854i
\(289\) 12.0815 + 8.77770i 0.710675 + 0.516336i
\(290\) 2.97665 2.16266i 0.174795 0.126996i
\(291\) 0.817829 2.51702i 0.0479420 0.147550i
\(292\) −8.94175 + 27.5199i −0.523276 + 1.61048i
\(293\) 13.0608 9.48926i 0.763023 0.554369i −0.136813 0.990597i \(-0.543686\pi\)
0.899836 + 0.436228i \(0.143686\pi\)
\(294\) −0.0401026 0.0291363i −0.00233883 0.00169926i
\(295\) −2.21805 6.82645i −0.129140 0.397451i
\(296\) −3.55908 −0.206867
\(297\) 0 0
\(298\) 0.208548 0.0120808
\(299\) −11.2392 34.5906i −0.649978 2.00043i
\(300\) −0.424134 0.308151i −0.0244874 0.0177911i
\(301\) 0.649073 0.471579i 0.0374120 0.0271814i
\(302\) 1.26500 3.89326i 0.0727924 0.224032i
\(303\) −0.250096 + 0.769717i −0.0143677 + 0.0442191i
\(304\) −18.1435 + 13.1820i −1.04060 + 0.756041i
\(305\) 1.72687 + 1.25464i 0.0988801 + 0.0718406i
\(306\) 0.296637 + 0.912956i 0.0169576 + 0.0521902i
\(307\) 28.6376 1.63443 0.817217 0.576330i \(-0.195516\pi\)
0.817217 + 0.576330i \(0.195516\pi\)
\(308\) 0 0
\(309\) 0.252341 0.0143552
\(310\) 1.34130 + 4.12809i 0.0761807 + 0.234460i
\(311\) 25.7452 + 18.7049i 1.45987 + 1.06066i 0.983396 + 0.181474i \(0.0580867\pi\)
0.476478 + 0.879186i \(0.341913\pi\)
\(312\) −0.813168 + 0.590801i −0.0460366 + 0.0334475i
\(313\) 0.0105756 0.0325482i 0.000597766 0.00183974i −0.950757 0.309937i \(-0.899692\pi\)
0.951355 + 0.308097i \(0.0996921\pi\)
\(314\) 0.857944 2.64048i 0.0484166 0.149011i
\(315\) 5.95982 4.33006i 0.335798 0.243971i
\(316\) −3.86734 2.80979i −0.217555 0.158063i
\(317\) 6.91871 + 21.2936i 0.388594 + 1.19597i 0.933840 + 0.357692i \(0.116436\pi\)
−0.545246 + 0.838276i \(0.683564\pi\)
\(318\) 0.326251 0.0182952
\(319\) 0 0
\(320\) 16.9644 0.948339
\(321\) 0.0790323 + 0.243237i 0.00441115 + 0.0135761i
\(322\) −1.29624 0.941771i −0.0722365 0.0524829i
\(323\) −7.05753 + 5.12760i −0.392691 + 0.285307i
\(324\) −5.16112 + 15.8843i −0.286729 + 0.882461i
\(325\) −1.94801 + 5.99537i −0.108056 + 0.332563i
\(326\) 1.48221 1.07689i 0.0820921 0.0596434i
\(327\) −1.64911 1.19815i −0.0911963 0.0662580i
\(328\) −1.86296 5.73361i −0.102865 0.316586i
\(329\) −6.75222 −0.372262
\(330\) 0 0
\(331\) 10.7577 0.591297 0.295648 0.955297i \(-0.404464\pi\)
0.295648 + 0.955297i \(0.404464\pi\)
\(332\) 1.35367 + 4.16617i 0.0742924 + 0.228648i
\(333\) −9.51538 6.91333i −0.521439 0.378848i
\(334\) 2.38856 1.73539i 0.130696 0.0949563i
\(335\) 1.26985 3.90821i 0.0693795 0.213528i
\(336\) 0.250246 0.770178i 0.0136520 0.0420166i
\(337\) 6.07161 4.41128i 0.330742 0.240298i −0.410004 0.912084i \(-0.634473\pi\)
0.740745 + 0.671786i \(0.234473\pi\)
\(338\) 2.44648 + 1.77747i 0.133071 + 0.0966816i
\(339\) −0.223278 0.687178i −0.0121268 0.0373224i
\(340\) 6.99118 0.379150
\(341\) 0 0
\(342\) 4.05236 0.219126
\(343\) −0.309017 0.951057i −0.0166853 0.0513522i
\(344\) −0.579798 0.421248i −0.0312606 0.0227121i
\(345\) −3.13352 + 2.27664i −0.168703 + 0.122570i
\(346\) 0.413281 1.27195i 0.0222181 0.0683803i
\(347\) 8.55415 26.3270i 0.459211 1.41331i −0.406909 0.913469i \(-0.633393\pi\)
0.866120 0.499837i \(-0.166607\pi\)
\(348\) 2.25178 1.63601i 0.120708 0.0876995i
\(349\) −8.94813 6.50120i −0.478983 0.348001i 0.321949 0.946757i \(-0.395662\pi\)
−0.800932 + 0.598756i \(0.795662\pi\)
\(350\) 0.0858158 + 0.264114i 0.00458705 + 0.0141175i
\(351\) −6.69733 −0.357477
\(352\) 0 0
\(353\) 31.9202 1.69894 0.849469 0.527638i \(-0.176922\pi\)
0.849469 + 0.527638i \(0.176922\pi\)
\(354\) 0.0440580 + 0.135596i 0.00234165 + 0.00720687i
\(355\) 9.12708 + 6.63121i 0.484415 + 0.351948i
\(356\) 2.73650 1.98819i 0.145034 0.105374i
\(357\) 0.0973416 0.299587i 0.00515186 0.0158558i
\(358\) −0.303036 + 0.932648i −0.0160159 + 0.0492920i
\(359\) 2.89488 2.10325i 0.152786 0.111005i −0.508766 0.860905i \(-0.669898\pi\)
0.661552 + 0.749899i \(0.269898\pi\)
\(360\) −5.32373 3.86791i −0.280585 0.203857i
\(361\) 5.50867 + 16.9539i 0.289930 + 0.892312i
\(362\) −2.45003 −0.128771
\(363\) 0 0
\(364\) −10.0072 −0.524520
\(365\) −11.4501 35.2399i −0.599327 1.84454i
\(366\) −0.0343015 0.0249215i −0.00179297 0.00130267i
\(367\) −1.85586 + 1.34836i −0.0968750 + 0.0703838i −0.635168 0.772374i \(-0.719069\pi\)
0.538293 + 0.842758i \(0.319069\pi\)
\(368\) 8.08870 24.8944i 0.421652 1.29771i
\(369\) 6.15652 18.9478i 0.320496 0.986385i
\(370\) 1.81965 1.32205i 0.0945992 0.0687303i
\(371\) 5.32469 + 3.86861i 0.276444 + 0.200848i
\(372\) 1.01467 + 3.12283i 0.0526081 + 0.161911i
\(373\) −7.96856 −0.412596 −0.206298 0.978489i \(-0.566142\pi\)
−0.206298 + 0.978489i \(0.566142\pi\)
\(374\) 0 0
\(375\) −2.06289 −0.106527
\(376\) 1.86385 + 5.73635i 0.0961209 + 0.295830i
\(377\) −27.0764 19.6721i −1.39450 1.01317i
\(378\) −0.238690 + 0.173419i −0.0122769 + 0.00891969i
\(379\) −3.59115 + 11.0524i −0.184465 + 0.567724i −0.999939 0.0110695i \(-0.996476\pi\)
0.815474 + 0.578794i \(0.196476\pi\)
\(380\) 9.12005 28.0686i 0.467849 1.43989i
\(381\) 0.0512701 0.0372499i 0.00262665 0.00190837i
\(382\) 2.13308 + 1.54977i 0.109138 + 0.0792933i
\(383\) 3.88696 + 11.9628i 0.198614 + 0.611271i 0.999915 + 0.0130104i \(0.00414144\pi\)
−0.801301 + 0.598261i \(0.795859\pi\)
\(384\) −1.48632 −0.0758482
\(385\) 0 0
\(386\) 5.07741 0.258433
\(387\) −0.731867 2.25246i −0.0372029 0.114499i
\(388\) −19.0419 13.8347i −0.966706 0.702353i
\(389\) 0.354587 0.257623i 0.0179783 0.0130620i −0.578760 0.815498i \(-0.696463\pi\)
0.596738 + 0.802436i \(0.296463\pi\)
\(390\) 0.196290 0.604119i 0.00993954 0.0305908i
\(391\) 3.14637 9.68354i 0.159119 0.489718i
\(392\) −0.722670 + 0.525051i −0.0365004 + 0.0265191i
\(393\) 2.92615 + 2.12597i 0.147605 + 0.107241i
\(394\) 1.68482 + 5.18534i 0.0848799 + 0.261233i
\(395\) 6.12128 0.307995
\(396\) 0 0
\(397\) 16.8147 0.843905 0.421952 0.906618i \(-0.361345\pi\)
0.421952 + 0.906618i \(0.361345\pi\)
\(398\) −1.30862 4.02753i −0.0655954 0.201882i
\(399\) −1.07582 0.781627i −0.0538582 0.0391303i
\(400\) −3.67039 + 2.66669i −0.183519 + 0.133335i
\(401\) 11.3906 35.0568i 0.568821 1.75065i −0.0874935 0.996165i \(-0.527886\pi\)
0.656315 0.754487i \(-0.272114\pi\)
\(402\) −0.0252236 + 0.0776302i −0.00125804 + 0.00387184i
\(403\) 31.9421 23.2073i 1.59115 1.15604i
\(404\) 5.82311 + 4.23074i 0.289711 + 0.210487i
\(405\) −6.60895 20.3402i −0.328401 1.01072i
\(406\) −1.47437 −0.0731720
\(407\) 0 0
\(408\) −0.281384 −0.0139306
\(409\) −5.02891 15.4774i −0.248664 0.765308i −0.995012 0.0997528i \(-0.968195\pi\)
0.746349 0.665555i \(-0.231805\pi\)
\(410\) 3.08229 + 2.23941i 0.152223 + 0.110597i
\(411\) 1.65329 1.20118i 0.0815506 0.0592500i
\(412\) 0.693496 2.13436i 0.0341661 0.105152i
\(413\) −0.888810 + 2.73548i −0.0437355 + 0.134604i
\(414\) −3.82647 + 2.78009i −0.188061 + 0.136634i
\(415\) −4.53813 3.29714i −0.222768 0.161850i
\(416\) 4.16142 + 12.8075i 0.204030 + 0.627940i
\(417\) 1.05763 0.0517922
\(418\) 0 0
\(419\) 5.56352 0.271796 0.135898 0.990723i \(-0.456608\pi\)
0.135898 + 0.990723i \(0.456608\pi\)
\(420\) 0.329320 + 1.01354i 0.0160692 + 0.0494559i
\(421\) −17.3869 12.6323i −0.847386 0.615662i 0.0770384 0.997028i \(-0.475454\pi\)
−0.924424 + 0.381366i \(0.875454\pi\)
\(422\) 1.38471 1.00605i 0.0674066 0.0489738i
\(423\) −6.15946 + 18.9569i −0.299483 + 0.921714i
\(424\) 1.81678 5.59146i 0.0882304 0.271545i
\(425\) −1.42772 + 1.03730i −0.0692547 + 0.0503165i
\(426\) −0.181295 0.131718i −0.00878376 0.00638178i
\(427\) −0.264315 0.813478i −0.0127911 0.0393670i
\(428\) 2.27455 0.109944
\(429\) 0 0
\(430\) 0.452910 0.0218413
\(431\) 8.56557 + 26.3621i 0.412589 + 1.26982i 0.914390 + 0.404835i \(0.132671\pi\)
−0.501801 + 0.864983i \(0.667329\pi\)
\(432\) −3.89945 2.83312i −0.187613 0.136309i
\(433\) −7.51424 + 5.45942i −0.361112 + 0.262363i −0.753516 0.657430i \(-0.771644\pi\)
0.392404 + 0.919793i \(0.371644\pi\)
\(434\) 0.537482 1.65420i 0.0258000 0.0794041i
\(435\) −1.10138 + 3.38971i −0.0528073 + 0.162524i
\(436\) −14.6664 + 10.6558i −0.702393 + 0.510319i
\(437\) −34.7736 25.2645i −1.66345 1.20857i
\(438\) 0.227439 + 0.699984i 0.0108674 + 0.0334465i
\(439\) 14.7118 0.702156 0.351078 0.936346i \(-0.385815\pi\)
0.351078 + 0.936346i \(0.385815\pi\)
\(440\) 0 0
\(441\) −2.95198 −0.140571
\(442\) 0.516002 + 1.58809i 0.0245437 + 0.0755378i
\(443\) −1.97679 1.43622i −0.0939202 0.0682370i 0.539834 0.841771i \(-0.318487\pi\)
−0.633754 + 0.773534i \(0.718487\pi\)
\(444\) 1.37653 1.00011i 0.0653274 0.0474631i
\(445\) −1.33847 + 4.11939i −0.0634496 + 0.195278i
\(446\) −1.22501 + 3.77019i −0.0580059 + 0.178524i
\(447\) −0.163437 + 0.118744i −0.00773029 + 0.00561638i
\(448\) −5.49964 3.99573i −0.259834 0.188780i
\(449\) 1.47381 + 4.53592i 0.0695534 + 0.214063i 0.979791 0.200022i \(-0.0641014\pi\)
−0.910238 + 0.414086i \(0.864101\pi\)
\(450\) 0.819782 0.0386449
\(451\) 0 0
\(452\) −6.42593 −0.302250
\(453\) 1.22539 + 3.77138i 0.0575740 + 0.177195i
\(454\) 4.69917 + 3.41414i 0.220543 + 0.160234i
\(455\) 10.3671 7.53216i 0.486019 0.353113i
\(456\) −0.367067 + 1.12972i −0.0171895 + 0.0529038i
\(457\) −9.60657 + 29.5660i −0.449376 + 1.38304i 0.428236 + 0.903667i \(0.359135\pi\)
−0.877612 + 0.479371i \(0.840865\pi\)
\(458\) −3.63033 + 2.63759i −0.169634 + 0.123246i
\(459\) −1.51682 1.10204i −0.0707993 0.0514387i
\(460\) 10.6446 + 32.7608i 0.496308 + 1.52748i
\(461\) −29.7215 −1.38427 −0.692134 0.721769i \(-0.743329\pi\)
−0.692134 + 0.721769i \(0.743329\pi\)
\(462\) 0 0
\(463\) −25.4553 −1.18301 −0.591505 0.806302i \(-0.701466\pi\)
−0.591505 + 0.806302i \(0.701466\pi\)
\(464\) −7.44320 22.9078i −0.345542 1.06347i
\(465\) −3.40163 2.47143i −0.157747 0.114610i
\(466\) 3.69945 2.68780i 0.171374 0.124510i
\(467\) −0.984192 + 3.02903i −0.0455430 + 0.140167i −0.971242 0.238093i \(-0.923478\pi\)
0.925699 + 0.378260i \(0.123478\pi\)
\(468\) −9.12870 + 28.0953i −0.421974 + 1.29870i
\(469\) −1.33219 + 0.967895i −0.0615149 + 0.0446932i
\(470\) −3.08376 2.24048i −0.142243 0.103346i
\(471\) 0.831085 + 2.55782i 0.0382944 + 0.117858i
\(472\) 2.56927 0.118260
\(473\) 0 0
\(474\) −0.121590 −0.00558479
\(475\) 2.30214 + 7.08527i 0.105630 + 0.325095i
\(476\) −2.26645 1.64667i −0.103883 0.0754752i
\(477\) 15.7184 11.4201i 0.719695 0.522889i
\(478\) 1.19537 3.67898i 0.0546750 0.168272i
\(479\) −0.999218 + 3.07528i −0.0456554 + 0.140513i −0.971286 0.237916i \(-0.923536\pi\)
0.925630 + 0.378429i \(0.123536\pi\)
\(480\) 1.16022 0.842948i 0.0529565 0.0384751i
\(481\) −16.5520 12.0258i −0.754708 0.548328i
\(482\) −1.68836 5.19625i −0.0769028 0.236683i
\(483\) 1.55208 0.0706220
\(484\) 0 0
\(485\) 30.1398 1.36858
\(486\) 0.404791 + 1.24582i 0.0183617 + 0.0565114i
\(487\) −7.98577 5.80200i −0.361870 0.262914i 0.391962 0.919982i \(-0.371797\pi\)
−0.753832 + 0.657068i \(0.771797\pi\)
\(488\) −0.618130 + 0.449098i −0.0279814 + 0.0203297i
\(489\) −0.548430 + 1.68790i −0.0248009 + 0.0763293i
\(490\) 0.174445 0.536886i 0.00788062 0.0242541i
\(491\) 3.41891 2.48398i 0.154293 0.112101i −0.507960 0.861381i \(-0.669600\pi\)
0.662253 + 0.749280i \(0.269600\pi\)
\(492\) 2.33169 + 1.69408i 0.105121 + 0.0763748i
\(493\) −2.89528 8.91077i −0.130397 0.401321i
\(494\) 7.04910 0.317154
\(495\) 0 0
\(496\) 28.4152 1.27588
\(497\) −1.39700 4.29951i −0.0626638 0.192859i
\(498\) 0.0901427 + 0.0654925i 0.00403939 + 0.00293479i
\(499\) 16.5001 11.9880i 0.738647 0.536658i −0.153640 0.988127i \(-0.549100\pi\)
0.892287 + 0.451468i \(0.149100\pi\)
\(500\) −5.66932 + 17.4484i −0.253540 + 0.780315i
\(501\) −0.883786 + 2.72001i −0.0394846 + 0.121521i
\(502\) 2.17684 1.58157i 0.0971573 0.0705889i
\(503\) −19.3834 14.0829i −0.864265 0.627925i 0.0647768 0.997900i \(-0.479366\pi\)
−0.929042 + 0.369974i \(0.879366\pi\)
\(504\) 0.814852 + 2.50786i 0.0362964 + 0.111709i
\(505\) −9.21692 −0.410147
\(506\) 0 0
\(507\) −2.92934 −0.130097
\(508\) −0.174165 0.536026i −0.00772734 0.0237823i
\(509\) −2.98803 2.17093i −0.132442 0.0962249i 0.519592 0.854415i \(-0.326084\pi\)
−0.652034 + 0.758190i \(0.726084\pi\)
\(510\) 0.143863 0.104523i 0.00637037 0.00462835i
\(511\) −4.58827 + 14.1212i −0.202973 + 0.624687i
\(512\) −5.03515 + 15.4966i −0.222524 + 0.684859i
\(513\) −6.40324 + 4.65223i −0.282710 + 0.205401i
\(514\) 4.20205 + 3.05297i 0.185344 + 0.134661i
\(515\) 0.888038 + 2.73310i 0.0391316 + 0.120435i
\(516\) 0.342618 0.0150829
\(517\) 0 0
\(518\) −0.901299 −0.0396008
\(519\) 0.400342 + 1.23213i 0.0175731 + 0.0540844i
\(520\) −9.26065 6.72825i −0.406106 0.295053i
\(521\) 0.192764 0.140051i 0.00844515 0.00613576i −0.583555 0.812074i \(-0.698339\pi\)
0.592000 + 0.805938i \(0.298339\pi\)
\(522\) −1.34494 + 4.13931i −0.0588666 + 0.181173i
\(523\) 6.79573 20.9151i 0.297156 0.914553i −0.685332 0.728231i \(-0.740343\pi\)
0.982489 0.186323i \(-0.0596570\pi\)
\(524\) 26.0237 18.9073i 1.13685 0.825971i
\(525\) −0.217635 0.158121i −0.00949838 0.00690097i
\(526\) 0.135454 + 0.416885i 0.00590609 + 0.0181771i
\(527\) 11.0531 0.481479
\(528\) 0 0
\(529\) 27.1678 1.18121
\(530\) 1.14814 + 3.53361i 0.0498720 + 0.153490i
\(531\) 6.86907 + 4.99067i 0.298092 + 0.216577i
\(532\) −9.56778 + 6.95140i −0.414816 + 0.301381i
\(533\) 10.7093 32.9598i 0.463871 1.42765i
\(534\) 0.0265866 0.0818251i 0.00115051 0.00354092i
\(535\) −2.35636 + 1.71199i −0.101874 + 0.0740159i
\(536\) 1.19001 + 0.864591i 0.0514005 + 0.0373446i
\(537\) −0.293549 0.903450i −0.0126676 0.0389868i
\(538\) −1.62573 −0.0700900
\(539\) 0 0
\(540\) 6.34305 0.272961
\(541\) −8.84744 27.2296i −0.380381 1.17069i −0.939776 0.341791i \(-0.888966\pi\)
0.559395 0.828901i \(-0.311034\pi\)
\(542\) −0.217982 0.158373i −0.00936314 0.00680272i
\(543\) 1.92006 1.39501i 0.0823978 0.0598655i
\(544\) −1.16498 + 3.58543i −0.0499479 + 0.153724i
\(545\) 7.17359 22.0780i 0.307283 0.945719i
\(546\) −0.205926 + 0.149614i −0.00881284 + 0.00640290i
\(547\) 5.18456 + 3.76681i 0.221676 + 0.161057i 0.693081 0.720860i \(-0.256253\pi\)
−0.471405 + 0.881917i \(0.656253\pi\)
\(548\) −5.61624 17.2850i −0.239914 0.738379i
\(549\) −2.52495 −0.107762
\(550\) 0 0
\(551\) −39.5524 −1.68499
\(552\) −0.428429 1.31857i −0.0182351 0.0561220i
\(553\) −1.98444 1.44178i −0.0843871 0.0613108i
\(554\) −1.89236 + 1.37488i −0.0803985 + 0.0584129i
\(555\) −0.673286 + 2.07216i −0.0285794 + 0.0879583i
\(556\) 2.90661 8.94563i 0.123268 0.379379i
\(557\) −18.2185 + 13.2365i −0.771941 + 0.560848i −0.902550 0.430586i \(-0.858307\pi\)
0.130608 + 0.991434i \(0.458307\pi\)
\(558\) −4.15387 3.01796i −0.175847 0.127761i
\(559\) −1.27309 3.91816i −0.0538458 0.165720i
\(560\) 9.22243 0.389719
\(561\) 0 0
\(562\) −2.97498 −0.125492
\(563\) 9.21696 + 28.3669i 0.388449 + 1.19552i 0.933948 + 0.357410i \(0.116340\pi\)
−0.545499 + 0.838111i \(0.683660\pi\)
\(564\) −2.33281 1.69488i −0.0982289 0.0713674i
\(565\) 6.65705 4.83663i 0.280064 0.203478i
\(566\) 0.0209731 0.0645485i 0.000881564 0.00271318i
\(567\) −2.64832 + 8.15069i −0.111219 + 0.342297i
\(568\) −3.26703 + 2.37363i −0.137081 + 0.0995955i
\(569\) 23.6851 + 17.2082i 0.992930 + 0.721406i 0.960561 0.278070i \(-0.0896947\pi\)
0.0323695 + 0.999476i \(0.489695\pi\)
\(570\) −0.231974 0.713942i −0.00971632 0.0299037i
\(571\) −37.9252 −1.58712 −0.793559 0.608493i \(-0.791774\pi\)
−0.793559 + 0.608493i \(0.791774\pi\)
\(572\) 0 0
\(573\) −2.55409 −0.106699
\(574\) −0.471776 1.45198i −0.0196916 0.0606044i
\(575\) −7.03462 5.11095i −0.293364 0.213141i
\(576\) −16.2349 + 11.7953i −0.676452 + 0.491471i
\(577\) 2.71089 8.34327i 0.112856 0.347335i −0.878638 0.477489i \(-0.841547\pi\)
0.991494 + 0.130154i \(0.0415471\pi\)
\(578\) 1.04390 3.21279i 0.0434205 0.133635i
\(579\) −3.97911 + 2.89100i −0.165366 + 0.120146i
\(580\) 25.6440 + 18.6315i 1.06481 + 0.773630i
\(581\) 0.694608 + 2.13778i 0.0288172 + 0.0886902i
\(582\) −0.598679 −0.0248161
\(583\) 0 0
\(584\) 13.2632 0.548836
\(585\) −11.6895 35.9767i −0.483303 1.48745i
\(586\) −2.95451 2.14658i −0.122050 0.0886743i
\(587\) −7.41878 + 5.39006i −0.306206 + 0.222472i −0.730267 0.683162i \(-0.760604\pi\)
0.424061 + 0.905634i \(0.360604\pi\)
\(588\) 0.131964 0.406145i 0.00544212 0.0167491i
\(589\) 14.4188 44.3765i 0.594117 1.82850i
\(590\) −1.31359 + 0.954380i −0.0540797 + 0.0392912i
\(591\) −4.27282 3.10439i −0.175760 0.127697i
\(592\) −4.55010 14.0038i −0.187008 0.575551i
\(593\) −7.25596 −0.297967 −0.148983 0.988840i \(-0.547600\pi\)
−0.148983 + 0.988840i \(0.547600\pi\)
\(594\) 0 0
\(595\) 3.58738 0.147068
\(596\) 0.555196 + 1.70872i 0.0227417 + 0.0699919i
\(597\) 3.31877 + 2.41122i 0.135828 + 0.0986848i
\(598\) −6.65616 + 4.83598i −0.272191 + 0.197758i
\(599\) −6.18592 + 19.0383i −0.252750 + 0.777884i 0.741515 + 0.670936i \(0.234108\pi\)
−0.994265 + 0.106947i \(0.965892\pi\)
\(600\) −0.0742568 + 0.228539i −0.00303152 + 0.00933007i
\(601\) −9.11808 + 6.62467i −0.371934 + 0.270226i −0.758013 0.652240i \(-0.773829\pi\)
0.386078 + 0.922466i \(0.373829\pi\)
\(602\) −0.146828 0.106677i −0.00598425 0.00434781i
\(603\) 1.50212 + 4.62306i 0.0611712 + 0.188266i
\(604\) 35.2668 1.43499
\(605\) 0 0
\(606\) 0.183079 0.00743709
\(607\) 4.17977 + 12.8640i 0.169652 + 0.522135i 0.999349 0.0360793i \(-0.0114869\pi\)
−0.829697 + 0.558214i \(0.811487\pi\)
\(608\) 12.8753 + 9.35444i 0.522162 + 0.379373i
\(609\) 1.15545 0.839485i 0.0468213 0.0340177i
\(610\) 0.149210 0.459221i 0.00604134 0.0185933i
\(611\) −10.7144 + 32.9756i −0.433459 + 1.33405i
\(612\) −6.69053 + 4.86095i −0.270449 + 0.196492i
\(613\) −24.9151 18.1019i −1.00631 0.731129i −0.0428801 0.999080i \(-0.513653\pi\)
−0.963432 + 0.267951i \(0.913653\pi\)
\(614\) −2.00186 6.16109i −0.0807884 0.248641i
\(615\) −3.69064 −0.148821
\(616\) 0 0
\(617\) 23.6896 0.953707 0.476853 0.878983i \(-0.341777\pi\)
0.476853 + 0.878983i \(0.341777\pi\)
\(618\) −0.0176395 0.0542887i −0.000709563 0.00218381i
\(619\) 26.2832 + 19.0958i 1.05641 + 0.767527i 0.973421 0.229024i \(-0.0735533\pi\)
0.0829892 + 0.996550i \(0.473553\pi\)
\(620\) −30.2524 + 21.9797i −1.21497 + 0.882725i
\(621\) 2.85468 8.78580i 0.114554 0.352562i
\(622\) 2.22451 6.84634i 0.0891948 0.274513i
\(623\) 1.40418 1.02020i 0.0562573 0.0408733i
\(624\) −3.36420 2.44423i −0.134676 0.0978476i
\(625\) −9.15651 28.1808i −0.366260 1.12723i
\(626\) −0.00774169 −0.000309420
\(627\) 0 0
\(628\) 23.9186 0.954456
\(629\) −1.76991 5.44724i −0.0705711 0.217196i
\(630\) −1.34818 0.979509i −0.0537127 0.0390246i
\(631\) 12.2431 8.89515i 0.487391 0.354110i −0.316789 0.948496i \(-0.602605\pi\)
0.804180 + 0.594386i \(0.202605\pi\)
\(632\) −0.677089 + 2.08387i −0.0269332 + 0.0828917i
\(633\) −0.512354 + 1.57686i −0.0203642 + 0.0626747i
\(634\) 4.09746 2.97698i 0.162731 0.118231i
\(635\) 0.583882 + 0.424215i 0.0231707 + 0.0168345i
\(636\) 0.868547 + 2.67311i 0.0344401 + 0.105996i
\(637\) −5.13499 −0.203456
\(638\) 0 0
\(639\) −13.3452 −0.527929
\(640\) −5.23063 16.0982i −0.206759 0.636338i
\(641\) 13.3894 + 9.72799i 0.528850 + 0.384232i 0.819928 0.572467i \(-0.194014\pi\)
−0.291077 + 0.956700i \(0.594014\pi\)
\(642\) 0.0468052 0.0340060i 0.00184726 0.00134211i
\(643\) 0.616506 1.89741i 0.0243126 0.0748266i −0.938164 0.346191i \(-0.887475\pi\)
0.962477 + 0.271365i \(0.0874749\pi\)
\(644\) 4.26549 13.1278i 0.168084 0.517308i
\(645\) −0.354941 + 0.257880i −0.0139758 + 0.0101540i
\(646\) 1.59649 + 1.15992i 0.0628132 + 0.0456365i
\(647\) 12.5003 + 38.4719i 0.491436 + 1.51248i 0.822438 + 0.568855i \(0.192613\pi\)
−0.331002 + 0.943630i \(0.607387\pi\)
\(648\) 7.65545 0.300735
\(649\) 0 0
\(650\) 1.42602 0.0559329
\(651\) 0.520655 + 1.60241i 0.0204061 + 0.0628035i
\(652\) 12.7694 + 9.27749i 0.500087 + 0.363335i
\(653\) 33.5626 24.3846i 1.31341 0.954245i 0.313416 0.949616i \(-0.398527\pi\)
0.999989 0.00462886i \(-0.00147342\pi\)
\(654\) −0.142492 + 0.438545i −0.00557187 + 0.0171485i
\(655\) −12.7286 + 39.1747i −0.497349 + 1.53068i
\(656\) 20.1781 14.6603i 0.787823 0.572387i
\(657\) 35.4599 + 25.7631i 1.38342 + 1.00512i
\(658\) 0.472001 + 1.45267i 0.0184005 + 0.0566310i
\(659\) 51.1359 1.99197 0.995985 0.0895158i \(-0.0285320\pi\)
0.995985 + 0.0895158i \(0.0285320\pi\)
\(660\) 0 0
\(661\) −42.8840 −1.66800 −0.833998 0.551768i \(-0.813954\pi\)
−0.833998 + 0.551768i \(0.813954\pi\)
\(662\) −0.751997 2.31441i −0.0292272 0.0899521i
\(663\) −1.30862 0.950767i −0.0508225 0.0369247i
\(664\) 1.62442 1.18021i 0.0630396 0.0458010i
\(665\) 4.67976 14.4028i 0.181473 0.558518i
\(666\) −0.822177 + 2.53040i −0.0318587 + 0.0980510i
\(667\) 37.3477 27.1347i 1.44611 1.05066i
\(668\) 20.5776 + 14.9505i 0.796172 + 0.578453i
\(669\) −1.18666 3.65216i −0.0458789 0.141201i
\(670\) −0.929577 −0.0359127
\(671\) 0 0
\(672\) −0.574672 −0.0221685
\(673\) 7.72766 + 23.7833i 0.297879 + 0.916778i 0.982239 + 0.187634i \(0.0600818\pi\)
−0.684360 + 0.729145i \(0.739918\pi\)
\(674\) −1.37347 0.997882i −0.0529040 0.0384370i
\(675\) −1.29536 + 0.941135i −0.0498585 + 0.0362243i
\(676\) −8.05054 + 24.7770i −0.309636 + 0.952962i
\(677\) 3.06511 9.43343i 0.117802 0.362556i −0.874719 0.484630i \(-0.838954\pi\)
0.992521 + 0.122073i \(0.0389543\pi\)
\(678\) −0.132232 + 0.0960719i −0.00507832 + 0.00368962i
\(679\) −9.77095 7.09901i −0.374975 0.272435i
\(680\) −0.990244 3.04766i −0.0379741 0.116872i
\(681\) −5.62665 −0.215614
\(682\) 0 0
\(683\) −39.8980 −1.52666 −0.763328 0.646011i \(-0.776436\pi\)
−0.763328 + 0.646011i \(0.776436\pi\)
\(684\) 10.7882 + 33.2027i 0.412498 + 1.26954i
\(685\) 18.8282 + 13.6795i 0.719389 + 0.522667i
\(686\) −0.183009 + 0.132964i −0.00698731 + 0.00507658i
\(687\) 1.34325 4.13410i 0.0512482 0.157726i
\(688\) 0.916225 2.81985i 0.0349307 0.107506i
\(689\) 27.3422 19.8653i 1.04165 0.756806i
\(690\) 0.708838 + 0.515001i 0.0269850 + 0.0196058i
\(691\) −2.04384 6.29029i −0.0777513 0.239294i 0.904625 0.426209i \(-0.140151\pi\)
−0.982376 + 0.186915i \(0.940151\pi\)
\(692\) 11.5218 0.437995
\(693\) 0 0
\(694\) −6.26194 −0.237700
\(695\) 3.72199 + 11.4551i 0.141183 + 0.434517i
\(696\) −1.03213 0.749887i −0.0391228 0.0284244i
\(697\) 7.84897 5.70261i 0.297301 0.216002i
\(698\) −0.773164 + 2.37955i −0.0292647 + 0.0900674i
\(699\) −1.36883 + 4.21281i −0.0517737 + 0.159343i
\(700\) −1.93554 + 1.40625i −0.0731565 + 0.0531513i
\(701\) 11.8130 + 8.58261i 0.446169 + 0.324161i 0.788081 0.615571i \(-0.211075\pi\)
−0.341912 + 0.939732i \(0.611075\pi\)
\(702\) 0.468165 + 1.44086i 0.0176697 + 0.0543818i
\(703\) −24.1788 −0.911920
\(704\) 0 0
\(705\) 3.69240 0.139064
\(706\) −2.23132 6.86730i −0.0839768 0.258454i
\(707\) 2.98801 + 2.17091i 0.112376 + 0.0816456i
\(708\) −0.993708 + 0.721971i −0.0373458 + 0.0271333i
\(709\) −1.28058 + 3.94123i −0.0480934 + 0.148016i −0.972219 0.234072i \(-0.924795\pi\)
0.924126 + 0.382088i \(0.124795\pi\)
\(710\) 0.788626 2.42714i 0.0295966 0.0910890i
\(711\) −5.85804 + 4.25611i −0.219694 + 0.159617i
\(712\) −1.25431 0.911310i −0.0470073 0.0341528i
\(713\) 16.8291 + 51.7948i 0.630256 + 1.93973i
\(714\) −0.0712575 −0.00266674
\(715\) 0 0
\(716\) −8.44832 −0.315729
\(717\) 1.15795 + 3.56380i 0.0432444 + 0.133093i
\(718\) −0.654854 0.475779i −0.0244389 0.0177559i
\(719\) −13.7713 + 10.0054i −0.513583 + 0.373140i −0.814181 0.580611i \(-0.802814\pi\)
0.300598 + 0.953751i \(0.402814\pi\)
\(720\) 8.41282 25.8920i 0.313527 0.964938i
\(721\) 0.355853 1.09520i 0.0132526 0.0407874i
\(722\) 3.26239 2.37027i 0.121414 0.0882122i
\(723\) 4.28181 + 3.11092i 0.159242 + 0.115696i
\(724\) −6.52248 20.0741i −0.242406 0.746049i
\(725\) −8.00136 −0.297163
\(726\) 0 0
\(727\) −21.6199 −0.801837 −0.400918 0.916114i \(-0.631309\pi\)
−0.400918 + 0.916114i \(0.631309\pi\)
\(728\) 1.41744 + 4.36243i 0.0525338 + 0.161682i
\(729\) 19.7736 + 14.3664i 0.732356 + 0.532088i
\(730\) −6.78110 + 4.92676i −0.250980 + 0.182347i
\(731\) 0.356397 1.09688i 0.0131818 0.0405694i
\(732\) 0.112875 0.347392i 0.00417197 0.0128400i
\(733\) −39.0210 + 28.3504i −1.44127 + 1.04715i −0.453497 + 0.891258i \(0.649824\pi\)
−0.987775 + 0.155887i \(0.950176\pi\)
\(734\) 0.419816 + 0.305014i 0.0154957 + 0.0112583i
\(735\) 0.168984 + 0.520079i 0.00623306 + 0.0191834i
\(736\) −18.5751 −0.684688
\(737\) 0 0
\(738\) −4.50679 −0.165897
\(739\) 2.52265 + 7.76392i 0.0927973 + 0.285601i 0.986673 0.162713i \(-0.0520246\pi\)
−0.893876 + 0.448314i \(0.852025\pi\)
\(740\) 15.6764 + 11.3896i 0.576278 + 0.418690i
\(741\) −5.52430 + 4.01364i −0.202940 + 0.147445i
\(742\) 0.460080 1.41598i 0.0168901 0.0519822i
\(743\) −6.04476 + 18.6039i −0.221761 + 0.682509i 0.776844 + 0.629694i \(0.216820\pi\)
−0.998604 + 0.0528156i \(0.983180\pi\)
\(744\) 1.21761 0.884646i 0.0446398 0.0324327i
\(745\) −1.86127 1.35229i −0.0681918 0.0495442i
\(746\) 0.557027 + 1.71435i 0.0203942 + 0.0627669i
\(747\) 6.63546 0.242779
\(748\) 0 0
\(749\) 1.16714 0.0426462
\(750\) 0.144202 + 0.443810i 0.00526553 + 0.0162056i
\(751\) −0.903104 0.656143i −0.0329547 0.0239430i 0.571186 0.820821i \(-0.306484\pi\)
−0.604141 + 0.796878i \(0.706484\pi\)
\(752\) −20.1877 + 14.6673i −0.736171 + 0.534860i
\(753\) −0.805450 + 2.47892i −0.0293522 + 0.0903369i
\(754\) −2.33953 + 7.20035i −0.0852008 + 0.262221i
\(755\) −36.5352 + 26.5444i −1.32965 + 0.966050i
\(756\) −2.05633 1.49401i −0.0747882 0.0543368i
\(757\) −8.21284 25.2765i −0.298501 0.918691i −0.982023 0.188761i \(-0.939553\pi\)
0.683522 0.729930i \(-0.260447\pi\)
\(758\) 2.62885 0.0954840
\(759\) 0 0
\(760\) −13.5277 −0.490701
\(761\) −1.94682 5.99168i −0.0705720 0.217198i 0.909550 0.415595i \(-0.136427\pi\)
−0.980122 + 0.198397i \(0.936427\pi\)
\(762\) −0.0115979 0.00842636i −0.000420147 0.000305255i
\(763\) −7.52575 + 5.46778i −0.272451 + 0.197947i
\(764\) −7.01926 + 21.6030i −0.253948 + 0.781571i
\(765\) 3.27245 10.0716i 0.118316 0.364138i
\(766\) 2.30197 1.67248i 0.0831735 0.0604291i
\(767\) 11.9488 + 8.68130i 0.431445 + 0.313463i
\(768\) −0.816743 2.51368i −0.0294717 0.0907044i
\(769\) −13.1916 −0.475700 −0.237850 0.971302i \(-0.576443\pi\)
−0.237850 + 0.971302i \(0.576443\pi\)
\(770\) 0 0
\(771\) −5.03141 −0.181202
\(772\) 13.5171 + 41.6014i 0.486491 + 1.49727i
\(773\) −37.0674 26.9310i −1.33322 0.968641i −0.999664 0.0259112i \(-0.991751\pi\)
−0.333556 0.942730i \(-0.608249\pi\)
\(774\) −0.433433 + 0.314907i −0.0155794 + 0.0113191i
\(775\) 2.91689 8.97726i 0.104778 0.322473i
\(776\) −3.33383 + 10.2605i −0.119678 + 0.368330i
\(777\) 0.706339 0.513185i 0.0253398 0.0184104i
\(778\) −0.0802116 0.0582772i −0.00287573 0.00208934i
\(779\) −12.6561 38.9516i −0.453454 1.39559i
\(780\) 5.47237 0.195942
\(781\) 0 0
\(782\) −2.30326 −0.0823643
\(783\) −2.62687 8.08467i −0.0938766 0.288923i
\(784\) −2.98979 2.17221i −0.106778 0.0775790i
\(785\) −24.7789 + 18.0029i −0.884396 + 0.642551i
\(786\) 0.252834 0.778144i 0.00901830 0.0277555i
\(787\) 5.82433 17.9255i 0.207615 0.638973i −0.791981 0.610546i \(-0.790950\pi\)
0.999596 0.0284274i \(-0.00904994\pi\)
\(788\) −38.0003 + 27.6089i −1.35371 + 0.983525i
\(789\) −0.343522 0.249583i −0.0122297 0.00888540i
\(790\) −0.427897 1.31693i −0.0152239 0.0468543i
\(791\) −3.29733 −0.117240
\(792\) 0 0
\(793\) −4.39217 −0.155970
\(794\) −1.17540 3.61751i −0.0417134 0.128381i
\(795\) −2.91177 2.11552i −0.103270 0.0750298i
\(796\) 29.5154 21.4442i 1.04615 0.760070i
\(797\) −8.70234 + 26.7830i −0.308253 + 0.948704i 0.670191 + 0.742189i \(0.266212\pi\)
−0.978443 + 0.206515i \(0.933788\pi\)
\(798\) −0.0929560 + 0.286089i −0.00329061 + 0.0101274i
\(799\) −7.85271 + 5.70533i −0.277809 + 0.201840i
\(800\) 2.60464 + 1.89238i 0.0920879 + 0.0669058i
\(801\) −1.58329 4.87287i −0.0559429 0.172174i
\(802\) −8.33835 −0.294437
\(803\) 0 0
\(804\) −0.703208 −0.0248002
\(805\) 5.46206 + 16.8105i 0.192512 + 0.592492i
\(806\) −7.22568 5.24976i −0.254514 0.184915i
\(807\) 1.27406 0.925662i 0.0448492 0.0325849i
\(808\) 1.01950 3.13771i 0.0358660 0.110384i
\(809\) 2.02268 6.22516i 0.0711135 0.218865i −0.909183 0.416397i \(-0.863293\pi\)
0.980296 + 0.197532i \(0.0632927\pi\)
\(810\) −3.91401 + 2.84369i −0.137524 + 0.0999172i
\(811\) 15.2133 + 11.0531i 0.534210 + 0.388127i 0.821930 0.569588i \(-0.192897\pi\)
−0.287720 + 0.957715i \(0.592897\pi\)
\(812\) −3.92509 12.0802i −0.137744 0.423931i
\(813\) 0.261006 0.00915387
\(814\) 0 0
\(815\) −20.2116 −0.707980
\(816\) −0.359735 1.10715i −0.0125932 0.0387580i
\(817\) −3.93889 2.86177i −0.137804 0.100121i
\(818\) −2.97827 + 2.16384i −0.104133 + 0.0756568i
\(819\) −4.68420 + 14.4165i −0.163679 + 0.503753i
\(820\) −10.1428 + 31.2163i −0.354201 + 1.09012i
\(821\) −9.37489 + 6.81125i −0.327186 + 0.237714i −0.739236 0.673447i \(-0.764813\pi\)
0.412050 + 0.911161i \(0.364813\pi\)
\(822\) −0.373992 0.271721i −0.0130445 0.00947737i
\(823\) 3.81524 + 11.7421i 0.132991 + 0.409304i 0.995272 0.0971256i \(-0.0309649\pi\)
−0.862281 + 0.506430i \(0.830965\pi\)
\(824\) −1.02866 −0.0358349
\(825\) 0 0
\(826\) 0.650640 0.0226387
\(827\) 1.38927 + 4.27575i 0.0483098 + 0.148682i 0.972301 0.233730i \(-0.0750933\pi\)
−0.923992 + 0.382413i \(0.875093\pi\)
\(828\) −32.9653 23.9507i −1.14562 0.832345i
\(829\) 16.0694 11.6751i 0.558113 0.405493i −0.272655 0.962112i \(-0.587902\pi\)
0.830768 + 0.556619i \(0.187902\pi\)
\(830\) −0.392117 + 1.20681i −0.0136106 + 0.0418891i
\(831\) 0.700187 2.15495i 0.0242892 0.0747545i
\(832\) −28.2406 + 20.5180i −0.979066 + 0.711333i
\(833\) −1.16298 0.844956i −0.0402949 0.0292760i
\(834\) −0.0739314 0.227537i −0.00256003 0.00787898i
\(835\) −32.5706 −1.12715
\(836\) 0 0
\(837\) 10.0284 0.346631
\(838\) −0.388908 1.19694i −0.0134346 0.0413474i
\(839\) 35.4777 + 25.7760i 1.22483 + 0.889888i 0.996491 0.0836954i \(-0.0266723\pi\)
0.228334 + 0.973583i \(0.426672\pi\)
\(840\) 0.395187 0.287120i 0.0136353 0.00990659i
\(841\) 4.16562 12.8205i 0.143642 0.442085i
\(842\) −1.50232 + 4.62365i −0.0517732 + 0.159342i
\(843\) 2.33146 1.69390i 0.0802997 0.0583411i
\(844\) 11.9294 + 8.66721i 0.410626 + 0.298338i
\(845\) −10.3089 31.7276i −0.354638 1.09146i
\(846\) 4.50894 0.155021
\(847\) 0 0
\(848\) 24.3232 0.835261
\(849\) 0.0203165 + 0.0625277i 0.000697260 + 0.00214595i
\(850\) 0.322967 + 0.234649i 0.0110777 + 0.00804840i
\(851\) 22.8310 16.5877i 0.782636 0.568619i
\(852\) 0.596581 1.83609i 0.0204385 0.0629033i
\(853\) −12.0951 + 37.2250i −0.414130 + 1.27456i 0.498897 + 0.866661i \(0.333738\pi\)
−0.913027 + 0.407899i \(0.866262\pi\)
\(854\) −0.156535 + 0.113729i −0.00535652 + 0.00389174i
\(855\) −36.1670 26.2769i −1.23689 0.898651i
\(856\) −0.322171 0.991541i −0.0110116 0.0338902i
\(857\) −35.0524 −1.19737 −0.598684 0.800986i \(-0.704309\pi\)
−0.598684 + 0.800986i \(0.704309\pi\)
\(858\) 0 0
\(859\) −32.5206 −1.10959 −0.554794 0.831988i \(-0.687203\pi\)
−0.554794 + 0.831988i \(0.687203\pi\)
\(860\) 1.20574 + 3.71089i 0.0411154 + 0.126540i
\(861\) 1.19646 + 0.869279i 0.0407752 + 0.0296249i
\(862\) 5.07278 3.68559i 0.172779 0.125532i
\(863\) 3.92265 12.0727i 0.133529 0.410959i −0.861830 0.507198i \(-0.830681\pi\)
0.995358 + 0.0962391i \(0.0306814\pi\)
\(864\) −1.05697 + 3.25303i −0.0359590 + 0.110670i
\(865\) −11.9362 + 8.67219i −0.405844 + 0.294863i
\(866\) 1.69981 + 1.23498i 0.0577618 + 0.0419664i
\(867\) 1.01122 + 3.11221i 0.0343428 + 0.105696i
\(868\) 14.9844 0.508605
\(869\) 0 0
\(870\) 0.806251 0.0273345
\(871\) 2.61295 + 8.04183i 0.0885364 + 0.272487i
\(872\) 6.72253 + 4.88420i 0.227654 + 0.165400i
\(873\) −28.8437 + 20.9561i −0.976210 + 0.709258i
\(874\) −3.00462 + 9.24726i −0.101633 + 0.312793i
\(875\) −2.90909 + 8.95326i −0.0983452 + 0.302676i
\(876\) −5.12978 + 3.72700i −0.173319 + 0.125924i
\(877\) −22.7609 16.5367i −0.768580 0.558406i 0.132950 0.991123i \(-0.457555\pi\)
−0.901530 + 0.432717i \(0.857555\pi\)
\(878\) −1.02840 3.16509i −0.0347069 0.106817i
\(879\) 3.53765 0.119322
\(880\) 0 0
\(881\) −36.7964 −1.23970 −0.619850 0.784720i \(-0.712807\pi\)
−0.619850 + 0.784720i \(0.712807\pi\)
\(882\) 0.206353 + 0.635089i 0.00694826 + 0.0213846i
\(883\) 1.84795 + 1.34262i 0.0621885 + 0.0451826i 0.618445 0.785828i \(-0.287763\pi\)
−0.556257 + 0.831011i \(0.687763\pi\)
\(884\) −11.6382 + 8.45565i −0.391435 + 0.284394i
\(885\) 0.486040 1.49588i 0.0163380 0.0502833i
\(886\) −0.170805 + 0.525683i −0.00573830 + 0.0176607i
\(887\) 34.1952 24.8443i 1.14816 0.834190i 0.159928 0.987129i \(-0.448874\pi\)
0.988236 + 0.152939i \(0.0488738\pi\)
\(888\) −0.630951 0.458413i −0.0211733 0.0153833i
\(889\) −0.0893693 0.275050i −0.00299735 0.00922489i
\(890\) 0.979808 0.0328432
\(891\) 0 0
\(892\) −34.1520 −1.14349
\(893\) 12.6622 + 38.9702i 0.423724 + 1.30409i
\(894\) 0.0369712 + 0.0268612i 0.00123650 + 0.000898371i
\(895\) 8.75218 6.35883i 0.292553 0.212552i
\(896\) −2.09601 + 6.45084i −0.0700226 + 0.215508i
\(897\) 2.46283 7.57982i 0.0822316 0.253083i
\(898\) 0.872833 0.634151i 0.0291268 0.0211619i
\(899\) 40.5432 + 29.4564i 1.35219 + 0.982425i
\(900\) 2.18243 + 6.71683i 0.0727476 + 0.223894i
\(901\) 9.46132 0.315202
\(902\) 0 0
\(903\) 0.175807 0.00585050
\(904\) 0.910180 + 2.80125i 0.0302721 + 0.0931681i
\(905\) 21.8663 + 15.8868i 0.726862 + 0.528096i
\(906\) 0.725714 0.527262i 0.0241102 0.0175171i
\(907\) 12.2150 37.5939i 0.405592 1.24828i −0.514807 0.857306i \(-0.672136\pi\)
0.920400 0.390979i \(-0.127864\pi\)
\(908\) −15.4634 + 47.5914i −0.513171 + 1.57938i
\(909\) 8.82055 6.40850i 0.292559 0.212557i
\(910\) −2.34516 1.70386i −0.0777414 0.0564824i
\(911\) −10.8865 33.5053i −0.360687 1.11008i −0.952638 0.304106i \(-0.901642\pi\)
0.591951 0.805974i \(-0.298358\pi\)
\(912\) −4.91433 −0.162730
\(913\) 0 0
\(914\) 7.03234 0.232609
\(915\) 0.144539 + 0.444845i 0.00477831 + 0.0147061i
\(916\) −31.2755 22.7230i −1.03337 0.750789i
\(917\) 13.3535 9.70190i 0.440972 0.320385i
\(918\) −0.131061 + 0.403365i −0.00432567 + 0.0133130i
\(919\) 12.2403 37.6718i 0.403770 1.24268i −0.518147 0.855292i \(-0.673378\pi\)
0.921918 0.387386i \(-0.126622\pi\)
\(920\) 12.7736 9.28059i 0.421134 0.305972i
\(921\) 5.07686 + 3.68856i 0.167288 + 0.121542i
\(922\) 2.07763 + 6.39428i 0.0684230 + 0.210584i
\(923\) −23.2141 −0.764101
\(924\) 0 0
\(925\) −4.89131 −0.160825
\(926\) 1.77941 + 5.47645i 0.0584750 + 0.179967i
\(927\) −2.75017 1.99811i −0.0903273 0.0656267i
\(928\) −13.8284 + 10.0469i −0.453938 + 0.329805i
\(929\) 0.808565 2.48851i 0.0265281 0.0816452i −0.936916 0.349555i \(-0.886333\pi\)
0.963444 + 0.267910i \(0.0863328\pi\)
\(930\) −0.293918 + 0.904587i −0.00963796 + 0.0296626i
\(931\) −4.90950 + 3.56696i −0.160902 + 0.116902i
\(932\) 31.8710 + 23.1556i 1.04397 + 0.758489i
\(933\) 2.15487 + 6.63201i 0.0705473 + 0.217122i
\(934\) 0.720463 0.0235743
\(935\) 0 0
\(936\) 13.5405 0.442586
\(937\) −16.6375 51.2050i −0.543523 1.67279i −0.724475 0.689301i \(-0.757918\pi\)
0.180952 0.983492i \(-0.442082\pi\)
\(938\) 0.301357 + 0.218949i 0.00983966 + 0.00714893i
\(939\) 0.00606708 0.00440799i 0.000197992 0.000143849i
\(940\) 10.1476 31.2312i 0.330979 1.01865i
\(941\) −9.16161 + 28.1965i −0.298660 + 0.919181i 0.683307 + 0.730131i \(0.260541\pi\)
−0.981967 + 0.189050i \(0.939459\pi\)
\(942\) 0.492193 0.357599i 0.0160365 0.0116512i
\(943\) 38.6732 + 28.0977i 1.25937 + 0.914987i
\(944\) 3.28468 + 10.1092i 0.106907 + 0.329026i
\(945\) 3.25480 0.105879
\(946\) 0 0
\(947\) −15.7861 −0.512980 −0.256490 0.966547i \(-0.582566\pi\)
−0.256490 + 0.966547i \(0.582566\pi\)
\(948\) −0.323696 0.996235i −0.0105132 0.0323562i
\(949\) 61.6827 + 44.8151i 2.00230 + 1.45476i
\(950\) 1.36340 0.990566i 0.0442344 0.0321382i
\(951\) −1.51609 + 4.66606i −0.0491627 + 0.151307i
\(952\) −0.396808 + 1.22125i −0.0128606 + 0.0395809i
\(953\) −28.4061 + 20.6383i −0.920165 + 0.668539i −0.943565 0.331187i \(-0.892551\pi\)
0.0233999 + 0.999726i \(0.492551\pi\)
\(954\) −3.55568 2.58335i −0.115119 0.0836390i
\(955\) −8.98833 27.6632i −0.290856 0.895162i
\(956\) 33.3257 1.07783
\(957\) 0 0
\(958\) 0.731463 0.0236325
\(959\) −2.88185 8.86944i −0.0930599 0.286409i
\(960\) 3.00744 + 2.18503i 0.0970648 + 0.0705217i
\(961\) −22.7495 + 16.5285i −0.733856 + 0.533178i
\(962\) −1.43018 + 4.40164i −0.0461108 + 0.141915i
\(963\) 1.06468 3.27674i 0.0343087 0.105591i
\(964\) 38.0803 27.6670i 1.22648 0.891093i
\(965\) −45.3155 32.9237i −1.45876 1.05985i
\(966\) −0.108495 0.333914i −0.00349077 0.0107435i
\(967\) 49.2820 1.58480 0.792401 0.610001i \(-0.208831\pi\)
0.792401 + 0.610001i \(0.208831\pi\)
\(968\) 0 0
\(969\) −1.91160 −0.0614093
\(970\) −2.10687 6.48427i −0.0676475 0.208198i
\(971\) −30.2107 21.9493i −0.969506 0.704388i −0.0141673 0.999900i \(-0.504510\pi\)
−0.955339 + 0.295512i \(0.904510\pi\)
\(972\) −9.12988 + 6.63325i −0.292841 + 0.212761i
\(973\) 1.49147 4.59026i 0.0478142 0.147157i
\(974\) −0.690011 + 2.12364i −0.0221094 + 0.0680457i
\(975\) −1.11755 + 0.811950i −0.0357904 + 0.0260032i
\(976\) −2.55730 1.85798i −0.0818570 0.0594726i
\(977\) 12.3757 + 38.0884i 0.395932 + 1.21855i 0.928233 + 0.371999i \(0.121328\pi\)
−0.532301 + 0.846555i \(0.678672\pi\)
\(978\) 0.401470 0.0128376
\(979\) 0 0
\(980\) 4.86335 0.155354
\(981\) 8.48571 + 26.1163i 0.270928 + 0.833831i
\(982\) −0.773396 0.561905i −0.0246801 0.0179311i
\(983\) 42.1024 30.5892i 1.34286 0.975644i 0.343525 0.939144i \(-0.388379\pi\)
0.999334 0.0365000i \(-0.0116209\pi\)
\(984\) 0.408230 1.25640i 0.0130139 0.0400527i
\(985\) 18.5866 57.2037i 0.592219 1.82266i
\(986\) −1.71467 + 1.24578i −0.0546062 + 0.0396738i
\(987\) −1.19703 0.869693i −0.0381019 0.0276826i
\(988\) 18.7661 + 57.7562i 0.597031 + 1.83747i
\(989\) 5.68262 0.180697
\(990\) 0 0
\(991\) 45.4828 1.44481 0.722404 0.691471i \(-0.243037\pi\)
0.722404 + 0.691471i \(0.243037\pi\)
\(992\) −6.23116 19.1775i −0.197840 0.608888i
\(993\) 1.90712 + 1.38560i 0.0605206 + 0.0439708i
\(994\) −0.827341 + 0.601098i −0.0262417 + 0.0190657i
\(995\) −14.4365 + 44.4310i −0.457668 + 1.40856i
\(996\) −0.296629 + 0.912932i −0.00939907 + 0.0289273i
\(997\) 22.6196 16.4341i 0.716370 0.520473i −0.168852 0.985641i \(-0.554006\pi\)
0.885222 + 0.465168i \(0.154006\pi\)
\(998\) −3.73252 2.71183i −0.118151 0.0858415i
\(999\) −1.60583 4.94224i −0.0508062 0.156365i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 847.2.f.v.148.3 16
11.2 odd 10 847.2.f.w.372.2 16
11.3 even 5 847.2.a.o.1.5 8
11.4 even 5 847.2.f.x.729.2 16
11.5 even 5 847.2.f.x.323.2 16
11.6 odd 10 77.2.f.b.15.3 16
11.7 odd 10 77.2.f.b.36.3 yes 16
11.8 odd 10 847.2.a.p.1.4 8
11.9 even 5 inner 847.2.f.v.372.3 16
11.10 odd 2 847.2.f.w.148.2 16
33.8 even 10 7623.2.a.ct.1.5 8
33.14 odd 10 7623.2.a.cw.1.4 8
33.17 even 10 693.2.m.i.631.2 16
33.29 even 10 693.2.m.i.190.2 16
77.6 even 10 539.2.f.e.246.3 16
77.17 even 30 539.2.q.f.422.2 32
77.18 odd 30 539.2.q.g.520.3 32
77.39 odd 30 539.2.q.g.422.2 32
77.40 even 30 539.2.q.f.410.2 32
77.41 even 10 5929.2.a.bt.1.4 8
77.51 odd 30 539.2.q.g.410.2 32
77.61 even 30 539.2.q.f.312.3 32
77.62 even 10 539.2.f.e.344.3 16
77.69 odd 10 5929.2.a.bs.1.5 8
77.72 odd 30 539.2.q.g.312.3 32
77.73 even 30 539.2.q.f.520.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
77.2.f.b.15.3 16 11.6 odd 10
77.2.f.b.36.3 yes 16 11.7 odd 10
539.2.f.e.246.3 16 77.6 even 10
539.2.f.e.344.3 16 77.62 even 10
539.2.q.f.312.3 32 77.61 even 30
539.2.q.f.410.2 32 77.40 even 30
539.2.q.f.422.2 32 77.17 even 30
539.2.q.f.520.3 32 77.73 even 30
539.2.q.g.312.3 32 77.72 odd 30
539.2.q.g.410.2 32 77.51 odd 30
539.2.q.g.422.2 32 77.39 odd 30
539.2.q.g.520.3 32 77.18 odd 30
693.2.m.i.190.2 16 33.29 even 10
693.2.m.i.631.2 16 33.17 even 10
847.2.a.o.1.5 8 11.3 even 5
847.2.a.p.1.4 8 11.8 odd 10
847.2.f.v.148.3 16 1.1 even 1 trivial
847.2.f.v.372.3 16 11.9 even 5 inner
847.2.f.w.148.2 16 11.10 odd 2
847.2.f.w.372.2 16 11.2 odd 10
847.2.f.x.323.2 16 11.5 even 5
847.2.f.x.729.2 16 11.4 even 5
5929.2.a.bs.1.5 8 77.69 odd 10
5929.2.a.bt.1.4 8 77.41 even 10
7623.2.a.ct.1.5 8 33.8 even 10
7623.2.a.cw.1.4 8 33.14 odd 10